

Digitized by Google

ACCOUNT OF THE OPERATIONS OF

THE GREAT TRIGONOMETRICAL SURVEY OF INDIA

VOLUME VII.

GENERAL DESCRIPTION

Series Series

OF THE

PRINCIPAL TRIANGULATION

OF THE

NORTH-EAST QUADRILATERAL

INCLUDING

THE SIMULTANEOUS REDUCTION,

AND THE DETAILS OF FIVE OF THE COMPONENT SERIES

THE NORTH-EAST LONGITUDINAL.

THE BUDHON MERIDIONAL THE RANGIR MERIDIONAL

THE AMUA MERIDIONAL
THE KARARA MERIDIONAL

PREPARED UNDER THE DIRECTIONS OF

LIEUT.-GENERAL J. T. WALKER, C.B., R.E., F.R.S., &c., &c., SURVEYOR GENERAL OF INDIA, AND SUPERINTENDENT OF THE TRIGONOMETRICAL SURVEY.

mehra mun:

PRINTED AT THE OFFICE OF THE TRIGONOMETRICAL BRANCH, SURVEY OF INDIA.

B. V. HUGHES.

1882.

CONTENTS.

CHART (OF '	THE PRINC	IPAL CHA	ins of Trian	GLES INCLU	DED IN THE	North-Ea	st Quadrii		acing tle page.
CONTEN	TS.	••	••	••	• •	•.•	• •	. ••	•••	iii
PREFAC	E	••	••	• •	••	••	• •	• •	••	xi
\$	Ski			IE PRINCIPAI INTO WHICH					n or 92° facing pa	ge xii
ERRATA	. EI	r Addenda	••	• •	••	•••	••	••	• •	xxiii
VOCABU	LA:	RY OF CERT	ain Nati	ve Words w	TH THEIR	Meanings	••	••	••	xxvi
					PAI	RT I.	•			
			WI	THE DET	AILS OF ITS	SIMULTANE	OUS REDUC		QUADRILATI	ERAL
_	· <i>I.</i> I.		-	riangulation of riangle				-East Quad	rilateral	8
	2.	The Obse	ervers an	l Instrumen	ts employed					4
8	3.			of the Nort rals for its F		drilateral or	n the Nort	h-West and	South-	11
4	1 .	The Cons	truction o	of the Princi	pal Stations		••	••	••	12
Chapter	• 11			it of the Ang ngulation of			_ •	wed in the	Reduc-	
. 1	ı.	The Meas	urement	of the Horiz	ontal Angle	s and their	Record		`	16

2.						
	The Deduction of an Angle from and the Weights	its seve	ral Measure	s. The Pr	obabilities o	of Error
8.	Preliminary Reductions of the G	roups of	Angles cont	ained in in	dependent I	Crigono-
	metrical Figures	••	• •	• •	••	• •
4.	Calculation of the Sides of the Tr	iangles		• •	••	• •
5.	Geodetic Elements of Stations and	l Sides	• •	• •		• •
6.	Reduction of the Vertical Angles	for the I	etermination	of Differe	ences of He	ight and
	Coefficients of Refraction	• •	• •	• •	• •	•••
7 .	The Final Values of Height	•	••		••	••
8.	The Determination of Azimuths b	y Astron	omical Obse	rvations	• •	• •
9.	The Final Reduction of the Trian	gulation.	Preliminar	y Sketch	••	••
10.	The Final Reduction of the Trian	gulation.	Formation	of the Circ	cuit Equation	ns
	I. Linear Equations	•••	• •	• •	••	• •
	II. Geodetic Equations	• •	• •	• •	• •	• •
	1. The Direct Line of Traver	se `	• •	• •	• •	• •
	2. The Zig-zag Line of Trave	rse	••	• •	• •	• •
	3. The Calculation of the Abs	olute Te	rms of the G	eodetic Eq	uations	• •
	4. The Calculation of the Geo	detic Fa	ctors in the	Coefficients		• •
	5. The Application of Equali	zing Fac				uations
11.		•	tors to the L	inear and (Geodetic Eq	
11.	5. The Application of Equali The Final Reduction of the Trian Indeterminate Factors	•	tors to the L	inear and (Geodetic Eq	
11. ter I	The Final Reduction of the Trian Indeterminate Factors	gulation	tors to the L	inear and (Geodetic Eq	
	The Final Reduction of the Trian Indeterminate Factors	gulation	tors to the L Solution of	inear and (of the Equ	Geodetic Eq	
ter I	The Final Reduction of the Trian Indeterminate Factors II. The Details of the Simultaneous	gulation s Reducti	on.	inear and (of the Equ	Geodetic Eq	een the
ter I	The Final Reduction of the Trian Indeterminate Factors II. The Details of the Simultaneou On the General Aspects and the 1	gulation s Reduction Magnitud	on. le of the Unions anteced	inear and (of the Equ dertaking	Geodetic Eq	een the
ter I	The Final Reduction of the Trian Indeterminate Factors II. The Details of the Simultaneous On the General Aspects and the I Synopsis of Independent Figura	gulation S Reducti Magnitud 1 Reduct	on. le of the Unions anteced	inear and (of the Equ dertaking	Geodetic Eq	een the
ter I. 1. 2.	The Final Reduction of the Trian Indeterminate Factors II. The Details of the Simultaneous On the General Aspects and the I Synopsis of Independent Figura Reduction Description of the Reduction Cha General Outline of the Formatic dition, and a Statement of the	s Reduction Magnitud Reduct rt	on. le of the Unions anteced	dertaking ent to the	Final Simul	taneous
1. 2.	The Final Reduction of the Trian Indeterminate Factors II. The Details of the Simultaneous On the General Aspects and the I Synopsis of Independent Figura Reduction Description of the Reduction Characteristics of the Formatics	s Reduction Magnitud Reduct rt	on. le of the Unions anteced	dertaking ent to the	Final Simul	taneous
1. 2.	The Final Reduction of the Trian Indeterminate Factors II. The Details of the Simultaneous On the General Aspects and the I Synopsis of Independent Figura Reduction Description of the Reduction Chat General Outline of the Formation dition, and a Statement of the Triangulation Formation of the Coefficients of	s Reduction Magnitud Reduct rt on of the	Solution of the Unions anteced or Linear and Number of	dertaking ent to the Geodetic Equation	Final Simul Equations of presented	taneous
1. 2. 3. 4.	The Final Reduction of the Trian Indeterminate Factors II. The Details of the Simultaneous On the General Aspects and the I Synopsis of Independent Figura Reduction Description of the Reduction Characteristic dition, and a Statement of the Triangulation Formation of the Coefficients of (1). The Direct Traverse	s Reduction Magnitud Reduct rt on of the	Solution of the Unions anteced or Linear and Number of	dertaking ent to the Geodetic Equation	Final Simul Equations of presented	taneous
1. 2. 3. 4.	The Final Reduction of the Trian Indeterminate Factors II. The Details of the Simultaneous On the General Aspects and the I Synopsis of Independent Figura Reduction Description of the Reduction Chat General Outline of the Formation dition, and a Statement of the Triangulation Formation of the Coefficients of	s Reduction Magnitud Reduct rt on of the	on. le of the Unions anteced Linear and Number of nown Quanti	dertaking ent to the Geodetic Equations	Final Simul Equations of presented	taneous

C	a	N	T	E	N	T	Ø	
.,	.,	1.4		174	1.4	1	13	

Chapter	-	III—(Continued).	Pag
;	7.	The Numerical Values of the Fixed Data on which the Simultaneous Reduction of the North-East Quadrilateral is based	8
:	В.	The Sides and Angles of the Circuit Triangles	9
	9.	Preliminary Latitudes, Longitudes and Azimuths of the Stations on the Right-hand Flanks of the Circuit Triangles	11
. 10	0.	Numerical Values of the Absolute Terms in the Primary Equations of Condition, and of their Products by the Equalizing Factors	11
1	1.	Numerical Values of the μ s and ϕ s	12
13	2.	Numerical Values of the Coefficients b and c of the Unknown Quantities y and z	15
.	3.	The Weights of the Angles The Data for the Calculation of ρ Synopsis of the Values of ρ², and the Evidence for their Determination The Weights employed in the Simultaneous Reduction of the North-East Quadrilateral The Absolute Weights of the Figurally Corrected Angles with the Data for their Determination	18 18 19 19
14	1 .	*The Coefficients of the Indeterminate Factors in the Values of the Unknown Quantities	20
1	5.	The Equations between the Indeterminate Factors, and their Solution	23
. 10	5.	The Final Values of the Angular Errors x , y and z	24
. 17	7.	The Dispersion of the Residual Errors remaining after the Simultaneous Reduction	25
18	3.	The Final Results of the Simultaneous and Subsequent Reductions	26
. 19	9.	Review of the General Reduction	26 27 27
		APPENDIXES.	
Append	ix	No. 1. The Details of the Separate Reduction of the Budhon Meridional Series, or Series J of the North-East Quadrilateral.	
•	m.	a Reduction Chart of the Rudhon Maridianal Sories faci	n <i>a</i> ma <i>a</i> a

1. Introductory Remarks ...

3

Appendix	No. 1—(Continued).				•		D
2.	Preliminary Calculations prece	ding the Sim	ultaneous I	Reduction o	f the Series	••	Pag
8.	The Description of the Reducti	ion Chart	• •	••	••	••	•
4.	The Equations of Condition	••	••	• •	•	• •	il
5.	Formation of the Coefficients of Condition	of the Unkno	own Quan	tities in the	Primary Eq	uations	
6.	Synoptical Exhibition of the S	everal Equati	ions of Co	ndition	• •	• •	il
· 7.	The Numerical Values of the the Budhon Meridional Seri		on which	the Simulta	neous Redu	ction of	
8.	The Sides and Angles of the C	ircuit Triang	les		• •		
9.	Preliminary Latitudes, Longit	tudes and Az	zimuths of	the Statio	ns on the I	Line of	1
10.	Numerical Values of the Abs their Products by the Equal			quations of	Condition,	and of	1
11.	Numerical Values of the μ s as	nd φs	•	• •	••	••	1
12.	Numerical Values of the Coeff the Primary Equations	icients b and	c of the U	nknown Qu	antities, y ar	nd z, in .	1
13.	· · · · · ·	 ρ	••	••	••	••	2 2
•	Synopsis of the Values of ρ The Absolute Weights of ρ Determination	and the Evi				or their	il
14.	The Coefficients of the Indetern	oinate Factors	in the Va	 lues of the T	 J nknown Qu	antities	2
	y and z	• •	••	•••	••	• •	il
15.	The Equations between the Inc	leterminate F	actors, and	d their Solu	tion	••	2
16.	The Final Values of the Angul	lar Errors x,	y and z	••	••	••	2
Appendix	No. 2. Reduction of the Non-ci	rcuit Triangle	es and the	ir Final Fig	ural Adjustm	ents	3
A ppendix	No. 3. On the Theoretical Erro and Longitude in a Chain of		Respective	ely in Side,	-	titude	8
The	coretical Errors Generated in Side	•	••	••	••	••	9
	oretical Errors Generated in Azi		de and Lor	ngitude	••	••	9
	olication to Functions of the Obs	-		•	••	••	10
Арр	plication to Chains in which the ifferent Groups of Triangles	-					10
	ctical Application	• •	• •	• •	• •	••	10

			•							
Appendix No	o. 4.	On the	Dispersion	of the	Residual	Errors	of a	Simultaneous	Reduction of	f Page
	Severa	l Chains	of Triange	le s	• •,					107

PART II.

THE DETAILS OF THE OBSERVATIONS AND THE FINAL RESULTS OF THE TRIANGULATION OF FIVE OF THE COMPONENT SERIES INCLUDED IN THE NORTH-EAST QUADRILATERAL.

NORTH-EAST LONGITUDINAL SERIES.

Introduction	••	••	••	••	••	••	III
Alphabetical List of Stations	••	••	••	••	••	••	1
Numerical do. do.	••	••	••	• •	••	••	3 _{I.}
Description of Stations	••	••	••	• •	••	••	5
Addendum to Description of Sta	ations	• •			••	• •	25* _{/.}
Observed Angles	• •	••	• •	••	••	• •	25 _{I.}
Reduction of Figures	••	••	• •	••	••	• •	133 _{/.}
Sides and Angles of Triangles	••	• •	••	••	••	• •	142
Latitudes, Longitudes and Azim	uths of Sta	tions	••	••	••	••	154 _{I.}
Heights above Mean Sea Level	••	••	••	• •	• •	• •	163 _{I.}
Description of Spirit-leveled Poi	ints	• •	••	••	••	••	179
Azimuthal Observations and the	ir Reduction	n	••	• •	••	••	181_ _{I.}
Alphabetical List of Proper Nar	nes showing	; latest Auth	orised Spell	ings	••	• •	201
Plate		٠					
			,				
	BUDHO	N MERID	IONAL SE	RIES.			
Introduction	••	••	••	••	••	• •	111 J.
Alphabetical List of Stations	• •	• •	• •	••	••	••	1
Numerical do. do.	••	• •	••	••	• •	• •	2
Description of Stations	• •	• •	• •	••	• •		3 _{J.}
Addendum to Description of Sta	tions		• •		••	• •	11*

CONTENTS.

	BUDHON N	MERIDION	IAL SERII	ES—(Contin	wed).	
Observed Angles	• •	• •	••		••	• •
Reduction of Figures	• •	• •	••	••		••
Sides and Angles of Triangle	es	• •	••	••	••	••
Latitudes, Longitudes and A	zimuths of S	tations	••	••	••	• •
Heights above Mean Sea Le	vel	• •	••	••	••	• • •
Description of Spirit-leveled	l Points	••	••	••	••	••
Azimuthal Observations and	their Reduct	ion	••	• •	••	
Account of the Connection Section 24° to 30°	of Ráepur	Hill Statio	n with the	Great Arc	Meridiona	l Series,
Plate	- -	-	-	•	-	
	RAN	GIR MER	DIONAL	SERIES.		
Introduction	• •	• •	• •	• •	• •	• •
Alphabetical List of Station	ıs	• •	• •	••	••	• •
Numerical do. do.	• •	• •	• •			••
Description of Stations	• •	• •	• •	• •	••	
Observed Angles	• •	• •	• •	• •	••	••
Addendum to Description of	Stations	• •	• •	••	••	••
Reduction of Figures	• •	• •	••	••	••	••
Sides and Angles of Triangl	les	••	• •	• •	• •	• •
Latitudes, Longitudes and A	Azimuths of S	Stations	••	• •	• •	••
Heights above Mean Sea Le	vel	• •	• •	• •	• •	••
Description of Spirit-leveled	l Points	• •	• •	• •	• •	• •
Azimuthal Observations and	their Reduct	ion	• •	• •	••	
Plate			•			
	AM 1	UA MERII	DIONAL S	SERIES.		
Introduction				••	• •	
Alphabetical List of Station			••	••	•	••
	• •	• •	• •			• •

AM	UA MERIDIO	NAL SERI	ES—(Continue	ed).		
Numerical List of Stations .		••	••		••	Page 2
Description of Stations .			••	••		3 _{L.} .
Addendum to Description of Stati	ions	• •	• •	• •	••	9* _{L.}
Observed Angles			••	••		9_ _L .
Sides and Angles of Triangles .			••		• •	27
Latitudes, Longitudes and Azimut	h of Stations		• •	• •	••	31 _L .
Heights above Mean Sea Level .		••	••		••	34 _L .
Description of Spirit-leveled Poin	its	••	••			38 _L .
Azimuthal Observations and their	Reduction	• •	••			39 _{—_L.}
Alphabetical List of Proper Name	s showing lates	t Authorised	Spellings	• •	••	43
						17.
	KARARA M	ERIDIONA	L SERIES.			
Introduction			• •			ш <u>.</u> м.
Alphabetical List of Stations .		••	••	••	••	
Numerical do. do						l— _{М.}
Description of Stations .		••	••	• •	••	2 м.
Addendum to Description of Stati		••	••	••	••	3— _{м.} 11*— _{м.}
Observed Angles		••	• •	• •	• •	
Delegation of Di		••		• •	• *•	11— _M .
Siles and Amales of Maintain		• •	• •	• •	• •.	33_ _M .
Latitudes, Longitudes and Azimus		• •	• •	• •	••	39_ _M .
. •		. ••	• •	• •	• •	44— <u>M</u> .
Heights above Mean Sea Level .		• •	• •	••	• •	48 _M .
Description of Spirit-leveled Poin	-	••	• •	• •	• •	55 M.
Azimuthal Observations and their	neauction	• •	• •	• •	••	56-M.
Plate						

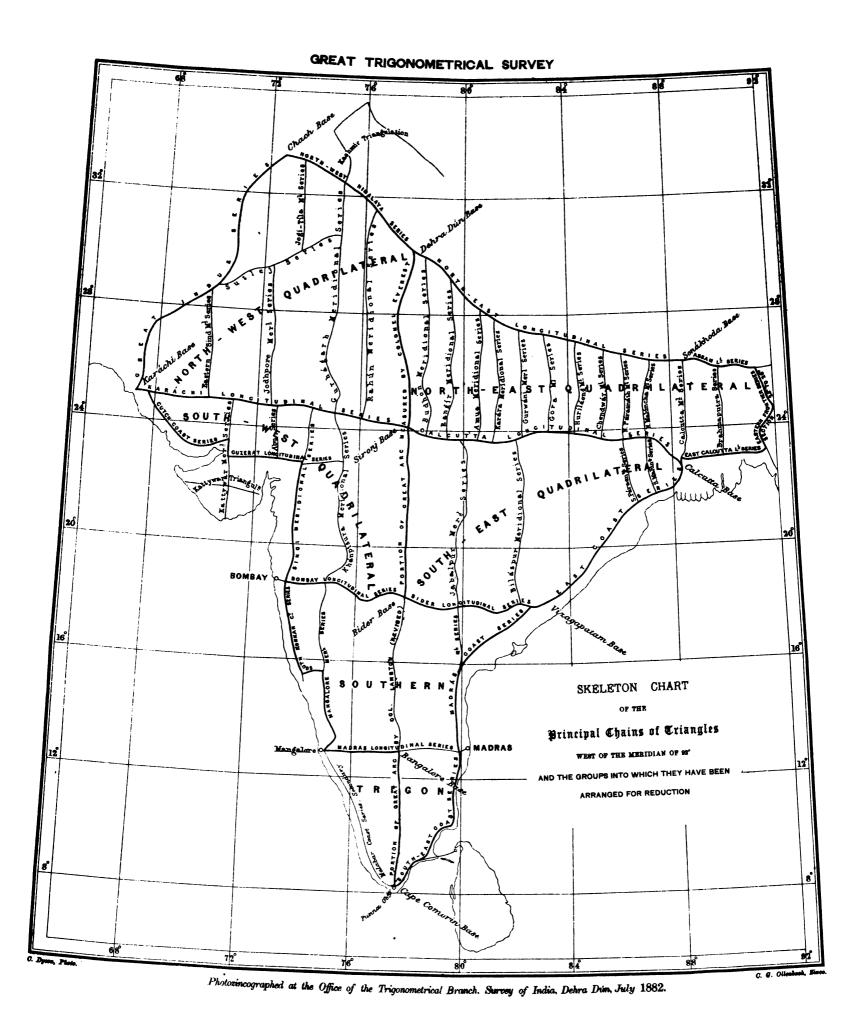
THE REDUCTION CHART OF THE NORTH-EAST QUADRILATERAL.

PREFACE.

The present volume forms one of that series of publications known as the "Accounts of the Operations of the Great Trigonometrical Survey of India", of which the design is, as has already been stated in the second volume of the series, "to give full reports—historical and descriptive—of the nature and the general "procedure of the operations; to describe the instruments which were employed in executing the several "linear and angular measurements; to furnish complete details of the actual facts of observation and the "methods of reduction by which these facts have been combined together and duly harmonized; and, lastly "to give the results which have been determined after this final reduction of the operations."

The first volume of the series accordingly gives the details of the measurements of the several baselines on which the triangulation of India rests, together with a discussion of the instruments on which the measurements depend, and the theoretical probable errors of the results. Volume II describes the principal triangulation, the theodolites with which it was executed, the procedure adopted in observing the angles, and all necessary details of the operations carried on in the field; it further describes the processes by which preliminary results were obtained from the observations, to satisfy immediate requirements, pending the completion of the several chains of triangles; also the method of final reduction, which was adopted after the chains were completed, and by which the errors at the junctions of the chains with each other and with the base-lines are eliminated, with the closest possible approach to mathematical rigour. It states briefly at page 28, and explains more fully at pages 162 to 170, the reasons why the method of final reduction could only be applied to limited portions of the triangulation at a time, thus necessitating the division of the triangulation into five great sections, to be reduced in succession, as indicated at page 32. It shows how the whole of the triangulation contained in the first of these sections-known as the North-West Quadrilateral-was reduced simultaneously; and, together with Volumes III and IV, it gives all the facts of angular observation appertaining to that Quadrilateral, full details of the preliminary and the final reductions of the angles and the several trigonometrical figures, and, finally, the resulting values of the lengths and azimuths of the sides of the triangles and the latitudes and longitudes of the stations.

Volume V deals with a subject of its own, the Indian Pendulum Operations, which is quite unconnected with the triangulation and therefore need not be here noticed.


Volume VI treats almost entirely of the triangulation appertaining to the South-East Quadrilateral, the second of the five great sections into which the principal triangulation of India has been divided for final reduction. It commences with a brief recapitulation of the formulæ employed in the calculations, in order

to obviate the necessity for frequent reference to Volume II, and then gives first, a complete exposition of the Simultaneous Reduction of the six chains or series of triangles forming the South-East Quadrilateral; and afterwards, for each series,—an introductory account of the operations, a descriptive list of the stations, an abstract of the observations of each angle, full details of the preliminary reductions of the angles—made to satisfy the geometrical conditions of the trigonometrical figures—the final values of the angles after having been corrected to satisfy the conditions of the Quadrilateral, and, finally, the resulting values of the lengths and azimuths of the sides, and of the latitudes and longitudes of the stations, of the triangulation.

The present volume is the seventh of the series. It and the following volume are devoted to the North-East Quadrilateral, the third of the five great Sections into which the principal triangulation has been divided for reduction.

The several chains of triangles composing this Quadrilateral are shown in the frontispiece to the present volume; but the reader who may wish to obtain a clear conception of the triangulation as a whole, and the position of the Section now under consideration relatively to the other Sections, should refer to the Skeleton Chart of the Principal Triangulation of India which faces the present page. In this chart each line represents a chain of triangles. The chain which approximates to the meridian of 78° and extends from the extreme south of India to latitude 30°, where it terminates on the Dehra Dún Base-line at the foot of the Himalaya Mountains, forms the back-bone of the triangulation, and is well known as the Great Meridional Arc of India, which was commenced by Colonel Lambton in Southern India, and carried upwards to the Himalayas by Colonel Everest; Colonel Lambton's portion has been revised of late years, with all the refinement which the latest and best instruments and the most approved procedure rendered possible. Of the remaining chains, some were accomplished in the earlier days of the Survey, when the instrumental equipment was generally very inferior to what it became subsequently, and when the procedure, as regards portions of the operations—more particularly the construction of towers for the principal stations in the plains—was still imperfect; other chains were executed in more modern times, with the best instruments and with the utmost possible refinement in every particular. The chains last executed are generally on a par with the Great Arc itself, while some are superior to it in accuracy. It so happened that lines of demarcation could be drawn broadly between the several chains of triangles, in such a manner as to divide the superior and the inferior chains into separate groups, each group containing a large number of interdependent chains; this circumstance was therefore availed of in designing the great Sections into which the triangulation had to be divided for final reduction. The bounding chains of these Sections are represented in the Skeleton Chart by thick black lines, while the intermediate and all other chains are shown by thin lines. It will be seen that there are five Sections in all, of which four are quadrilateral figures, while the fifth—which lies to the south of the others—is a trigon. The four Quadrilaterals meet at the point— Kaliánpur, approximately in latitude 24° by longitude 78°—which was employed by Colonel Everest as the central or reference station of the triangulation; they are therefore distinguished by the corresponding cardinal points-North-East, South-East, South-West, and North-West-with reference to the central station.

It has already been shown, in Section 7 of Chapter I of Vol. II, that the most accurate of all the chains of triangles are those which enter the North-West and the South-East Quadrilaterals; the least accurate enter the North-East and the South-West Quadrilaterals. When therefore the method for the general treatment of the principal triangulation had been elaborated and was ready to be put into practice, the Simultaneous Reductions were taken in hand in the following order, first the North-West Quadrilateral,

secondly the South-East, and thirdly the North-East Quadrilateral. Volumes VII and VIII contain full details of the observations, reductions and final results of the whole of the triangulation which is contained within the limits of the third Quadrilateral.

Any description of the Triangulation of this Survey and the operations connected therewith, from the observations of the angles to the deduction of the most probable and therefore final results, is naturally subdivisible under six heads; first, the general principles in accordance with which the operations have been conducted; second, the practical execution of the measurement of the angles; third, the general principles followed in the combination and adjustment of the individual angular measures, with a view to satisfying all the geometrical conditions involved, as well as the primary linear elements which are fixed by the baselines; fourth, the preliminary geometrical reduction of the individual triangles, polygons and net-works of which the chains are composed; fifth, the Simultaneous Reduction of either of the groups of chains, or Sections, into which the triangulation has been divided for convenience; and sixth, the presentation of the most probable values of the magnitudes of the angles, of the lengths and azimuths of the sides of the triangles, and of the latitudes and longitudes of the stations of the triangulation, which are the final results of the several reductions. The first and third of these branches of the subject are of general application, and they form the principal matter of Volume II, which was intended to be introductory to all subsequent volumes relating to the triangulation. 'The second, fourth and sixth branches have special reference to individual series or chains of triangles. The fifth has reference to either of the Sections or aggregations of chains grouped together for simultaneous reduction. In the present volume it has not been necessary to touch otherwise than lightly on the first and third divisions of the subject; but the remaining divisions, including the Simultaneous Reduction, are dwelt on at length, and full numerical details are given for five of the sixteen chains of triangles forming the Quadrilateral, the numerical details of the remaining eleven chains being given in Volume VIII.

The five chains of which the details are given in the present volume are

- I. The North-East Longitudinal Series.
- J. The Budhon Meridional Series.
- K. The Rangír Meridional Series.
- L. The Amua Meridional Series.
- M. The Karára Meridional Series.

The eleven chains of which the details are given in Volume VIII are

- N. The Gurwáni Meridional Series.
- O. The Gora Meridional Series.
- P. The Huríláong Meridional Series.
- Q. The Chendwar Meridional Series.
- R. The North Parasnath Meridional Series.
- S. The North Maluncha Meridional Series.
- T. The Calcutta Meridional Series.
- U. The East Calcutta Longitudinal Series.
- V. The Brahmaputra Meridional Series.
- W. The Eastern Frontier Series, Section 23° to 26°, with its pendant, the Cachar Branch Series.
- X. The Assam Longitudinal Series.

For their linear and geodetic elements the whole of the above chains of triangles are mainly dependent on the final elements of the Great Arc, Section 24° to 30°, and of the West Calcutta Longitudinal Series, as derived respectively from the North-West and South-East Quadrilaterals; but they are also dependent on the base-line at Sonakhoda for a linear element.

The present volume is divided into two parts. Part I is devoted to the Simultaneous Reduction of this Quadrilateral, and is followed by four Appendixes of which the two first dispose of the triangulation excluded from the Simultaneous Reduction, the third treats of the Theoretical Errors of triangulations, and the fourth treats of the dispersion of residual errors met with on the completion of Simultaneous Reductions. Part II is devoted to the details of the first five of the sixteen Series of triangles comprising the Quadrilateral.

PART I.

Chapter I gives a general account of the several chains of triangles, indicates the dependency of this Quadrilateral on the North-West and South-East Quadrilaterals for its fixed data, and describes the structure of the principal stations.

Chapter II describes the procedure followed in the measurement of the horizontal angles, and the methods adopted in determining the weights of the angles which were respectively measured with the primary and the modern theodolites; it quotes the mathematical formulæ employed in the reduction of the triangulation, from Volume II, where they are demonstrated; it indicates the final adjustment of the trigonometrical determinations of height by connection with the main lines of spirit levels; and finally it indicates the general principles of the Simultaneous Reduction of this Quadrilateral.

Chapter III gives full details of the Simultaneous Reduction as follows:-

First. A review of the general aspects and the magnitude of the undertaking, leading to the conclusion that the labour of reduction, which must in any case be very considerable, should be reduced as much as possible by intentional neglect of arithmetical nicety.

Second. A synopsis of the independent partial reductions antecedent to the Simultaneous Reduction.

Third. A description of the Reduction Chart which is given at the end of the volume, and a careful study of which is essential to a clear understanding of the several processes of calculation.

Fourth. A general out-line of the formation of the several Linear and Geodetic Equations of condition, 49 in number, which had to be satisfied, in order to produce the requisite consistency in the triangulation per se, and between it and the fixed elements on which it depended.

Fifth. The method of constructing the coefficients of the Unknown Quantities in the equations of condition, showing the general notation which was adopted for expressing the values of these coefficients, and specifying every exception to the general form.

Sixth. A synoptical exhibition of the several Equations of Condition, showing at a glance the triangles of which the angular errors enter as unknown quantities into each of the 49 equations of condition.

Seventh. The numerical values of the Fixed Data on which this Quadrilateral is based.

Eighth. The values of the Sides and Angles of the Circuit Triangles, as they stood before the Simultaneous Reduction.

Ninth. The Latitudes, Longitudes and Azimuths of the Stations on the right-hand flanks of the Circuit Triangles, as they stood before the Simultaneous Reduction.

Tenth. The numerical values of the Absolute Terms in the several linear and geodetic equations of condition.

PREFACE. xv

Eleventh. The numerical values of the μ s and ϕ s, the geodetic summations—exhibited in the table at page 55—which are required in forming the coefficients of the Unknown Quantities (the Angular Errors) in the geodetic equations of condition.

Twelfth. The numerical values of the coefficients, b and t, of the Unknown Quantities in the several linear and geodetic equations of condition.

Thirteenth. The Weights of the Angles: the method of determining the value of the modulus which had to be applied in each instance, in order to convert the preliminary weights of angles measured with different instruments and under different circumstances into absolute weights, and thus to reduce them all to a common standard of accuracy before commencing the Simultaneous Reduction; the data for the calculation of the several moduli, with remarks on the results; and, finally, the values of the weights which were employed in the Simultaneous Reduction.

Fourteenth. The coefficients, B and C, of the Indeterminate Factors, in the equations in which the values of the Angular Errors are expressed in terms of those factors.

Fifteenth. The equations between the Indeterminate Factors, showing every significant coefficient and absolute term as it stood, first on the formation of the equations, and secondly after the successive eliminations of individual factors in the process of solution; finally, the numerical values of the Factors are given.

Sixteenth. The values of the Errors, x, y and z, of the angles of each triangle, resulting from the Simultaneous Reduction and the subsequent apportionments of residual error.

Seventeenth. The dispersion of the Residual Errors which were met with after the Simultaneous Reduction.

Eighteenth. General observations on the final results, and the numerical accuracy ultimately attained in the calculations. A table is given contrasting the original values of the linear and geodetic elements, at the sides and stations of the circuit junctions, with the values determined after the Simultaneous Reduction. A second table gives the apportionment of error among the several chains, showing the amounts of the corrections which have fallen on the linear and geodetic elements of each chain, or each separate section of a chain. A third table gives the average magnitudes of the angular corrections, as indicated by the number of errors of every successive magnitude in a scale ascending by tenths of seconds from zero upwards.

Nineteenth. Review of the General Reduction, with reference more particularly to the changes which had been introduced in previous methods of treatment, and to the results which had followed from aiming at a lower degree of arithmetical refinement.

THE APPENDIXES TO PART I.

No. 1 gives the details of the reduction of the Budhon Meridional Series, which was effected separately and not included in the Simultaneous Reduction of this Quadrilateral, for reasons which are setforth at page 63 of the present volume.

No. 2 gives the reduction of the Non-Circuit Triangles,—viz., the triangles excluded from the Simultaneous Reduction—which was needed for the final adjustments of their angles, to satisfy the geometrical conditions of the polygonal figures to which they appertain.

No. 3 is devoted to an investigation of the Theoretical Errors, generated respectively in Side, Azimuth Latitude and Longitude, in chains of triangles. These theoretical errors had been previously investigated, and

form the subject of Section 9, Chapter XV of Volume II, and of the footnotes at pages 416 to 418 of that volume; but unfortunately some mistakes had occurred in the first investigation which were not detected until recently. This Appendix is therefore intended to supersede the original erroneous matter.

No. 4 indicates a simple method for the dispersion of the Residual Errors which may be met with on the completion of the Simultaneous Reduction of several chains of triangles, at sides and stations of junction.

PART II.

This portion of the present volume gives full details of five of the sixteen chains or series of triangles of which the Quadrilateral is composed. In arranging these details for publication it has been found convenient to give the whole for each Series—from the observations of the principal angles to the determination of the final results, angular, linear and geodetic-in groups by themselves. This has been done, First, because the printing of that part of this volume which is alloted to these details has extended over several years, proceeding pari passa with the progress of the calculations and the acquisition of data for publication; thus it was commenced with the Names and Descriptions of the Stations and the Details of the Observations of the Angles, and then continued with the results of calculation. Secondly, because by taking up each Series by itself, much of the matter which was set up in type for this volume could be made available for the Synoptical Volumes—as they are called—which are prepared to supply the data needed for the requirements of topographical surveyors operating in the districts passed over by the triangulation. The Synoptical Volumes contain full details of the several Secondary and Tertiary Triangulations which have been executed pari passa with the Principal Triangulation, for geographical and topographical purposes. The larger volumes—or the Accounts of the Operations, &c.,—are exclusively devoted to the details of the Principal Triangulation, excepting in so far that what has been done in the way of secondary and minor triangulation in each Series is described in the Introduction to the Series. It was obviously desirable that all matter which was required for both the Synoptical and the Principal Volumes should be set up in type and printed off, once for all, and therefore the arrangement of separate grouping was adopted. Thus in Part II of this volume and throughout Volume VIII, the numbering of the pages commences afresh for each Series, following the order of succession, which has already been indicated at page xiii; it is particularised for each Series by the addition, as a subscript to the number of the page, of the letter—I to M in the present volume and N to X in Volume VIII—which has been adopted as a symbol to indicate the Series.

It is now desirable to give first, a summary, and afterwards a general explanation, of the information and numerical data which the present volume furnishes for each chain of triangles. For the former purpose the fifth Series in order—the Karára Meridional—may be taken as typical.

1.	Introduction	•••	•••	•••	•••	•••	•••	•••	page	111— _M
2.	Alphabetically	${\bf arranged}$	List of	Stations	•••	•••	•••	•••	"	1 <i>M</i>
3.	Numerically as	ranged L	ist of St	ations	•••	•••	• • •	•••	,,	2_w
4.	Description of	Stations	•••	•••	•••	•••	•••	•••	"	3w
5.	Addendum to I	Description	n of Stat	ions, cont	aining late	st details	up to dat	te	"	11*
6.	The Observation	ns of the	Angles, v	with the W	eights of	the Conc	luded Res	ults	"	11
7.	Reduction of t	he Polygo	nal Figu	ıres	•••	•••	•••	•••	"	33w
8.	The Final Value	es of the	Sides an	d Angles o	of the Tris	ngles	•••	•••	,,	39

- Plate. Diagrams of the several Polygonal Figures contained in the Series.
- 1. The Introduction gives a historical sketch of the progress of the whole of the operations in the field,—both principal and secondary—from year to year, mentions the Officers by whom they were conducted, and the theodolites with which the principal angles were measured, and indicates the work done by each of the Assistants.
- 2 and 3. It has been found convenient to indicate the Principal Stations by a system of numerals, as well as by their names. Consequently at the commencement of the details of each Series two lists are given, in the first of which the stations are arranged alphabetically with the numbers opposite the names, in the second numerically with the names opposite the numbers. Roman numerals have been adopted throughout for the nomenclature of the stations which is progressive in order from south to north in meridional chains, and from west to east in longitudinal chains, the first number for each Series being unity.
- 4 and 5. The Descriptions of Stations are based generally on those made originally by the observers and entered on the spot into the angle books, subject to such modifications as are occasionally required to take cognizance of any alterations which have been subsequently effected. They give the names of the district and the sub-division in which the station was situated at the time when its description was written; but as the boundaries of the districts and sub-divisions are not unfrequently altered, to suit the requirements of the Local Administration, the latest alterations are indicated in the Addendum to the Description of Stations, which also gives the latest information forthcoming regarding condition, &c. For information as to the general form and structure of the stations, reference should be made to Section 4 of Chapter I.
- 6. In the pages which are allotted to the Observations of the Angles, the name of the observer, the distinguishing number and the name of the maker of the theodolite, and the month and year in which the observations were taken, are specified at the head of the observations at each station.

In the details of the measures of the angles—called the Abstracts of the Angles—it is customary to give the reference number of the station on which the telescope was set at the commencement of each round of measures, and the reading to which the azimuthal circle was set, after each 'change of zero'; thus the graduations of the circle to which the readings were taken, at every measure of any angle, may be readily ascertained for an investigation of the law of the graduation error, such as will be found for Troughton and Simms' 18-inch Theodolite No. 1, in Appendix No. 4 of Volume II.

But the Abstracts of some of the older angles, measured before the year 1862, were printed before the practice of specifying the 'zero' or circle setting points was introduced; thus this information is wanting for Stations I to CXIX of the North-East Longitudinal Series. The modern Abstracts of Angles give the value of every measure of each angle, for each circle setting, the values being arranged in vertical columns at the foot of which the mean is given for the zero; but the older Abstracts give the zero means only, and merely state the number of measures from which each mean was derived.

For an explanation of the principles by which the changes of zero have been governed, reference should be made to Section 1 of Chapter II. During a short time two zero points of reference for the circle

settings were adopted instead of a single point, the first half of the observations of each angle being measured from one point and the second half from the other; and as this occurred at Stations LXXXIV to CI of the North-East Longitudinal Series, and the Abstracts of the Angles do not specify the setting points, the information is given for those stations in the Errata and Addenda.

The right-hand column of the Abstract of Angles contains the following additional information;—for the angles measured prior to the year 1862, the probabilities of error and the general means; and for the angles measured afterwards, M, the mean of the several groups of measures on each setting, w and $\frac{1}{w}$, the weight, and its reciprocal, of the angle as deduced from differences between individual measures and between individual groups, and C, the concluded value of the angle as derived from the observations only. For fuller explanations reference must be made to Section 4, Chapter VII, Volume II, to the example at page 342 of the same volume, and to Section 2 of Chapter II of the present volume.

The modern Abstracts of Angles are followed by lists of the Sums of Squares of Apparent Errors of Single Observations and Single Zeros, which furnish data for the investigation of the average e.m.s. (theoretical error of mean square) of observation in a single measure of an angle, and the average e.m.s. of graduation plus observation in the mean of the measures on a single zero. The determinations are made in the first instance for groups of angles measured by the same observer, with the same instrument, and under similar conditions, and then for various combinations of these groups. With data thus obtained, from several series of triangles, for seven of the large theodolites which have been chiefly employed in the measurement of the principal angles, the investigation of the influences of Mixed Errors of Observation and Graduation was made which forms the subject of Section 3, Chapter VII, Volume II.

7. The Reductions of the several Polygonal Figures which are contained in any Series show how the angles of which each figure is composed were made consistent and harmonious inter se, so as to satisfy all geometrical conditions, with due regard to the respective weights of the angles. Full explanation of the principles and the procedure of these reductions, will be found in Chapter VIII of Volume II, and the formulæ are given in Section 3 of Chapter II of the present volume. The figures are numbered consecutively throughout the triangulation of the Quadrilateral, running generally through the several Series in the order of their alphabetical arrangement, but excluding the Budhon Series as it was not included in the Simultaneous Reduction. Diagrams of the figures are given in the plates appertaining to the Series. The small numerals within each of the observed angles correspond to the subscripts to the general symbol, x, which is employed to indicate the error of any angle, the numerical subscript denoting the angle. Thus on referring to the diagram of Figure No. 10, and to the reduction of that figure; page 35_w, x₃ is the error of the angle 3, at Station II, between Stations I and III. The tabular statements of the reductions give, first the observed angles and reciprocals of their weights; secondly the equations by the solution of which the geometrical conditions of the figure are satisfied,—see equations (18), page 28; thirdly the equations between the 'indeterminate factors',—(19); fourthly the values of the indeterminate factors; fifthly the values of the angular errors,—(20); and sixthly the summation of the product of the square of each error by its weight—(21)—the value of which summation is made a minimum, in order that the values to be obtained for the several angular errors may be the most probable of each of the many values by which the geometrical conditions of the figure may be satisfied. In the group of equations between the indeterminate factors, the coefficient of the pth factor in the qth line is the same as that of the qth factor in the pth line; thus if a diagonal line be drawn from the coefficient of the first term in the first line to that of the PREFACE. xix

last term in the last line, the coefficients which are symmetrically disposed on opposite sides of this line will be identical with each other. Consequently only the coefficients on and above the diagonal have been given; the absence of those below is indicated by asterisks.

- 8. Tabular statement of the Triangles. The two first columns of this table give the number adopted for each triangle to designate its place in the Quadrilateral; this number is entered in the first column if the triangle appertains to the chains of single triangles forming the several circuits whose closing errors are eliminated by the Simultaneous Reduction; it is entered in the second column for the non-circuit triangles exterior to the said chains. The triangles which enter the circuits are shown in the Reduction Chart (at the end of this volume) in firm lines, with their distinguishing numbers written in the centre; those which do not enter the circuits are shown in dotted lines, and their numbers are indicated by numerals of a smaller size than the former, commencing with 574, 573 being the number of the last of the circuit triangles.* The columns in the table which contain the corrections to the observed angles give, first the correction for the error of the angle, with reference merely to the triangle or polygonal figure to which it belongs, as obtained from the primary reductions; and secondly the further correction which has to be applied either for the apportionment of circuit error, should the angle appertain to one of the circuits, or for the restoration of consistency in the polygonal figure after the application of the circuit errors, should it appertain to a non-circuit triangle. Finally, the corrected plane angles and the lengths of the sides are given, as computed by the rules of Plane Trigonometry, in accordance with Legendre's theorem; see Section 4 of Chapter II.
- 9. The Table of the Latitudes and Longitudes of the Stations and the Azimuths and Lengths of the Sides. The principles on which the calculations of the Geodetic Co-ordinates and Azimuths have been made, and the method of computation, are fully explained in Sections 2 and 4 of Chapter IX of Volume II, and the formulæ are quoted in Section 5 of Chapter II of the present volume. All azimuths are referred to the south point and are measured right round the horizon, by the west.
- 10. The Determinations of the Differences of Height of the several stations have been deduced from the measurements of the vertical angles, as explained in Section 6 of Chapter II. It has not been considered necessary to give the individual measures of these angles, as has been done for the horizontal angles, because this portion of the operations is less exact and important. But the mean of the whole of the measures of each vertical angle, the calculated mean value of the amount of refraction in each angle and of the coefficient of refraction, the hour of observation, the heights of the signal and of the observer's telescope above the summits of the stations, the differences of height of the said summits and the absolute heights above the mean-sea level, are given. Several of the absolute determinations have been derived from the Spirit-leveling Operations of this Survey,—starting from the mean-sea level of the Harbour of Karáchi (Kurrachee)—of which full details will be found in the published Tables of Heights in Sind, the Punjab, &c., the North-West Provinces, and Bengal, &c. The errors generated trigonometrically between any two obligatory stations, fixed by the spirit-leveling, have been duly dispersed, sometimes by the method of minimum squares, but more generally by simple proportion over the intermediate trigonometrical values.

It may be here stated that all trigonometrically determined heights invariably refer to the upper surfaces of the central masonry pillars at the principal stations. Spirit-leveled values sometimes refer to the

^{*} The triangles of the Budhon Series have a separate numbering of their own—1 to 44 for circuit, and 45 to 57 for non-circuit triangles—as they were excluded from the Simultaneous Reduction. See Chart facing page 1 of the Appendixes.

upper surface and sometimes to the basement of the pillar, whichever the leveling-staff was set upon; a description of the exact point referred to is given in each instance.

11. Finally come the details and reductions of the Astronomical Observations which have been taken, at certain stations in each Series, for the determination of the Azimuth of one of the surrounding stations, or of a referring mark the angle between which and a contiguous station has been measured. The observations and the method of reducing them are fully described in Chapter XII of Volume II. For reasons which are explained in the first section of that chapter, the results have not been used in the general reduction of the Quadrilateral, further than to give a more exact mean value of the fundamental astronomical azimuth (at Kaliánpur) than the one obtained by the observations on the spot. At the end of the details of the determination of each azimuth, the difference between the observed value and the value obtained by calculation through the triangulation from the fundamental azimuth is given. These differences may be of much value in future investigations of the figure of the earth and of the influence of local attraction.

Full details regarding the Unit of the Linear Measures, the Base-lines, the Initial Elements of Latitude, Longitude and Azimuth, and the Elements of the Figure of the Earth which have been adopted in the calculations, will be met with in Volumes I and II. In this place it is only necessary to state that,—

- (1). The Unit of Length is the Indian Standard 10-feet Bar A, the relations between which and the principal European Standards of Length are given at page 28 of Volume I.
- (2). The adopted Elements of the Figure of the Earth—assumed to be spheroidal—are given at page 31 of this volume.
- (3). The Longitudes depend on an astronomically determined value of the Longitude of the Madras Observatory, East of the Royal Observatory at Greenwich, which was deduced about the year 1815. The Longitude of the Madras Observatory has however been recently re-determined, by the Electro-Telegraphic method, by observations which were made at Greenwich, Mokattam (in Egypt), Suez, Aden, Bombay and certain stations of the triangulation in India, and with the following preliminary results;

```
Longitude of Mokattam ... 2 5 6 320 East of Greenwich Supplied by Sir G. Airy, from observations taken Increase for Suez ... 0 5 6 917 ,, and in connection with Transit of Venus in 1874.

Maden ... 0 49 42 656 ,, Bombay ... 1 51 19 983 ,, Madras ... 0 29 43 540 ,,

Longitude of Madras ... 5 20 59 416 ,,
```

This value of the Longitude of Madras is equivalent to 80° 14′ 51″; and as the originally adopted value, on which the longitudes of the whole of the stations of this Survey are based, is 80° 17′ 21″—see page 135 of Volume II—the following precept may be accepted with considerable confidence;—

All the Longitudes require a constant correction, probably of -2' 30".

PREFACE. xxi

As regards the Orthography of Indian names, it has not been possible to adopt a uniform system throughout the present volume. Many years ago Colonel Everest endeavoured to bring into general use in the Survey Department, Sir William Jones's method which is at once elegant and phonical, and is highly approved of by scientific men. But that method gives to all vowels their Italian sounds; and as the differences between the English and the Italian sounds are, in almost every instance, very considerable, and it is easier to lay down rules than to find followers for them, the surveyors gradually got into the way of using ee for the Italian i and oo for the Italian u, and of spelling generally in the manner that is natural to most Englishmen. In 1865, when the preparation of the final results was commenced, the spellings were corrected in accordance with Sir William Jones's system, excepting in the case of well-known names—such as Meerut, Calcutta, Cawnpore—which it would have been pedantic to alter, as they had become settled and familiar by But in 1871 the Government of India made arrangements for the introduction of a uniform system of spelling throughout India, and circulated a "Guide to the Orthography of Indian proper names, with a list showing the true spelling of Post-towns in India", which was prepared by Dr. W. W. Hunter, L.L.D., Director General of Statistics to the Government of India; the guide was sent to the Survey Department with instructions that the directions it contained should be immediately complied with. Dr. Hunter's rules for spelling unfamiliar names, not given in his list of post-towns, are very similar to the rules which had been adopted in this Department, the chief difference being that the long a, i and u are required to be frequently unaccented, whereas by our rules they were invariably accented. In his list of post-towns however Dr. Hunter has not followed a uniform system of spelling, but has effected a compromise which—in his own words—"by sacrificing something in scientific precision, obtains a spelling more accurate than at present and yet recognisable as the same name." Thus the hill station at which the Head Quarters of the Trigonometrical Survey are located, during the summer months, is spelt ordinarily Mussoorie and scientifically Masúri, but according to Dr. Hunter it should be spelt Masauri. In September 1873 the Government of India issued amended rules for the spelling of all names not well known, which are practically identical with those originally followed in this Department. At the same time it was ordered that the orthography of the well-known names should be retained, and that a list of all note-worthy names should be prepared, in each Province, showing the orthography to be uniformly followed in future official correspondence and publications. When all these lists are published, uniformity of spelling will become possible; to what extent uniformity of system will be secured will depend on the latitude taken by the compilers of the lists in defining the number of names which are to be considered as well-known. This is a point on which there are considerable differences of opinion, some of the lists already published being much more conservative than others of the old fashioned Anglicised spellings.

Certain portions of the present volumes having been printed before, and others after, the issue of the several orders above quoted, the attempts to introduce a uniform system of orthography have occasionally led to considerable diversities of spelling, and in not a few instances to the adoption of one spelling, then of another and finally a return to the first; as in Dún, Doon, and finally, Dún,—or Cutch, Katch, Kach'h, and finally Cutch; or to successive divergencies from the first spelling, as Masúri, Masauri, Mussoorie and finally Mussooree. It is however believed that, notwithstanding such departures from a standard spelling, all the names will be readily recognizable. As a general rule the pronunciations of the vowels are as follow; a has a variable sound as in woman, rural, paltry; a as in tartan; a as in bit; a as in ravine; a as in bull; a as in rural; a as in note; a as a in say; a as ou in cloud; a as a in ride.

It now only remains for me to express my acknowledgments to all who have mainly contributed towards the preparation of the present volume.

The primary reductions of the individual chains of triangles, and the general arrangement of Part II, for publication, were mostly effected under the supervision of Mr. J. B. N. Hennessey, M. A., F. R. S., (Deputy Superintendent 1st Grade) who succeeded to the charge of the Computing Office of the Trigonometrical Survey about the same time that I succeeded to the Superintendence of the Survey, in 1861, and with whom I have thus been intimately associated in all matters relating to the general reduction of the triangulation and other collateral operations, from the commencement of my administration of the Survey up to the present time. I have every reason to be much indebted to him for constant loyal co-operation and hearty assistance.

The important and intricate calculations which were required for the Simultaneous Reduction of the Triangulation as a whole, were executed under the supervision of Major J. Herschel, R. E., F. R. S., (Deputy Superintendent 2nd Grade) during the absence of Mr. Hennessey, Mr. Cole and myself in England. I had specially authorised Major Herschel to introduce into these calculations such modifications of the methods of procedure which had been previously followed—in the Simultaneous Reductions of the North-West and the South-East Quadrilaterals—as might be desirable for the purpose of reducing labour, and might be effected without materially impairing the accuracy of the final results. Circumstances unfortunately prevented him from remaining in India to draw up an account of his treatment of this important Section of the Principal Triangulation, for incorporation into the present volume; thus the preparation of the description of Major Herschel's methods has mainly devolved on myself. I had already given some description of them in Chapter XVIII of Volume II; and I have now entered more fully into the subject in Chapter III of the present volume, in which I discuss all the essential differences between the methods of procedure in the three successive reductions. I am indebted to Major Herschel for his searching examinations of previous methods, and for the pains he has uniformly taken to discover whatever alterations might be introduced with the object of improving the general procedure and facilitating the execution of the very complex and excessively laborious calculations.

The two first chapters of the present volume and the four appendixes are mainly due to Mr. W. H. Cole, M. A., (Assistant Superintendent 1st Grade) to whom I am also much indebted for very valuable help and hearty co-operation on all occasions, during the period of sixteen years which have elapsed since he joined the Survey.

The members of the Computing Office who have taken a leading share in the calculations generally, are Mr. C. Wood—who has also prepared the narrative Introductions for three out of the five Series included in Part II—Babu Gunga Pershad, and Babu Cally Mohun Ghose. The Simultaneous Reduction was principally effected, with the aid of Babus Madu Narain and Shiv Nath Saha, by Babu Cally Mohun Ghose, to whom also is due the credit of introducing sundry checks on the accuracy of the solution of the formidable equations between the Indeterminate Factors, and of suggesting the employment of tabular logarithmic differences in place of differentials. The entire printing of this volume has been performed as usual in the printing branch of the Trigonometrical Survey Office at Dehra. Mr. Peychers and Babu Gunga Pershad have rendered good service in the examination of the press proofs generally, and more particularly as regards the large amount of numerical matter, requiring very careful supervision and correction, which is contained in this volume.

MUSSOOREE, August 1882.

J. T. WALKER, LIEUT.-GENERAL, R.E.,

Surveyor General of India, and

Superintendent of the Trigonometrical Survey.

ERRATA ET ADDENDA.

·-----

PART I.

Pagi					
	line 2 from bottom, of footnote	for	$a_1 x^1 - a_2 x_2 &c.$	read	$a_1 x_1 - a_2 x_2 &c.$
39	,, 11 from top, col. 5	after	from	insert	3 of
54	,, 4 ,,	for	"[p]	read	$1 + {1 \choose 1} [p]$
,,	,, 5 ,,	,,	"[p]	٠,,,	1 + "[p]
57	in expression (63)	,,	$y = \iota \phi + \mu \beta $ $z = \iota \phi - \mu \gamma$,,	for y , $\iota \phi + \mu \beta$ z , $\iota \phi - \mu \gamma$
74	line 15 from top	,,	to first ten circuits	"	to the first ten circuits .
87	in equation (47)	"	47 k 578 518	"	47k 518
,,	,, (48)	"	48k 518	"	48k 518
144	line 1 of table, col. 13	, ,,	+ 1.0003	,,	+ 0.9997
168	,, 2, col. 4	,,	Equalizing Factor = 1	,,	Equalizing Factor = :03
193	line 1 of table, cols. 9 and 10	,,	·536 and ·913	,,	± .536 and ± .913
"	" 2 " col. 11	,,	1.042	>>	± 1.045
198	to 203, cols. 7 and 14 in heading of tables	,,	$\frac{u_c}{3}$	"	$\frac{u}{3}$
264	in heading of Section 18	after	Simultaneous	add	and Subsequent
		PA	ART II.		
17_	line 2 from bottom, in some copies	for	85° 32′	read	85° 38′
18_		"	85° 32′	"	85° 38′
38_	col. 1 of 1st angle	"	VI & IX	"	VII & IX
.	, 9th zero-setting at station X, in some copies	"	21° 48′	,,	28° 48′

xxiv

In the observations at stations LXXXIV to CI two zero points of reference for the circle settings were adopted instead of a single point as usual, half the observations being taken from one point, and half from the other. The respective zero-stations are shown in the following table:—

8	Zero-s	STATION	a	Zero-station			
Station of Observation	For 1st Set of Observations	For 2nd Set of Observations	Station of Observation	For 1st Set of Observations	For 2nd Set of Observations		
LXXXIV	LXXXV	LXXXVI	XCIII	XCII	XCIV		
LXXXV	LXXXVII	LXXXVI	XCIV	XCIII	XCV		
LXXXVI	LXXXIV	LXXXV	xcv	XCIV	XCVI		
LXXXVII	LXXXVIII	LXXXVI	XCVI	XCV	XCVII		
LXXXVIII	LXXXIX	LXXXVII	XCVII	XCVI	XCVIII		
LXXXIX	LXXXVIII	XC	XCVIII	XCVII	XCIX		
XC	LXXXIX	XCI	XCIX	XCVIII	C		
XCI	xc	XCII	C	XCIX	CI		
XCII	xci	XCIII	CI	C	XCIX		

164___ last line, col. 15 read 38.2 for 5___ line 25 from top about 20 feet to the east of surmounted by 32___ col. 1 of last angle XLIII & LXVI XLIII & XLVI 64___ line 7 from top after Mean Right Ascension $1842 \cdot 0$ Mean North Polar Dis-1842.0 tance (1794)read (1774) Háfiz Rahmat Naju col. 14 47'61 471'61 3 from bottom, of footnote Chapter IV Chapter II

The observations at the two initial and the following thirteen stations of the Karára Series, consisted simply of a single observation at each zero-setting, the instrument employed being Troughton and Simms' 18-inch Theodolite No. 1, which has an azimuthal circle with peculiar periodic errors of graduation, investigated in Appendix No. 4 to Volume II. Each of the means given in the abstracts of the angles observed at these stations, happens to be the mean of a pair of observations 'face right' and 'face left', with zero-settings exactly 180° apart, the observer having in these instances departed from the customary system of recording his observations; see page vii—M. The zero-settings given in the abstracts of these angles must therefore be understood to imply pairs of settings, the second of which differed by 180° from the one given.

PAGE					
17	last col. second angle	for	79° 36′ 44″·41	read	79° 36′ 44″·42
18_ _ w.	at station XII	fter	Troughton and Simms	add	and with an 18-inch by Cary.
21_ _M .	at stations XVIII and XIX	or	a 15-inch Theodolite by Harris	read	an 18-inch Theodolite by Cary.
²² — _{M.}	at station XIX	"	a 15-inch Theodolite by Harris	"	an 18-inch Theodolite by Cary.
48 <i>m</i> .	line 15 from top	,,	Stn. XVI from Stn. XV	"	Stn. XVII from Stn. XVI

September, 1882.

J. B. N. HENNESSEY,

In charge of Computing Office.

Digitized by Google

xxvi

VOCABULARY OF CERTAIN NATIVE WORDS MADE USE OF IN THIS VOLUME.

Orthography employed.			CORRECT ORTHOGRAPHY.			Meaning.
Bárádari			Bárádarí	•••		A summer-house.
Barkandáz	•••	•••	Barkandáz	•••	•••	A watchman.
Chabútara	•••		Chabútara			A platform.
Choki	•••	•••	Chaukí	•••	•••	A police-station.
Doáb	•••	•••	Duáb	•••	•••	Land between two rivers.
Duffadár	•••	•••	Dafadár	•••	•••	A native officer whose rank corresponds to that of a sergeant.
Gargaj	•	•••	Gargaj	•••	• • •	A tower.
Guru	•••	•••	Gurú	•••	•••	A spiritual guide.
Havildár	•••	•••	Hawáldár	•••	•••	A native officer whose rank corresponds to that of a sergeant.
Jagír	•••	•••	Jágír	•••	•••	Land given by Government as a reward for services.
Kacha	•••	•••	Kachchá	•••	•••	Built of clay only; or of stone or unburnt brick, and clay.
Kádar Khádar	•••	•••	Khádar	•••		Low alluvial lands.
Kalán	•••	•••	Kalán	•••		Great.
Khás	•••	•••	Khás	•••	•••	Proper.
Khurd	•••	•••	Khurd	•••	•••	Small.
Máoza	•••	•••	Mauza	•••	•••	A village.
Mastúl `	•••	•••	Mastúl	•••	•••	A mast.
Minár Minára	•••	•••	Minár Minára	•••	•••	A steeple.
Nadi	•••	•••	Nadí	•••	•••	A river.
Náib	•••	•••	Náib	•••	•••	A deputy.
Nala	•••	•••	Nálá	•••	•••	A ravine, a rivulet.
Paka	•••	•••	Pakká	•••	•••	Built of stone, or brick, and mortar.
Pargana	•••		Pargana	•••	•••	A sub-division of a district.
Pathán	•••	•••	Pathán	•••	•••	Name of a Muhammadan race.
Patti	•••	•••	Patti	•••	•••	A sub-division; portion.
Peshkár	•••	•••	Peshkár	•••	•••	An assistant revenue-collector.
Raja Rájá	•••	•••	Rájá	•••	•••	A king or ruler.
Sorái	•••	•••	Sorái	•••	•••	A spire.
$egin{array}{c} \mathbf{Tahsil} \ \mathbf{Tehsil} \end{array} \}$	•••	•••	Tahsíl	•••	•••	Portion of a district subject to a revenue-collector.
Táluka	•••	•••	Taälluk	•••	•••	A sub-division of a district.
Tebsíldár	•••	•••	Tahsíldár	•••	•••	A revenue-collector.
Thána	•••	•••	Tháná	•••	•••	A police sub-division.
Zemindar	•••	•••	Zamíndár	•••	•••	A revenue-farmer, or holder of land immediately from Government.

September, 1882.

J. B. N. HENNESSEY,

In charge of Computing Office.

PART 1.

INTRODUCTORY ACCOUNT

OF

THE TRIANGULATION EMBRACED

BY

THE NORTH-EAST QUADRILATERAL

WITH THE DETAILS OF ITS

SIMULTANEOUS REDUCTION.

CHAPTER I.

ACCOUNT OF THE TRIANGULATION OF THE NORTH-EAST QUADRILATERAL.

1.

The Several Chains of Triangles which are contained in the North-East Quadrilateral.

The North-East Quadrilateral is the third in order of the five great sections into which the Principal Triangulation of India has been divided for final reduction, consecutively, for reasons which have already been set forth in Section 7 of Chapter I of Vol. II of the Account of the Operations of the Great Trigonometrical Survey. Abutting the North-West and South-East Quadrilaterals—of which full details, from the measurement of the angles to the determination of the final results, have already been published, for the former in Volumes II, III and IV, and for the latter in Volume VI—it depends on them for the whole of the data, both linear and angular, which were finally fixed by their reduction.

Originally it was intended to extend no further eastwards than the Calcutta Meridional Series, which was to form the east side of the Quadrilateral (see page 29 of Volume II). But when the final reductions came to be taken in hand, it was found—as will be explained subsequently—that the four meridional and longitudinal chains of triangles which fall between the meridians of $88\frac{1}{2}$ ° (Calcutta) and 92°, and the parallels of 23° and $26\frac{1}{2}$ °, could be added to the Quadrilateral without inconvenience, and with the advantage of increasing the extent of triangulation which would be brought under Simultaneous Reduction. Its limits were therefore extended eastwards, so as to embrace those chains of triangles. Thus it eventually comprised the following Series:—

The North-East Longitudinal, hereafter symbolised	l by I
The Budhon Meridional,	Ĵ
The Rangir Meridional,	K
The Amúa Meridional, ,,	L
The Karára Meridional,	M
The Gurwáni Meridional,	N
The Gora Meridional, ,,	0
The Huríláong Meridional, ,,	p
The Chendwar Meridional, ,,	Q
The North Parasnath Meridional, ,,	Ř
The North Malúncha Meridional,	S

INTRODUCTORY.

The Calcutta Meridional, hereafter symbolised by				
The East Calcutta Longitudinal, ,,	U			
The Brahmaputra Meridional, ,,	V			
The Eastern Frontier, Section 23° to 26°,,,	W			
The Assam Longitudinal, ,,	X			

The triangulations contained in the above Series had to be brought into harmony with each other, with the Section of the Great Arc which lies between the parallels of 24° and 30°, and with the West Calcutta Longitudinal Series, the two last chains of triangles having already been fixed by the Simultaneous Reductions of the North-West and the South-East Quadrilaterals.

It is necessary to repeat in this place, what has already been set forth in Volume II, that the whole of the triangulation of the North-East Quadrilateral had been completed, up to the primarily assigned limits, before the final reductions of the contiguous Quadrilaterals were taken in hand, whereas three internal meridional chains were wanting in those Quadrilaterals. But the general character of the triangulation of the incomplete sections was so much superior to that of the one which was already completed, that there was no alternative but to commence the final reductions with those sections, in order that the earlier but less reliable and least accurate triangulations might be made to rest on the modern and more highly finished and exact triangulations. The propriety of the arrangement of the order of final reduction has been shewn by the small magnitudes of the final corrections for the angles of the North-West and South-East Quadrilaterals as compared with those for the North-East Quadrilateral; vide pages 395, 415 and 426 of Volume II.

2.

The Observers and Instruments employed on the Several Series of Triangles. contained in the North-East Quadrilateral.

The series are here arranged in the chronological order of their commencement. The lengths recorded are of the chains as they now stand. When first executed some of the meridional series were considered to include triangles which now appertain to the West Calcutta and North-East Longitudinal Series.

The Budhon Meridional Series.

This series was commenced in 1833 from the side Budhon-Tinsmál of the old Calcutta Longitudinal Series, by Lieutenant R. Macdonald of the 69th Bengal Native Infantry, with Harris and Barrow's 15-inch theodolite* and by the end of field season 1833-34 it had been carried by him to the side Ráepur-Majhár. The next season was entirely occupied in selecting stations in advance. In September 1835 Lieutenant E. L. Ommanney of the Bengal Engineers received charge of the operations; but no final observations were made by him till 1836-37 when, using the same instrument, he carried them as far as the stations Gúrmi and Bhind.

[•] For descriptions of the instruments named in this Section see Appendix No. 2 of Volume II.

On his resigning his appointment in 1837 the charge of the series devolved on Mr. Joseph Olliver, whose services being shortly after required on another triangulation, operations on the Budhon Series were suspended. They were resumed again at the end of 1839 under the general control of Lieutenant T. Renny; but final observations were not recommenced till the next field season, when Lieutenant Renny's services being required elsewhere, they were made by Mr. C. Murphy, who had been furnished with Troughton and Simms' 18-inch theodolite No. 2. He advanced the series this season as far as the side Sankráo-Sarsotha, except that the last named station was not observed at. During the next field season no final work was executed. In November 1842, as it was evident that the amount of work remaining to be completed was more than could be accomplished by the end of the season, the Surveyor General resolved to divide the unfinished portion into three parts to be executed simultaneously, the most northern by Mr. George Logan, who was provided with Cary's 15-inch, the southern portion by Lieutenant Renny assisted by Mr. Murphy with Troughton and Simms' 18-inch No. 2, and the intermediate portion by Mr. W. N. James with an instrument which cannot at present be identified. The series consists of 25 single triangles, 5 polygons and 1 quadrilateral, and has a direct length of 386 miles.

The Rangir Meridional Series.

The final observations on this series were commenced by Lieutenant A. S. Waugh of the Bengal Engineers in June 1834 from the side Tinsmál-Kusmár of the old Calcutta Longitudinal Series, with Cary's 18-inch theodolite L; and they were carried by him in that and the following month as far as the side Nágonáth-Phára. Here the hills, in which the series had previously lain, terminated, and a new organization of the party became necessary to adapt it for working in the plains. This having been effected, and the party placed under Mr. J. W. Armstrong, he was enabled to recommence final observations in December 1836, employing the same instrument. Operations were brought to a sudden termination on the 10th April by a fire accidentally breaking out at night in the tower of Birona, which destroyed the scaffolding and rendered the 18-inch quite unserviceable. The next season Mr. Armstrong was furnished with Cary's 18-inch MO; and, leaving some long rays to be observed later in the season when greater refraction might be expected, he carried the series northward. Returning in April to connect the work, he was prevented from accomplishing his object by unfavourable weather. Observations were continued in 1838-39, but none were taken during the following season; and it was not till 1840-41 that the hiatus which had been left in the chain was filled up and the series brought to a conclusion. Some of the angles, where the break had occurred, were observed with Harris and Barrow's 15-inch theodolite. Several years afterwards, 1864, when Mr. G. Shelverton was revising a portion of the Calcutta Longitudinal Series, prior to originating the Jabalpur Meridional Series, he found that Rangír Station had been destroyed: he therefore established a new station and measured the angles of the triangle Tinsmál-Rangír-Kusmár. The instrument he employed was Troughton and Simms' 36-inch theodolite. The series is now regarded as originating at the side Tinsmál-Rangír, and consists of a chain of 31 single triangles and 1 trigon, and has a direct distance of 318 miles.

The Amua Meridional Series.

This series was commenced in 1834 from the side Amúa-Lakanpura of the old Calcutta Longitudinal Series by Lieutenant Renny assisted by Mr. C. Murphy. The observations during the first season were all made by Lieutenant Renny with Troughton and Simms' 18-inch theodolite No. 1. By June of that year the plain country was reached and new arrangements had to be made for continuing the series. These occupied the party until June 1837, scarcely any principal observations having been made during that interval. Towards the end of 1837 Lieutenant Renny's services were required at the measurement of the Sironj Base-line, and the charge of the series devolved on Mr. C. Murphy, who brought it to a conclusion in November 1838, all the observations, except a very few by Lieutenant Renny, having been made by himself. The instrument employed was the same throughout. The series consists of 34 single triangles, and has a direct length of 282 miles.

The Karara Meridional Series.

Operations were first commenced on this series by Lieutenant W. Jones of the Bengal Engineers in February 1838 from the side Karára-Marwás of the old Calcutta Longitudinal Series; but after the selection of a few stations, the commencement of the rains and sickness put a stop to work. Attempts were made in the two following seasons by the same officer to extend operations; but on each occasion the party, shortly after entering the field, was prostrated by jungle fever, and finally Lieutenant Jones had to proceed on leave on medical certificate, after which the party was broken up.

In June 1841 Captain R. Shortrede was nominated to the charge of the series, and was provided with Troughton and Simms' 18-inch theodolite No. 1. He did not reach his ground till February 1842, when the season was far advanced; but he completed observations at 10 stations before the party was driven from the field by sickness. During the next two seasons but slow progress was made. In 1844-45 Captain Shortrede, having found his instrument work very unsatisfactorily, had it replaced by Cary's 18-inch MO. During the same season Captain J. S. DuVernet commenced operations from the north, and with Saiyad Mir Mohsin's 18-inch theodolite brought the triangulation down to the side Sora-Janai, up to which side it was advanced from the south partly by Captain Shortrede with the instrument above mentioned and partly by Mr. J. W. Armstrong with Harris and Barrow's 15-inch theodolite. The southern section of the series consists of polygonal figures, which were originally of a very complicated form as designed by Captain Shortrede, but were subsequently modified by Colonel Waugh: the northern section which lies in the plains is formed of single triangles. The meridional length of the series is 246 miles.

The Chendwar Meridional Series.

Operations on this series were commenced by Mr. George Logan from the side Kasíátu-Chendwár of the old Calcutta Longitudinal Series, during the field season of 1843-44, with Troughton and Simms' 18-inch theodolite No 2. This instrument was, after the field season of

1844-45, transferred to Captain Thorold Hill for employment on the South Malúncha Series, and its place was supplied by Barrow's 36-inch theodolite, with which Mr. Logan completed the series in the early part of 1846. During the revision of the Calcutta Longitudinal Series by Mr. Keelan the Chendwar Station was found to have been destroyed and a new one was established by him in 1869, when he re-observed the angles of the triangles Chendwar-Kasiatu-Sindraili and Chendwar-Sindraili-Paraia, using Colonel Waugh's 24-inch theodolite No 1. The series comprises 2 polygons, a quadrilateral and 17 single triangles, and its direct length is about 179 miles.

The North Maluncha Meridional Series.

This series is based on the side Durgapur-Malúncha of the old Calcutta Longitudinal Series. Operations were commenced by Mr. R. Clarkson in February 1844 with Cary's 15-inch theodolite. This instrument was replaced for a time by Troughton and Simms' 18-inch theodolite No. 2. During season 1844-45 Mr. Clarkson continued in charge of the party; but the next season he was transferred to the East Coast Series and Lieutenant R. Walker of the Bengal Engineers was placed in charge of the Malúncha Series and brought it to a conclusion during that season. He employed Cary's 15-inch. The series comprises 3 polygons and 6 single triangles, and extends over a distance of 151 miles.

The Gurwani Meridional Series.

The triangulation of the Gurwáni Meridional Series, which extends from the side Chapri-Pokra of the old Calcutta Longitudinal Series northwards along the meridian of Gurwáni Station of the last named series, was commenced by Captain DuVernet on the 21st December 1845 with Saiyad Mir Mohsin's 18-inch theodolite. In the second field season this instrument was set aside as of inferior quality and Colonel Waugh's 24-inch theodolite No. 1 was substituted in its place, with which Captain DuVernet completed the series in March 1847. The series consists of a chain of 32 single triangles, and is 213 miles in length.

The Gora Meridional Series.

The Gora Meridional Series is based on the side Gora-Sewádhi of the old Calcutta Longitudinal Series, and follows the meridian of the first named station. It was originally commenced by Mr. W. N. James; but he died before he had been able to effect any sensible amount of work, and Lieutenant Peter Garforth of the Bengal Engineers was put in charge of the party. No progress was made with the series during the first season, 1844-45, that Lieutenant Garforth was in charge, but the whole triangulation was executed by that officer between December 1845 and April 1847, including the revision of the few angles measured by Mr. James: the instrument he employed was Harris and Barrow's 15-inch theodolite. The series consists of a compound figure and 23 single triangles, and has a direct length of 208 miles.

The Calcutta Meridional Series.

This series originally emanated from the Calcutta Base-line; but on the completion of the revision of the Calcutta Longitudinal Series the 4 triangles between the Base-line and the side Satten-Chinsurah were included in the Base-line Figure, and the series now originates from the last named side. It was commenced by Mr. J. Peyton in May 1845 with Troughton and Simms' 18-inch theodolite No. 1; and with the exception of a few angles observed by Mr. J. Nicolson in April and May 1847, the whole series was completed by the former officer by May 1848. The series comprises 45 single triangles, and extends over a direct distance of 226 miles.

The North-East Longitudinal Series.

This chain of triangles lies partly on the Sub-Himalayan ranges, but mostly in the deadly forest tracts which form the southern boundary of the Himalayan mountains; it originates from the sides Mehesari-Chándípahár and Chándípahár-Ghandiál of the Great Arc Series, Section 24° to 30°, and terminates at the side Niwáni-Kanchábári of the Sonákhoda Base-line Figure. The object with which it was first commenced was to connect the northern limits of all the meridional chains emanating from the West Calcutta Longitudinal Series. Accordingly the Great Arc and Budhon, the Budhon and Rangír, the Rangír and Amúa and the Amúa and Karára Series were successively connected on their completion, during the years 1841-44. But the instruments employed—an 18-inch theodolite by Saiyad Mir Mohsin and a 15-inch by Harris—were very inferior to the instruments which were afterwards available; therefore this portion of the triangulation was revised subsequently as opportunity offered.

The history of the execution of the series as it at present stands is as follows:—In 1845-46, on the completion of the Chendwar Series, Mr. George Logan commenced a chain of triangles trending westwards from the northern terminus of that series, along the course of the British Frontier; he employed Barrow's 36-inch theodolite. By the end of season 1848-49 he had brought it to the side Tilakpur-Newada, between the Karara and the Gurwáni Series; and the next season, being provided with Troughton and Simms' 24-inch No. 2, he extended his operations to the side Kaliánpur-Donau, at the head of the Rangír Series. While Mr. Logan was engaged in carrying on this triangulation, Lieutenant Reginald Walker was completing the North Maluncha Meridional Series with Cary's 15-inch theodolite; and in the course of his operations he triangulated the double polygon at the north end of that series. The next season, 1846-47, having been provided with Troughton and Simms' 36-inch theodolite, he commenced work at the side Menai-Ghiba and triangulated eastward as far as the Station Bandarjúla. Here he was attacked by jungle fever; and he died on his way to the Sanatarium of Darjeeling, where he hoped to have obtained medical aid. The next season Mr. Charles Lane resumed the triangulation with the same instrument, and extended it eastwards to include the Sonákhoda Base-line Figure, thereby completing this portion of the series. In 1848-49 Mr. Peyton with Barrow's 24-inch No. 1 executed the section

of the triangulation between the northern extremity of the Chendwar Meridional Series and the double polygon at the north of the Maluncha Series. Finally in season 1850-51 Captain Renny Tailyour with Colonel Waugh's 24-inch No. 2 and Mr. Peyton with the sister instrument, No. 1, revised and added to the triangulation between the Great Arc and the side Kalianpur-Donau, where Mr. Logan had closed work.

A few years later, 1855, there being some question as to the stability of one or more of the pillars of the Sonákhoda Base-line polygon, Mr. J. O. Nicolson revised this figure with Barrow's 24-inch No. 1: the discrepancies in the values of the angles were however not sufficient to shew that any deflection had occurred, and both sets of measures have been retained.

The Hurilaong Meridional Series.

The Huriláong Meridional Series originally emanated from the side Sewádhi-Huríláong of the old Calcutta Longitudinal Series, the station of Khaira Pándu, which was a secondary station of the latter series, being adopted as a principal station of the former. Afterwards, during the revision of the Calcutta Longitudinal Series, Khaira Pándu was one of the stations selected to form a polygon round Sewádhi and thus ceased to be reckoned as belonging to the Huríláong Series. The series was commenced by Mr. J. W. Armstrong in season 1848-49 with Troughton and Simms' 18-inch theodolite No. 1. This instrument was, during the following recess, transferred to Lieutenant H. Rivers for employment on the Gurhágarh Meridional Series, and its place was supplied by the sister instrument No. 2. This instrument was used by Mr. Armstrong during season 1849-50; after which it was changed for Barrow's 24-inch theodolite No. 2, with which Mr. Armstrong brought the series to a conclusion in June 1852. This triangulation comprises 1 compound figure, 1 simple polygon and 20 single triangles, and has a direct length of about 207 miles.

The North Parasnath Meridional Series.

This series originally emanated from the side Chendwar-Parasnath of the old Calcutta Longitudinal Series; but, during the revision of the latter series, the stations of Bamani and Ghoranji were adopted to aid in forming a double polygon round the first named stations; thus the Parasnath Series now emanates from them. It was executed by Mr. J. O. Nicolson in two seasons, having been commenced in December 1850 and brought to a close in June 1852. The instrument employed was Barrow's 24-inch theodolite No 1. The series comprises 20 single triangles, and has a direct distance of 130 miles.

The Assam Longitudinal Series.

This series which is double throughout is an extension to the eastward of the North East Longitudinal Series. It was commenced in 1853-54 by Mr. J. O. Nicolson with Colonel Waugh's 24-inch theodolite No 2. Towards the end of 1854 this instrument was replaced by Barrow's 24-inch No. 1 which had just undergone extensive alterations, and the remainder of the series was executed with the latter instrument partly by Mr. Nicolson, partly by

Mr. Lane and partly by Mr. Rossenrode: it was completed early in 1860. When, 1855, Mr. Nicolson revised the Sonákhoda Base-line figure, he also revised some of the angles at the commencement of this series. The direct length of the series is 197 miles.

The Eastern Frontier Series-Section 23° to 26°.

This series, which consists wholly of polygons and quadrilaterals, was commenced in the year 1859-60 near the western extremity of the Assam Valley by Mr. W. C. Rossenrode, with Barrow's 24-inch theodolite No 1. It was continued by Mr. Lane and Mr. Rossenrode, and completed to the parallel of 23° together with the Cachar Branch—a Longitudinal Series which follows the parallel of 25°—by May 1864. The length of the series which is somewhat tortuous is about 220 miles and that of the Cachar Branch about 47 miles.

The East Calcutta Longitudinal Series.

The East Calcutta Longitudinal Series emanates from the side Chinsurah-Boga of the Calcutta Meridional Series. It was executed entirely by Lieutenant H. R. Thuillier, R. E., during the years 1863 to 1867, with Troughton and Simms' 24-inch theodolite No. 2. It was originally intended that the series should be formed of triangles arranged in polygonal figures, in order to afford mutual verification; but circumstances made it necessary to abandon this intention and to carry out the series as a chain of single triangles. Many plantations of cocoa-nut, betel-nut and other valuable trees, and an extensive amount of forest and jungle were met with, while the ground was a level plain, devoid of hills, undulations or even mounds of any kind. The triangulation of such a country involved either the building of lofty towers or the clearing away of all obstacles on the lines; but owing to the exceedingly high price of materials and labour, and to the heavy compensation demanded for trees cut down it became necessary after the completion of the first polygon to alter the design of the triangulation to a chain of single triangles involving a minimum amount of station building The series thus consisted of 1 polygon and 35 single triangles. wards, when the Brahmaputra Series was originated in 1868, another polygon was formed. The direct extent of the chain is 199 miles.

The Brahmaputra Meridional Series.

This chain of triangles emanates from the East Calcutta Longitudinal Series and follows the meridian of 90°. After crossing the Ganges a little below its junction with the Jamoona branch of the Brahmaputra river, it advances along both banks of that branch. The series which is a chain of polygonal figures, was commenced by Lieutenant H. R. Thuillier, R. E., with Troughton and Simms' 24-inch No. 2 in season 1868-69 and was prosecuted by him till the end of the next field season, when the financial difficulties of the government and the consequent reductions of establishments led to its suspension. Final operations were resumed in 1872-73 by Captain T. T. Carter, R.E., who employed the same instrument as Lieutenant Thuillier, and the series was completed by him the following season. Its direct length is about 182 miles.

3.

The Dependency of the North-East Quadrilateral on the North-West and South-East Quadrilaterals for its Fixed Data.

The North-East Quadrilateral rests on two chains of triangles which, having entered previous reductions, had been finally adjusted, viz., the Great Arc Series, Section 24° to 30°, or Series A of the North-West Quadrilateral, and the Calcutta Longitudinal Series or Series B of the South-East Quadrilateral. These chains lie one to the west and the other to the south of the North-East Quadrilateral, and, with the exception of a linear element afforded by the Sonákhoda base-line, they furnish the whole of the fixed data on which this Quadrilateral depends. From the Calcutta Longitudinal Series eleven meridional series originated; one of these, the Budhon, closes on the Great Arc Series, and also touches it nearly midway, at Ráepur; the remaining series are tied together at their northern extremities by the North-East Longitudinal Series, the eastern extremity of which rests on the Sonákhoda Base Line. To the east of these chains of triangles there are four more chains which have been combined with the others for final reduction; viz., the Assam Longitudinal, the East Calcutta Longitudinal, the Brahmaputra Meridional, and the Eastern Frontier Series. Various astronomical determinations of latitude and azimuth might also have been adopted as fixed data, but they have been excluded for the reasons given on page 27 of Volume II.

It will be seen on comparing this Quadrilateral with the two first—already described in Volumes II to IV, and Volume VI—that the fixed data are far more numerous and therefore exercise a greater influence on the results of the reduction. In both the former quadrilaterals, there were only four fixed lengths, one at each corner, and only one point of which the latitude and longitude were obligatory, and at which the azimuth of another point of the triangulation was fixed. In the present Quadrilateral there are no less than 13 sides fixed in length and azimuth, and as many points fixed in latitude and longitude, and one base-line, giving in all 53* fixed elements, with which the triangulation had to be brought into accord. Had the triangulation of the North-East Quadrilateral been on a par with that of the other two Quadrilaterals there might be reason to regret that it was fettered so much by them; but many causes have combined to render it of an inferior character. The instruments which were available at the time for the measurement of the principal angles were for the most part much inferior to those with which almost all the principal angles of the two contiguous Quadrilaterals were subsequently measured; moreover the best form of structure for the tower stations, which had to be built in large numbers on the extensive plains operated over, had not yet been devised, and it is certain that the operations were much impaired by the deflection of some of the tower stations during the interval between successive visits to the same station. This last is probably the chief cause of the comparative inferiority of the triangulation; and for this reason a full description of the several methods which were followed in the construction of the towers will be given in the following section.

^{*} Including Réepur—the point at which the Budhon touches the Great Arc—there would have been 14 points fixed in latitude and longitude, and 55 fixed elements in all; but this connection was not formed till after considerable progress had been made with the calculations of the North-East Quadrilateral. For further information on the subject, see the foot note to Section 1 of Chapter III.

4.

The Construction of the Principal Stations.

The triangulation of the North-East Quadrilateral was commenced in 1826 with the Calcutta Longitudinal Series, at the Sironj Base-line which was then the northern extremity of the central meridional chain of triangles which is well known as the Great Arc of Colonels Lambton and Everest. Up to that time the principal triangulation had been carried over tracts of hills whose peaks furnished suitable points for the instruments to be set upon, so that at first it was deemed unnecessary to construct any stations of observation, and all that was done was to smooth the surface of the rock, and engrave the usual Indian Survey mark—a circle and central dot—on it as the point of reference. Subsequently circular masonry pillars were built on the rock, of sufficient diameter to carry the stand of the instrument, and surrounded by a platform to support the observatory tent and observer; these were raised a few feet above the surface of the ground on the summit of the hill, so as to furnish prominent objects which might be readily found whenever wanted, for the primary rockmarks were not always easy to find.

Almost the whole of the Calcutta Longitudinal Series, and the southern portions of nearly all the meridional chains of triangles which emanate from that series, lie in hill tracts, and at all the principal stations pillars and platforms were built such as have just been described. But in course of time the triangulation had to quit these hills and enter on the extensive plains which intervene between them and the Himalayan Ranges; and then it became necessary to abandon the simple pillar and platform at all places excepting where mounds or ruined forts were met with, and to construct towers of sufficient height to give the requisite command of view. The form of the tower appears to have been at first and for some time left to the judgment of the individuals who had to construct this new description of station, and thus a variety of forms were adopted in different portions of the triangulation. On the northern extension of the Great Arc, which was deemed the most important series of all, lofty masonry towers were constructed for Colonel Everest, at a considerable cost—over Rs. 2000 each—by Officers of the Department of Public Works. Elsewhere however the Trigonometrical Surveyors were rarely in a position to command either the services of those officers, or the requisite funds to defray the expense of constructing towers similar to those on the Great Arc; they were therefore obliged to economise their funds as much as possible and to dispense with skilled labour. This was generally done by using masonry only for the central pillar on which the instrument was intended to rest, by building the platform of sun-dried bricks or earth or rubble, or other cheap but perishable materials, and by employing such native artificers or common labourers as might be obtained on the spot in fabricating the whole structure. Special forms of tower were however occasionally introduced.

On the Calcutta Longitudinal Series it was found that some lofty semaphores, on the old telegraph line connecting Benares with Calcutta, were available and could be readily converted into principal stations; but they occurred only along one flank of the triangulation; along the other flank, survey towers had to be constructed. Those which were first

built seem to have been of an experimental character; for when the series was undergoing revision forty years afterwards, one of them was found to consist of a column of masonry 7 feet square at base, 4 feet square at top, and 40 feet high; another of four masonry pillars, about 35 feet high, built at the corners of a rectangular platform supporting a stage for the instrument and observer. But the form of station which seems to have met with the greatest approval was a hollow square tower, somewhat similar to and probably not much less expensive than Colonel Everest's towers on the northern portion of the Great Arc.

On the Budhon Series solid earthen towers were erected, each with a hollow core of masonry in its centre, from 1 foot to 18 inches in diameter, to admit of plumbing over a mark at the ground level, to which access was obtained through a vaulted passage. After a time, for reasons not stated, the hollow core gave place to a solid core.

On the Rangír Series perforated pillars were built, around which temporary platforms were erected on posts at the time of observation; these pillars were found to oscillate with the wind; thus the arrangement was disapproved of and it does not seem to have been adopted on any other series. It was however again introduced several years afterwards in the modern triangulation of the Brahmaputra and the East Calcutta Longitudinal Series, but with the precaution of constructing walls of bamboos and matting round the posts supporting the platforms, in order to protect the pillars from the wind.

On the Amúa Series solid towers of mud* or of sun-dried bricks set in mud were built, with mark-stones inserted at intervals from basement to surface. The desirability of isolating the instrument from the platform on which the observer stood was apparently not considered of importance on this series, although it had already been done on the Great Arc and elsewhere.

When it became generally recognised that isolation of the instrument was necessary, earthen towers were built with central isolated pillars of solid masonry carrying mark-stones at top and bottom. These structures were employed on the Karára, Chendwár, North Malúncha, Gurwáni, Gora, North-East Longitudinal and North Párasnáth Series.

On the Calcutta Meridional Series hollow square towers were reverted to, built however in a much less expensive manner than those on the Great Arc. They were much lower and

^{*} With reference to the structure of these stations the following remarks have been extracted from a note by Lieutenant Renny:—

[&]quot;All the mud forts in India offer specimens of this species of work; and many of them, from the length of time they have endured, "even without repair, prove the tenacity of mud when properly worked and moulded. But although so many examples presented them selves, there arose a practical difficulty in their construction; for, owing to the length of time that has elapsed since the building of mud forts, no experienced person could be found to give information on that head; and consequently much had to be left to the discretion of the servant superintending the building, until occasional failures pointed out the necessary precautions and suggested the following mode of procedure.

[&]quot;The mud ought to be prepared at least one day before it is required for use, by mixing water with the most tenacious earth at hand "and working the mixture well with the feet, as in the preparation of mould for bricks. The building is carried on in distinct horizontal "layers each 18 inches high, as it is requisite that one layer be well dried before another is superadded; and in the construction of each layer "the outer edge is first raised with a breadth of 1½ or 2 feet, and after a lapse of 24 hours the interior is filled up. It generally requires "5 days to dry each layer properly; and during the second and third day of that period the outside, originally built rugged, is while yet "moist beat with wooden mallets into the required shape. " "The ascent is usually perpendicular to the plan of the platform, and by means of a flight of steps. " "The whole is plastered over with a mixture of slime from the bed of jhils, cow-dung and when "procurable the coarse husks of grain.

[&]quot;A mark-stone is inserted within the centre and on a level with the base of the platform, and four marks are laid off outside and on opposite radii of two lines passing through the centre mark, and serve to transfer the latter to the top of the platform. This might have been more easily accomplished by leaving a well in the centre of the platform; but such a course complicated the work too much for the simple understanding of the executives."

it was thus possible to build them of burnt brick set in mud; mortar was used in plastering the outer crevices of the walls to prevent water soaking in; also at every two feet of height one layer of bricks was set in mortar. The beams were of wood instead of stone, and the total cost of each tower was usually under Rupees 300.

After completing the Calcutta Meridional Series, the Executive Officer, Mr. Peyton, in 1848-49 triangulated the section of the North-East Longitudinal Series between the North Malúncha and Chendwár Series, which was all that remained to complete the connection between the latter series and the Calcutta Meridional. When this was done, a much larger linear closing error was found than had been met with on any previous occasion. Investigation led to the discovery that the stations from which Mr. Peyton commenced operations, and at least one of those on which he had closed, had deflected considerably since they were built.

The deflections in these instances, and their influence on the lengths of the sides of the triangles, were calculated under the instructions of Sir Andrew Waugh the then Surveyor General and Superintendent of the Great Trigonometrical Survey—who caused the following record of them to be introduced into the Preliminary General Report of the North-East Longitudinal Series.

At Bulákípur the upper surface of the pillar was found inclined to the horizon 0.84 inches in 4.192 feet (the diameter of the pillar) in azimuth 226° 36′. The height of the tower is 30 feet, whence 4.19: 30::0.84:6.01 inches, the total quantity by which the pillar is inclined out of the vertical. The azimuth of Madanpur is 0° 52′; consequently the effect in augmenting this side may be equal to 4.2 inches.

By following a similar process at Madanpur station, the side Bulákípur to Madanpur is found to have probably diminished by 1.3 inches, during the interval which occurred prior to Mr. Peyton's visit in 1849.

Similarly too, the tower at Harpur indicates an augmentation in the side Barháta to Harpur of 1.7 inches; while the same side, from an examination of the tower at Barháta, was probably augmented by 9.1 inches. These changes occurred between May 1846 and May 1849.*

It may here be repeated that a considerable majority of the tower stations were erected on level plains, and that these plains are liable to be flooded with water during the Indian monsoons and rainy seasons. The water often lies on the ground for a long time, and it may do much damage to lofty buildings, by sinking into their foundations and causing irregular settlement of the superstructure. The central masonry pillar when surrounded by an earthen platform, as is generally the case, is liable to deflection not only from this cause, but because of the pressure to which it is subjected on one side, when the earthwork bears against it.

For many years this evil was not suspected, because—as already explained—most of the towers were constructed rudely and irregularly by common native artificers and village labourers, and there was always a doubt whether deviation from verticality was due to actual deflection or to the primary faults of construction. But eventually the magnitudes of the closing errors on base-lines of triangulations carried over these tower stations, as compared with triangulations carried over the hill stations, made it only too evident that deflections must have occurred at some of the towers.

^{*} Para 84 of Introduction to General Report-in manuscript-of the North-East Longitudinal Series, 1861.

The influence of such deflections would obviously not be operative on the triangulations when the whole of the observations to and from any station were taken in immediate succession, as usually happened during the progress of the observations in each field season. But it might have operated very materially in the interval between the closing observations of one field season and the initial observations of the next, for they were separated by a rainy season; still more might it have acted during a suspension of the observations on any series of triangles for several years, or in any long interval between the connection of any two contiguous series.

Now on the North-East Longitudinal Series, by which the northern extremities of all the meridional series are tied together, there are two sides between pairs of stations at which three rainy seasons, one at which two, and five at which one rainy season intervened before the stations were revisited for the completion of the observations; and of course in each series there are one or more pairs of stations at and to which half the observations were taken before and the remainder after a rainy reason, as the completion of each series occupied rarely less than three years. In this circumstance therefore there is sufficient reason to attribute the magnitudes of the closing linear errors of the triangulation to the deflection of certain of the tower stations, as will be shown more fully in Section 1 of Chapter III.

It is impossible to trace the loci of the errors, and to determine the amount of deflection in each instance, with any degree of certainty. The preceding calculations have some probability; but they are based on the assumption that the surfaces of the pillars were made truly horizontal in the first instance, which very possibly may not have been the case. Sir Andrew Waugh says of them that though they "show that in these instances at least deflection did "take place, yet it is not possible to assign any but conjectural corrections on this account. "Corrections of such a nature are inadmissible, and hence a general dispersion of the error "throughout the series [for the preliminary reduction] has been preferred."

This tendency to deflection led to the introduction—about the year 1852—of towers with central masonry pillars perforated vertically, and having vaulted passages leading to the ground level mark-stone in the basement. Very few such towers and pillars exist in the North-East Quadrilateral, excepting on the Budhon Series—the oldest of all but instrumentally the least valuable, where a hollow core was adopted in the first instance, unfortunately to be set aside subsequently—and in the modern series which form the eastern extension of this Quadrilateral. On the other hand very few solid pillars, which are at all likely to have become deflected during the operations, are to be met with in the North-West and none in the South-East Quadrilateral. For these reasons, and also because of the general superiority of the instruments with which the principal angles of the two last mentioned Quadrilaterals were measured, the final reduction of the North-East Quadrilateral was set aside to be taken up after the completion of the final reduction of the two contiguous Quadrilaterals.

For further details of the constructions of the stations, and drawings of Colonel Everest's towers on the Great Arc and of the latest form of tower, see Section 4 of Chapter II, and Plates 1 and 2, of Volume II; see also the introductory remarks to the Descriptions of Stations for each Series, in this and the following volume.

CHAPTER II.

THE MEASUREMENT OF THE ANGLES AND THE GENERAL PRINCIPLES FOLLOWED IN THE REDUCTION OF THE TRIANGULATION OF THE NORTH-EAST QUADRILATERAL.

1.

The Measurement of the Horizontal Angles and their Record.

In Chapter IV of Vol. II full particulars have been given of the methods of observing both the horizontal and the vertical angles which have been in practice since the year 1823. It will not be necessary therefore to do more here than briefly indicate what was done, in order that the reader may be enabled to understand the details of the observations.

The method of observing horizontal angles was that introduced by Colonel Everest, and had for its object the giving of readings at equal intervals round the azimuthal circle, with a view to the cancellation of periodic errors of graduation. When the instrument was set up for use, and had been properly centred over the station mark and levelled, either one of the surrounding stations, or a referring mark specially set up for the purpose, was adopted as what is called the zero-station, or the station for which the readings of the instrument are obligatory. The telescope being directed to this station, the index was made to read 0° 0'. The remaining stations were then observed to in succession, two or more rounds of observations being taken. When these were completed the telescope was turned over in altitude and brought round in azimuth to point to the zero-station: the index would then read 180° 0'. With this zero-reading another set of observations, similar to the last, was taken. A single measure on each of the two zero-settings constitute a pair of collimated observations, the face of the vertical circle being to the left of the observer at one setting and to his right at the other. The instrument was next shifted in azimuth, so as to bring the index to another arbitrary reading while the telescope pointed to the zero-station, and observations were again taken on F. L., face left, and F. R., face right; and so on. These arbitrary shifts were through arcs of 9° or 10° for theodolites with 3 microscopes and 7° 12′ for 5 microscope theodolites. In 1860, in order to secure a greater change of position of the axis in its socket, and so avoid the occurrence of certain constant errors which might be prejudicial in a long chain of triangles, Colonel Waugh decided that the arc between the microscopes should be added to each shift.

The systems of zero-settings for the triangulation of the North-East Quadrilateral varied a good deal; certain modifications also were introduced by Colonel Waugh to counteract special defects in some of the instruments which were of inferior construction, but which had to be employed, because the number of first class instruments then available was too few to meet

the wants of the department. It had been found by experience that some of the theodolites gave the best results—as indicated by the triangular errors—when two zero-stations about 60° apart were employed and the number of settings on each zero-station was reduced by half, leaving the total number of observations the same as before. Colonel Waugh—see Appendix No. 5 of Vol. II—accordingly directed that when these instruments were employed, half the observations should be taken with settings on one station and half with settings on another giving readings about 60° from the former; or, if the situation of the surrounding stations did not admit of this, the first zero-station was to be again employed with zero-settings differing by exactly 60° from those previously adopted. One other modification was introduced by Captain Shortrede on the Karára Meridional Series, when observing with Troughton and Simms' 18-inch theodolite No. 1. Finding that it gave widely different* values of the angles on different faces, he doubled the number of zero-settings and took means of the readings on opposite faces; these means he recorded as single measures; moreover he only took one round of observations on each setting. The following table exhibits the zero-settings employed for each instrument on each series.

Instrument and	l Season	g. :		Zeros	No. of Microscopes	No. of Rounds
instrument and	i Season	Series -		Settings	No. Micro	No. Rou
Troughton & Simms' - 36-inch,	1846-47 1847-48	N.E. Longitudinal		o° 180°, 9° &c.	5	2
36-inch,	1863-64	Rangír	10	$\frac{0^{\circ}}{180^{\circ}}, \frac{79^{\circ} 12'}{259^{\circ} 12'}, &c.$	"	3
	1845-46	Chendwár		o° 12°, &c.	5	2
)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8	0°, 9°, &c.	,,	"
	39	N.E. Longitudinal	6	o° 12°, &c.	>>	"
Barrow's 36-inch,)))	8	o° 180°, 9° &c.	,,	>>
	1846-47	> >	6	0°, 12°, &c.	33 ,	"
	")	8	o°, 9°, &c.	,,	"
	1848-49	23	,,	,, ,,	,,	"

* These large differences were subsequently traced to periodic errors of graduation which were eliminated by taking the mean of a pair of observations on opposite faces. See pages 98 to 109 of the Appendices to Volume II.

Today	Instrument and Season			Zeros	of	of nds
instrument and			No.	Settings	No. of Microscopes	No. of Rounds
1849	9-50	N.E. Longitudinal	12	o° 10°, &c.	3	2
Troughton & Simms' 1862 24-inch No. 2, 1866	2-63 to }	E. Calcutta Longitudinal	10	0° 12' &c.	5	3
1868	3-69 to }	Brahmaputra	"	2) 2)	,,	"
1848		N.E. Longitudinal	12*	0°, 20°, &c.	3	2
1850 1851	0-51 & }	N. Párasnáth	,,*))	"	2
Barrow's 24-inch No. 1, 1854	-55 to }	Assam Longitudinal	10	0° 12′ 8c.	5	3
1859		E. Frontier, Section 23° to 26°	,,	<i>"</i>	"	"
1860	0-61 to }	"	,,	$\frac{0^{\circ}}{180^{\circ}}, \frac{79^{\circ} 12'}{259^{\circ} 12'}, &c.$,,	"
Barrow's 24-inch No. 2, { 1850 1851	-51 & }	Huriláong	12	0°, 10°, &c.	3	2
1846	-47	Gurwáni .	8	o° 180°, 29°, &c.	5	2
Waugh's 24-inch No. 1, 1850	-51	N.E. Longitudinal	10	o° 180°, 7° 12′, &c.	>>	2
1868	-69	Chend wár	,,	o° 12', &c.	29	3
1 1854	-51 & }	N.E. Longitudinal	10	o° 12', &c.	5	2
Waugh's 24-inch No. 2, { 1853	-54	Assam Longitudinal	"	2) >>	"	3

[•] Two zero-stations were employed.

Today		Series		Zeros	No. of Microscopes	of nds
Instrument and	l Season			Settings	No.	No. of Rounds
	1833-34 to 1837-38	Amúa	12	o° 10°, &c.	3	2
Troughton and Simms' 18-inch No. 1,	1842-43 & }	Karára	24	$\frac{0^{\circ}}{180^{\circ}}, \frac{5^{\circ}}{185^{\circ}}, &c.$	"	ı
	1844-45 to }	Calcutta Meridional	12	0°, 10°, &c.	"	2
	1848-49	Huriláong	"	» »	"	"
	1838-39	Amúa ·	12	0° 10°, &c.	3	2,
Troughton & Simms'	1840-41 & } 1841-42 }	Budhon	"	"	"	"
18-inch No. 2,	1843-44 &) 1844-45	Chendwár	"	"	"	"
	1844-45	N. Malúncha	"	" "	"	"
	1849-50	Huríláong	,,	23 33	"	"
	1844-45	Karára	12	0°, 10°, &c.	3	2
Saiyad Mir Mohsin's	1845-46	Gurwáni	24*	" "	"	,,
18-inch,	"))	12	" ,"	"	"
	"	"	*,ر	o° 20°, &c.	"	"
	"	"	18†	<i>,</i>	"	"
Cary's 18-inch MO,	1837-38 & }	Rangír	12	o°, 10°, &c.	3	2
(1844-45	Karára	"	,, ,,	,,	"
Cary's 18-inch L,	[1833-34 &] [1836-37]	Rangír	12	0° 180°, 10° &c.	3	2

^{*} Two zero-stations were employed.

[†] Three zero-stations were employed.

		Series		Zeros	No. of Microscopes	No. of Rounds
Instrument and	l Season	Series		Settings	No. Micro	Rou
	1842-43	Budhon	12	0° 10°, &c.	3	2
Cary's 15-inch,	1843-44 to }	N. Malúncha	"))))	,,	"
	1845-46	N.E. Longitudinal))	29 29	"	,,
	1832-33	Budhon	12	o° 10°, &c.	3	2
))	29	24	° 180°, 5° 8c.	"	"
	1832-33 & } 1833-34 }	29	24*	o° 180°, 20°, &c.	"	2 & 1
Harris and Barrow's	1833-34	"	12	"	"	I
15-inch,	1836-37)	10	o°, 12°, &c.	,,	2
	1839-40 & }	Rangír	12	o°, 10°, &c.	,,	,,
	1844-45	Karára	,,	,, ,,	,,	,,
	1845-46 & 1846-47	Gora	,,	22 23	,,	,,

The minimum number of rounds of observation on each zero was two in the greater portion of the work and three in the rest, with the exception of Captain Shortrede's observations on the Karára Meridional Series with Troughton and Simms' 18-inch No. 1, and one season's work by Lieutenant MacDonald on the Budhon Series, where only one round of observations on each zero was taken. When larger differences shewed themselves in successive measures of an angle than it was considered the instrument ought to give, the observations were repeated. For full particulars of each instrument and any modifications it may have undergone, see Appendix No. 2 of Vol. II.

The manner in which the observations are usually recorded at the time of observation has been explained at page 66 of Volume II. Here we are only concerned with the Abstracts which are prepared from these observations, for publication as part of the necessary details

^{*} Two sero-stations were employed.

of the operations of this Survey. For many years it was the custom at the completion of each series to prepare a manuscript report, in triplicate, in which all details that were required to be kept on record were entered. In these reports, for five of the series—viz., the Budhon, Rangír, Amúa, Karára and Gurwáni—only the means of the measures of each angle on each zero are given, with a number shewing of how many measures they are the means; for the other series, the several measures on each zero are exhibited, and against each measure is a letter in italics showing whether the signal observed to was l a lamp, or h a heliotrope. Below the groups of measures on each zero are their means, and from these the general mean is obtained, and also its probability of error, as calculated by the formulæ which are given in the next section. When the publication of the details of the operations of this Survey was taken in hand, it was judged expedient to accept the original Abstracts—supplementing them where necessary with information as to the observer, date of observation and instrument—rather than incur the labour and expense of preparing new ones in the form which was afterwards adopted and is now always employed. In the modern form the several measures are entered and treated—as will be described in the next section—so as to give C, the concluded angle, together with w its weight relative to other angles measured with the same instrument, also $\frac{1}{w}$ — the reciprocal of the weight—which is most frequently used in the subsequent calculations.

The Abstracts of the Observed Angles of each Series in this Quadrilateral will be found respectively at pages 25-1, 11-1, 10-1, 11-1,

2.

The Deduction of an Angle from its several Measures. The Probabilities of Error and the Weights

In the last section it has been shewn that for the angles of some series the general mean only of the several measures on each zero has been given in the Abstracts, and for others an additional value called the *concluded angle* is added. The value of the angle is invariably accompanied by a theoretical measure of precision which, in the former case, is called the *probability of error*, and in the latter the *weight* of the angle.

Prior to the year 1862 the adopted values of the observed angles were the arithmetical means of the zero-means; their so-called *probabilities of error* were usually calculated by the formula

 D_1 , D_2 , . . . being the differences between the several zero-means and the mean of all, or the general mean, and Z being the number of zeros on which the angle was measured. This formula, which was introduced by Colonel Everest, was in 1853 modified by Colonel Waugh who employed

$$P = \frac{D_1^2 + D_2^2 + \ldots + D_s^2}{\frac{1}{2}Z^2} \quad . \quad . \quad . \quad . \quad . \quad . \quad (2)$$

but only for about three years, after which the original formula was reverted to*. The probability of error of old writers is not to be confounded with the more modern probable error, which—when deduced from the evidence of the differences between zeros only, neglecting the differences between the several observations on each zero—is

The value of the 'probable error' may be calculated with considerable precision by this formula when the same number of observations are taken on each zero—or equidistant part of the azimuthal circle—and all the observations are of equal weight, and when the graduation errors of the circle are accidental and not periodic. Periodic errors of graduation may exist which are not cancelled in the respective zero-means, but are cancelled in the mean of all the zeros; and when this happens, the differences, D, may be very considerable, and the value of the p.e. of the general mean which is computed on the basis of those differences, may be largely erroneous in excess, as has been shown at page 96 of Vol. II. But the graduation errors of almost all the great theodolites of this Survey are most probably accidental, and therefore the influence of periodicity may generally be disregarded. It then remains to take cognisance of the circumstance that not unfrequently more observations have been made on certain zeros than on others. Consequently in 1863, Colonel Walker introduced a formula for the calculation of the most probable value of an angle from the several zero-means, combined together with their respective weights, in which both the errors of observation and those of graduation—assumed to be non-periodic—are taken into consideration; the angle so obtained is called the concluded angle. This formula is as follows:-

Let d', d'', &c., be the differences between the successive single measures and the mean of the measures on the zero to which they respectively belong, n_1 , n_2 , n_3 , &c., the number of measures on each zero, the sum of which is equal to N, and D_1 , D_2 , D_3 , &c., the algebraical excesses of the successive zero-means, Z in number, over the arithmetical mean, M, of all the zeros.

Now put

$$o^{2} = \frac{d'^{2} + d''^{2} + d'''^{2} + \dots}{N-1} \cdot \dots \cdot \dots \cdot (4)$$

$$g^{2} = \frac{D_{1}^{2} + D_{2}^{2} + D_{3}^{2} + \dots}{Z - 1} \cdot \dots \cdot \dots \cdot (5)$$

^{*} See page 85 of Volume II.

and

$$\mathbf{w}_1 = \frac{1}{g^2 + \frac{o^2}{n_1}}, \quad \mathbf{w}_2 = \frac{1}{g^2 + \frac{o^2}{n_2}}, \quad \mathbf{w}_3 = \frac{1}{g^2 + \frac{o^2}{n_3}}, & &c. (6)$$

then the concluded angle, C, is determined from the equation

$$C = M + \frac{\mathbf{w}_1 D_1 + \mathbf{w}_2 D_2 + \mathbf{w}_3 D_3 + \dots}{\mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_3 + \dots} \quad . \quad . \quad . \quad . \quad . \quad (7)$$

Here o^* and g are taken as preliminary approximations to the theoretical error of mean square of observation and graduation, o being the e.m.s. of observation and g that of graduation in a single measure of an angle; these quantities being known, the weights, w_1, w_2, \ldots of the successive zero-means are ascertained, whereby these means are readily combined to give the value of the Concluded Angle, as in the last equation. The weight, w, of the angle thus deduced is

$$w = w_1 + w_2 + w_3 + \dots$$
 (8)

and if the preliminary values of o and g, as obtained from the observations, are absolutely true, then w will be the reciprocal of the square of the e.m.s. of the concluded angle.

But it has already been shewn in Chapter VII of Vol. II that there is reason to doubt whether any values of the e.m.s. which may be obtained immediately from the observations, are true for angles measured with different instruments, or even for angles measured with the same instrument but under different circumstances. All values determined from the observations are therefore regarded as preliminary, applicable only in any combination of angles which have been measured with the same instrument and under similar circumstances, but requiring to be multiplied by factors of the nature of moduli, before they can be employed in a combination of angles which have been measured with different instruments and under different circumstances. The value of the modulus for each group of angles measured under common conditions has therefore to be determined subsequently, from investigations of the average value of the e.m.s. for the group, on the evidence which is furnished by the magnitudes either of the geometrical errors of single triangles, or of the most probable values of the errors of the angles of polygonal figures, which appertain to the group, or may be legitimately combined together for the purpose in question. This is done in the following manner:—

Let e_1 , e_2 and e_3 be the average e.m.s. of a group of angles—observed with the same instrument and under similar circumstances—deduced as follows:— e_1 from the preliminary weights, e_2 from the triangular errors and e_3 from the most probable errors of the angles of polygonal figures; then

^{*} Strictly speaking the denominator in the expression which gives the value of o would be N-Z; but a larger denominator, as N or N-1, is preferable in the present instance, because o is combined with g which, strictly speaking, would represent the total error and not that of graduation only, if each measure were absolutely independent of all the others, which it is not. Thus, though the denominator N-1 was originally employed by an oversight, as I may here frankly acknowledge, it has been retained as more appropriate than N-Z under existing circumstances.

J. T. W.

first, for the average e.m.s. of n angles of which the preliminary weights are w_1 , w_2, \ldots, w_n

$$e_1^2 = \frac{n}{w_1 + w_2 + \ldots + w_n} \cdot \ldots \cdot (9)$$

secondly, for the average e.m.s. of n angles of $\frac{n}{3}$ triangles

$$e_2^2 = \frac{\text{Sum of squares of } \frac{n}{3} \text{ triangular errors}}{n} \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

and thirdly, for the e.m.s. of a hypothetical angle, whose weight w is equal to the mean of the weights w_1, w_2, w_3, \ldots of t angles of a polygonal figure in which there are m geometrical equations of condition

$$e_3^2 = \frac{w_1 x_1^2 + w_2 x_2^2 + \ldots + w_t x_t^2}{w_m}$$

where $x_1, x_2, \ldots x_t$ are the most probable values of the errors of the observed angles. But since the polygonal figures which are commonly employed in the operations of this Survey, contain too few angles to give a satisfactory determination of the value of e_3 from the evidence of a single figure, the value is determined from several figures by the expression

for all the figures available. In this expression

$$U = w_1 x_1^2 + w_2 x_2^2 + \ldots + w_t x_t^2$$

and is the quantity which is made a minimum in the reduction of each figure. Its numerical value may be readily computed; see Vol. II pages 106 and 198, also the end of the next section of this chapter.

Values of e_1 , e_2 and e_3 having thus been found, corresponding values of the modulus ρ^2 , taken either as

$$\rho=\frac{e_1}{e_2}, \text{ or } =\frac{e_1}{e_3},$$

as the case may be, are determined, the preference being given to the latter whenever e_3 is available.

Thus putting w_j for the final weight, and w for the average preliminary weight by e_1 , we have

Digitized by Google

Now for a considerable number of the angles of the North-East Quadrilateral we have—for reasons already explained at the end of the preceding section—'probabilities of error' calculated by the first of the two formulæ already indicated, the second not having been made use of in this Quadrilateral. In the reductions of all the triangles and polygonal figures containing these angles, P^2 , or the square of the 'probability', has been employed in place of $\frac{1}{w}$, the reciprocal of the preliminary weight, which has been employed in the reductions of the modern triangulation. Afterwards, when the Simultaneous Reduction of the whole Quadrilateral was taken in hand, it became necessary to form values of e_1 from the adopted 'probabilities of error' for the old angles, for which 'probabilities' had been given instead of preliminary weights, and then to proceed to determine the modulus ρ and the final or absolute weight from the evidence of e_2 or e_3 , precisely in the same manner as they are determined for the modern angles. Thus the whole of the weights were brought to a common standard of precision before the Simultaneous Reduction was commenced.

The modulus ρ was determined for each group of angles immediately before the Simultaneous Reduction of the whole triangulation, as it was then first wanted.

For those series of which the observed angles have been treated by the formula of 1863 there will be found at the end of the abstracts of the measures of the angles, lists of the "Sums of Squares of Apparent Errors of Single Observations and of Apparent Errors of Single Zeros", which furnish the requisite data for the investigations, by which they are followed, of the average 'error of mean square' of observation only in a single measure, and that of graduation plus observation in the mean of several measures on a single zero; these are determined for certain groups of the angles in which all the measures have been made by the same observer with the same instrument and under the same conditions, and also for groups formed by various other combinations of the conditions. With the data thus obtained for each of the several series, investigations of the influence of "Mixed Errors of Observation and Graduation" similar to those which are given in Chapter VII of Vol. II may be made.

3.

Preliminary Reductions of the Groups of Angles contained in independent Trigonometrical Figures.

So long as chains of triangles are treated as independent of one another, the angles naturally separate themselves into as many groups as there are single triangles, and combinations of triangles into single polygonal figures and net-works. Every triangle is subject to the geometrical condition that the three angles are equal to 180° plus the spherical excess, and every group of triangles to additional geometrical conditions, such as that the angles at any

central point should together equal 360°, and that the value of any side as calculated through any portion of the figure back to itself should be unaltered.

The formula which has been employed for calculating the spherical excess of the triangles in these volumes is

in which ϵ is the spherical excess in seconds, a, b and C two sides of the triangle and the included angle, and r the radius of the sphere with the surface of which the spherical triangles may be considered most nearly to coincide. Up to the year 1851, the value which was adopted for r was ν , the normal to the meridian in latitude λ corresponding to the middle latitude of the triangle. From 1851 to 1868, r was taken as $\frac{1}{2}(\nu+\rho)$, ρ being the radius of curvature to the meridian in latitude λ . Since 1868, r has been taken equal to the radius of curvature at λ of an oblique section passing through the centre of the spheroid and having an azimuth of 45° or $r = \frac{2 \rho \nu}{\rho + \nu}$. The last two values give practically the same results if the calculations have not to be carried beyond the 5th place of decimals of logarithms. The first was, however, used in obtaining the spherical excesses of the greater portion of the triangulation of this Quadrilateral, viz., of all the triangles of the series I to T inclusive. Before undertaking the Simultaneous Reduction of the Quadrilateral it was necessary to change these spherical excesses to what they would be by the latest formula. To do this accurately it would have been necessary to multiply each by the factor $\frac{(\rho+\nu)^2}{4\rho^2}$ corresponding to the value of λ for which it had been calculated. But as this factor was 1.0056 for latitude 24° and only 1.0050 for latitude 30°, and the spherical excesses were only calculated to two places of decimals of seconds, the factor for 27°, viz., 1.0053* was employed.

The geometrical conditions connecting groups of angles divide themselves under three heads, triangular, central and side. The first is, as before stated, that the three angles of a triangle must equal 180° + the spherical excess, the second that all the angles meeting at a point and completely surrounding it must equal 360°, or when an angle is measured as a whole and also in parts, the whole should equal the parts, and the third springs from the condition

Digitized by Google

^{*}It has appeared from subsequent calculations that this method of treating the spherical excesses was not sufficiently accurate to produce results exactly re-entering; for when the usual check calculations for azimuth were carried separately along either flank of a chain of triangles, they exhibited differences at the end of the chain which could only be due to the spherical excesses employed being generally too small. The mean latitudes of two only of the Series are as much as 27°; those of the other Series range as low as 25°, and for them a larger factor should have been employed. The spherical excesses being generally too small, the azimuth by the right hand flank will be too small, because, at any station, in deducing every forward azimuth from the backward azimuth it is necessary to add the included spherical angles. In a similar manner the azimuth by the left hand flank will be too large because the included angles are subtracted. The results by the two flanks which should have been identical, exhibited discrepancies ranging from o"o18 to o"131. The result by the right hand flank was maintained in each instance.

that the value of any side carried through the triangulation back on itself should reproduce itself. The excesses or deficiencies which manifest themselves in these comparisons either form the right hand members of the equations amongst the angular errors furnished by the conditions, or they furnish the means for so doing.

The number of the equations for each independent trigonometrical figure is given by the formula

in which N is the number of angles and S the number of stations.

In order to express the equations, denote the observed angles by X_1, X_2, X_3, \ldots the corresponding angular errors by x_1, x_2, x_3, \ldots and the absolute terms of the equations by e with subscripts denoting the equations to which they appertain. The triangular and central equations will then take the form

Further, if $a_1 = \cot X_1$, $a_2 = \cot X_2$, &c., the side equations will be represented by

M being the modulus of common logarithms.

These geometrical conditions have to be satisfied in such a manner, that the angles shall receive the most probable of the several systems of correction which present themselves. This is done by the so called method of solution by minimum squares, which is now so well known that nothing need be said regarding it, further than that it requires the following expression to be made a minimum,

$$U = \frac{x_1^2}{u_1} + \frac{x_2^2}{u_2} + \ldots + \frac{x_\ell^2}{u_\ell} \quad . \quad . \quad . \quad . \quad . \quad (17)$$

$$a_1 x^1 - a_2 x_2 + a_3 x_3 - a_4 x_4 + \dots = \log \frac{\sin X_1 \sin X_3 \dots}{\sin X_2 \sin X_4 \dots}$$

The form of the side equation has of late been slightly altered, and tabular differences of log sines for a change of 1" have been employed in place of cotangents, by which a saving of labour is obtained. This is no new form of equation, but it was not at first employed in the calculations of this Survey. It is derivable from the old form; for M cot X sin 1" = tabular difference of log. sin X for 1", hence if we write a for t.d. log. sin X for 1" the equation becomes

in which $u_1, u_2, \ldots u_l$ are the reciprocals of the weights, $w_1, w_2, \ldots w_l$, of the observed angles.

The following equations—taken from Section 5, Chapter VIII, Vol. II—express first the geometrical conditions, secondly their relations with the indeterminate factors, λ_a , λ_b , ... λ_n , by the introduction of which U is made a minimum, and thirdly the most probable values of the angular errors in terms of the geometrical conditions and the indeterminate factors.

The geometrical equations of condition, n in number between t unknown quantities, are

The equations between the indeterminate factors are

$$\begin{bmatrix} aa. u \end{bmatrix} \lambda_{a} + \begin{bmatrix} ab. u \end{bmatrix} \lambda_{b} + \dots + \begin{bmatrix} an. u \end{bmatrix} \lambda_{n} = e_{a}$$

$$\begin{bmatrix} ab. u \end{bmatrix} \lambda_{a} + \begin{bmatrix} bb. u \end{bmatrix} \lambda_{b} + \dots + \begin{bmatrix} bn. u \end{bmatrix} \lambda_{n} = e_{b}$$

$$\vdots \dots \dots \dots \dots \dots \vdots$$

$$\begin{bmatrix} an. u \end{bmatrix} \lambda_{a} + \begin{bmatrix} bn. u \end{bmatrix} \lambda_{b} + \dots + \begin{bmatrix} nn. u \end{bmatrix} \lambda_{n} = e_{n}$$

$$(19)$$

in which the brackets [] indicate summations, thus

$$[aa. u] = a_1a_1. u_1 + a_2a_2. u_2 + ... + a_ta_t. u_t.$$

The resulting values of the angular errors are

$$x_{1} = u_{1} (a_{1} \lambda_{a} + b_{1} \lambda_{b} + \dots + n_{1} \lambda_{n})$$

$$x_{2} = u_{2} (a_{2} \lambda_{a} + b_{2} \lambda_{b} + \dots + n_{2} \lambda_{n})$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_{t} = u_{t} (a_{t} \lambda_{a} + b_{t} \lambda_{b} + \dots + n_{t} \lambda_{n})$$

$$(20)$$

and the value of the minimum, U, is

In the case of a single triangle—one which does not enter with other triangles into

Digitized by Google

the formation of a polygonal figure—there is only one geometrical equation of condition which is simply

and there is only one indeterminate factor, λ , which from (19) is

and by (20)

$$x_1 = u_1 \lambda$$
, $x_2 = u_2 \lambda$, $x_3 = u_3 \lambda$ (24)

It should be noted that u stands for the reciprocal weight, $i \div w$, of the angles of the North-East Quadrilateral for which the weights are given in the abstracts of the observed angles for each series, and for the square of the probability, P^2 , of the angles for which the probabilities are given.

4

Calculation of the Sides of the Triangles.

The values of the angular errors having thus been computed are applied to the observed angles with contrary signs; the angles of every triangle are then reduced to plane angles by the subtraction of one-third of the spherical excess of the triangle from each, and the sides of the triangles are obtained in the ordinary manner. The angular corrections furnished by the figural reductions, besides being the most probable, in so far as the conditions to which they have been subjected are concerned, render each figure or net of triangles consistent, so that the ratio of any one side to any other side is the same by whatever route it is calculated.

5.

Geodetic Elements of Stations and Sides.

The lengths of the sides of triangles and the dimensions of the Figure of the Earth being known, it will be evident that if the latitude of any one station and the azimuth of any side of the triangulation from it to a second station are given, the difference in latitude and longitude between it and the second station, and the back azimuth of the connecting side, may be computed.

Now the origin of co-ordinates which has been adopted for the Indian triangulation is Kalianpur, Station 1 of the North-West Quadrilateral, the initial elements at which are

Latitude North	2 4 °	Ź	1 1 ["] .26
Longitude E. of Greenwich	77	41	44.75
Azimuth of Station 29 (Súrentál)	190	27	5.10

as explained in Chapter XI of Vol. II.

But since the positions of all the stations of the North-West and South-East Quadrilaterals are regarded as having been finally fixed in the Simultaneous Reductions of those figures, the elements of any of them may be adopted in place of those of Kaliánpur, whenever it happens to be convenient to do so. Thus, as many of the series of the North-East Quadrilateral are based on sides of the Calcutta Longitudinal Series, one of the series of the South-East Quadrilateral, the elements of those sides have been adopted as the initial elements of the North-East Quadrilateral. Two of the series of the latter Quadrilateral also close on sides of the section of the Great Arc which appertains to the North-West Quadrilateral, and the elements of these sides might equally well have been considered initial elements.

The formulæ which have been employed on the successive calculations of latitude longitude and reverse azimuth are given below.

If A and B be two stations on the earth's surface, and the latitude and longitude of A. and the azimuth of B at A be λ , L and A respectively, the distance between A and B being c_{\bullet} and if

Δλ denote the difference of latitude between A and B

$$\Delta L$$
 ,, ,, longitude ,,
 B ,, azimuth of A at B
 ΔA = $B-(\pi+A)$
 e ,, the excentricity of the spheroid
 ρ ,, the radius of curvature to the meridian at λ

ρ

the normal to the meridian at λ terminated by the minor axis,

then

$$\Delta \lambda = \begin{cases} -\frac{c}{\rho} \cos A \csc i'' \\ -\frac{1}{1.2} \frac{c^3}{\rho.\nu} \sin^2 A \tan \lambda \csc i'' \\ -\frac{3}{4} \frac{c^2}{\rho.\nu} \frac{e^2}{1-e^2} \cos^2 A \sin 2\lambda \csc i'' \\ +\frac{1}{1.2.3} \frac{c^3}{\rho.\nu^3} \sin^2 A \cos A (1+3 \tan^2 \lambda) \csc i'' \end{cases}$$

$$\Delta L = \begin{cases} -\frac{c}{\nu} \frac{\sin A}{\cos \lambda} \csc i'' \\ +\frac{i}{1.2} \frac{c^{2}}{\nu^{2}} \frac{\sin 2A \tan \lambda}{\cos \lambda} \csc i'' \\ -\frac{i}{1.2.3} \frac{c^{3}}{\nu^{3}} \frac{(i+3 \tan^{2}\lambda) \sin 2A \cos A}{\cos \lambda} \csc i'' \\ +\frac{i}{1.2.3} \frac{c^{3}}{\nu^{3}} \frac{2 \sin^{3} A \tan^{2} \lambda}{\cos \lambda} \csc i'' \end{cases}$$
 (26)

and

$$B = \pi + A + \begin{cases} -\frac{c}{\nu} \sin A \tan \lambda \csc i'' \\ +\frac{i}{4} \frac{c^2}{\nu^2} \left\{ i + 2 \tan^2 \lambda + \frac{e^2 \cos^2 \lambda}{i - e^2} \right\} \sin 2A \csc i'' \\ -\frac{c^3}{\nu^3} \left(\frac{5}{6} + \tan^2 \lambda \right) \frac{\tan \lambda}{2} \sin 2A \cos A \csc i'' \\ +\frac{i}{2 \cdot 3} \frac{c^3}{\nu^3} \sin^3 A \tan \lambda \left(i + 2 \tan^2 \lambda \right) \csc i'' \end{cases}$$
 (27)

For the derivation of these formulæ, and also for the manner in which they have been arranged for calculation, see Chapter IX of Volume II, and the Auxiliary Tables to facilitate the calculations of the Survey Department of India.

The values of the elements of the Figure of the Earth which have been employed in the calculations are those known as "Everest's Constants, 1st Set", and are:—

Semi-axis major,
$$a=20,922,932$$
 feet, Log = 7'320 6225 4
Semi-axis minor, $b=20,853,375$ feet, , = 7'319 1763 4
Ellipticity, $c=\frac{a-b}{a}=\frac{1}{300.80}$, = $\overline{3}$ '521 7196 8
$$e^2=\frac{a^3-b^2}{a^2}=0'0066378$$
 , = $\overline{3}$ '822 0271 8

from which ρ and ν are found by the well known formulæ.

6.

Reduction of the Vertical Angles for the determination of Differences of Height and Co-efficients of Refraction.

The relative heights of the principal stations of this Survey are determined in almost all instances by measuring the reciprocal vertical angles. The heights so obtained are controlled, wherever possible, by connecting the stations of the triangulation with those of lines of Spirit Levels, which are executed by this Survey, and occasionally with Tidal Stations on the coasts of the Peninsula, at which direct determinations of the mean sea level have been made. The formula that was employed for many years in the calculation of differences of height is due to Colonel Everest, and is as follows:—

If h be the difference of height of two stations A and B, D' the depression of B at A and D that of A at B, H the height of A above mean sea level, c the distance between A and B at that level, and r the radius of curvature corresponding to the mean latitude of A and B, then the angle subtended at the lower station by the excess of height of the higher, or the so-called *subtended angle*, is $\frac{1}{2}(D-D')$, and the height of B above or below A is given by the expression

$$h = c\left(1 + \frac{H}{r}\right) \frac{\sin\frac{1}{2}(D-D')}{\cos D} \qquad (28)$$

according as the result is plus or minus. If either of the angles is an elevation instead of a depression its value must be employed with the opposite sign to that here given.

In order to use this formula it is first necessary to correct the observed angles for the heights of the observing instrument and observed signal. A much less laborious process is to employ the uncorrected vertical angles, and then reduce the result thus obtained to the levels of the stations by an algebraical combination of the heights of the instruments and signals. This procedure is as follows:—

If i_a , i_b be the heights in feet of the theodolites at A and B respectively

 s_a , s_b ,, signals ,, ,,

 D_a , D_b be the observed vertical angles, both assumed to be depressions, and we put

$$\delta = s_a - s_b + i_a - i_b$$

then

$$h = c\left(1 + \frac{H}{r}\right) \frac{\sin\frac{1}{2}(D_b - D_a)}{\cos D_b} + \frac{\delta}{2} \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad (29)$$

This formula, though not absolutely rigorous, holds good for all cases that have hitherto occurred or are likely to occur in this Survey.

For r, the radius of curvature, the same formulæ were at different times employed as in the calculation of spherical excess, see page 26, ρ and ν being taken for the mean latitude of the stations. The changes in the value of r have not, however, been sufficient to cause any appreciable change in the calculated differences of height.

In the preceding formulæ it is assumed that the reciprocal angles are equally affected by refraction, and in order that this may be as nearly the case as possible, the vertical angles in all the more modern operations are generally measured between the hours of 1 and 4 p. m., when the amount of refraction is usually a minimum. But in the earlier operations—especially those on the Budhon, Rangír and Amua Series, and even on the Great Arc—it was thought that the lengths of the sides of the triangles should always be considerable, even in the plains, in order that the number of triangles in each series might be as few as possible; thus the stations were occasionally chosen at such distances from one another as to be only mutually visible when the amount of refraction was very considerable. The custom then was to take the observations at any time when mutual visibility obtained, and frequently during the night when the refraction is usually greatest; reciprocal vertical angles at any two stations were generally measured at the same hour, as nearly as possible, of the day or night; and it was assumed that the refraction at both stations was then the same. In several instances in the earlier operations in this Quadrilateral, reciprocal observations were taken simultaneously by two observers.

The reciprocal angles are also employed to determine the co-efficient of refraction, to be used in reducing unreciprocated vertical angles; for, putting C for the arc between the stations A and B, or the contained arc as it is usually called, and ϕ_a , ϕ_b for the refraction at the respective stations, we have

$$C = D_a + \phi_a + D_b + \phi_b - \beta$$

in which expression

$$\beta = \frac{i_a - s_a + i_b - s_b}{c \sin x''}.$$

Thus, the mean refraction, ϕ , is given by the expression

$$\phi = \frac{1}{2} \{ C - (D_a + D_b) + \beta \} \qquad (30)$$

and $\frac{\phi}{C}$ gives the terrestrial refraction in decimals of contained arc—or in other words the co-efficient of refraction—for each pair of reciprocated observations. From the several values of the co-efficient thus determined, those which are deemed most suitable are selected for employment in the reduction of vertical angles to secondary points, at which reciprocal observations have not been taken.

The formula for calculating the contained arc is

7.

The Final Values of Height.

The final values of all the heights of the stations of this Quadrilateral have been obtained by comparing the values derived from the reciprocal vertical angles with determinations by Spirit Leveling operations wherever available, or with heights already finally fixed, and then dispersing the differences which exhibited themselves in the intermediate sections.

Two of the lines of spirit levels executed by the Great Trigonometrical Survey, traverse the Quadrilateral longitudinally, and have been connected with principal stations in all the meridional series west of 89° and in the North-East Longitudinal Series; they have also been connected with other leveling operations, notably those of the Revenue Survey, by which again the heights of other principal stations have been determined. Furthermore, the heights of all the stations of the Calcutta Longitudinal Series had been fixed in the course of the reduction of the South-East Quadrilateral, and of the Great Arc Series, Section 24° to 30°, in that of the North-West Quadrilateral. Thus a large amount of data existed for the final reduction of the heights of the stations. A list of the stations of which the heights were determined by Spirit Leveling is given below.

Spirit Leveled Points in the North-East Quadrilateral.

Series	By Great Trigonometrical Survey	By Revenue Survey
N. E. Longitudinal	XI or Atária XIII ,, Kaliánpur XV ,, Umra LV ,, Púrena LVII ,, Bharmi LVIII ,, Gharbaria LXIX ,, Bakwa LXXIX ,, Rúpdi CII ,, Diwánganj CIII ,, Latona CVII ,, Rámnagar CIX ,, Ghiba CXXI ,, Sonákhoda CXXII ,, Rámganj	XXIV or Rámnagar XXVIII "Kutia XXXI "Lákún XXXII "Chelua XXXV "Mási XXXIX "Tilakpur XLIII "Saibara
Budhon Meridional	XXII " Firozabad XXIII " Baragaon XL " Sirsa XLII " Bhatauli	XXIV " Pondri XXXIV " Mehtra XXXV " Bánsgopál XXXVII " Barauli XXXIX " Atora
Rangír Meridional	XIX "Kalsán XX "Bisungarh XXXI "Fatehganj	VII ,, Manang

Spirit Leveled Points in the North-East Quadrilateral—(Continued).

Series	By Great Trigonometrical Survey	By Revenue Survey
Amua Meridional	XVIII or Jájmau XXVIII "Daráwal XXIX "Sirwaia XXX "Parser	XI or Paprendi XIII "Kánákhera XX "Rau
Karára Meridional	XVI "Karra XVII "Majilgaon XXX "Pesar XXXI "Turkani XXXII "Utiámau	XIX "Horesa XX "Salon XXIII "Munai XXVI "Tauli XXVIII "Parewa
Gurwáni Meridional	VII " Barípur VIII " Ganeshpur XXII " Ráhet XXIV " Orejhár XXV " Kumeria	XIX "Kapradi XXIII "Bisaul
Gora Meridional	VIII " Barháni IX " Hirdepur X " Barhanpur XII " Kanaun XIV " Chit Bisrám XV " Samenda XVII " Baniáganj XVIII " Baniápár XX " Rájgarh XXII " Katwar XXIV " Saraia XXVI " Rájabári	
Huríláong Meridional	XV " Nuáon XXVIII " Patjirwa	
Chendwár Meridional	XIV " Phulwaria XXI " Paládpur XXII " Harpur XXIII " Sáwajpur	
North Párasnáth Meridional	XV " Basantpur XVII " Chotaipati XVIII " Harpur	
North Malúncha Meridional	{XII "Barári XX "Dighi	
Calcutta Meridional	{LXXXI ,, Chinsurah II ,, Niál	

The usual method of dispersing discrepancies between spirit leveled and trigonometrical heights, is to divide them in proportion to the number of intermediate stations and to correct each height according to its number of removes from the point determined by spirit leveling. For a time, the method of minimum squares* was applied; but this is generally held to be too refined and laborious a process to be suitable for the purpose, and it was soon abandoned for the more rough and ready one, which may be considered to give values quite as near the truth.

The heights resulting from the vertical observations of the North-East Quadrilateral have been divided, for final adjustment, into groups as shewn in the table which follows. In this table the errors dispersed in each group, except when the adjustment had been made by minimum squares, are exhibited; and where necessary a few explanatory remarks are added.

Group	Commencing at Stations	Ending at Stations	Errors in feet	Method of Dispersion, and Remarks.
		North-East L	ongitudinal S	Series.
1	Mahesari, Chándípahár and Ghandiál	Atária	+ 8.2	Simple proportion. Besides the points of origin and the terminal point, the height of Sisgarh stood fixed by a former simultaneous adjustment of Groups 1, 2 and 3 by minimum squares.
2	Atária, Baheri and Birond	Umra		This group fixes the heights of only two points, Donau and Káimkhera. Their values are the arithmetical means of the measures from the surrounding stations.
3	Umra and Káimkhera	Kokra and Rámnagar	+ 9.2 &	Simple proportion. The height of Kokra was fixed in Group 3 of the Amua Series.
4	Kokra and Rámnagar	Kutia		Minimum squares. The heights of this Group were determined in connection with Group 3 of the Amua Series.
5	Saidara and Kutia	Lákún and Chelua	+ 5.2 & + 3.7	Simple proportion.
6	Lákún and Chelua	Khánpur and Mási	- 3·8 & - 4·4	Khánpur was fixed by the Karára Series. This Group only fixes the height of Bela.

^{*} This method may be illustrated as follows:—Let A, B and C be stations at the vertices of a triangle, and let the differences of height obtained by vertical angular observations be A - B = c feet, B - C = a feet, C - A = b feet, then a + b + c should equal o; but in practice this is seldom or never the case: hence for each triangle in which the differences of height of the stations have been observed we shall have an equation

a+b+c=e

When a group of triungles connect two spirit leveled points, there is also an equation formed by equating the differences of height, along any route connecting the stations, to the difference as shewn by spirit leveling. The solution of these equations by minimum squares is performed in the usual manner and needs no illustration.

Group	Commencing at Stations	Ending at Stations	Errors in feet	Method of Dispersion, and Remarks				
	North-East Longitudinal Series—(Continued).							
7	Bela and Mási	Tilakpur	- 2.1	Simple proportion.				
8	Dadaura and Tilakpur	Saibara	- 5·1)				
9	Máníchauk, Saibara and Bansídíla	Gharbaria, Púrena and Bharmi	- 9·1 - 9·1 &	Bansidila had its height fixed by Group 4 of the Gurwáni Series.				
10	Púrena, Bharmi, and Gharbaria	Bakwa	+11.8	Simple proportion.				
11	Bájra, Bakwa and Naunangarhi	Rúpdi	- 0.0	The height of Naunangarhi was fixed by Group 3 of the Hurilaong Series.				
12	Rúpdi and Batwaia	Amua	- 3.3	Simple proportion. The height of Amua was obtained as explained in Group 3 of the Chendwar Series.				
13	Sinaria, Amua and Madanpur	Chandarsanpur	+ 0.6	Simple proportion. The heights of Madanpur and Chandarsanpur as well as that of Bheria Bisanpur were obtained as explained in Group 3 of the Chendwar Series.				
14	Jirol, Chandarsanpur and Bheria Bisanpur	Dewánganj and La- tona	- 0.2 % - 1.6	Simple proportion.				
15	Diwánganj and La- tona	Ghiba		núla were first fixed and then Baisi and Minai.				
16	Minai and Ghiba	Sonákhoda and Rám- ganj	+ 3.0 %	Simple proportion.				
17	··· ··· ···			The heights of Chotáki and Newáni were fixed in the adjustment of the Calcutta Meridional Series, and those of Dúmdángi and Kanchábári were determined from the observed angles and received no correction.				
	Budhon Meridional Series.							
1	Budhon and Tinsmal	Firozabad and Bara- gaon	+ 13.0	Simple proportion.				
2	Baragaon and Pondri	Mehtra and Bánsgopál	- 16·7 & - 17·3	>>				

Group	Commencing at Stations	Ending at Stations	Errors in feet	Method of Dispersion, and Remarks.			
	Budhon Meridional Series—(Continued).						
3	Rajauli and Bánsgo- pál	Sirsa, Bhatauli and Milik		The adjustment of this group was somewhat complex, because of the number of fixed heights in it. They comprise Rajauli and Milik fixed in Groups 2 and 4, and Bánsgopál, Barauli, Atora, Sirsa and Bhatauli fixed by Spirit Leveling. The adjustment was made thus:—A preliminary value of Kandarki was obtained from the mean of those furnished by Bánsgopál, Atora and Sirsa, and employing this value and the heights of Bánsgopál and Rajauli, a mean value of height of Chandanpur was obtained and adopted as final. Again, employing a preliminary value of height of Chandanpur, as determined from Rajauli and Bánsgopál, and the heights of Bánsgopál, Atora and Sirsa a mean value of height of Kandarki was obtained and accepted as final Lastly the height of Lút was determined by taking the mean as derived from Kandarki, Sirsa and Milik.			
4	Sirsa and Bhatauli	Sheopuri and Mahesari		Minimum squares.			
		Rangir Me	ridional Ser	ies.			
1	Tinsmál and Rangír	Manang	+ 3.8	Simple proportion.			
2	Datiára and Manang	Kalsán	- 31.3	2)			
3	Kalsán and Bisungarh	Fatehganj	- 25.0	"			
		Amua Meri	dional Serie	8.			
1	Amua and Lakanpura	Jájmau	[Minimum squares*.			
2	Máwa and Jájmau	Daráwal and Sirwaia	·	Minimum squares.			

^{*} After this reduction was made the heights of Paprendi and Kánákhera were determined by the Revenue Survey Leveling Operations that of the former station differed only by 2 feet from the value determined by minimum squares, but that of Kánákhera differed by 10 feet. The spirit leveled values of both heights were adopted, as also the values of all the stations obtained by computation south of Kánákhera. The error which shewed itself to the north of that station was dispersed by proportion between it and Jájmau.

						
Group	Commencing at Stations	Ending at Stations	Errors in feet	Method of Dispersion, and Remarks.		
	Amua Meridional Series—(Continued).					
8	Sirwaia and Parser			The remaining heights of this series were determined by minimum squares in connection with some appertaining to the North-East Longitudinal Series. See remarks to Group 4 of that Series.		
		Karára Me	ridional Ser	ies.		
1	Karára and Marwás	Majilgaon and Karra		Minimum squares.		
2	Majilgaon and Karra	Horesa and Salon		The height of only one station, Pariaon, is obtained in this Group, its value being the mean of the determinations from the 4 surrounding stations.		
3	Horesa and Salon	Munai	- 1.0	Simple proportion.		
4	Khára and Munai	Tauli	- 1.8	33		
5	Janai and Tauli	Pesar and Turkani		This Group fixes the heights of Tikiri and Basantpur only. The adjustment was performed in a similar manner to that of Group 3 of the Budhon Series.		
6	Turkani and Utiámau	Mási	- 2.3	Simple proportion.		
	Gurwáni Meridional Series.					
1	Chapri and Pokra	Baripur and Ganeshpur	- 10'2 & - 6'4	Simple proportion.		
2	Baripur and Ganesh pur	Kapradi	- 2.3	,,		
3	Sirwára and Kapradi	Ráhet and Bisaul		Minimum squares. The only two points of this Group not fixed by Spirit Leveling are Rarauli and Nansa.		
4	Orejhár and Kumeria	Saibara		Minimum squares.		

									
Group	Commencing at Stations	Ending at Stations	Errors in feet	Method of Dispersion, and Remarks					
	Gora Meridional Series.								
1	Gora and Sewadhi	Barháni and Hirdepur	uionai Seriei 	Simple proportion.					
2	Hirdepur and Barhan- pur	Chit Bisrám and Sa- menda	_ 0.2	This Group contains only 2 points, Gaura and Kharakpur, which are not fixed by Spirit Leveling. A preliminary value of Kharakpur was obtained from Kanaun, Chit Bisrám and Samenda, and the final value of Gaura was then given by the mean of those obtained from Hirdepur, Barhanpur, Kanaun and Kharakpur. Similarly with a preliminary value of Gaura, derived from Hirdepur, Barhanpur and Kanaun, and with the Spirit Leveled values of Kanaun, Chit Bisrám and Samenda the final value of Kharakpur was obtained.					
8	Chit Bisrám and Sa- menda	Balariáganj and Bani- ápár		This Group contains only one point, Bhadir, not fixed by Spirit Leveling, and its final height is the mean derived from the four neighbouring stations.					
4	Balariáganj and Ba- niápár	Gharbaria and Dharam- singua		All the stations on the right flank of the chain of triangles included between these limits have had their heights determined by Spirit Leveling. The height of Dharamsingua was fixed by Group 9 of the North-East Longitudinal Series. The remaining heights were obtained on a similar principle to that adopted in Group 2 of this Series.					
	Huríláong Meridional Series.								
1	Khaira Pándu and Huriláong		eriawnai Se — 0.7	Simple proportion.					
2	Hetampur and Nuáon	Patjirwa	+ 8.6	Ditto.					
8	Daunáha and Patjir- wa	Naunangarhi and Bak- wa	-	The height of Naunangarhi was first determined; it is the mean of the value from Patjirwa and that from a dispersion by removes between Bakwa and Rúpdi of the North-East Longitudinal Series. The height of Binharwa was obtained from all the other stations of the group, a mean value being accepted as final.					

Group	Commencing at Stations	Ending at Stations	Errors in feet	Method of Dispersion, and Remarks			
	Chendwár Meridional Series.						
1	Kasiátu and Chendwar	Phulwaria	- 0.2	Simple proportion.			
2	Barra and Phulwaria	Paládpur and Harpur	- 5.0 & - 3.4	Ditto.			
8	Harpur and Sáwajpur	Madanpur and Amua	- 0·3 & + 2·4	The height of Madanpur is the mean of four values, two of which are obtained from the Chendwar and two from the North-East Longitudinal Series. The latter are brought up from the stations Chandarsanpur and Narhar, for which provisional values of height were deduced by simple proportion between the Spirit Leveled heights of Chotaipati and Harpur of the North Parasnath Series and the stations of the Chúni-Di-wanganj polygon on the North-East Longitudinal Series, which themselves rest on Spirit Leveled determinations at 4 of the stations in that polygon. The height of Amua is the mean of four values two of which are derived from the Chendwar Series and two from the North-East Longitudinal Series.			
	North Párasnáth Meridional Series.						
1	Bámani and Ghoranji	Basantpur	- 5.3	Simple proportion.			
2	Sajanpura and Basant- pur	Chotaipati and Harpur		The height of Achalpuris the mean value obtained from the three Spirit Leveled heights of Basantpur, Chotaipati and Harpur and from the height of Sajanpura fixed by Group 1.			
	North Malúncha Meridional Series.						
1	Durgapur and Malún-	Barári	- 4.3	Simple proportion.			
2	cha Pírdauri and Barári	Dighi	+ 6.0	Ditto.			
8	Barára and Dighi	Rámnagar and Manula		The height of Manula is derived from Group 15 of the North-East Longitudinal Series, and the height of Mohania is the mean derived from the four neighbouring stations.			

Group	Commencing at Stations	Ending at Stations	Errors in feet	Method of Dispersion, and Remarks		
	Calcutta Meridional Series. Sátten, Chinsurah and Sonákhoda and Rám- +11.7 & Simple proportion. Niál ganj of the N.E. +10.5 Longitudinal Series.					

East Calcutta Longitudinal Series, Brahmaputra Series, Eastern Frontier Series— Section 23° to 26°, and Assam Longitudinal Series.

No Spirit Leveled values of height occur in any of these series, and the heights of the stations were adjusted by simple proportion as follows:—A circuit was formed of which the right-hand branch commenced from Chinsurah and Boga of the Calcutta Meridional Series, and passing vid the East Calcutta Longitudinal and the Brahmaputra Series, closed on the stations Alangjáni and Sámding of the Assam Longitudinal Series, and the left-hand branch commenced from Kanchábári and Newáni of the North-East Longitudinal Series, and following the Assam Longitudinal Series, closed on the same stations. This gave closing errors of —2·3 and +0·2 feet, which being dispersed, the heights of Orfi, Hatiára and Pákdiha of the East Calcutta Longitudinal Series became available as fixed data for originating the right-hand branch of a second circuit, and those of Partábganj, Dhubri and Sámding of the Assam Longitudinal Series for the left-hand branch: these two branches closed on the stations Sogaria and Gojalia, where the East Calcutta Longitudinal Series unites with the Eastern Frontier Series. The second circuit exhibited errors of + 13·3 and + 12·7 feet. In both circuits the mean of the errors at the closing stations were the quantities dispersed.

Abstracts of the calculations of the trigonometrical differences of height for the several series embraced in the North-East Quadrilateral, and which also contain the final values of the heights adopted for the stations, will be found on pages 163-I, 55-J, 38-K, 34-L, 48-M, 34-N, 53-O, 50-P, 48-Q, 32-R, 43-S, 58-T, 65-U, 81-V, 93-W, and 76-X.

In these abstracts there are given for each station, the astronomical date and mean time of observation whenever forthcoming, the mean of the observed angles preceded by a letter shewing whether it is D, a depression, or E, an elevation, and the number of observations of which it is the mean. Then follow in succession the heights in feet of the signal and instrument employed, the contained arc between each pair of stations and the amount of refraction expressed both in seconds and as a factor of the contained arc. Next is recorded the trigonometrical difference of height of each pair of stations as deduced from the observations. These differences are followed by the several values of height of the deduced station above sea level as brought up by the triangulation, and the means of these values for each station. And lastly are recorded the final values, obtained as has been explained in this section, together with the heights of the pillars or towers from which the observations were made.

It has occasionally happened that after observations have been taken by one observer at a tower station, a second observer, coming to connect the station with new stations, has found it necessary to increase the height of the tower. In such cases the final height of the tower is that to which the results given in the numerical abstracts relate, the previous observations having been reduced to it, by referring the heights of the signal and instrument to the surface of the raised tower. When the height added to the tower exceeds either or both of these heights, the corrections for signal and instrument require the opposite sign to that which they usually take. In such cases a note is always inserted in the numerical abstracts, drawing attention to the fact.

8.

The Determination of Azimuths by Astronomical Observations.

It has been the practice in this Survey to determine azimuths at certain stations in the course of the execution of each chain of triangles. It used to be customary to select stations for this purpose in meridional series at about 1° apart, and in longitudinal series at shorter intervals. Of late the choice of stations has also been governed by the nature of the surrounding country, those localities only being accepted where there was reason to expect that the results would be least influenced by local attraction.

When the meridional series of this Quadrilateral which emanate from the Calcutta Longitudinal Series were executed, azimuths were observed at one of the base stations of each series; and the direction of the meridian so obtained was employed in the calculations of the series in preference to that brought up by triangulation. This procedure was due to the then inferior character of the triangulation on the Calcutta Longitudinal Series. Since the revision of this series, which was completed in 1869, the azimuths obtained by star observations have been discarded in favour of those furnished by the triangulation; they were employed when the fundamental azimuth at Kaliánpur was determined from a combination of the observed azimuths at several of the surrounding stations—see pages 137 to 141 of Vol. II—they have not however been made use of in direct connection with the triangulation, but are reserved for future investigations of the Figure of the Earth and of local attraction. The observations having been made pari passa with those of the angles of the triangles, and reduced pari passa with the preliminary reductions of the triangulation which precede the Simultaneous Reduction of each Quadrilateral, they and their reduction have been given in the volumes which treat of the triangulation.

The observations for azimuth consist of measures of the angle, at any station, between a circumpolar star, when near either elongation, and some other station—either directly or through the medium of a referring mark—which are made in accordance with the system followed in observing the horizontal angles as regards the changes of zero, but with a large number of repetitions on each zero, as the observations are individually liable to greater error.

The time of each intersection of the star being carefully noted, the difference of the momentary azimuth, δA , from the value at elongation is subsequently calculated and applied

to the observed angle between the star and the referring mark. Thus a series of determinations of the angle between the referring mark and the star's position at elongation is obtained, from each of which and the known value of the azimuth of the star at elongation, a determination of the azimuth of the referring mark may be deduced.

The formula for calculating δA is

$$\delta A^* = \frac{(2 \sin^2 \frac{1}{3} \delta P \csc i'') \tan A \cos^2 a}{1 - (2 \sin^2 a \cdot \sin^2 \frac{1}{3} \delta P) \pm (\cot P \cdot \sin \delta P)} \cdot \cdot \cdot \cdot (32)$$

in which A is the azimuth of the star at elongation, P the corresponding hour angle, a the North Polar Distance of the star and δA the difference in azimuth for the time δP before and after elongation. The last term of the denominator is positive when the star is below and negative when above the position of maximum elongation.

At each station where the azimuth of a referring mark is observed, the angle between the referring mark and one of the contiguous stations of the triangulation is measured, just as any other angle; the several measures will generally be found in the Abstract of the Observed Angles at the observing station, and if not there then after the abstract of the azimuthal observations.

The Abstracts of the Azimuthal Observations which were made on each series will be found respectively on pages 181-I, 64-J, 44-K, 39-L, 56-M, 40-N, 59-O, 56-P, 54-Q, 36-R, 48-S, 65-T, 71-U, 89-V, 103-W, 84-K, in which are given, besides all necessary information regarding the observations themselves, such details of the calculations as will enable them to be followed up to the final result, viz, the differences between the Astronomical and the Geodetical Azimuths. Sometimes the whole of the observations on a pair of zeros could not be completed in one night; in such cases the remainder were taken on a subsequent night, and the change of star's place was duly allowed for in the reductions.

9.

The Final Reduction of the Triangulation. Preliminary Sketch.

The different processes employed in the reductions which have as yet been described, are applied to the single triangles, polygonal figures and net-works by which the chains are built up. It has been the custom to make each field season's work, whenever possible, close with a complete figure; so that, during the succeeding recess, the preliminary reduction of the whole might be effected, and the resulting data rendered available for any immediate pur-

The values of the portions of the formula enclosed in brackets, within the limits $\delta P = 30^m$ and $a = 10^\circ$, have been calculated, and are given in the Auxiliary Tables; thus, as $\tan A \cos^2 a$ may be treated as a constant for each elongation, the calculation of δA is easily performed.

poses for which they might be required. The portions of the triangulation so treated fulfil all existing conditions until a chain closes on a base-line, or two or more chains combine together to form a circuit. Further conditions then present themselves which the triangulation has to satisfy as a whole, namely:—

First, in the case of a chain closing on a measured base-line, the length of the base-line obtained from the triangulation should agree with the measured length.

Secondly, when two or more chains combine together to form a circuit, the values of the length and azimuth of the side of origin, and of the latitude and longitude of the station of origin, which are obtained by processes of calculation through the triangulation and back to the origin, should agree with their initial values.

Before proceeding to indicate the forms of equations which result from the foregoing conditions, it may be as well to anticipate a possible objection in their application. As all errors are to be dispersed by the method of minimum squares, which assumes the independency of all the quantities under investigation, it might be imagined that we must now again revert to the observed angles, as the angles which have been corrected for figural conditions cannot be considered independent. It has however been shewn in Appendix No. 8 of Vol. II, that the observed angles may be corrected in accordance with a part only of the conditions which govern them; and that when new conditions present themselves the corrected angles may be employed for finding other corrections, so that final corrections can be obtained by employing the angles after they have received any number of partial corrections, provided that the conditions which have already been satisfied are maintained when the further corrections, required to satisfy additional conditions, are calculated.

It appears therefore that all the preliminary calculations stand good, and consequently that the equations due to the new conditions may be obtained by employing the corrected, instead of reverting to the observed, values of the angles. But when we are seeking for final corrections, we must treat the corrected angles in such a manner as to preserve all the conditions already satisfied. These are however so numerous and entangled as to make an exact solution of the problem impossible. Consequently all the central and side conditions of the different polygonal figures and net-works composing the chains are excluded, by omitting from the Simultaneous Reduction all angles appertaining to polygonal figures and net-works over and above what are needed to form continuous chains of single triangles, and increasing the weights of the angles of the retained triangles. By this means the entanglement is greatly diminished, and the number of figural equations is reduced to one for each triangle, of the simple form

$$x + y + z = 0$$

which permits of the elimination of one of the unknown quantities in each triangle, and thus enables all the triangular equations to be dispensed with. Thus the number of equations to be solved is eventually reduced to the number of new conditions to be satisfied, or in other words to the number of what are here called Circuit Equations, the term having reference to all the closing errors of the chains of triangles, whether occurring internally at the ends of the circuits, or externally on the base-lines.

After the completion of the Simultaneous Reduction, the angles appertaining to the portions of the polygonal figures and net-works, which had been excluded, are corrected in such a manner as to restore the consistency of each figure, without altering the values of the angles which have already been fixed.

10.

The Final Reduction of the Triangulation. Formation of the Circuit Equations.

It will now be understood that the several chains of triangles which are presented for simultaneous reduction consist only of single triangles. These are numbered consecutively in such order as may be most convenient. The angle opposite the flank side of each triangle is known as X, that opposite the side of continuation as Y and that opposite the base as Z, each being further distinguished by a subscript, which is the number of the triangle: x, y and z with corresponding subscripts are the symbols employed to represent the errors of the angles, or, in other words, the unknown fallible quantities of which the most probable values that will satisfy the equations have to be found. These equations are respectively termed *Linear* and *Geodetic*, the former taking cognizance of the errors in the ratios of the sides of triangles which are met with at the base-lines and junctions of chains, the latter expressing the errors in latitude, longitude and azimuth which exhibit themselves at the junctions of chains. In the reduction of the present Quadrilateral these equations were formed in the following manner:—

I. Linear Equations.

If a be the length of the side of origin of a chain and b the length of the closing side as obtained by triangulation, and the triangles are numbered from 1 to m consecutively, we express the value of b logarithmically as follows:—

$$\log b = \log a + \log \sin Y_1 - \log \sin Z_1 + \log \sin Y_2 - \log \sin Z_2 + \dots + \log \sin Y_m - \log \sin Z_m$$

When this equation is differentiated, if we write y for dY and z for dZ, we shall have an expression for $d \log b$, the error in $\log b$, in terms of the angular errors y and z. Now

$$d \log \sin Y = \{ \text{tabular difference (t.d.) log sin } Y \text{ for a change of } i'' \} \times dY$$

$$d \log \sin Z = \{ \dots \dots \log \sin Z \dots \dots \} \times dZ$$

Thus if for brevity we denote t.d. log sin Y by β and t.d. log sin Z by γ , we have

Digitized by Google

$$d \log b = \beta_1 y_1 - \gamma_1 z_1 + \beta_2 y_2 - \gamma_2 z_2 + \ldots + \beta_m y_m - \gamma_m z_m . . . (34)$$

As in this equation $d \log b$ as well as β and γ represent quantities in the 7th place of decimals, it is convenient to treat it as if both sides were multiplied by 10⁷, by which means $d \log b$, β and γ become respectively the number of units in the 7th place of decimals. If we put E to represent the actual closing error in $\log b$, and employ brackets to denote summation, the last equation may be written

The value of E is derived by comparing the logarithms of the measured and computed values of a base-line, or those of the two computed values of the side of junction of any two chains. Thus at base-lines we have

$$[\beta y - \gamma z] = \log b \ computed - \log b \ measured \quad . \quad . \quad . \quad . \quad (36)$$

and at junctions of chains we have

$$\lceil \beta y - \gamma z \rceil_r - \lceil \beta y - \gamma z \rceil_l = \log b_r - \log b_l \quad . \quad . \quad . \quad (37)$$

the subscripts r and l referring to the right and left-hand chains of the circuit.

The coefficients β and γ are taken by inspection from any book of logarithms which gives the logarithmic sines of angles for every second of arc.*

The form of linear equation here given is the same as that employed for the South-East Quadrilateral, but differs from that employed in the reduction of the North-West Quadrilateral, in that β there stands for cot Y and γ for cot Z, and E is the error in $\log b$ multiplied by $\frac{\operatorname{cosec}\ 1''}{\operatorname{Modulus}}$.

II. Geodetic Equations.

The formulæ which have been employed for calculating differences of latitude and longitude and azimuth, have already been quoted at pages 30 and 31. In now dealing with these we confine our attention to the first terms only. Differentiating them with respect to c and A, treating ρ , ν and λ as constants, we have the following expressions for the errors in latitude, longitude and reverse azimuth at any station;—

47

^{*} To save time this is done in course of the preliminary calculation of the triangles, the tabular differences being then noted on the triangle sheets, from which they are afterwards taken when wanted. Provision is also made in the triangle sheets for again employing the same tabular differences as factors of the final corrections of the angles in calculating the corresponding corrections to the logarithms of the sides of the triangles.

$$d\Delta\lambda = \Delta\lambda \left\{ \frac{dc}{c} - dA \tan A \sin i'' \right\} (38)$$

$$dB = dA + \Delta A \left\{ \frac{dc}{c} + dA \cot A \sin i'' \right\} (40)$$

In these formulæ dc and dA represent the total errors in the length and azimuth of any side of a triangle, which have been generated between it and the side of origin of the chain of triangles. These errors have to be expressed eventually as functions of the generating angular errors; consequently it is necessary to express them, in the first instance, in terms of the errors generated between the stations of which the geodetic co-ordinates have been computed consecutively from the origin. Let Station 1 be assumed to be the origin of co-ordinates, and 2, 3, . . . to be the subsequent stations; suppose the origin of co-ordinates to be situated at either extremity of the initial side of the chain, and let the given data on which the calculations are based be the length of the initial side c, the latitude and longitude of 1, and the azimuth of c at 1: also make the general symbols of the differential equations special by the addition of numerical subscripts, in the following order

for the side
$$1$$
 to 2 ; $\Delta \lambda_1, \Delta L_1, \Delta A_1, c_1, A_1$ and B_1 ... $\Delta \lambda_n, \Delta L_n, \Delta A_n, c_n, A_n$ and A_n .

where n + 1 is the last flank station.

Now	if	δc_1	be	the	lin	ear	er	ror	ge	ner	ate	d	bet	we	en	C	and	Cı
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	δc_n			•	•				•	•					Cn.	– 1	and	C,

and if

then for the successive values of $\frac{dc}{c}$ in the differential equations we have

$$\frac{dc_1}{c_1} = \frac{\delta c_1}{c_1}$$

$$\frac{dc_2}{c_2} = \frac{\delta c_1}{c_1} + \frac{\delta c_2}{c_2}$$

$$\vdots$$

$$\frac{dc_n}{c_n} = \frac{\delta c_1}{c_1} + \frac{\delta c_2}{c_2} + \dots + \frac{\delta c_n}{c_n}$$
(41)

and for successive values of dA

Returning now to the expressions for $d \Delta \lambda$, $d \Delta L$ and dB, but treating the last first because it is required for the formation of the others, and omitting all terms in which higher powers of sin 1" than the first occur, or are latent as in products of sin 1" by $\frac{dc}{c}$, we obtain the following general expression for dB_n , the error in the azimuth of the nth at the (n+1)th station

$$dB_{n} = {}^{n} \left[\Delta A \right] \frac{\delta c_{1}}{c_{1}} + {}^{n} \left[\Delta A \right] \frac{\delta c_{2}}{c_{2}} + \dots + \Delta A_{n} \frac{\delta c_{n}}{c_{n}}$$

$$+ \left\{ 1 + {}^{n} \left[\Delta A \cot A \right] \sin 1'' \right\} \delta A_{1} + \left\{ 1 + {}^{n} \left[\Delta A \cot A \right] \sin 1'' \right\} \delta A_{2}$$

$$+ \dots + \left\{ 1 + \Delta A_{n} \cot A_{n} \sin 1'' \right\} \delta A_{n}$$

$$(43)$$

The errors in latitude and longitude at the same station, the (n + 1)th, are the sums of the respective errors generated between the successive stations of the traverse, that is to say

$$d\lambda_{s+1} = \left[d\Delta\lambda \right]; \qquad dL_{s+1} = \left[d\Delta L \right].$$

Expressing the $d \Delta \lambda$ and $d \Delta L$ for each station in terms of δc and δA , and making the successive summations for the right-hand members of the last equations, we have

INTRODUCTORY.
$$d\lambda_{n+1} = {}^{n}_{1} \left[\Delta \lambda \right] \frac{\delta c_{1}}{c_{1}} + {}^{n}_{2} \left[\Delta \lambda \right] \frac{\delta c_{2}}{c_{2}} + \dots + \Delta \lambda_{n} \frac{\delta c_{n}}{c_{n}} - \left\{ {}^{n}_{1} \left[\Delta \lambda \tan A \right] \delta A_{1} + {}^{n}_{2} \left[\Delta \lambda \tan A \right] \delta A_{2} + \dots + \Delta \lambda_{n} \tan A_{n} \delta A_{n} \right\} \sin i''$$

$$(44)$$

and

$$dL_{n+1} = {}^{n} \left[\Delta L \right] \frac{\delta c_{1}}{c_{1}} + {}^{n} \left[\Delta L \right] \frac{\delta c_{2}}{c_{2}} + \dots + \Delta L_{n} \frac{\delta c_{n}}{c_{n}}$$

$$+ \left\{ {}^{n} \left[\Delta L \cot A \right] \delta A_{1} + {}^{n} \left[\Delta L \cot A \right] \delta A_{2} + \dots + \Delta L_{n} \cot A_{n} \delta A_{n} \right\} \sin i''$$

$$(45)$$

These formulæ are given in Volume II and were employed in the reduction of the North-West Quadrilateral. Major Herschel made the following changes in their mode of expression with a view to obtaining the numerical coefficients of the unknown quantities in a more expeditious manner:-

$$\Delta \lambda \frac{\delta c}{c} = \frac{1}{\mathbf{M}} \Delta \lambda \frac{1}{10^7} \times \frac{\mathbf{M}}{c} \delta c \times 10^7$$

and $\frac{M}{c} \times 10^7$ = the number of units in the tabular difference of $\log c$ in the 7th place of decimals; if we call this t.d. log c, and put

$$_{\lambda}m = \frac{1}{M} \Delta \lambda \frac{1}{10^{7}} \ldots \ldots \ldots (46)$$

then

Similarly if we put

$$\begin{bmatrix}
m = \frac{1}{M} \Delta L \frac{1}{10^7} \\
m = \frac{1}{M} \Delta A \frac{1}{10^7}
\end{bmatrix} \cdot \dots \cdot \dots \cdot \dots \cdot (48)$$

we shall have

$$\begin{bmatrix} \Delta L \end{bmatrix} \frac{\delta c}{c} = \begin{bmatrix} m \end{bmatrix} \text{t.d.} \log c. \delta c$$

$$\begin{bmatrix} \Delta A \end{bmatrix} \frac{\delta c}{c} = \begin{bmatrix} m \end{bmatrix} \text{t.d.} \log c. \delta c$$

Again putting

$$g = \frac{\nu}{\rho} \cos \lambda \sin i'' i o^{6}$$

$$g = \frac{\rho}{\nu} \sec \lambda \sin i'' i o^{6}$$

$$g = \frac{\rho}{\nu} \tan \lambda \sin i'' i o^{6}$$

$$(50)$$

it follows that

$$-\left[\Delta \lambda \tan A\right] \sin i'' = -\left[{}_{\lambda} g \Delta L \frac{1}{10^{6}}\right] = \left[{}_{\lambda} p\right] \text{ suppose}$$

$$+\left[\Delta L \cot A\right] \sin i'' = +\left[{}_{L} g \Delta \lambda \frac{1}{10^{6}}\right] = \left[{}_{L} p\right] \quad ,$$

$$+\left[\Delta A \cot A\right] \sin i'' = +\left[{}_{A} g \Delta \lambda \frac{1}{10^{6}}\right] = \left[{}_{A} p\right] \quad ,$$

$$(51)$$

For calculating these expressions $_{\lambda}g$, $_{L}g$ and $_{A}g$ can be tabulated for every degree of latitude involved, and special values may be obtained by interpolation.

The formulæ for errors in latitude, longitude and azimuth may now be expressed as follows:—

$$d\lambda_{n+1} = \prod_{i=1}^{n} \prod_{\lambda} m \left[t.d. \log c_{i} \cdot \delta c_{i} + \prod_{i=1}^{n} \prod_{\lambda} m \right] t.d. \log c_{i} \cdot \delta c_{i} + \dots + \prod_{\lambda} m_{n} t.d. \log c_{n} \cdot \delta c_{n}$$

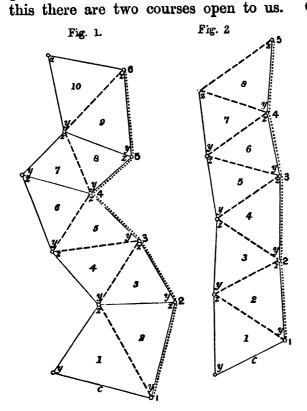
$$+ \prod_{i=1}^{n} p \left[\delta A_{i} + \prod_{i=1}^{n} p \right] \delta A_{i} + \dots + \prod_{\lambda} p_{n} \delta A_{n}$$

$$(52)$$

$$dL_{n+1} = \left\{ \sum_{i} m \right\} \text{t.d.} \log c_{i} \cdot \delta c_{i} + \left\{ \sum_{i} m \right\} \text{t.d.} \log c_{i} \cdot \delta c_{i} + \dots + \sum_{i} m_{n} \text{t.d.} \log c_{n} \cdot \delta c_{n}$$

$$+ \left\{ \sum_{i} p \right\} \delta A_{i} + \left\{ \sum_{i} p \right\} \delta A_{2} + \dots + \sum_{i} p_{n} \delta A_{n}$$

$$(53)$$


and

$$dB_{n} = {}^{n}_{1} \left[{}_{A}m \right] \text{t.d.} \log c_{1} \cdot \delta c_{1} + {}^{n}_{2} \left[{}_{A}m \right] \text{t.d.} \log c_{2} \cdot \delta c_{2} + \dots + {}_{A}m_{n} \text{t.d.} \log c_{n} \cdot \delta c_{n}$$

$$+ \left\{ {}_{1} + {}^{n}_{1} \left[{}_{A}p \right] \right\} \delta A_{1} + \left\{ {}_{1} + {}^{n}_{2} \left[{}_{A}p \right] \right\} \delta A_{2} + \dots + \left\{ {}_{1} + {}_{A}p_{n} \right\} \delta A_{n}$$

$$(54)$$

We have finally to express the values of the errors δc_1 , δc_2 , δc_3 , . . . and δA_1 , δA_2 , δA_3 , . . . in side and azimuth, which were successively generated between the stations whose geodetic elements have been computed, in terms of the generating angular errors. In doing this there are two courses open to us. One is to carry the geodetic calculations from

station to station along either flank of each chain of triangles, the right flank being preferred because every value of A is then always obtained by adding the included angles of the traverse to the previous B; another is to carry them from flank to flank in a zig-zag manner across the chain, when the included angles of the traverse have to be alternately added and subtracted to obtain a following A from a preceding B. These methods are illustrated in both the accompanying figures, the dotted lines representing the traverse along one flank of the triangles, and the broken lines the zig-zag traverse from flank to flank. Of the two methods the first has been employed for the whole of the triangulation comprised within the North-West and South-East Quadrilaterals and the first ten Circuits of the present Quadrilateral. But for the remaining triangulation, which falls to the east of the Calcutta Meridional Series, Major Herschel adopted the second method. The sets of equations which result from either method

will now be shewn.

But first it must be stated, in explanation of the two figures in the margin, that in both of them the block numerals 1, 2, . . . indicate the numbering of the stations on the direct line of traverse. When the traverse is carried along a flank of the chain of triangles, the traverse stations are much less numerous than the triangles, and they therefore

require a separate numbering; but when it is carried in a zig-zag, from flank to flank, every traverse station is the vertex of a triangle and may take the number of the triangle, and consequently in this case the traverse stations do not require a special numbering. Thus different notations are needed in the two cases, as will now be exemplified with reference, in both cases, to the chain indicated by Figure 1, because it is less direct, and thus leads to more complex expressions of error, than the chain indicated by Figure 2.

1.—The Direct Line of Traverse.

Following Fig. 1, and employing old face numerals as the subscripts for the traverse stations and ordinary numerals as subscripts for the triangles, it will be seen that δc_1 and δA_1 are the linear and azimuthal errors generated between the initial side c and the traverse side 1-2, δc_2 and δA_2 are the linear and azimuthal errors generated between the traverse sides 1-2 and 2-3, and so on. Hence

$$\delta A_1 = x_1 + y_2$$

$$\delta A_2 = z_2 + y_3$$

$$\delta A_3 = z_3 + x_4 + y_5$$

$$\vdots \qquad (55)$$

also writing

$$\alpha$$
 for t.d. $\log \sin X$
 β ,, t.d. $\log \sin Y$
 γ ,, t.d. $\log \sin Z$

it can be easily demonstrated that

t.d.
$$\log c_1 . \delta c_1 = \beta_1 y_1 - \gamma_1 z_1 + a_2 x_2 - \gamma_2 z_2$$

t.d. $\log c_2 . \delta c_2 = \beta_2 y_2 - a_2 x_2 + a_3 x_3 - \gamma_3 z_3$
t.d. $\log c_3 . \delta c_3 = \beta_3 y_3 - a_3 x_3 + \beta_4 y_4 - \gamma_4 z_4 + a_5 x_5 - \gamma_5 z_5$

$$(56)$$

Eliminating x from these expressions by help of the triangular equation x + y + z = 0, substituting the values of δA and δc in the expressions for $d\lambda_{n+1}$, dL_{n+1} and dB_n , and introducing the following symbols, viz.,

 $oldsymbol{E}$ for the left-hand member of either equation

$$\mu_i$$
 for the coefficient of t.d. $\log c_i \cdot \delta c_i$, or $\begin{bmatrix} m \end{bmatrix}$

$$\mu_2$$
 ,, t.d. $\log c_2.\delta c_2$, ,, ${}^*_2[m]$

• • • • • • • • • • • •

$$\phi_1$$
 ,, δA_1 , or $\left[p\right]$

$$\phi_2$$
 ,, δA_2 , ,, $\sum_{i=1}^{n} p$

we shall have the following general expression for an error either in latitude, longitude or azimuth, in which when two consecutive μ s occur as forming a factor of a, thus $(\mu_{l+1} - \mu_l)$, they may be replaced by $-m_l$:—

$$E = + (\mu_{1} \beta_{1} - \phi_{1})y_{1} + (-\mu_{1} \gamma_{1} - \phi_{1})z_{1}$$

$$+ (-m_{1} \alpha_{2} + \mu_{2} \beta_{2} + \phi_{1})y_{2} + (-m_{1} \alpha_{2} - \mu_{1} \gamma_{2} + \phi_{2})z_{2}$$

$$+ (-m_{2} \alpha_{3} + \mu_{3} \beta_{3} + \phi_{2})y_{3} + (-m_{2} \alpha_{3} - \mu_{2} \gamma_{3} + \phi_{3})z_{3}$$

$$+ (\mu_{3} \beta_{4} - \phi_{3})y_{4} + (-\mu_{3} \gamma_{4} - \phi_{3})z_{4}$$

$$+ \dots$$

$$(57)$$

The general forms for the coefficients of y and z are:—

First.—If the pth triangle have no side in the line of traverse, but only an angle at the station l,

$$(\mu_l \beta_p - \phi_l)y_p + (-\mu_l \gamma_p - \phi_l)z_p \qquad (58)$$

Secondly.—If the qth triangle have a side in the traverse between the stations l and l+1,

$$\{-m_l \, a_q + \mu_{l+1} \, \beta_q + \phi_l\} y_q + \{-m_l \, a_q - \mu_l \, \gamma_q + \phi_{l+1}\} z_q \, . \, . \, . \, . \, (59)$$

Exceptions may present themselves at the commencement and end of chains, owing to the non-existence of some of the coefficients. In all instances, however it will be found that ϕ_l enters the coefficients of all the errors of the angles at station l; also that μ_l enters the coefficients of the errors of the other angles of the same triangles, with a *plus* sign if looking from station l the angle is the left-hand one of the triangle and a *minus* sign if the right-hand.

The substitutions for μ and ϕ to render the general equation applicable to either latitude, longitude or azimuth are now as follows:—

Table of Substitutions for μ and ϕ .

		Latitude	Longitude	Azimuth
\mathbf{For}	\boldsymbol{E}	$d\lambda_{n+1}$	dL_{n+1} .	dB_n
,,	μ	$_{\lambda}^{oldsymbol{\mu}}$	$_{z}\mu$	$_{m{arepsilon}}\mu$
"	φ	$_{\lambda}\phi$	$_{_{L}}\!\phi$	$_{4}\phi$
,,	$\mu_{\scriptscriptstyle \rm I}$	$+ \prod_{1}^{n} \left[\lambda^{m} \right]$	$+ \prod_{1}^{n} \left[L^{m} \right]$	+ ⁿ ₁ [_A m]
,,	μ_2	$+\sum_{2}^{n} \left[\sum_{\lambda} m \right]$	$+\sum_{2}^{n} \left[L^{m} \right]$	+ ⁿ [_A m]
	• •		•••	• • •
,,	μ_n	$+_{\lambda}m_{\kappa}$	+ ½m,	+ ₄ m _*
,,	ϕ_1	$+ \prod_{i} \left[{}_{\lambda} p \right]$	+ [*] [_L p]	$\left[1+\prod_{i=1}^{n}p\right]$
"	φ2	$+ \sum_{\alpha} \left[p \right]$	$+$ [*] $\begin{bmatrix} _{z}p \end{bmatrix}$	$\left[1+\prod_{2}^{n}\left[_{A}p\right]\right]$
•			• • •	
,,	ϕ_n	$+_{\lambda}p_{n}$	+ _L p,	$1+_{A}p_{n}$

2.—The Zig-zag Line of Traverse.

The Zig-zag Line of Traverse follows a course such as is indicated by the broken lines --- in Figures 1 and 2; every two consecutive sides of the traverse include only those angles of the triangles which are known as flank angles and are symbolized by X, in contradistinction to the 'angles of continuation' which are symbolized by Y and Z; in the direct line of traverse all three angles occur indifferently. There is of necessity, therefore, a greater uniformity in the coefficients of y and z in the resulting geodetic equations, and further we may dispense with traverse numbers and employ the triangle numbers only in indicating the component factors of the coefficients which are respectively due to the traverse and the

triangle. This can be easily done in the case of a chain originally consisting of single triangles, such as is represented by Fig. 2; because the number of triangles and the number of sides in the traverse are the same. But when the triangles are taken from a chain which was originally double, as in Fig. 1— where however, the non-circuit triangles are not shewn—we must adopt numerical subscripts which will recognize the crossing of the line of traverse from the vertex of one triangle to that—not of the next but—of the next but one, as frequently happens in such cases. Thus the symbols for Fig. 1 will be as follows:—

For the side of continuation of triangle 1,
$$\Delta\lambda_1$$
, ΔL_1 , ΔA_1 , c_1 , A_1 , and B_1 , ..., triangle 3, $\Delta\lambda_{2,3}$, $\Delta L_{2,3}$, $\Delta A_{2,3}$, $c_{2,3}$, $A_{2,3}$, and $B_{2,3}$, ..., triangle 4, $\Delta\lambda_4$, ΔL_4 , ΔA_4 , c_4 , A_4 , and A_4 , ...

and so on, shewing by the subscripts the specific numbers of the triangles which are made use of in the successive deductions. δc_1 and δA_1 are now the linear and geodetic errors generated between the initial side c and the first side of the traverse, or the side of continuation of triangle 1. $\delta c_{2,3}$ and $\delta A_{2,3}$ are the linear and geodetic errors generated between the first and second sides of the traverse, or between the sides of continuation of the triangles 1 and 3; and so on. But it must be carefully borne in mind that whereas in the direct line of traverse the forward azimuth A at any station is deduced by the addition of the included angles to the back azimuth B, in the zig-zag line of traverse the included angles are additive only when they are to the left of the line of traverse and are subtractive when they are to the right; hence δA carries a plus sign in the former case and a minus sign in the latter.

If we now substitute for δc and δA in terms of x, y and z, we may dispense with different symbols to distinguish between the traverse and the triangle numbers, and shall have

and

t.d.
$$\log c_1.\delta c_1 = \beta_1 y_1 - \gamma_1 z_1$$

t.d. $\log c_{2,3}.\delta c_{2,3} = \beta_2 y_2 - \gamma_2 z_2 + \beta_3 y_3 - \gamma_3 z_3$
t.d. $\log c_4.\delta c_4 = \beta_4 y_4 - \gamma_4 z_4$ (61)

We are now again in a position to substitute the generating angular errors for the

Digitized by Google

errors in side and azimuth in the expressions for $d\lambda_{n+1}$, dL_{n+1} and dB_n given by equations (52) to (54). But before so doing we must make further changes in the notation. n is now no longer the number of sides in the traverse but the number of triangles in the chain, and the right-hand subscripts of the expressions will be (1), (2,3), (4), (5), (6,7), &c., double numbers occurring wherever two triangles are included between successive sides of the traverse. The same double numbers will have to be employed to symbolize summations, thus $\prod_{2,3}^{n} m$ or $\prod_{2,3}^{n} p$, and also for the μ s and ϕ s, thus $\mu_{2,3}$, $\phi_{2,3}$. These double numbers, although they somewhat confuse the analytical expressions for the errors in latitude, longitude and azimuth, cause no trouble in practice, when the calculations are made with the aid of a reduction chart, as is usually necessary.

The general expression for an error in latitude, longitude or azimuth now becomes

$$E = + (-\phi_{1} + \mu_{1} \beta_{1})y_{1} + (-\phi_{1} - \mu_{1} \gamma_{1})z_{1}$$

$$+ (\phi_{2,3} + \mu_{2,3} \beta_{2})y_{2} + (\phi_{2,3} - \mu_{2,3} \gamma_{2})z_{2}$$

$$+ (\phi_{2,3} + \mu_{2,3} \beta_{3})y_{3} + (\phi_{2,3} - \mu_{2,3} \gamma_{3})z_{3}$$

$$+ (-\phi_{4} + \mu_{4} \beta_{4})y_{4} + (-\phi_{4} - \mu_{4} \gamma_{4})z_{4}$$

$$+ \dots$$

$$(62)$$

On reference to Fig. 1 it will be at once evident how easily this expression can be written down for any chain of triangles, with the aid of the figure.

The general expressions for the coefficients of y and z in the preceding equation are

where ι stands for + or -, the former if the triangle lies to the right of the traverse and the latter if to the left*.

w. H. C.

^{*} If the traverse stations are numbered in succession, the 'Table of Substitutions' will furnish the formula for any μ or ϕ ; but it was preferred to calculate these triangle by triangle in the same form in which the coefficients of the angular errors, $\iota \phi + \mu \beta$ and $\iota \phi - \mu \gamma$, were calculated. Besides the dispensing with separate subscripts for the μ s and ϕ s, this form has the advantage that the longer expressions for the coefficients of the angular errors of triangles with one side in the traverse are absent, while if the series to which it is applied are double the number of μ s and ϕ s which have to be computed may be much the same. On the other hand, when the chains of triangles are single, see Fig. 2, the number of μ s and ϕ s is nearly doubled; some slight liability to error is also occasioned by the change of sign of ϕ . This liability to error is absent from the old form, and the double formulæ for the coefficients of the angular errors are not so troublesome as might be supposed at first sight, as they can be easily written down with the aid of the Reduction Chart, by help of the rules given on page 54.

3.—Calculation of the Absolute Terms of the Geodetic Equations.

It has now been demonstrated how the geodetic errors met with at the close of any circuit of triangles, or at the junctions of separate chains of triangles, may be readily expressed in terms of the symbolic errors of the included angles. The absolute terms of the equations will be the differences of the values in latitude, longitude and azimuth, which are calculated from the origin of the circuit through the two branches up to this junction. The calculation of the absolute term E for the geodetic equations is performed thus. The circuit is divided into two branches—right-hand and left-hand—and the values of latitude, longitude and azimuth are calculated from a common station and side of origin to a closing station and side by either branch; and, if the subscripts r and l denote the values obtained by the right and left-hand branches,

$$\begin{array}{lll}
{\lambda}E &=& \lambda{r} - \lambda_{l} \\
{z}E &=& L{r} - L_{l} \\
{A}E &=& B{r} - B_{l}
\end{array}$$

$$(64)$$

4.—Calculation of the Geodetic Factors in the Coefficients.

In calculating the factors μ and ϕ the following approximations were made:—

For
$$_{\lambda}m = \frac{1}{M} \Delta \lambda \frac{1}{10^{7}}$$
 was put $^{1}23 \Delta \lambda \frac{1}{10^{6}}$
 $_{1}m = \frac{1}{M} \Delta L \frac{1}{10^{7}}$, $^{1}23 \Delta L \frac{1}{10^{6}}$ (65)
 $_{2}m = \frac{1}{M} \Delta A \frac{1}{10^{7}}$, $^{1}23 \Delta A \frac{1}{10^{6}}$

and $\Delta \lambda$, ΔL and ΔA were retained to the nearest second only. $_{\lambda}g$, $_{L}g$ and $_{A}g$ were tabulated for every degree of latitude required to two decimal places and were employed by interpolation to one decimal place. The table will be found at the commencement of Section 11 of Chapter III. The values of the μ s and ϕ s obtained in this manner are somewhat less rigorous than those of the South-East Quadrilateral; but with the aid of Crelle's Tables of Products the labour of calculating them is greatly reduced.

5.—Application of Equalizing Factors to the Linear and Geodetic Equations.

When the linear and geodetic equations have been obtained in the manner here described, it will be found that the numerical values of the coefficients are much larger in the former than those in latter, and that those in the latitude and longitude equations are least of all. Although this can not produce any effect on the final results, it leads to an amount of labour in the calculations, which may be materially diminished if the coefficients can be equalized roughly without much trouble, by multiplying each by a special factor. Such factors were employed for the North-East Quadrilateral; their values were

, latitude and longitude equations 15

11.

The Final Reduction of the Triangulation. Solution of the Equations between the Indeterminate Factors.

If we assume that the number of triangles entering the reduction is t and that they furnish n circuit equations, the latter may now be written in order

$$\begin{bmatrix}
\mathbf{1}b_{1}y_{1} + \mathbf{1}c_{1}z_{1} + \dots + \mathbf{1}b_{i}y_{i} + \mathbf{1}c_{i}z_{i} = \mathbf{1}E \\
\mathbf{2}b_{1}y_{1} + \mathbf{2}c_{1}z_{1} + \dots + \mathbf{2}b_{i}y_{i} + \mathbf{2}c_{i}z_{i} = \mathbf{2}E
\end{bmatrix}$$

$$\begin{bmatrix}
\mathbf{1}b_{1}y_{1} + \mathbf{1}c_{1}z_{1} + \dots + \mathbf{1}b_{i}y_{i} + \mathbf{1}c_{i}z_{i} = \mathbf{1}E
\end{bmatrix}$$

$$\begin{bmatrix}
\mathbf{1}b_{1}y_{1} + \mathbf{1}c_{1}z_{1} + \dots + \mathbf{1}b_{i}y_{i} + \mathbf{1}c_{i}z_{i} = \mathbf{1}E
\end{bmatrix}$$
(66)

in which equations the left-hand subscript in 'old face' type corresponds to the number of the equation and the right-hand subscript in ordinary type gives the number of the triangle.

Now for reasons which have been stated in Section 2 of Chapter XIV, Vol. II, the angles appertaining to any single trigonometrical figure are taken as of equal weight in

the simultaneous reductions. Thus the minimum which governs the solution of the foregoing equations will, when x has been eliminated from it, become

$$U = \frac{(y_1 + z_1)^2 + y_1^2 + z_1^2}{u_1} + \cdot \cdot \cdot + \frac{(y_t + z_t)^2 + y_t^2 + z_t^2}{u_t} \cdot \cdot \cdot (67)$$

The symbols employed for the 'indeterminate factors' are $_1\Lambda$, $_2\Lambda$, $_3\Lambda$, &c., and the equations between them are* †

$$\frac{2}{3} \left[u \left(\mathfrak{b}^2 - \mathfrak{b}\mathfrak{c} + \mathfrak{c}^2 \right) \right].$$

These checks were superseded in the North-East Quadrilateral by equating the sum of the coefficients of the As in any, the q^{th} , equation to

$$_{m-1}^{m-t}\left[_{q}b_{m} \left[\mathfrak{B}_{m} \right] + _{q}c_{m} \left[\mathfrak{C}_{m} \right] \right]$$

† The analytical expressions for the coefficients of the indeterminate factors in equations (68) have been obtained by eliminating from the circuit equations one of the angular errors of each triangle, by help of the triangular equation x + y + z = 0. The same form may be arrived at by retaining the unknown quantities, but eliminating the factors appertaining to the triangular equations from the equations between the indeterminate factors, prior to their solution. This has already been pointed out, see note on page 404 of Vol. II.

If pa_m , pb_m , pc_m be the coefficients of x_m , y_m , z_m in any the pth equation and their sum be put equal $3ps_m$, the coefficient of pth in the qth equation will first take the form

which is remarkable for its symmetry.

If now we write b for b-a and c for c-a the coefficient becomes

$$\sum_{m=1}^{m=1} \left[q b_{m} b_{m} + q c_{m} c_{m} \right]$$

which is the same as in the text; and the expressions for the errors y and z take the same form as in (69).

Digitized by Google

[•] In these equations, although the corresponding coefficients on opposite sides of the diagonal appear to differ, their values are in reality identical in each term of the summation. Both forms were made use of as a check on the calculations in the North-West and South-East Quadrilaterals; and the diagonal coefficients were obtained also by the formula

in which

$$36 = \frac{u}{3}(2b-c)$$
, and $\mathfrak{C} = \frac{u}{3}(2c-b)$

These equations having been solved, the values of the angular errors are given by the formulæ

$$y_{p} = {}_{1}\mathfrak{G}_{p} {}_{1}\Lambda + {}_{2}\mathfrak{G}_{p} {}_{2}\Lambda + \dots + {}_{n}\mathfrak{G}_{p} {}_{n}\Lambda$$

$$z_{p} = {}_{1}\mathfrak{C}_{p} {}_{1}\Lambda + {}_{2}\mathfrak{C}_{p} {}_{2}\Lambda + \dots + {}_{n}\mathfrak{C}_{p} {}_{n}\Lambda$$

$$x_{p} = -(y_{p} + z_{p})$$

$$(69)$$

CHAPTER III.

THE DETAILS OF THE SIMULTANEOUS REDUCTION.

1.

On the General Aspects and the Magnitude of the Undertaking.

It has been stated, in the first chapter of this volume, that the eastern limit of the triangulation appertaining to the North-East Quadrilateral was originally intended to be the Calcutta Meridional Series. The Quadrilateral would thus have embraced eleven meridional series, starting from the already fixed Calcutta Longitudinal Series to the south and running parallel to the already fixed section of the Great Arc to the west; it would also have embraced a longitudinal series to the north, and one obligatory measured length, viz, the Sonákhoda base-line, at its north-east corner. Its reduction would have involved the formation and simultaneous solution of 45* equations between indeterminate factors, of the form given in the last section of the preceding chapter. Now the North-West Quadrilateral had only presented 23 and the South-East 15 such equations; and in both the labour entailed, first in the formation of these equations, and afterwards in solving them by the method of minimum squares—so as to obtain the most probable results—was very great, involving many precautionary calculations, to guard against the occurrence of any error, without detection, throughout a mass of calculations occupying several computers for many months. Thus it was not unnatural that an undertaking which, at first sight, appeared to be so much more extensive than the two great reductions which had preceded it, should have been contemplated with some anxiety lest it might prove to be impracticable.

^{*} In reality there might have been 47 equations, for the Budhon Meridional Series has a station, at Ráepur, near its middle latitude, which is only a few feet distant from a station of the Great Arc, the intervening space being occupied by a temple; and while the final reductions were in hand the distance and mutual bearings of the two points were measured by an Officer specially deputed for the purpose; afterwards the Budhon elements were adjusted to the fixed elements of the Great Arc at Ráepur, by the introduction of 2 additional equations, one in latitude the other in longitude.

Now some of the interior meridional chains of triangles had been executed by inexperienced observers and with instruments of an inferior order to those subsequently employed on the other chains, so that these portions of the triangulation had been accomplished under less favourable conditions than the other portions. Thus a material simplification of the undertaking might have been effected by excluding the inferior chains from the general reduction, and fitting them into their final places subsequently; for the exclusion of any internal chain would diminish the number of equations for simultaneous treatment by four, and consequently leave four equations for subsequent independent solution by themselves. It had been found necessary in the reduction of the South-East Quadrilateral to exclude the two meridional chains known as the South Malúncha and the South Párasnáth Series, because of their marked inferiority to the surrounding chains. This method of simplification was at first seriously contemplated; but on closer examination it was found not to be desirable; for the theoretical errors of the angles in the worst portion of the triangulation were not so much greater than those of the angles in the better portions, but that a judicious combination of the whole triangulation might be made on the basis of the existing evidence regarding the relative weights of the several angles.

One series only—the Budhon Meridional—was eventually excluded; this was done not so much because of its inferior character, as because its connection with any other portion of the triangulation than the Calcutta Longitudinal, was so slight that its influence on the general reduction would have been barely if at all perceptible. Starting from the southern longitudinal series, the Budhon chain closes on the upper extremity of the Great Arc, and not on the northern longitudinal as do all the other series; it is connected with the northern longitudinal series, but only by a single triangle, the one which is now numbered 57—see the Reduction Chart for that series. By excluding this triangle from the Simultaneous Reduction, and treating it as one of the redundant triangles of the polygonal figure to which it appertains, the Budhon Series could be, and was, completely severed from the North-East Quadrilateral, and made to rest entirely on the two fundamental series at its extremities. Its separate reduction will be found in an appendix to Part I of this volume.

The exclusion of the Budhon Meridional Series diminished the number of equations, 45, originally presented for simultaneous treatment by four, and by six the number, 47, which would have been required to take cognisance also of the connection with the Great Arc at Ráepur, indicated in the foot note to the preceding page.

A further elimination of eight equations, by the rejection of the Rangír and the Karára Series, was at first contemplated. For on comparing the closing errors of the several circuits it was found that the largest of all occurred in the circuits into which these series entered, and that the circuits which would be formed by omitting these series presented much smaller closing errors. And as the angles had been mostly measured with indifferent instruments—those of the former with Cary's two 18-inch theodolites and Harris and Barrow's 15-inch, and of the latter with Troughton and Simms' 18-inch No. 1, a Cary's 18-inch, Harris and Barrow's 15-inch and Saiyad Mir Mohsin's 18-inch—it was at first thought that the angular measurements were in fault. But when the relative weights of the whole of the angles came to be

investigated, with a view to assigning to each angle its proper weight in the final combination, it was found that the angles of these series were not so inferior in weight to the angles of the other series as to justify their exclusion from the Simultaneous Reduction.

This will be at once seen from the following table of the average values of the 'errors of mean square'—e.m.s.—of the observed angles in each of the several series of triangles, which has been deduced from the data—given in a subsequent section of this chapter—for the investigation of the Weights of the Angles.

Average Errors of Mean Square of the Observed Angles, in each Series of Triangles*.

Rangir	± 1"·70	Chendwar		1":36			
Amua	1 .64			1 .00			
Karára	1 .52			o •90	The old meridional chains, appertaining to the North-East Quadrilateral.		
Gurwáni	11,11			1 '27	Lime Quantitavelai.		
Gora	1 .00			1 '40			
North-East Longitudinal Series				0 '42			
Assam Longitudinal	± °″·63	Brahmaputra		0 .20	The modern meridional and longitudinal series appertain-		
East Calcutta Longitudinal	l o ·34	Eastern Frontier		0.52	ing to the Extension.		
. w		0 '29.	t				

It will be seen that the value of the angular e.m.s. is largest for the Rangír Series which might have been eliminated; but this value is not very much larger than that for the Calcutta Meridional Series, the retention of which was obligatory; the value for the Karára Series is less than that for either the Amua, the Huríláong, or the Calcutta Meridional Series, and is the same as for the North Malúncha. Thus the rejection of either the Rangír or the Karára Series, on the grounds of the general inferiority of the angular measurements, was evidently not admissible. This became all the more obvious when an investigation of the relative magnitudes of the linear and geodetic errors at the close of the 'circuits' pointed to

^{*} These values of the e.m.s. are the average values of the adopted denominators of ρ —or, in other words, of either the e_2 or the e_3 , or the mean of both, as was deemed most appropriate in each instance—which are given for each group of triangles in each series, in the tabular Synopsis of the Values of ρ^2 and the Evidence for their Determination in the section of this chapter on the Weights of the Angles.

[†] On reference to Section 12 of Chapter II of Vol. VI, data will be found for the calculation of the average e.m.s., not merely of the observed but also of the figurally corrected angles of this series; the angles are comprised in Figures 9 to 12 of Group III, Figures 13 to 20 of Group IV, and Figure 21 which forms Group XIV; the final weights, w_c , of these angles are the Absolute Weights in the table at the end of the section. The square root of the reciprocal of w_c may be accepted as giving a very fairly approximate value of the average e.m.s. of the figurally corrected angles of each figure; these values have been combined with weights proportional to the number of angles in each figure. The value of the e.m.s. thus deduced for the whole series is \pm 0.21, while that for the series as it stands after final correction, by the reduction of the South-East Quadrilateral, must be somewhat less; see Section 18 of Chapter XVII, Volume II.

a preponderance in the magnitudes of the linear and the azimuthal errors, as compared with those in latitude and longitude, which is inexplicable, excepting on the assumption that the lengths and azimuths of the sides of some of the triangles had not remained constant throughout the operations, but had in some instances become altered, because of deflections occurring insensibly at the (solid) tower stations in the plains during the progress of the operations. Such deflections might take place when a newly built tower was used before it had become settled; but they would most probably occur during the interval which elapsed between the closing observations of one field season and the initial observations of the next, and which sometimes comprised more than one monsoon season with its concomitant heavy rainfalls.

It has already been stated, at page 14, that deflections were met with at the towers at the extremities of the side Harpur to Barhata of the North-East Longitudinal Series by which the length of that side may have been augmented by 10.8 inches, more or less, the exact amount not being ascertainable without pulling down the pillars—which were solid throughout—to refer to the markstones at their basements. But since that page was passed through the press, some information has been obtained, from the old records of the Rangír Series, which renders certain what had previously been only conjectural, and furnishes positive evidence of the magnitude of the possible deflections. The pillars at all the stations of that series in the plains were made hollow from top to bottom, to enable plumb-lines suspended from the summit to reach the basement. Thus deflections were easily measureable. The cores of the pillars were about 12 inches in diameter at top and 18 inches at base; therefore whenever any deflection not exceeding 9 inches took place, a plummet suspended from the centre of the orifice above would alight freely on the basement; this however was not found to be sufficient to give all the play that was desired; consequently in several instances a 'capital' was constructed on the top of the pillar, exceeding the diameter of the shaft by about 12 inches, to enable the theodolite to be set up excentrically, and thus admit of a further deflection of 6 inches. This shows that experience indicated the necessity of being prepared to deal with actual deflections of as much as 15 inches. But in some instances the deflections were even greater, for the upper half of the pillar had to be pulled down and rebuilt, to permit of reference being made from the summit to the ground level by plummet; and in one instance, when there was not time to rebuild, four markstones, forming a quadrilateral figure with the diagonals intersecting in the normal of the point over which the theodolite was set up, had to be constructed round the station, in order to recover the point in case of any subsequent deflection of the pillar. Now it so happened that permanent platforms were not built round these hollow pillars, but a temporary stage was erected at each, whenever required. Subsequently the form of tower station was altered, and the solitary hollow pillar gave place to a solid pillar surrounded by a platform of earthwork; and then it appears to have been expected that the platform would serve as a protection to the pillar and prevent it from deflecting; but experience has shown that the platform is itself more liable than the pillar to become deflected during the rainy season, and that by pressing against the pillar on one side it not unfrequently aggravates the evil it was expected to obviate. Thus the introduction of the solid pillar was the eventual cause of grave evil, though at the time it was attended with much advantage, in facilitating the construction and cheapening the cost of the tower stations.

We may assume the *probable error* due to the deflection of a station on the summit of a solid pillar, during the cessation of operations in the rainy seasons, to be fully \pm 6 inches. Then the e.m.s. of deflection on the side between two deflected stations will be equal to $\pm \sqrt{2} \times 1.48 \times 6 = \text{say } 12 \text{ inches.}$

Hence, as the average length of the sides of cessation on the North-East Longitudinal Series is 10.8 miles, we may assume that

the average e.m.s. of deflection is =
$$\begin{cases} \pm .000,0077 \text{ in logarithmic length,} \\ \pm .3".6 \text{ in azimuth} \end{cases}$$

on any side affected, while the corresponding e.m.s. of deflection on the latitude and longitude of either of the tower stations at the extremity of that side would be only \pm o".007.

The normal relations between the magnitudes of the theoretical errors in length and azimuth of the side and in latitude and longitude of the stations at the extremity of a chain of sensibly equilateral triangles are given by the following equations, for a proof of which reference must be made to the Appendix to Part I of the present volume "On the Theoretical "Errors generated respectively in Side, Azimuth, Latitude and Longitude in a Chain of Tri"angles". Assuming that the triangles are sensibly equilateral, that the three angles of every triangle have been measured and corrected for geometrical error, that the angles are all of equal weight, and that no errors exist other than those of the fallible measures of the angles,— and putting ϵ for the e.m.s. of any angle, R for the ratio of the last to the first side of the chain, n for the number of triangles, and l for the length of any side expressed in seconds of a great circle, 100 feet being taken as = 1", then we have

e. m. s. of log
$$R$$
 = Modulus $\sqrt{\frac{2n}{3}}$. $\epsilon \sin i''$
e. m. s. of Azimuth = $\sqrt{\frac{2n}{3}}$. ϵ very approximately
e. m. s. of Latitude or Longitude = $l \frac{\sqrt{2n^3 + 3n^2 + 10n}}{6}$. $\epsilon \sin i''$.

On applying these formulæ to the North-East Longitudinal Series—which may be regarded as a chain of 117 fairly equilateral triangles with an average side length of 730", and with angles of which the average $e.m.s. = \pm 0$ "·42—we find that the theoretical errors accumulated between the origin and terminus are approximately as follows;—

e. m. s. of log
$$R$$
 = \pm '000,0078*
e. m. s. of Azimuth = \pm 3".7
e. m. s. of Latitude or Longitude = \pm 0".45.

Thus then we see that the theoretical errors in length and azimuth, which the deflection of the tower stations have rendered only too probable, at any *single* side of cessation, are practically identical with the theoretical errors accumulated throughout the entire length of this chain of 117 triangles by reason of the fallibility of the measurements of the angles.

^{*} If instead of assuming the triangulation to be sensibly equilateral, we take it as it stands, and employ the values of the actual angles in the calculations of theoretical error—using the logarithmic tabular differences of the sines of the angles which are the coefficients of the errors of those angles in the linear equations of condition, as given in Section 12 of the present Chapter—we obtain ± '000,0081 as the value of this e. m. s., which is very slightly in excess of the approximate value.

And when we test this Series by reference to the measured base-lines which are situated at its extremities—one in Dehra Dún, the other at Sonákhoda—and compare the trigonometrical with the measured ratios of these base-lines, we find discrepancies which clearly indicate the presence of other sources of error than those due to the angular measurements. The ratio which is given by the base-line measurements may be assumed to be exact, as has been shown in Section 4 of Chapter XVII, Volume II; then the (logarithmically expressed) error of the trigonometrical ratio becomes '000,0343, which is four times greater than the preceding investigation would lead us to expect. But there are no less than eight sides of cessation on this Series at which tower-deflections may very possibly have taken place; we may therefore consider that, on the whole Series,

the e.m.s. of deflection is $=\pm\sqrt{8}\times.000,0077=\pm.000,00218$ or more than twice and-a-half the e.m.s. due to the angular measurements. Thus the magnitude of the actual error of the triangulation, which is inexplicable if account is taken of the angular errors only, becomes sufficiently probable when the influence of tower-deflections is also taken into account.

The instances in which material deflections might have occurred insensibly, during a suspension in the observations of the angles, were much more numerous in the North-East Longitudinal Series than in any of the ten meridional chains which it ties together, and for the completion of which it had necessarily to wait; thus though this Series is superior to all the others as regards the precision of the angular measurements, it is inferior to them all in the matter of deflection. Its retention was obviously necessary to permit of the final reduction being undertaken. Clearly therefore the omission of any of the meridional chains in the final reduction would not have been justifiable.

For these reasons it became necessary to undertake the very formidable task of first constructing, and then solving simultaneously 41 geodetic and linear equations of condition, involving no less than 1269 unknown quantities. As this appeared, at first sight, to be a much more arduous undertaking than had been accomplished in the Simultaneous Reductions of the North-West and the South-East Quadrilaterals, it was considered necessary to simplify the calculations as much as possible, by aiming at less arithmetical nicety and precision in the results than had been previously attained, when every equation of condition had been solved with almost perfect accuracy; vide Section 17 of Chapter XVII and Appendix No. 12 of Volume II, and also Section 16, Chapter II, of Volume VI. But that accuracy had been obtained not so much by the very perfect system of checks against accidental error which was established. as by carrying all the calculations to such a number of decimal places as would prevent any accumulation of arithmetical error to an extent which would become sensible at the close of a very lengthy series of computations; and this last had been found a most laborious matter. In the present instance it was therefore determined, from the outset, not to add to the labour of the undertaking by paying much regard to possible arithmetical accumulations of error; before the calculations were commenced, Colonel Walker intimated to Major Herschel—to whom they were entrusted—that he was prepared to accept residual errors at the junctions of the several chains of triangles with each other and with the base-lines, 'of, say, o".; in azimuth, o" o5 in latitude and longitude, and 5 in the 7th place of decimals of the logarithm of a side'. Thus while the material portion of each closing error would be dispersed systematically over the whole of the triangulation, small residual errors might remain, not exceeding what would ordinarily be generated in a few triangles; and these—it was expected—might be subsequently dispersed over a few of the triangles nearest the junctions, by calculations of a comparatively simple nature.

It soon dawned on Major Herschel that the North-East Quadrilateral, though containing several more chains of triangles than either of its predecessors, was actually much less entangled; for each chain abutted in succession on triangulation which had been finally adjusted; and of the linear equations connecting base-lines, which usually introduce more or less entanglement and cause a very considerable amount of additional labour, there was no need to employ more than one. And he noticed that by arranging the primary equations of condition in the order of the circuits—grouping together the linear and the three geodetic equations for the first circuit, and then those for the second, and so on up to the last—the subsequent equations between the indeterminate factors would be presented in a far more simple form for solution, than if the primaries had been arranged in any other way—as, for instance, by grouping the linear, latitude, longitude and azimuth equations separately; or by forming the whole of the linear equations into one group, and the geodetic equations into another arranged in the order of the circuits, as was done in the reduction of the two first Quadrilaterals. He further noticed that the single primary equation between base-lines might be so introduced as only to entangle with three other equations which appertained to a single circuit; whereas in the previous reductions there were several equations between baselines, and they caused an unavoidable entanglement with the whole of the circuit equations*.

$$y = [\frac{16}{1} \Lambda], z = [\underbrace{0}^{\alpha} \Lambda].$$

(1). The number of terms ($\hbar + \ell \ell$) which any geometrical equation will furnish, may be ascertained by counting the number of triangles involved in it, and the number of those same triangles which are involved in any of the other geometrical equations. In each case the sum will give the number of terms in the coefficient of the corresponding indeterminate factor in the resulting equation between the factors. Suppose for example the equation to be selected is the pth geometrical equation; then the number of triangles involved will give the number of terms ($\hbar + \ell \ell$) which go to form the coefficient of ℓ in the pth equation between the factors; and the number of common triangles involved in the pth and qth equations will give the number of terms forming the coefficient of ℓ in the pth equation between the factors: the total number of terms ($\hbar + \ell \ell$) due to any geometrical equation may be thus easily ascertained. (2). One equation, however, will in all probability give more significant coefficients of ℓ s than another; and if the excess is great the additional labour in solving the equations will also be great; if on the other hand the excess is small, while the saving in terms ($\hbar + \ell \ell$) is large, the choice should be governed by the latter. (3). The calculation of

$$y = [36 \Lambda], z = [0 \Lambda]$$

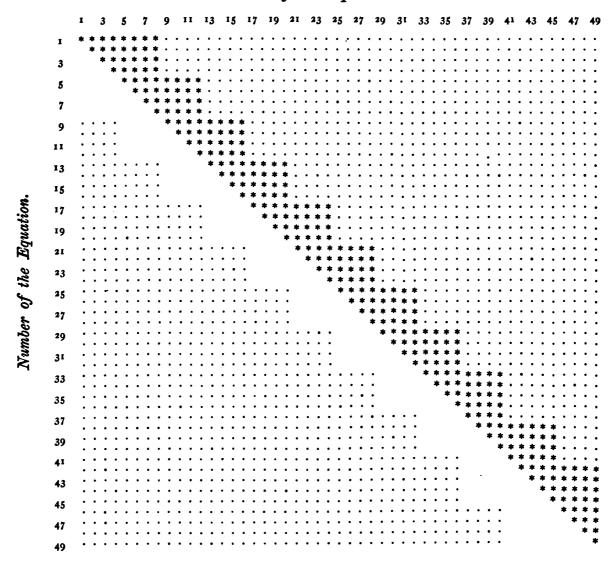
is of course a minimum when the unknown quantities, generally, enter a minimum number of equations; a condition which is often better fulfilled by selecting a short equation rather than a long one, although the fewer unknown quantities appertaining to it may enter the larger number of equations.

In illustration of this, in the North-West Quadrilateral a choice lay between a linear equation between base-lines derived from a chain of 39 triangles, but entailing 19 significant coefficients of indeterminate factors, and a circuit equation derived from 249 triangles but entailing only 18 significant coefficients of factors. In this case there could be no question as to which to select; but had an examination been necessary it would have shewn that the shorter equation required the calculation of only 178 terms (\$\frac{1}{36} + \frac{1}{16}\$) while the longer would have involved 1606 such terms. Further, although certain of the 78 unknown quantities y and z of the shorter equation entered 18 other equations, a very much larger proportion of the 498 unknown quantities entered the 17 other equations. In the

Digitized by Google

^{*} When a choice of equations exists it is generally preferable to select that which involves the fewer unknown quantities; because, in most cases, it will entail fewer calculations. These calculations are:— (1). The formation of terms (1) if 16 + c 17) of which the sums constitute the significant coefficients of the indeterminate factors (A); (2). The solution of the equations between the indeterminate factors; and, (3). The deduction of the errors by the formulæ

The arrangement of the equations between the indeterminate factors has obviously no significance on the final results; but it may have much significance on the amount of labour which has to be gone through in order to obtain those results. The object which should be aimed at in the arrangement is, to group together all equations which contain a large number of the unknown quantities in common, in such a manner that each group shall contain as many as possible of the unknown quantities included in the two groups immediately preceding and following it; in other words, when the coefficients of the unknown quantities are arranged in order vertically, the number of blank values between significant values should be a minimum, and the number of blank values exterior to significant values a maximum. When this is the case, the equations are presented in the simplest form, for treatment in successive groups, each group containing one unknown quantity less than the group preceding it. Blank values entering (vertically) between significant values of the coefficients of any unknown quantity, lead to the introduction of significant coefficients in every subsequent stage of the calculations, until the unknown quantity itself becomes eliminated; obviously therefore that arrangement is the best which causes no unnecessary calculations of this nature.


In the present instance the most appropriate arrangement was readily secured by grouping together all the four equations appertaining to each circuit, and then marshalling the several groups in the order of sequence of the chains of triangles from west to east; finally the linear equation, which was wanted to introduce the single base-line into the triangulation, was formed on a meridional series, entering into the four equations of a single circuit—the last—whereas in both the previous reductions the base-line equations had necessarily been formed on the longitudinal series which enter the whole of the circuits. Thus there was much less of entanglement than had been previously encountered; and when the equations between the indeterminate factors came to be formed, there were no blank values of coefficients between, while there were very many exterior to, the significant coefficients.

Moreover it became obvious that additional groups of equations might be introduced for the purpose of bringing certain external chains of triangles lying to the east of the Calcutta Meridional Series—under treatment simultaneously with the chains first selected for reduction, without causing any entanglement of the unknown quantities, but merely increasing the labour of the solution in proportion to their number; whereas when every term in the equations between the indeterminate factors is significant, an increase in the number, say k, of equations causes an increase in the number of terms in the proportion of $\frac{1}{2}(k^2 + k)$ to k, as has been shown at page 107 of Volume II. Major Herschel thereupon extended the Simultaneous Reduction to embrace the four chains of triangles lying immediately to the east of the Calcutta Meridional Series. Thus two circuits, involving eight equations, were added to the investigation. Consequently the total number of equations became 49, of which the first 40 are the circuit equations appertaining to the North-East Quadrilateral as originally designed, the 41st is the linear equation introducing the Sonákhoda Base-line, and the last 8 are the circuit equations appertaining to the Extension.

South-East Quadrilateral an exactly similar choice existed; but the equation between the base-lines now entailed three extra significant coefficients of indeterminate factors, but only 240 terms ($\mathfrak{h} + \mathfrak{g} + \mathfrak{g}$) against 891 and 480 products $\mathfrak{g} \wedge \mathfrak{g}$ and $\mathfrak{g} \wedge \mathfrak{g}$ against 1782. Here again the small extra labour entailed by the extra coefficients of factors was quite counterbalanced by the great saving in the other calculations.

The following diagram indicates the significant terms on and above the diagonal on the left-hand sides of Major Herschel's equations between the indeterminate factors, and is interesting as an illustration of the symmetrical arrangement which the conditions of the problem rendered possible. The absolute terms, of which there is of course one to each equation, are omitted.

Number of the Equation.

It may be here observed that in the North-West and the South-East Quadrilaterals the presence of base-lines or fixed lengths at the four corners, and the necessary linear equations connecting them, tied together the chains of triangles to such an extent that the application of the foregoing method of arrangement would not have led to a very material saving of labour. The number of blank values entering vertically between significant values of the coefficients would have been diminished by 57 in the first and by 16 in the second; but this would

not have materially affected the calculations, as a considerable majority of the coefficients were significant in both cases, whereas here a considerable majority of the coefficients were = 0. On the other hand if, through any inadvertence, the primary equations of condition of this Quadrilateral had been grouped for solution in the same way as in the two previous instances, the labour of solving them would have been enormously increased, and the introduction of the four additional chains of triangles appertaining to the Extension would have been impracticable.

2.

Synopsis of Independent Figural Reductions antecedent to the Final Simultaneous Reduction.

The North-East Quadrilateral is made up of the following single triangles, quadrilaterals, polygons of one or more centres, and compound figures; and the angular errors have been obtained by the method of Least Squares.

0	Single	Quadri- laterals	Poly	gons of	1 to 4 Ce	Compound	No. of	
SERIES	Triangles		1	2	3	4	Figures	Angles in each Series
North-East Longitudinal	. 96	2	4	1			•••	403
Rangir Meridional	. 31		ı					102
Amua "	. 34							102
Karára "	. 21	1	1			1		137
Gurwáni "	. 32							96
Gora "	. 23	•••					r	92
Huriláong "	. 20		1				ı	109
Chendwár "	. 17	ι	2				•••	92
North Párasnáth Meridional	. 20		•••			•••	•••	60
North Malúncha "	. 6		3		•••		•••	78
Calcutta Meridional	45							135
East Calcutta Longitudinal	. 32		2					132
Assam Longitudinal		2	6	2	•••	···	•••	169
Eastern Frontier, Section 23° to 26° } and Cachar Branch		6	3	1	1	1	•••	216
Brahmaputra		•••	7	1	•••	•••	1	180
	377	12	30	5	1	2	3	2103

The figural conditions and reductions—excluding those of the single triangles, which are of so simple a form as not to require special exhibition, but will be found in the general data of the triangles—are given for each series, immediately after the abstracts of the observed angles: a diagram of each figure is also given in the plates for each series. These together afford the means of readily following the calculations appertaining to each figure*.

Summing up the geometrical equations of condition, triangular, central and side, furnished by the whole of the figures, they amount collectively to 706 triangular, 58 central and 73 side equations, or 837 equations in all.

The weights employed in the figural reductions in the Series I and K to T were the reciprocals of the squares of the 'probabilities of error'—see page 21—with the following exceptions:—(1) Triangle No. 1 of the Rangír Series; the angles were measured by Mr. Shelverton, when revising the western portion of the West Calcutta Longitudinal Series, and their weights were calculated by the modern formula. (2) Fig. No. 7 or the Sonákhoda Base-line Figure; the angles of this figure were measured twice, first by Mr. Lane with Troughton and Simms' 36-inch theodolite, and afterwards by Mr. Nicolson with Barrow's 24-inch No. 1—see pages 8 and 9; both sets of measures were retained, and values of the observed angles were deduced by combining the separate measures of each angle with their respective weights, but without the introduction of any equalizing modulus; the reciprocal weights employed in the figural reduction are those of the sums of the individual weights of the angles obtained by each measurement. (3) Fig. No. 15. The original station of Chendwar having been destroyed prior to the revision of the West Calcutta Longitudinal Series, and a fresh one having been established, it became necessary to connect this with the triangulation of the Chendwár Series; consequently Mr. Keelan, when carrying out the revision, measured the angles of two of the triangles—see page 7; the weights of these angles and those of the other three triangles composing the figure, were reduced to a common standard of accuracy prior to the commencement of the figural reduction. For the remaining Series, U to X, weights calculated in the modern manner—as described at pages 22 and 23—were employed.

For triangles by Mr. Keelan
$$e_1 = 0.33$$
, $e_2 = 0.34$
,, Mr. Logan $e_1 = 0.73$, $e_2 = 1.34$

It appeared however that 87 angles measured with Troughton and Simms' 18-inch No. 2 on the Chendwar Series, give the average following values of e_1 and e_2 ;

$$e_1 = 0.98, e_2 = 0.87$$

Thus the calculations for this instrument from the figure itself give e_1 somewhat too small and e_2 somewhat too large; consequently the mean of e_1 and e_2 was taken and its square employed for $\frac{1}{w}$ for Mr. Logan's angles. Thus, with sufficient approximation, we have for Mr. Keelan's angles $\frac{1}{w} = 0.12$ and for Mr. Logan's angles $\frac{1}{w} = 1.00$.

^{*} The side equations in the figural reductions are expressed in different forms in different portions of the triangulation. In the form first adopted the coefficients of the unknown quantities are the cotangents of the angles, in the other they are the tabular differences of the logarithmic sines of the angles. The latter have been made use of for figures Nos. 7, 21, 23 to 41 and 46 to 53.

[†] Fig. No. 15 consists of five triangles, two measured by Mr. Keelan with Colonel Waugh's 24-inch No. 1 and three by Mr. Logan with Troughton and Simms' 18-inch No. 2. Computing e_1 and e_2 for each we have

3.

Description of the Reduction Chart.

Triangulation of the North-East Quadrilateral, as it was originally executed, including the Budhon Series, though, as has already been explained, that series was reduced after the simultaneous reduction of the whole of the others. Part of the triangulation consists of polygonal figures or net-works, of which some of the angles are not introduced into the final reduction, and part of single triangles, of which all the angles are introduced. The fixed data for the final reduction are the length of the Sonákhoda Base-line, the Great Arc Series—Section 24° to 30°—of the North-West Quadrilateral, and the West Calcutta Longitudinal Series of the South-East Quadrilateral. The two fundamental series are fully exhibited, and are distinguished by the sides of the triangles being shewn by thicker lines than those of all the other triangles; the sides on which the several series of the North-East Quadrilateral abut, and of which the elements enter the calculations as fixed quantities, are defined by double lines terminated by black circles with white centres.

The positions of Base-lines are indicated by thick black lines; of these fixed linear elements, the Sironj, Dehra Dún and Calcutta Bases, situated at the extremities of the fundamental series, fall outside the limits of this Quadrilateral, and the Sonákhoda Base alone enters in the simultaneous reduction of the Quadrilateral. Of the several series which enter the reduction, the *circuit* triangles—the errors of whose angles are the unknown quantities in the reduction, and are all investigated simultaneously—are indicated by continuous lines. The *non-circuit* triangles are the portions of the original polygonal figures and net-works which are excluded from the simultaneous reduction, and their sides are indicated by broken lines.

The fifteen chains I to X, J being excluded, form twelve circuits, into which each of the meridional chains enter wholly; the longitudinal chains, I, U and X are divided into sections which are denoted thus:—

I by
$$I_1$$
, I_2 , I_3 , . . . and I_{10} , U ,, U₁, and U₂, X ,, X₁, and X₂,

the sections being numbered from west to east.

Thus the circuits are composed of the following chains:—

Circuit	I	of	K and	Ĭ ₁ ,	
,,	II	,,	L, I ₂ ,	and	K
"	III	,,	M, I ₃ ,	,,	L
,,	IV	,,	N, I4,	"	M
,,	$\boldsymbol{\mathcal{V}}$,,	O, I ₅ ,	,,	N
,,	VI	,,	P, I ₆ ,	,,	0
,,	VII	,,	Q , I_7 ,	,,	P
,,	VIII	,,	R, I,	"	Q
,,	IX	>>	S, I ₉ ,	,,	R
,,	X	,,	T, I ₁₀ ,	,,	S
,,	XI	,,	υ ₁ , γ,	T ar	d X1
,,	XII	,,	U2, W,	ν,	X ₂

Along the flank, on the right-hand side, looking north or west, of every chain of triangles but T which appertains to first ten circuits, a dotted line runs parallel to the sides of the triangles; this is the *line of the traverse*. In the chains which enter Circuits XI and XII this line zig-zags backwards and forwards across the chain*†.

The line of traverse for each circuit is usually divided into two parts, known as the right-hand and left-hand branches; but Circuit I has no left-hand branch, because the right-hand branch both originates from and closes on sides already fixed in length and position. Where the station of origin of any circuit is not a point of which the position has been already fixed by previous reductions, it is denoted by two concentric circles; with a similar exception, the closing point is denoted by three concentric circles. The sides which form the origins of the right and left-hand branches of the circuits and on which they close are shewn by double lines.

The principal stations are indicated on the Chart by small circles, with their names and the serial numbers by which it has been found convenient to distinguish them for reference in the course of the reductions. These numbers, which are in Roman character, are progressive in order from south to north in meridional series and from west to east in longitudinal series, except in the Eastern Frontier Series, where the usual order of numbering is reversed, as the series extends many degrees to the south of the limits of this Quadrilateral.

^{*} Both the direct and the zig-zag line of traverse were employed for chain T, the former in Circuit X and the latter in Circuit XI. In order to avoid confusion the zig-zag line alone is shewn on the Chart, the direct line being sufficiently indicated by the sequence of the numbers in block type.

[†] The course of the zig-zag line of traverse in the neighbourhood of triangle 461 needs explanation, since all three sides of that triangle are accompanied by a dotted line. This is because the traverse for the right-hand branch of Circuit XI passes vid Bábupur, Daulatpur, Hatiára, Maheshpur, &c., that for the left-hand branch of Circuit XII commences from Orfi and passes vid Daulatpur, Hatiára, Maheshpur, &c.; and that for the right-hand branch of the same circuit also commences from Orfi and passes vid Hatiára, Baniári, &c. Triangle 501 is similarly circumstanced.

The principal stations on the right-hand flank of all the chains of circuit triangles, in the order in which the circuits are formed, have each an additional number in block type assigned to them. These numbers indicate the stations of which the geodetic elements have been calculated in ascertaining the circuit errors; and, for the first ten circuits in which the direct traverse has been employed, they are also the traverse numbers: they commence from the initial station of Circuit *I*, viz., Rangír of the Rangír Series, which is numbered I, and terminate at Umter, 292, near the northern extremity of the Eastern Frontier Series.

The circuit triangles are numbered from 1 to 573; commencing from the initial side of Circuit I, Rangír-Tinsmál of the Rangír Series, they follow the same course as the traverse, and terminate at the northern extremity of the Eastern Frontier Series. In each of these triangles one of the angles is marked y and another z; y and z are the symbols for the errors of the 'angles of continuation' which have been adopted throughout the Simultaneous Reduction; x is the symbol for the errors of the flank angles; but as x has been eliminated throughout by the substitution for it of (y + z), it is not indicated on the Chart. The addition of the number of any triangle as a subscript to either of these symbols, particularizes the angle in each instance. The numbering of the 'non-circuit triangles' is carried on in continuation of that of the circuit triangles, and enters the chains in the same order as the numbering of the circuit triangles; here smaller numerals are used on the Chart for distinction.

Polygonal figures and net-works occur in all the series except L, N, R and T, and are distinguished by numbers, carried consecutively through the several series I, K, &c., to U, taken in alphabetical order, which increase in the directions south to north and west to east. After chain U the numbering has been somewhat irregular, having been carried first through X, then down W from north to south, and lastly up V from south to north. These numerals have also been retained as the Figure-numbers in the diagrams and the reductions of the figures which are given for each series.

It is to be remarked that the term 'figure' is only applied in the Chart to groups of triangles forming a polygon or other net-work, and is not applied to single triangles. A single triangle has, however, as much claim to be called a figure: hence the term 'figural errors', when made use of elsewhere in this volume, is generally applied to errors of single triangles as well as of net-works.

The course of the lines of Spirit Levels of this Survey which traverse the North-East Quadrilateral, and the connections which have been effected with many of the principal stations, are also shewn on the Chart. The Spirit Leveling Operations orginate at the mean-sea level of Kurrachee (Karáchi) Harbour; they approach the Quadrilateral from the neighbourhood of Umballa, latitude 30° 21′, longitude 76° 52′, and after connecting with the Dehra Dún Base-line, they pass down the Great Arc Series to Sironj: two main lines have been carried respectively east and south-east from the neighbourhood of Meerut and Agra, and they close on the Sonákhoda and Calcutta Base-lines.

4.

General Outline of the Formation of the Linear and Geodetic Equations of Condition, and a Statement of the Entire Number of Equations presented by the Triangulation.

The triangulation having been first made consistent so far as all figural conditions were concerned, the linear calculations were commenced successively at the sides Tinsmál-Rangír, Amua-Lakanpura, Karára-Marwás, &c., where series K to T abut on the Calcutta Longitudinal Series, and they were carried up those series and then westwards through the intervening sections of the North-East Longitudinal Series, to close successively on the sides Chándípahár-Ghandiál, Atária-Beheri, Dahlelnagar-Rámnagar, &c. They were then recommenced from the side Rámganj-Newáni of the Sonákhoda Base-line Figure (Fig. 7), and carried eastwards along X₁ as far as the head of Series V where they stopped. They were taken up again at the side Chinsurah-Boga at the southern extremity of Series T, and carried through U₁, V and X₂, closing on the side Harogaon-Tepkilabama; and lastly they were recommenced at the side Orfi-Hatiára of U₁ and carried through U₂ and W, closing again on the side Harogaon-Tepkilabama.

The calculations of the geodetic latitudes, longitudes and azimuths were carried in all cases along the right flanks of the chains of circuit triangles, commencing and terminating with the linear calculations.

The order in which the calculations have been made for the simultaneous reduction, will be readily understood on reference to the Reduction Chart, for the linear calculations by tracing the sequence of the numbering of the circuit triangles, and for the geodetic calculations by noting the sequence of the numbers in block type.

The errors of the circuits are the differences between the two sets of linear and geodetic values at the stations and sides of junction, as exhibited by the calculations through the right and left-hand chains of each circuit.

The error at the junction of the chain of triangles with the base-line, has been simply taken as the difference between the measured length of the base-line and the computed length brought up through the Calcutta Meridional Series. The base-line measurement was assumed to be errorless for similar reasons to those given in Section 4 of Chapter XVII, Vol. II.

We may employ formula (14) on page 27 to ascertain the number of equations of condition, here called circuit equations, to which the triangulation should still be subjected to make it consistent. The figural equations make each group of angles of a figure or net-work consistent *inter se*; but they take no cognisance of the connection of chains into circuits, and the conditions required for such connection. The formula is however equally applicable to both simple figures and to larger sections of triangulation forming circuits.

Now this Quadrilateral is so closely connected with the Great Arc and the West Calcutta Longitudinal Series, that portions of some of the figures or net-works belonging to it are situated in the fundamental series, and have been therefore already reduced, thereby furnishing fixed data to which the other portions have to conform; it will therefore simplify the application of the formula to include those series. The data will then be as follows:—

The Great Arc—Section 24° to 30°, has 247 angles connecting 67 stations, and has been subjected to 117 figural equations of condition (see Vol. IV).

The Calcutta Longitudinal Series has 324 angles connecting 87 stations, excluding the 2 stations of the Great Arc on the positions of which it is based, and has been subjected to 150 figural equations of condition (see Vol. VI).

The North-East Quadrilateral has 2103 angles connecting 609 stations, excluding those appertaining to the foregoing series, and has been subjected to 837 figural equations of condition.

Thus we have for the combined triangulation:—N (the number of angles) = 2674, S (the number of stations) = 763, or

$$N - 2S + 4 = 1152$$

Now of these 1152 equations it has been shewn that 1104 have already been employed; therefore there remain 48 equations of condition to which the triangulation has not been subjected; the Sonákhoda Base-line gives an additional equation. Thus there are in all 49 equations for treatment.

Let the symbols I, K, L, ... X, which have been hitherto employed in lieu of the names of the several series, be now employed, with the addition of certain subscripts, to indicate the sum of the terms on the right-hand side of the linear equations—(35) or (36) page 47, as the case may be—and of the geodetic equations—(57) or (62) pages 54 and 57, which express the errors of the several angles. Let the subscripts be c and A for the linear and azimuthal errors, λ and L for the errors in latitude and longitude, placed on the left-hand side of the governing symbol. Also let E with a numerical subscript on the left-hand side, corresponding to the number of the equation, be employed to represent the absolute terms, as in equations (66) page 59.

The several equations will now be briefly expressed in the order in which they enter the circuits as follows:—

Circuit I.	Circuit II.
$_{i}K + _{i}I_{1} \dots \dots = _{1}E.$	$_{5}L + _{5}I_{2}{5}K \cdot \cdot \cdot \cdot = _{5}E.$
$_{\lambda}K + _{\lambda}I_{1} \dots \dots = _{2}E.$	$\lambda L_1 + \lambda I_2 - \lambda K \cdot \cdot \cdot = 6E$
$_{\mathbf{z}}\mathbf{K} + _{\mathbf{z}}\mathbf{I}_{1} \ldots = _{3}\mathbf{E}.$	$_{L}L + _{L}I_{2}{L}K = _{7}E.$
$_{4}K + _{4}I_{1} \cdot \cdot \cdot \cdot \cdot \cdot = _{4}E.$	$_{4}\text{L}_{1} + _{4}\text{L}_{2}{4}\text{K} \cdot \cdot \cdot \cdot = _{8}E.$
Circuit III.	Circuit IV.
$_{o}M + _{o}I_{3}{o}L \cdot \cdot \cdot \cdot = _{o}E.$	$_{\circ}N + _{\circ}I_{4}{\circ}M $ $= _{13}E$.
$\lambda M + \lambda I_3 - \lambda L \cdot \cdot \cdot = I_0 E$.	$\lambda N + \lambda I_4 - \lambda M \cdot \cdot \cdot = I_4 E.$
$zM + zI_3 - zL \cdot \cdot \cdot = I_1E.$	$_{L}N + _{L}I_{4}{L}M \cdot \cdot \cdot \cdot = _{15}E.$
$_{4}M + _{4}I_{3}{4}L \dots = _{12}E.$	$_{4}N + _{4}I_{4}{4}M \cdot \cdot \cdot \cdot = _{16}E.$

INTRODUCTORY.

Circuit V.	Circuit VI.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	${}_{c}P + {}_{c}I_{6} - {}_{c}O \cdot \cdot \cdot \cdot = {}_{21}E.$ ${}_{\lambda}P + {}_{\lambda}I_{6} - {}_{\lambda}O \cdot \cdot \cdot \cdot = {}_{22}E.$ ${}_{z}P + {}_{z}I_{6} - {}_{z}O \cdot \cdot \cdot \cdot = {}_{23}E.$ ${}_{A}P + {}_{A}I_{6} - {}_{A}O \cdot \cdot \cdot \cdot = {}_{24}E.$
Circuit VII.	Circuit VIII.
$ \begin{array}{llll} {}_{e}Q & + {}_{e}I_{7} - {}_{e}P & \cdot & \cdot & \cdot & = {}_{25}E. \\ {}_{\lambda}Q & + {}_{\lambda}I_{7} - {}_{\lambda}P & \cdot & \cdot & \cdot & = {}_{26}E. \\ {}_{z}Q & + {}_{z}I_{7} - {}_{z}P & \cdot & \cdot & \cdot & = {}_{27}E. \\ {}_{4}Q & + {}_{4}I_{7} - {}_{4}P & \cdot & \cdot & \cdot & = {}_{28}E. \end{array} $	$ {}_{c}R + {}_{c}I_{8} - {}_{c}Q \cdot \cdot \cdot \cdot = {}_{29}E. $ $ {}_{b}R + {}_{b}I_{8} - {}_{b}Q \cdot \cdot \cdot \cdot = {}_{30}E. $ $ {}_{c}R + {}_{c}I_{8} - {}_{c}Q \cdot \cdot \cdot \cdot = {}_{31}E. $ $ {}_{d}R + {}_{d}I_{8} - {}_{d}Q \cdot \cdot \cdot \cdot = {}_{32}E. $
Circuit IX.	Circuit X.
$_{\circ}S + _{\circ}I_{9}{\circ}R \cdot \cdot \cdot \cdot = _{33}E \cdot \\ _{\lambda}S + _{\lambda}I_{9}{\lambda}R \cdot \cdot \cdot \cdot = _{34}E \cdot \\ _{\lambda}S + _{\lambda}I_{9}{\lambda}R \cdot \cdot \cdot \cdot = _{35}E \cdot \\ _{\lambda}S + _{\lambda}I_{9}{\lambda}R \cdot \cdot \cdot \cdot = _{36}E \cdot $	

Base-line Equation.

 \mathcal{T} = 41E.

Circuit XI.

$_{\delta}U_{1} + {}_{\delta}V - {}_{\delta}X_{1} . . . = {}_{43}E.$ $_{\lambda}U_{1} + {}_{\lambda}V - ({}_{\lambda}T + {}_{\lambda}X_{1}) = {}_{43}E.$ $_{z}U_{1} + {}_{z}V - ({}_{z}T + {}_{z}X_{1}) = {}_{44}E.$ $_{4}U_{1} + {}_{4}V - ({}_{4}T + {}_{4}X_{1}) = {}_{45}E.$

Circuit XII.

$$cU_{2} + cW - (cV + cX_{2}) = {}_{46}E.$$

$$\lambda U_{3} + \lambda W - (\lambda V + \lambda X_{2}) = {}_{47}E.$$

$$zU_{2} + {}_{2}W - (zV + {}_{2}X_{2}) = {}_{48}E.$$

$$\Delta U_{2} + {}_{4}W - (\Delta V + {}_{4}X_{2}) = {}_{49}E.$$

5.

Formation of the Coefficients of the Unknown Quantities.

On page 59 the Equations of Condition are represented by a form of which the following may be taken as a general illustration

$$_{m}b_{1}y_{1} + _{m}c_{1}z_{1} + _{m}b_{2}y_{2} + _{m}c_{2}z_{2} + \ldots = _{m}E_{1} \ldots \ldots (70)$$

the left-hand subscript denoting the equation number and the right-hand subscript the number of the triangle to which the errors appertain, and t and t being the coefficients of y and z respectively.

For the Linear Equations we shall have generally, see equation (34) page 47,

$$\begin{array}{l}
b_p = \pm \beta_p = \pm \text{ t.d. log sin } Y \text{ for } 1''; \\
c_p = \mp \gamma_p = \mp \text{ t.d. log sin } Z,
\end{array}$$

For the Geodetic Equations we shall have

First, where the direct traverse has been employed, see expressions (58) and (59) on page 54,

$$\begin{array}{l}
b_p = \pm (\mu_l \beta_p - \phi_l); \\
c_p = \mp (\mu_l \gamma_p + \phi_l);
\end{array}$$
. (72)

or

(72) being applicable to any, the p^{t} , triangle when it has only the angle X in the traverse at station l, and (73) when it has the side opposite X in the traverse and lying between the stations l and l+1;

Secondly, where the zig-zag traverse has been employed, as appears from (63), page 57,

$$\begin{array}{l}
\mathfrak{b} = \pm (\iota \phi + \mu \beta); \\
\mathfrak{c} = \pm (\iota \phi - \mu \gamma);
\end{array}$$

$$\vdots$$

in which the symbol ι stands for + when the triangle lies to the right of the traverse, and for — when it lies to the left.

In all the above expressions the double sign is necessary to make them applicable to both branches of the circuit, the lower signs being required when the triangle forms part of the left-hand branch of a circuit and the upper when it forms part of the right-hand branch.

Exceptions to the General Expressions for h and c.

The exceptions to the formulæ for h and c are as follows:—

(1) The Direct Traverse.

Circuit I. Equations 1 to 4.

Equation 1 has no exceptional coefficients; but in Equations 2, 3 and 4

$$\mathfrak{b}_{43} = -\mu_{22} a_{43} + \phi_{22};$$
 $\mathfrak{c}_{43} = -\mu_{22} (a_{43} + \gamma_{43});$

with the exception of \mathfrak{c}_{43} in Equation 4 which needs the addition of unity; because otherwise the left-hand member of the equation would only express the error in azimuth at the closing station Ghandiál of Station 22; thus

$$_{4}c_{43} = 1 - _{4}\mu_{22} (a_{43} + \gamma_{43}).$$

The same equation also has additional terms to those of 2 and 3 furnished by triangle 44; these are

$$-y_{44}$$
 and $-z_{44}$.

Circuit II. Equations 5 to 8.

In Equation 5

$$b_{34} = + a_{34};$$
 $c_{34} = + (a_{34} + \gamma_{34}).$

In Equations 6, 7 and 8

$$b_{34} = + \mu_{17} a_{34} - \phi_{17};$$
 $c_{84} = + \mu_{17} (a_{34} + \gamma_{34});$
 $b_{93} = - \mu_{46} a_{93} + \phi_{46};$
 $c_{92} = - \mu_{46} (a_{92} + \gamma_{92});$

with the exception of \mathfrak{c}_{92} in Equation 8, in Azimuth, which needs the addition of unity to make the equation applicable to the azimuth at 18 of 17; thus

$$_8 c_{92} = 1 - 8 \mu_{46} (a_{92} + \gamma_{92}).$$

Circuit III. Equations 9 to 12.

In Equation 9

$$b_{79} = + a_{79};$$
 $c_{79} = + (a_{79} + \gamma_{79}).$

In Equations 10, 11 and 12

Exceptions to the General Expressions for b and c-(Continued).

with the exception of \mathfrak{c}_{138} in Equation 12, in Azimuth, which like ${}_8\mathfrak{c}_{92}$ needs the addition of unity; thus

$$_{12}c_{138} = 1 - _{12}\mu_{69} (a_{138} + \gamma_{138}).$$

Circuit IV. Equations 13 to 16.

In Equation 13

$$b_{129} = + a_{129};$$
 $c_{129} = + (a_{129} + \gamma_{129}).$

In Equations 14, 15 and 16

$$\mathbf{b}_{129} = + \mu_{64} \, \alpha_{129} - \phi_{64};$$
 $\mathbf{c}_{129} = + \mu_{64} \, (\alpha_{129} + \gamma_{129});$
 $\mathbf{b}_{180} = - \mu_{91} \, \alpha_{180} + \phi_{91};$
 $\mathbf{c}_{180} = - \mu_{91} \, (\alpha_{180} + \gamma_{180});$

with the exception of c₁₈₀ in Equation 16, in Azimuth, which needs the addition of unity; thus

$$_{16}c_{180} = 1 - _{16}\mu_{91} (a_{180} + \gamma_{180}).$$

Circuit V. Equations 17 to 20.

In Equation 17

$$b_{171} = + a_{171};$$
 $t_{171} = + (a_{171} + \gamma_{171}).$

In Equations 18, 19 and 20

$$b_{171} = + \mu_{86} \ a_{171} - \phi_{86};$$
 $c_{171} = + \mu_{86} \ (a_{171} + \gamma_{171});$
 $b_{220} = - \mu_{112} \ a_{220} + \phi_{112};$
 $c_{220} = - \mu_{112} \ (a_{220} + \gamma_{220});$

with the exception of \$\mathbf{c}_{220}\$ in Equation 20, in Azimuth, which needs the addition of unity; thus

$$a_{20}c_{220} = 1 - a_{20}\mu_{112}(a_{220} + \gamma_{220}).$$

Circuit VI. Equations 21 to 24.

In Equation 21

$$\mathfrak{b}_{211} = + \alpha_{211};$$
 $\mathfrak{c}_{211} = + (\alpha_{211} + \gamma_{211}).$

In Equations 22, 23 and 24

Exceptions to the General Expressions for \$ and \$ (Continued).

with the exception of \$\mathbf{c}_{269}\$ in Equation 24, in Azimuth, which needs the addition of unity; thus

$$_{24}\mathfrak{c}_{262} = \mathbf{1} - _{24}\mu_{135} (a_{262} + \gamma_{262}).$$

Circuit VII. Equations 25 to 28.

In Equation 25

$$\mathfrak{b}_{240} = + a_{240}; \qquad \mathfrak{c}_{240} = + (a_{240} + \gamma_{240}).$$

In Equations 26, 27 and 28

$$\begin{array}{ll} \mathfrak{b}_{249} = + \,\mu_{128} \,a_{249} - \phi_{128}; & \mathfrak{c}_{240} = + \,\mu_{128} \,(a_{249} + \gamma_{249}); \\ \mathfrak{b}_{302} = - \,\mu_{155} \,a_{302} + \phi_{155}; & \mathfrak{c}_{302} = - \,\mu_{155} \,(a_{302} + \gamma_{302}); \end{array}$$

with the exception of \mathfrak{c}_{802} in Equation 28, in Azimuth, which needs the addition of unity; thus

$$\mathfrak{c}_{302} = \mathfrak{c}_{302} = \mathfrak{c}_{28}\mu_{155} \ (a_{302} + \gamma_{302}).$$

Circuit VIII. Equations 29 to 32.

In Equation 29

$$\mathfrak{b}_{289} = + a_{289};$$
 $\mathfrak{c}_{289} = + (a_{289} + \gamma_{289}).$

In Equations 30, 31 and 32

$$\mathfrak{b}_{289} = + \mu_{148} \, a_{289} - \phi_{148};$$
 $\mathfrak{c}_{289} = + \mu_{148} \, (a_{289} + \gamma_{289});$ $\mathfrak{b}_{380} = - \mu_{170} \, a_{380} + \phi_{170};$ $\mathfrak{c}_{380} = - \mu_{170} \, (a_{330} + \gamma_{380});$

with the exception of \$\mathbf{t}_{880}\$ in Equation 32, in Azimuth, which needs the addition of unity; thus

$$_{32}c_{330} = 1 - _{32}\mu_{170} (a_{330} + \gamma_{330}).$$

Circuit IX. Equations 33 to 36.

In Equation 33

$$\mathfrak{b}_{323} = + a_{323};$$
 $\mathfrak{c}_{823} = + (a_{323} + \gamma_{323}).$

Exceptions to the General Expressions for b and c-(Continued).

In Equations 34, 35 and 36

$$\mathbf{b}_{323} = + \mu_{166} \, a_{323} - \phi_{166};$$
 $\mathbf{c}_{323} = + \mu_{166} \, (a_{323} + \gamma_{323});$ $\mathbf{b}_{361} = - \mu_{186} \, a_{361} + \phi_{186};$ $\mathbf{c}_{361} = - \mu_{186} \, (a_{361} + \gamma_{361});$

with the exception of t_{361} in Equation 36, in Azimuth, which needs the addition of unity; thus

$$_{36} \mathfrak{c}_{361} = \mathbf{1} - _{36} \mu_{186} (a_{361} + \gamma_{361}).$$

Circuit X. Equations 37 to 40.

In Equation 37

$$b_{351} = + a_{351};$$
 $c_{351} = + (a_{351} + \gamma_{351}).$

In Equations 38, 39 and 40

$$\mathfrak{b}_{351} = + \mu_{181} \, a_{351} - \phi_{181};$$
 $\mathfrak{c}_{351} = + \mu_{181} \, (a_{351} + \gamma_{351});$ $\mathfrak{b}_{423} = - \mu_{218} \, a_{423} + \phi_{218};$ $\mathfrak{c}_{423} = - \mu_{218} \, (a_{423} + \gamma_{423});$

with the exception of \mathfrak{c}_{423} in Equation 40, in Azimuth, which needs the addition of unity; thus

$$400423 = 1 - 40\mu_{218} (a_{423} + \gamma_{423}).$$

The Base-line Equation 41 has no exceptional coefficients.

(2) The Zig-zag Traverse.

Circuit XI. Equations 42 to 45.

In Equation 42

Exceptions to the General Expressions for \$\bar{b}\$ and \$\bullet{--}\$(Continued).

In equations 43, 44 and 45 Triangle 362 occurs in both branches of the circuit; in the left-hand branch there is nothing exceptional regarding it; but in the right-hand branch the coefficients of y and z are respectively

$$+\phi_{362444}-\mu_{362444}a_{362}$$
 and $-\mu_{362444}(a_{362}+\gamma_{362})$.

When the coefficients furnished by both branches are combined

$$\begin{split} \mathbf{b}_{363} &= -\phi_{362} - \mu_{362} \, \beta_{362} + \phi_{362,444} - \mu_{362,444} \, a_{362}; \\ \mathbf{c}_{863} &= -\phi_{362} + \mu_{362} \, \gamma_{362} - \mu_{362,444} \, (a_{362} + \gamma_{362}). \end{split}$$

Again

$$\mathbf{b}_{407} = -\phi_{407,424,425} + \mu_{407,424,425} \, \alpha_{407}; \qquad \mathbf{c} = +\mu_{407,424,425} \, (\alpha_{407} + \gamma_{407}); \\ \mathbf{b}_{501} = -\phi_{501} - \mu_{501} \, \alpha_{501}; \qquad \mathbf{c} = -\mu_{501} \, (\alpha_{501} + \gamma_{501}).$$

Circuit XII. Equations 46 to 49.

Triangle 461 occurs in both branches of the circuit: in the left-hand branch there is nothing exceptional regarding it; but in the right-hand branch in Equation 46 the coefficients of y and z are respectively

$$-a_{461}$$
 and $-(a_{461}+\gamma_{461})$.

When combined

$$b_{461} = -a_{461} - \beta_{461};$$
 $c_{461} = -a_{461}.$

In equations 47, 48 and 49, right-hand branch, the coefficients of y and z are respectively

$$+ \phi_{461} - \mu_{461} a_{461}$$
 and $- \mu_{461} (a_{461} + \gamma_{461})$;

hence

$$\begin{split} \mathfrak{b}_{461} &= -\imath \phi_{461} - \imath \mu_{461} \; \beta_{461} + \jmath \phi_{461} - \jmath \mu_{461} \; \alpha_{461}; \\ \mathfrak{c}_{461} &= -\imath \phi_{461} + \imath \mu_{461} \; \gamma_{461} - \jmath \mu_{461} \; (\alpha_{461} + \gamma_{461}). \end{split}$$

The subscripts l and r being employed to distinguish between the different values of ϕ_{461} and μ_{461} in the left and right-hand branches of the circuit.

Synoptical Exhibition of the several Equations of Condition.

For the sake of brevity let us put $_{m}k_{p}$ for $_{m}b_{p}$ y_{p} + $_{m}c_{p}$ z_{p} , or in other words for the sum of the errors y and z of the angles Y and Z in any, the pth, triangle, respectively multiplied by their coefficients b and c in any, the mth, equation of condition. Then in forming the equations it will be necessary to substitute for m the number of the equation, and for p the number of the triangle. It will now be convenient to arrange the ks in numerical order between the initial and the terminal sides or stations of the chains to which they respectively appertain, so far at least as this can be done without any break of continuity in the numeration of the triangles.

We may here put $_{n}k$ $_{p}^{\uparrow}$ to represent the sum of the terms $_{n}k$ for a series of triangles of which the first term is $_{n}k_{p}$ and the last term $_{n}k_{q}$: when the triangles enter as usual in a numerically increasing order p will be < q; when they enter in a numerically decreasing order, as sometimes though very rarely happens, p will be > q.

The equations will then be expressed as follows:-

Circuit I.

Circuit II.

(1). Linear.
$$_{1}k_{1}^{44}$$
 . . = $_{1}E$. (5). Linear. $_{5}k_{1}^{34} + _{5}k_{45}^{92} = _{5}E$. (2). Latitude. $_{2}k_{1}^{43}$. . = $_{2}E$. (6). Latitude. $_{6}k_{1}^{34} + _{6}k_{45}^{92} = _{6}E$. (3). Longitude. $_{3}k_{1}^{43}$. . = $_{3}E$. (7). Longitude. $_{7}k_{1}^{34} + _{7}k_{45}^{93} = _{7}E$. (4). Azimuth. $_{4}k_{1}^{44}$. . = $_{4}E$. (8). Azimuth. $_{8}k_{1}^{34} + _{8}k_{45}^{92} = _{8}E$.

Circuit III.

Circuit IV.

(9). Linear.
$$_{9}k_{45}^{79} + _{9}k_{93}^{138} = _{9}E$$
. (13). Linear. $_{13}k_{93}^{129} + _{13}k_{139}^{180} = _{13}E$. (10). Latitude. $_{16}k_{46}^{79} + _{16}k_{139}^{138} = _{16}E$. (14). Latitude. $_{14}k_{139}^{129} + _{14}k_{139}^{180} = _{14}E$. (15). Longitude. $_{15}k_{139}^{79} + _{15}k_{139}^{180} = _{15}E$. (12). Azimuth. $_{12}k_{139}^{79} + _{12}k_{138}^{138} = _{12}E$. (16). Azimuth. $_{16}k_{139}^{129} + _{16}k_{139}^{180} = _{16}E$.

Circuit V.

(17). Linear.
$${}_{17}k_{139}^{171} + {}_{17}k_{181}^{220} = {}_{17}E.$$

(18). Latitude.
$${}_{18}k_{\parallel}^{171} + {}_{18}k_{\parallel}^{220} = {}_{18}E$$

(19). Longitude.
$${}_{19}k \int_{189}^{171} + {}_{19}k \int_{181}^{220} = {}_{19}E$$
. (23). Longitude. ${}_{23}k \int_{181}^{211} + {}_{23}k \int_{221}^{262} = {}_{23}E$.

(20). Azimuth.
$${}_{20}k \int_{130}^{171} + {}_{20}k \int_{181}^{220} = {}_{20}E.$$

Circuit VII.

(25). Linear.
$${}_{25}k_{_{991}}^{^{249}} + {}_{25}k_{_{983}}^{^{302}} = {}_{25}E.$$

(26). Latitude.
$${}_{26}k_{10}^{249} + {}_{26}k_{10}^{302} = {}_{26}E.$$

(27). Longitude.
$${}_{27}k_{221}^{249} + {}_{27}k_{263}^{302} = {}_{27}E$$
.

(28). Azimuth.
$${}_{28}k \mathop{|}_{221}^{249} + {}_{28}k \mathop{|}_{263}^{302} = {}_{28}E.$$

Circuit IX.

(33). Linear.
$$_{33}k_{303}^{323} + _{33}k_{331}^{361} = _{33}E.$$

(34). Latitude.
$${}_{34}k \int_{903}^{323} + {}_{34}k \int_{331}^{361} = {}_{34}E.$$

(35). Longitude.
$$_{35}k_{_{303}}^{323} + _{35}k_{_{331}}^{361} = _{35}E$$
.

(36). Azimuth.
$${}_{36}k \int_{303}^{323} + {}_{36}k \int_{331}^{361} = {}_{36}E.$$

Circuit VI.

(21). Linear.
$$21k \int_{181}^{211} + 21k \int_{221}^{262} = 21E$$
.

$$_{18}k\int_{139}^{171} + {}_{18}k\int_{181}^{220} = {}_{18}E.$$
 (22). Latitude. $_{22}k\int_{181}^{211} + {}_{22}k\int_{221}^{262} = {}_{22}E.$

(23). Longitude.
$${}_{23}k \int_{121}^{211} + {}_{23}k \int_{991}^{262} = {}_{23}E$$
.

(24). Azimuth.
$${}_{24}k_{181}^{211} + {}_{24}k_{221}^{262} = {}_{24}E.$$

Circuit VIII.

(29). Linear.
$${}_{29}k \prod_{203}^{289} + {}_{29}k \prod_{303}^{380} = {}_{29}E.$$

(30). Latitude.
$$_{30}k_{263}^{289} + _{30}k_{303}^{390} = _{30}E$$
.

(31). Longitude.
$$_{31}k_{263}^{289} + _{31}k_{303}^{390} = _{31}E$$
.

(32). Azimuth.
$${}_{32}k \prod_{203}^{289} + {}_{32}k \prod_{903}^{330} = {}_{32}E.$$

Circuit X.

(37). Linear.
$$_{37}k \int_{331}^{351} + _{37}k \int_{409}^{428} = _{37}E.$$

(38). Latitude.
$$_{38}k \int_{331}^{351} + _{38}k \int_{362}^{423} = _{38}E$$
.

(39). Longitude.
$$_{39}k \int_{331}^{351} + _{39}k \int_{362}^{423} = _{39}E$$
.

(40). Azimuth.
$${}_{40}k_{331}^{351} + {}_{40}k_{362}^{423} = {}_{40}E.$$

Base-line Equation.

(41). Linear.
$${}_{41}k \int_{362}^{408} \dots = {}_{41}E$$
.

Circuit XI.

(42). Linear.
$${}_{42}k \int_{408}^{407} + {}_{42}k \int_{424}^{443} + {}_{42}k_{362} + {}_{42}k \int_{444}^{501} = {}_{42}E.$$

(43). Latitude.
$${}_{43}k_{}_{}^{407} + {}_{43}k_{}_{}^{443} + {}_{43}k_{}_{}^{501} . . . = {}_{43}E.$$

(44). Longitude.
$${}_{44}k {}_{362}^{407} + {}_{44}k {}_{424}^{443} + {}_{44}k {}_{444}^{501} . . . = {}_{44}E.$$

(45). Azimuth.
$${}_{45}k_{362}^{407} + {}_{45}k_{424}^{443} + {}_{45}k_{444}^{501} \dots = {}_{45}E.$$

Circuit XII.

(46). Linear.
$${}_{46}k \int_{461}^{517} + {}_{46}k \int_{518}^{573} ... = {}_{46}E.$$

(47). Latitude.
$${}_{47}k \int_{461}^{517} + {}_{47}k \int_{518}^{573} ... = {}_{47}E.$$

(48). Longitude.
$${}_{48}k_{461}^{517} + {}_{48}k_{518}^{573} \dots = {}_{48}E.$$

(49). Azimuth.
$${}_{49}k \int_{461}^{517} + {}_{49}k \int_{518}^{573} ... = {}_{49}E.$$

7.

The Numerical Values of the Fixed Data on which the Simultaneous Reduction of the North-East Quadrilateral is based.

It has been stated in Section 3 of Chapter I, that the North-East Quadrilateral rests on two chains of triangles, which, having been already finally adjusted, furnish, with one exception, the whole of the data on which the Quadrilateral is based, the exception being the measured length of the Sonákhoda Base-line. The two series are the Great Arc—Section 24° to 30°, or Series A of the North-West Quadrilateral, and the Calcutta Longitudinal, or Series B of the South-East Quadrilateral. The fixed data furnished by these series are given in Volumes IV and VI respectively; but for the geodetic elements a third place of decimals of seconds has been obtained by reference to the calculations of the North-West and South-East Quadrilaterals. The data are as follows:—

Volume IV page 29_a:-

North-East Longitudinal Series.

Western terminus, Chándípahár or LIV to Ghandiál or LVI, Ghandiál being the closing station of Circuit I.

At Ghandiál

Latitude North	•••	•••	30°	13'	25".321,
Longitude East of Greenwich	•••	•••	78	27	54 .613,
Azimuth of Chándípahár	•••	•••	34	47	42 .606,
Distance ,	•••	$\mathbf{L}_{\mathbf{c}}$	g Fee	t 51	212764,1.

Volume VI pages 156—_R to 161—_R:—

Rangir Meridional Series.

Station of origin Rangír or X; side of origin Tinsmál or VII to Rangír or X.

At Rangir

Latitude North	•••	•••	•••	24°	o'	20":365,
Longitude East of Gree	nwich	•••	•••	79	28	2 6 '429,
Azimuth of Tinsmál	•••	•••	•••	106	1	22 '390,
Distance "	•••	•••	\mathbf{L}	og Fee	t 5'1	809675,5.

Amua Meridional Series.

Station of origin Lakanpura or XIX; side of origin Amua or XVII to Lakanpura or XIX.

At Lakanpura

Latitude North	•••	•••	•••	24°	2′	49"'918,
Longitude East of Gre	enwich	•••		80	49	51 '667,
Azimuth of Amua	•••	•••	•••	80	11	43 '057,
Distance ,,	•••	•••	\mathbf{L}_{0}	g Fee	t 5.0	098779,4.

Karara Meridional Series.

Station of origin Marwas or XXVI; side of origin Karara or XXIII to Marwas or XXVI.

At Marwás

Latitude North	•••	•••	•••	24°	4'	59":330,
Longitude East of Gre	eenwich	•••	•••	18	49	2 '460,
Azimuth of Karára	•••	•••	•••	89	31	10 '757,
Distance "	•••	•••	L	og Fee	et 5.2	336163,3.

Gurwani Meridional Series.

Station of origin Pokra or XXXI; side of origin Chapri or XXIX to Pokra or XXXI.

At Pokra

Latitude North	•••	***	•••	24°	18'	47".974
Longitude East of Gre	enwich	•••	•••	82	31	5 .683,
Azimuth of Chapri	•••	•••	•••	89	57	44 .812,
Distance ,	•••	•••	\mathbf{L}_{0}	g Fee	t 4.9	166608,4.

Gora Meridional Series.

Station of origin Sewádhi or XXXVIII; side of origin Gora or XXXV to Sewádhi or XXXVIII.

At Sewádhi

Latitude North	•••	•••	•••	23°	58′	24"·165,
Longitude East of Gr	eenwich	•••	•••	83	47	40 '015,
Azimuth of Gora	· •••	•••	•••	103	I	7 '308,
Distance ,,	•••	•••	${f L}$	og Fee	t 5.2	475620,4.

Hurilaong Meridional Series.

Station of origin Huríláong or XLII; side of origin Khaira Pándu or XL to Huríláong or XLII.

At Huriláong

Latitude North	•••	•••	24°	2′	5".987,
Longitude East of Greenwich	•••	•••	84	24	17 '757,
Azimuth of Khaira Pándu	•••		_		27 '061,
Distance ",	•••	${f L}$	o g F ee	t 5.2	576726,9.

Chendwar Meridional Series.

Station of origin Chendwar or LIII; side of origin Kasiatu or XLIV to Chendwar or LIII.

At Chendwar

Latitude North	•••	•••	•••	23°	57	13".750,
Longitude East of Gree	enwich	•••		•	- •	36 .468,
Azimuth of Kasíátu	•••	•••		-		7 '003,
Distance ,,	•••	•••	\mathbf{L}_{0}	g Fee	t 5.2	486588,2.

North Parasnath Meridional Series.

Station of origin Ghoranji or LIX; side of origin Bámani or LVI to Ghoranji or LIX.

At Ghoranji

Latitude North	•••	•••	•••	24°	33 ′	34".536,
Longitude East of Gree	enwich	•••	•••	86	10	46 '965,
Azimuth of Bámani	•••	•••	•••	71	4	51 .796,
Distance ,,	•••	•••	\mathbf{L}_{0}	g Fee	t 5'1	150652,5.

North Maluncha Meridional Series.

Station of origin Malúncha or LXIV; side of origin Durgapur or LXII to Malúncha or LXIV.

At Malúncha

Latitude North	•••	•••	•••	23°	54	29"'021,
Longitude East of Green	nwich	•••	•••	87	8	9 .038,
Azimuth of Durgapur	•••	•••	•••	74	46	40 '026,
Distance "	•••	•••	\mathbf{L}_{0}	og Fee	et 5.0	425046,7.

Calcutta Meridional Series.

Station of origin Chinsurah or LXXXI; side of origin Satten or LXXVIII to Chinsurah or LXXXI.

At Chinsurah

Latitude North	•••	•••	•••	22	52′	55	′·874 ,
Longitude East of Gree	enwich	•••	•••	88	26	38	·512,
Azimuth of Sátten	•••	•••	•••	122	3	47	437,
Distance "	•••	•••	L	og Fee	t 4.8	0 974	97,2.

The value of the Sonákhoda Base-line* has been taken from Vol. I, Section V, where full details of its measurement are given. Its length expressed in feet of the Indian Standard 10-foot Bar A, at a temperature of 62° Fahrenheit, and reduced to mean sea level, is

Feet 36685'7946, Log = 4'5644979,30

^{*} This base-line was reduced before the Spirit Leveling operations had approached its neighbourhood. The values of Height employed were obtained from the triangulation of the Calcutta Meridional Series and were:—for the South-West End 222:5 feet above mean sea level, and for the North-East End 246:9 feet. These are in excess of the Spirit Leveled heights, which were afterwards obtained, by 14:3 and 15:4 feet respectively; thus the length of the base-line is more correctly 36685:8216 feet, the logarithm of which is 4:5644982,50, and these values should have been adopted in place of those given in the text.

8.

The Sides and Angles of the Circuit Triangles.

The values of the Figurally Corrected Angles, and the logarithms of the Side-lengths, computed (in feet) with these angles in terms of the fixed sides of origin furnished by the West Calcutta Longitudinal Series, are exhibited in the following table. The given angles are the corrected plane angles, obtained by deducting the sum of the spherical excess and the figural error from the observed angles. Should it be desired to trace the formation of any corrected plane angle, reference must be made to the Abstract of the Observed Angles and to the final data of the Sides and Angles of the Triangles, which are given for each Series in this and the following volume. The final data will be found to contain three columns of angular corrections, which are respectively headed by the words 'Figure', 'Circuit' and 'Non-circuit',-'figure' being here taken to include single triangles as well as polygons and net-works; the corrections in the first column are what have been applied, with the spherical excess, to the observed angles, in order to obtain the figurally corrected plane angles; those in the second column are what have been derived from the Simultaneous Reduction; and those in the third column are what have been computed to satisfy the geometrical conditions of figures containing noncircuit triangles, which have to be adjusted to the fixed circuit triangles; the application of the correction in the second or the third column, as the case may be, to the figurally corrected plane angle gives the finally corrected plane angle.

In order that it may be readily ascertained—without reference to the Reduction Chart—whether any angle is a 'flank angle' or an 'angle of continuation', a column is inserted in the table which gives the symbolic error of the angle, either x, y, or z, but without the numerical subscript, as that may be inferred from the number of the triangle in the contiguous column. And since the stations on the right-hand flank of each chain are those at which the angles are the data for the formation of the values of the forward azimuth, and the side-lengths are the distances which were employed in the calculations of latitude, longitude and back azimuth—see the next section; these stations are indicated by numbers in block type—shewing by their sequence the order in which the geodetic calculations were performed—as well as by their Serial-numbers. The latter are distinguished in respect to the Series to which they appertain by their Serial-letters, as K for the Rangír Meridional Series, &c.

The logarithm of the side* opposite any angle is given in the same horizontal line as the angle.

^{*} In calculating these values 7-place Logarithm Tables were employed, the 8th place here shewn being obtained by interpolation.

umper	Error	Station Number	-8		Excess	Logarithm of	umber	Error	Station Number	8		Cx cess	Logarithm of
Triangle Number	Symbolic	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in
1	y x x	R I R X VII	1 2	0 / // 54 24 15·70 37 36 19·34 87 59 24·96	.00 .00	5.0914028,0 4.9667207,7 5.1809675,5	15	y x z	K XIII XIV XV	8	62 33 50°85 53 7 26°48 64 18 42°67	.65 .65	5.0028930,1 4.9577667,9 5.0095165,4
2	"	B VII K I II	2	44 20 35 70 71 53 49 46 63 45 34 84	·89 ·90 ·89	4.9830852,2 5.1165878,0 5.0914028,0	16	,,	XIV XV XVI	9	57 49 39 44 51 16 11 09 70 54 9 47	·56 ·56	4.9550790,5 4.9196281,3 5.0028930,1
8	"	III II	2 3	55 51 14·28 80 31 14·99 43 37 30·73	·86 ·87 ·86	5.0621006,3 5.1383042,1 4.9830852,2	17	,,	XV XVI XVII	10	61 21 24 44 56 11 9 98 62 27 25 58	.53 .52 .53	4 [.] 9506268,9 4 [.] 9268418,8 4 [.] 955 ⁰ 790,5
4	"	II III IV	3	73 16 38 15 62 27 42 31 44 15 39 54	1.28 1.38 1.38	5'1995234,3 5'1660679,8 5'0621006,3	18	"	XVI XVII XVIII	10	58 5 48 · 95 64 27 14 · 35 57 26 56 · 70	:57 :57 :57	4'9537225,5 4'9801655,6 4'9506268,9
5	"	IV III V	3	74 12 3 92 49 15 0 20 56 32 55 88	1.23 1.23 1.23	5.2614478,5 5.1575922,6 5.1995234,3	19	,,	XVII XVIII XIX	10 11	65 16 18·15 57 53 0·41 56 50 41·44	.59 .59 .58	4 [.] 9891272,8 4 [.] 9587643,0 4 [.] 9537 ²² 5,5
6	,,	VI V VI	3	45 37 4.65 59 12 49.90 75 10 5.45	1.67 1.67	5.1302833,5 5.2101999,6 5.2614478,5	20	,,	XVIII XIX XX	11	58 33 56·39 59 18 9·76 62 7 53·85	·62 ·62 ·63	4 [.] 9737337,5 4 [.] 977 ⁰ 993,5 4 [.] 9891272,8
7	,,	VI V VI	4 5	62 30 39 18 52 50 21 24 64 38 59 58	1.13 1.15	5.1222269,7 5.0756827,5 5.1302833,5	21	"	XIX XX XXI	11	54 11 22 37 65 54 35 39 59 54 2 24	.59 .60 .60	4 [.] 9456367,2 4 [.] 9970640,5 4 [.] 9737337,5
8	"	VIII VIII	5	64 59 46.84 54 52 5.73 60 8 7.43	1.18 1.18 1.10	5.1413682,1 5.0967690,5 5.1222269,7	22	,,	XX XXI XXII	12	57 15 4.60 51 1 0.83 71 43 54.57	·42 ·42 ·43	4·8929185,0 4·8587024,3 4·9456367,2
9	"	VII VIII IX	5 6	59 42 21 18 62 6 26 51 58 11 12 31	1.32 1.39 1.39	5.1483022,4 5.1584330,7 5.1413682,1	2 3	,,	XXII XXI XXIII	12	119 54 1°26 15 31 41°56 44 34 17°18	.19 .19	4.9846722,1 4.4743754,8 4.8929185,0
10	,,	VIII IX X	6	60 8 12 · 15 49 51 38 · 94 60 8 12 · 15	1,11 1,10 1,10	5'1134368,9 5'0586761,1 5'1483022,4	24	"	XXI XXIII XXIV	12 13	56 33 48 48 63 44 49 95 59 41 21 57	·63 ·64 ·64	4.9699343,5 5.0012300,8 4.9846722,1
11	,,	IX X XI	6 7	57 38 9.29 51 11 49.84 71 10 0.87	.92 .93	5.0640170,6 5.0290419,1 5.1134368,9	25	,,	XXIII XXIV XXV	13	59 36 30.66 64 29 11.59 55 54 17.75	·65 ·65 ·64	4 [.] 9876509,6 5 [.] 0072866,9 4 [.] 9699343,5
12	,,	X XI XII	7	53 8 37 · 18 61 36 58 · 71 65 14 24 · 11	·82 ·82 ·82	5.0000646,3 5.0502735,4 5.0640170,6	26	,,	XXIV XXV XXVI	13 14	53 37 20 40 59 3 37 88 67 19 1 72	.55 .56	4 [.] 9284756,5 4 [.] 9559532,5 4 [.] 9876509,6
13	,,	XII XII XIII	7	72 58 45 20 51 14 26 84 55 46 47 96	.74 .74 .74	5.0721680,1 4.9835941,2 5.0090646,3	27	,,	XXV XXVI XXVII	14	74 42 22 45 55 20 42 37 49 56 55 18	·59 ·59 ·58	5.0288895,6 4.9597329,9 4.9284756,5
14	n	XII XIII XIV	8	53 40 13 23 57 47 40 35 68 32 6 42	18° 08°	5.0095165,4 5.0308288,3 5.0721680,1	28	"	XXVI XXVII XXVIII	14 15	51 57 55°47 66 36 48°59 61 25 15°94	.74 .74 .74	4'9816434,8 5'0480871,6 5'0288895,6

[•] B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

ımber	Tror	Station Number	·8		Excess	Logarithm of	umber	Error	Station Number	:5		Croess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet
29	y x z	K XXVII XXVIII XXIX	15	0 , " 59 550.06 60 39 9.92 60 15 0.02	" •62 •63 •62	4·9765318,4 4·9833740,6 4·9816434,8	43	y x z	I II A* LVI	2 2	0 / " 71 54 2 10 54 22 20 92 53 43 36 98	" ·87 ·86	5.1013045,2 5.0333387,2 5.0297900,2
30	,,	XXVIII XXIX XXX	15 16	57 34 5 11 64 37 20 40 57 48 34 49	·63 ·64 ·64	4 [.] 975374 ¹ ,4 5 [.] 0049459,0 4 [.] 9765318,4	44	"	I I A LVI LIV		73 55 28 21 39 29 26 66 66 35 5 13	·84 ·83 ·84	5 ¹² 13051,2 4 ⁹ 4 ² 0533,4 5 ¹⁰ 13045,2
31	,,,	XXIX XXX XXXI	16	70 35 32.73 58 59 26.73 50 25 0.54	.74 .74 .73	5.0630826,3 5.0215121,0 4.9753741,4							
32	,,	XXX XXXI XXXI	16 17	57 55 51.65 59 111.50 63 257.15	·85 ·86 ·86	5.0411051,9 5.0461675,2 5.0630826,3	45	,,	B XVII XIX L I	2 3	42 12 35 04 86 34 47 91 51 12 37 05	. 71 . 4.	4'9453593,4 5'1173152,3 5'0098779,4
33	,,	K XXXI I XI X	17	53 17 53°50 56 46 40°35 69 55 26°15	·68 ·68	4 [.] 9723723,2 4 [.] 9908230,6 5 [.] 0411051,9	46	,,	r ii r ii	23	67 44 52 96 76 16 11 74 35 58 55 30	*94 *94 *93	5'1427175,3 5'1637373,4 4'9453593,4
34	,,	XI X IX	17	71 26 51.03 49 31 10.55 71 26 51.03	·59 ·58 ·58	5.0159798,4 4.9203283,9 4.9723723,2	47	"	III I II	24 25	61 58 14·19 59 35 8·42 58 26 37·39	1,36 1,39	5.1580298,3 5.1479156,7 5.1427175,3
35	"	X IX VII	18	98 59 9.06 54 59 35.00 28 59 9.06	·65 ·66	4 [.] 9881777,7 4 [.] 9685011,5 5 [.] 0159798,4	48	"	I III IV	2 5	72 14 24 87 35 55 24 07 71 50 11 06	.96 .96	5.1590222,0 4.9486462,9 5.1580298,3
36	,,	IX VII VIII	18	78 39 45 62 64 29 35 84 36 50 38 54	1,10 1,10 1,11	5.2017297,1 5.1657519,0 4.9881777,7	49	,,	III IV V	2 5 2 6	67 18 35 19 48 12 13 89 64 29 10 92	1.52 1.52 1.52	5.1685985,5 5.0760430,7 5.1590222,0
37	,,	VIII VII VI	19	74 15 28 64 52 10 56 97 53 33 34 39	1.80 1.80 1.80	5·2796149,0 5·1938266,7 5·2017297,1	50	"	IV V VI	26	50 0 18'49 55 17 41'92 74 41 59'59	1'12 1'12 1'12	5.0682248 5.068268248 2.168268248
38	,,,	VII VI V	20	31 53 27 15 78 1 36 02 70 4 56 83	1.24	5.0292853,5 5.2968494,5 5.2796149,0	51	,,	VI V VII	26	77 31 3'44 44 9 41'41 58 19 15'15	·87 ·86 ·86	5·1282376,5 4·9816618,9 5·0685573,3
39	,,	VI V IV	2 O 2 1	48 50 56.09 87 55 41.55 43 13 22.36	.00 i.00 .00	5.0704790,9 5.1934134,2 5.0292853,5	52	,,	V VII VIII	2 6 2 7	63 6 19.76 43.32 50.91 73 20 49.33	.6. 16. 16.	5.0971331,8 4.9850369,2 5.1282376,5
40	"	V IV III	2 1	56 8 20°24 53 15 35°55 70 36 4°21	.77 .77 .77	5.0151445,8 4.9996877,2 5.0704790,9	53	"	VII VIII IX	2 7	69 48 26.72 46 31 24.07 63 40 9.21	.94 .93 .94	5.11,11,266,3 5.00,243,49,9 5.00,21331,8
41	"	III IV I	21	75 35 12 30 63 40 34 95 40 44 12 75	1.13 1.13	5.1866178,5 5.1529618,5 5.0151445,8	54	"	VIII IX X	27	64 32 41 79 54 58 30 57 60 28 47 64	1,12	5.11313066,2 2.1131266,3
42	"	IV I II	21	43 22 55.64 56 21 22.25 80 15 42.11	1.00 1.08 1.08	5.0297900,2 5.1133043,6 5.1866178,5	55	"	IX X XI	28	58 51 54 90 53 53 37 10 67 14 28 00	1,10 1,00	5.1008496,2 5.02522010 5.1331966,5

^{*} A is the Serial letter for the Great Arc Series which appertains to the North-West Quadrilateral.

mber	rror	Station Numbers	;		x cess	Logarithm of	ımber	Grror	Station Number	8		Ex cess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Ттатегве	Corrected Plane Angle	Spherical H	side-length in Feet
56	y x z	L X XI XII	2 8 2 9	0 / " 44 37 48 81 64 53 32 16 70 28 39 03	" •84 •85 •85	4·9732275,0 5·0834574,6 5·1008496,2	70	y x z	L XXIV XXV XXVI	35	0 1 11 70 9 33 30 70 2 24 08 39 48 2 62	" '51 '50	5.0001777,3 4.9998506,5 4.8330155,4
57	. ,,	XI XII XIII	29	50 18 40°17 57 22 53°82 72 18 26°01	.47 .48 .48	4.8804935,0 4.9197276,4 4.9732275,0	71	,,	XXV XXVI XXVII	35 36	37 59 26 74 66 46 50 32 75 13 42 94	·46 ·47 ·47	4·8040256,7 4·9780899,6 5·0001777,3
58	"	XII XIII XIV	2 9 3 0	57 42 48 · 8 1 68 11 4 · 97 54 6 6 · 22	*44 *44 *44	4·8990329,0 4·9397055,5 4·8804935,0	72	,,	XXVI XXVII XXVIII	36	75 18 17 75 58 38 30 82 46 3 11 43	:37 :37 :37	4.9322592,6 4.8781257,8 4.8040256,7
59	"	XIII XIV XV	30	56 50 23.81 69 1 39.90 54 7 56.29	·48 ·48 ·48	4.9131495,7 4.9605808,6 4.8990329,0	73	,,	XXVII XXVIII XXIX	3 6 3 7	39 34 3 70 68 45 26 22 71 40 30 08	·36 ·36 ·37	4.7589932,5 4.9243020,8 4.9322592,6
60	"	XIV XV XVI	3 0 3 1	52 37 50.85 72 29 0.87 54 53 8.28	.49 .49 .49	4.9006189,1 4.9797735,6 4.9131495,7	74	,,	XXVIII XXIX XXX	37	59 40 13 28 74 27 48 77 45 51 57 95	·30 ·30	4.8391199,9 4.8868753,1 4.7589932,5
61	,,	XV XVI XVII	3 1	59 0 28.66 48 41 7.49 72 18 23.85	· 34 · 34 · 34	4.8547661,6 4.7973597,8 4.9006189,1	75	,,	XXIX XXX XXXI	37	47 55 31.64 77 4 19.28 55 0 9.08	·33 ·34 ·33	4.4391199,9 4.8391199,9
62	٠,,	XVII XVI XVIII	3 1	59 2 13 77 59 21 31 54 61 36 14 69	·34 ·34 ·34	4·8436749,3 4·8451282,3 4·8547661,6	76	,,	XXX XXXI XXXII	38	68 2 30.23 67 51 3.92 44 6 25.85	:37 :37 :37	4.9209886,3 4.9204032.5 4.7963060,9
63	,,	XVI XVIII XIX	3 1 3 2	51 36 32.89 71 13 40.27 57 9 46.84	.34 .34 .34	4 [.] 8134847,5 4 [.] 8955445,3 4 [.] 8436749,3	77	"	XXXI XXXII XXV	38	44 55 35 26 64 23 0 09 70 41 24 65	·38 ·38 ·39	4.7950611,2 4.9011996,7 4.9209886,3
64	,,	XVIII XIX XX	3 2	67 44 40 . 79 64 18 42 . 82 47 56 36 . 39	·38 ·38 ·37	4.8976032,3 4.8134847,5	78	,,	L XXXII XXXV XXIII	39	65 10 32 98 64 55 16 97 49 54 10 05	·33 ·33 ·33	4.8693212,1 4.8684239,0 4.7950611,2
65	,,	XIX XX XXI	3 2 3 3	44 33 21 19 68 29 16 00 66 57 22 81	:37 :37 :37	4.7913836,1 4.9139325,9 4.9091766,2	79	,,	XXV XXIII XXIV	39 40	51 47 57 96 64 42 58 61 63 29 3 43	34 35 34	4.8129295,7 4.8738558,5 4.8693212,1
66	,,	XX XXI XXII	33	63 41 23 17 66 49 25 65 49 29 11 18	·33 ·33 ·33	4.8629312,6 4.8738825,8 4.7913836,1	80	,,	XXIV XXIII XXII	40 41	55 38 39 45 62 47 18 65 61 34 1 90	·27 ·28 ·28	4.7854982,7 4.8178152,4 4.8129295,7
67	,,	XXI XXII XXIII	33 34	46 7 20.54 70 46 5.45 63 6 34.01	·32 ·33 ·32	4.7704565,3 4.8876897,1 4.8629312,6	81	,,	XXIII XXII XXI	41	68 6 36·33 52 52 34·37 59 0 49·30	·26 ·25 ·25	4.8198723,7 4.7540103,0 4.7854982,7
68	,,	XXII XXIII XXIV	34	71 59 31.80 67 18 57.17 40 41 31.03	37 37 37	4.9344014,1 4.9212490,0 4.7704565,3	82	,,	XXII XXI XX	41	53 23 5°37 53 55 39°03 72 41 15°60	·23 ·23 ·24	4.7445383,0 4.7475647,6 4.8198723,7
69	,,	XXIII XXIV XXV	34 35	46 56 50.90 65 42 10.23 67 20 58.87	'42 '42 '43	4.8330155,4 4.9289800,4 4.9344014,1	83	,,	XXI XX XIX	42	63 3 58.05 51 19 58.51 63 3 58.05	·18 ·18	4.7353034,1 4.6777014,3 4.7445383,0

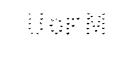
ımber	Gror	Station Number	·8		Txcess	Logarithm of	umber	Error	Station Number	rs		Troess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet
84	y x z	r XX XIX XVIII	42	63 39 35 · 88 51 57 6 · 03 64 23 18 · 09	" 18 18	4.7326134,0 4.6764655,7 4.7353034,1	97	y x z	M V III VIII	4 9 5 0	65 26 37 37 69 37 0 32 44 56 22 31	.83 .83 .82	5.0792515,8 5.0923408,1 4.9694495,0
85	,,	XIX XVIII XVII	43	68 41 37 51 53 6 55 21 58 11 27 28	·20 ·20 ·20	4.7725455,5 4.7062980,8 4.7326134,0	98	,,	III VIII VII	50	34 29 58 34 62 39 52 40 82 50 9 26	·57 ·58 ·58	4.8357783,5 5.0312313,4 5.0792515,8
86	"	XVIII XVII XVI	43	65 49 56 41 55 30 39 62 58 39 23 97	· 25 · 24 · 24	4.8012164,0 4.7571053,2 4.7725455,5	99	"	VII VIII X	50	63 21 37 26 42 17 16 37 74 21 6 37	· 23 · 23 · 23	4.8034428,2 4.6801031,8 4.8357783,5
87	,,	XVII XVI XV	44	52 16 9.77 61 10 57.89 66 32 52.34	· 23 · 24 · 24	4.7367807,2 4.7812451,7 4.8012164,0	100	,,	VIII X XII	50	72 57 4 37 81 36 35 02 25 26 20 61	.70 .71	5.1509113,0 5.1657549,5 4.8034428,2
88	,,	XVI XV XIV	44	59 35 45 22 58 6 42 46 62 17 32 32	119 119 20	4.7254227,3 4.7186237,7 4.7367807,2	101	,,	X XII XIII	5 1	46 21 48 03 59 2 6 19 74 36 5 78	1'01 1'02 1'02	5.0263647,9 5.1000130,8 5.1509113,0
89	,,	XV XIV XIII	45	48 58 57.63 72 0 24.25 59 0 38.12	.19	4.6699745,2 4.7705317,7 4.7254227,3	102	"	XII XIII XV	5 1 5 2	70 46 50 94 61 46 23 60 47 26 45 46	1,00 1,01 1,01	5.1342040,8 5.1041261,8 5.0263647,9
90	,,	XIV XIII XII	45 46	65 8 18·93 67 35 25·54 47 16 15·53	·20 ·20 ·19	4.7617047,4 4.7698393,4 4.6699745,2	103	,,	XV XIII XVI	52	62 26 0.93 44 31 54.17 73 2 4.90	•95 •96	5·1011939,6 4·9994337,1 5·1342040,8
91	,,,	XIII XII XI	46	75 34 17 39 48 59 59 31 55 25 43 30	· 24 · 23 · 23	4.8321643,9 4.7238615,8 4.7617047,4	104	,,	XIII XVI XIV	53	41 43 53 20 48 51 18 76 89 24 48 04	·63 ·63 ·63	4.9244562,2 4.9780401,3 5.1011939,6
92	"	XII XI IX	46 17 18	75 33 34 39 52 12 33 78 52 13 51 83	·36 ·35 ·35	4.9203276,6 4.8320370,1 4.8321643,9	105	,,	XIV XVI XVII	53	49 48 44 56 51 20 59 91 78 50 15 53	*34 *34 *34	4.8158073,0 4.8253880,1 4.9244562,2
							106	,,	XVI XVII XVIII	53	72 37 7:19 42 52 52:05 64 30 0:76	· 24 · 24 · 24	4.8400203,7 4.6931332,8 4.8158073,0
93	"	B* XXVI XXIII M II	47	40 57 8.61 65 38 41.46 73 24 9.93	I '44 I '44 I '44	5.0686258,3 5.2116199,8 5.2336163,3	107	,,	XVII XVIII XIX	54	45 17 14 91 63 16 49 30 71 25 55 79	·25 ·25 ·25	4.7148893,3 4.8141933,5 4.8400203,7
94	,,	M II M II	48	49 8 29 54 44 49 45 89 86 1 44 57	·58 ·58 ·58	4.9483798,9 4.9178578,8 5.0686258,3	108	,,	XVIII XIX XX	5 4 5 5	72 58 35 68 67 41 5 87 39 20 18 45	·30 ·29 ·29	4·8934104,7 4·8790618,6 4·7148893,3
95	,,	I II III	48	60 27 41 94 73 9 3 32 46 23 14 74	.71 .72 .71	5.0281612,4 5.0695734,0 4.9483798,9	109	,,	XIX XX XXI	5 5	47 45 56°45 36 16 6°40 95 57 57°15	.51 .51	4.7652368,0 4.6677747,0 4.8934104,7
96	"	II III V	48	59 23 8·28 40 29 13·96 80 7 37·76	.21 .21	4.9694495,0 4.8470718,4 5.0281612,4	110	"	XX XXI XXIII	5 5 5 6	49 54 22 43 72 44 19 18 57 21 18 39	·23 ·23 ·23	4·7235658,2 4·8198949,8 4·7652368,0

^{*} B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

Inber	rror	Station Number	8	·	rcess	Logarithm of	ımber	Crror	Station Number	18		X0968	T
Triangle Number	Symbolic Error	Serial	Тъвтегве	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	Logarithm of side-length in Feet
111	y x z	M XXI XXIII XXII	56	0 / " 72 35 36 72 46 21 21 17 61 3 2 11	" 18 17	4.7611766,0 4.6410571,4 4.7235658,2	125	y x z	M XXXV XXXVI XXXVII	6 2 6 3	61 23 41 92 62 58 29 86 61 21 41 92	" 33 34 34	4.8258291,0 4.8589436,4 4.8526248,0
112	"	XXII XXIII XXIV	56	61 32 16.40 60 27 12.28 58 0 31.02	·24 ·24 ·23	4·7767699,4 4·7722120,8 4·7611766,0	126	"	XXXVI XXXVII XXXVIII	63	62 10 56.75 60 29 23.39 57 19 39.86	·33 ·32 ·32	4·8473018,3 4·8402876,7 4·8258291,0
118	,,	XXIII XXIV XXV	5 6 5 7	53 0 32 · 28 71 7 41 · 88 55 51 45 · 84	·25 ·26 ·26	4·7612992,1 4·8349030,8 4·7767699,4	127	"	XXXVIII XXXVII X XXXIV	63	59 31 34 30 60 53 52 66 59 34 33 04	*34 *35 *34	4 [.] 8470805,4 4 [.] 8530329,1 4 [.] 8473018,3
114	,,	XXIV XXV XXVI	57	57 2 59 15 64 2 55 99 58 54 4 86	·23 ·23 ·23	4.7525199,0 4.7825244,8 4.7612992,1	12 8	"	M XXXVII I XXXIV XXXV	63 64	60 51 46.89 63 22 20.52 55 45 52.59	:37 :37 :37	4 [.] 8709573,2 4 [.] 8810226,2 4 [.] 8470805,4
115	,,	XXV XXVI XXVII	5 7 5 8	61 16 49 78 65 38 33 96 53 4 36 26	·25 ·25 ·25	4.7927245,4 4.8092480,4 4.7525199,0	129	"	XXXV XXXIV XXXIII	64 65	60 17 6.02 49 47 9.29 69 55 44.69	·31 ·30 ·31	4·8369382,6 4·7810546,6 4·8709573,2
116	"	XXVI XXVII XXVIII	58	61 33 8.43 61 40 20.00 56 46 0.61	·28 ·28 ·28	4.8143996,6 4.8149258,5 4.7927245,4	180	"	XXXIV XXXIII XXXI	65	56 26 48 78 56 1 15 67 67 31 55 55	·28 ·27 ·28	4·7920620,1 4·7899038,6 4·8369382,6
117	,,	XXVII XXVIII XXIX	58 59	59 44 28 26 60 4 17 09 60 11 14 65	·28 ·29 ·29	4·8124440,9 4·8138946,9 4·8143996,6	131	,,	XXXIII XXXI XXXII	65 66	61 56 15.52 52 34 45.47 65 28 59.01	·23 ·23 ·24	4·7787808,7 4·7330248,0 4·7920620,1
118	"	XXVIII XXIX XXX	59	59 1 28.56 60 33 28.98 60 25 2.46	·28 ·29 ·28	4·8062799,1 4·8130478,2 4·8124440,9	132	"	XXXII XXXI XXX	66 67	70 19 24.81 52 7 28.31 57 33 6.88	·25 ·25 ·25	4·8263718,9 4·7497692,4 4·7787808,7
119	"	XXIX XXX XXXI	59 60	61 27 3 25 62 45 3 31 55 47 53 44	.30	4.8324377,7 4.8376552,3 4.8062799,1	133	"	XXXI XXX XXIX	67	57 48 43 43 57 8 13 73 65 3 2 84	·28 ·27 ·28	4 [.] 7964439,1 4 [.] 7931815,7 4 [.] 8263718,9
120	"	XXX XXXI XXXII	60	57 44 58 50 60 48 36 17 61 26 25 33	.30	4·8160136,2 4·8298029,7 4·8324377,7	134	"	XXX XXIX XXVIII	6 7 6 8	56 30 39 13 55 6 41 66 68 22 39 21	•23 •22 •23	4`7492938,2 4`7420882,3 4`7964439,1
121	,,	XXXI XXXII XXXIII	60 61	54 22 25 04 63 33 44 64 62 3 50 32	·27 ·28 ·28	4·7798223,3 4·8218478,7 4·8160136,2	135	"	XXIX XXVIII XXVII	68	57 25 9 9 90 63 51 48 85 58 43 1 25	·22 ·22 ·22	4.7431637,5 4.7706185,4 4.7492938,2
122	,,	XXXII XXXIII XXXIV	61	58 20 43 27 62 6 4 03 59 33 12 70	·24 ·25 ·25	4·7743084,4 4·7906048,2 4·7798223,3	136	,,	XXVIII XXVII XXVI	68	69 19 51.01 55 14 24.48 55 25 44.51	·23 ·22 ·22	4·7986462,5 4·7421735,6 4·7431637,5
123	,,	XXXIII XXXIV XXXV	61 62	60 4 53 · 82 70 5 18 · 85 49 49 47 · 33	·30 ·30 ·29	4·8290273,3 4·8643697,3 4·7743084,4	137	"	XXVII XXVI XXV	69 39	54 2 33 38 57 39 38 06 68 17 48 56	·23 ·23 ·23	4·7387702,2 4·7573803,3 4·7986462,5
124	"	XXXIV XXXV XXXVI	62	67 49 20 77 50 53 22 44 61 17 16 79	·30 ·29 ·29	4·8526248,0 4·7758286,3 4·8290273,3	138	"	XXVI XXV XXIV	69 39 40	74 34 50°27 60 29 25°54 44 55 44°19	·28 ·28 ·28	4·8739040,8 4·8294802,7 4·7387702,2

ımber	Error	Station Number	'8		£xcess	Logarithm of	umber	Error	Station Number	8		TOGSS	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in
139	y x z	N I XXXI .	70	67 28 56 63 66 27 39 65 46 3 23 72	·64 ·63 ·63	5.0248730,0 5.0215821,2 4.9166608,4	153	y x z	N XIII XIV XV	77	67 25 10°75 64 41 23°86 47 53 25°39	. 26 . 26 . 25	4·8263344,5 4·8171439,4 4·7312958,1
140	"	B XXXI N I II	70	48 31 52.71 64 18 38.44 67 9 28.85	·64 ·65 ·65	4.9350064,1 5.0151412,7 5.0248730,0	154	"	XIV XV XVI	78	51 8 2·37 64 17 29·41 64 34 28·22	·27 ·27 ·28	4.7619004,2 4.8253082,4 4.8263344,5
141	"	III II	7 1 7 2	63 53 41 · 77 75 44 52 · 70 40 21 25 · 53	·78 ·79 ·78	5.0770043,5 5.1101568,3 4.9350064,1	155	,,	XV XVI XVII	7 8 7 9	62 54 39 48 58 58 44 83 58 6 35 69	· 24 · 24 · 23	4·7824967,5 4·7659309,0 4·7619004,2
142	,,	I III IV	7 2	49 3 9.75 63 19 0.76 67 37 49.49	·82 ·82 ·82	4.9891077,1 5.0620772,2 5.0770043,5	156	,,	XVI XVII XVIII	79	57 44 40 33 65 9 0 58 57 6 19 09	·26 ·27 ·26	4·7855924,9 4·8161927,1 4·7824967,5
143	,,	III IV V	7 2 7 3	66 12 53 93 45 9 8 82 68 37 57 25	· 52 · 52 · 53	4.9814873,5 4.8706728.3 4.9891077,1	157	,,	XVII XVIII XIX	79	53 5 11.20 68 50 35.53 58 4 13.27	·25 ·26 ·26	4·7596808,6 4·8265328,6 4·7855924,9
144	,,	IV V VI	73	43 18 33.63 71 30 23.01 65 11 3.36	·52 ·52 ·52	4·8598473,4 5·0005359,0 4·9814873,5	1.58	,,	XVIII XIX XX	80	51 39 4 41 70 17 4 38 58 3 51 21	· 22 · 23 · 23	4·7254102,9 4·8047213.9 4·7596808,6
145	,,	VI VII	73 74	65 38 51.65 60 9 55.78 54 11 12.57	*41 *40 *40	4.9103956,7 4.8891168,2 4.8598473,4	159	,,	XIX XX XXI	80	60 33 2 03 66 20 54 81 53 6 3 16	· 22 · 22 · 22	4.7623999,6 4.7843833,6 4.7254102,9
146	,,	VI VIII VIII	74	49 28 31.76 62 55 47.12 67 35 41.12	·38 ·38 ·39	4·8253703.3 4·8940926,9 4·9103956,7	160	,,	XX XXI XXII	8 1	58 33 4.75 63 42 57.01 57 43 58.24	· 24 · 24 · 23	4·7662553,2 4·7878544,3 4·7623999,6
147	"	VII VIII IX	74 75	64 40 41 07 57 51 3 00 57 28 15 93	33 32 32	4.8556102,9 4.8271927,2 4.8253703,3	161	,,	XXI XXII XXIII	81	76 17 29 49 50 56 43 75 52 45 46 76	·26 ·25 ·25	4.8527153,9 4.7554339,8 4.7662553,2
148	"	VIII IX X	7 5	58 16 47 33 58 41 21 18 63 1 51 49	33 33 34	4.8353484,8 4.8372512,8 4.8556102,9	162	,,	XXII XXIII XXIV	8 2	53 42 17 90 56 24 20 35 69 53 21 75	·28 ·28 ·29	4·7863597,4 4·8006680,8 4·8527153,9
149	29	IX X XI	7 5 7 6	63 52 20.07 67 12 8.43 48 55 31.50	*41 *41 *40	4.9112472,5 4.9227345,7 4.8353484,8	163	,,	XXIII XXIV XXV	8 2	58 28 47 50 65 52 53 13 55 38 19 37	· 28 · 28 · 27	4.8003175,3 4.8299742,0 4.7863597,4
150	"	X XI XII	76	37 7 27 19 72 35 0 62 70 17 32 19	·32 ·33 ·32	4.7181712,3 4.9170800,7 4.9112472,5	164	,,	XXIV XXV XXVI	83	53 35 55 60 64 27 35 97 61 56 28 43	·25 ·26 ·26	4.7603515,2 4.8099632,3 4.8003175,3
151	"	XI XII XIII	7 6 7 7	70 30 12.86 56 44 17.56 52 45 29.58	· 22 · 21 · 21	4.7915658,0 4.7395059,8 4.7181712,3	165	,,	XXV XXVI XXVII	83	56 10 23 12 70 43 54 88 53 5 42 00	·26 ·26 ·25	4·7769174,9 4·8324262,4 4·7603515,2
152	"	XII XIII XIV	77	53 0 45 71 60 23 53 16 66 35 21 13	·22 ·23 ·23	4.7312958,1 4.7681335,6 4.7915658,0	166	"	XXVI XXVII XXVIII	84	62 53 18·45 57 35 40·64 59 31 0·91	·25 ·24 ·24	4·7909707,0 4·7680069,0 4·7769174,9

^{*} B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.


umber	Error	Station Number	rs		Excess	Logarithm of	umber	Error	Station Number	78		Çx cees	Logarithm of
Triangle Number	Symbolic	Serial	Тъвчегве	Corrected Plane Angle	Spherical Excess	side-legth in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet
167	y x z	N XXVII XXVIII XXIX	84	69 5 4.18 61 24 6.91	" 24 25 24	4.7286101,4 4.8178737,4 4.7909707,0	181	y x z	B* XXXVIII XXXV O I	92	0 , % 54 40 18.74 75 49 6.38 49 30 34.88	2·56 2·57 2·56	5.2780661,7 5.3530125,5 5.2475620,4
168	"	XXVIII XXIX XXX	85	63 57 24 06 68 34 6 54 47 28 29 40	·26 ·26 ·25	4.8146540,1 4.8300361,7 4.7286101,4	182	"	B XXXV O I II	93	48 13 57 37 73 43 19 42 58 2 43 21	2.39 2.40 2.39	5.2220856,8 5.3316631,7 5.2780661,7
169	"	XXIX XXX I XLV	85 86	52 38 53.76 65 12 25.49 62 8 40.75	·27 ·28 ·27	4.7684646,0 4.8261420,7 4.8146540,1	183	,,	III I II	93	55 49 7.54 48 22 31.27 75 48 21.19	1.40 1.40	5.1531955,3 5.1091694,8 5.2220856,8
170	"	N XXX I XLV XLIII	86	65 10 35 56 57 53 40 91 56 55 43 53	·25 ·25 ·24	4.8031215,6 4.7731450,4 4.7684646,0	184	"	I III V	93	35 36 45 50 36 4 33 24 108 18 41 26	• 5.7 • 5.8 • 5.8	4'9409119,1 4'9457728,1 5'1531955,3
171	"	XLV XLIII XLIV	86	63 46 33.84 53 19 23.01 62 54 3.15	· 26 · 25 · 26	4·8064525,3 4·7578074,3 4·8031215,6	185	"	V III VI	94 95	74 15 16 10 38 12 20 73 67 32 23 17	·39 ·38 ·39	4'9585619,2 4'7665027,3 4'9409119,1
172	,,	XLIV XLIII XLII	87	58 19 52·67 55 26 13·92 66 13 53·41	· 25 · 24 · 25	4 [.] 7749 ² 49,3 4 [.] 7606115,4 4 [.] 8064525,3	186	,,	III VI VII	95	85 3 40.55 55 10 3.08 39 37 16.70	·84 ·84 ·83	5°1523229,1 5°0689781,9 4°9585619,2
173	"	XLIII XLII XLI	88	73 48 55 °03 45 55 22 °65 60 15 42 °32	· 22 · 22 · 22	4·8186925,7 4·6926242,5 4·7749249,3	187	,,	VI VII VIII	95 96	31 34 47.81 67 50 37.92 80 34 34.27	.78 .78 .78	4·8772964,5 5·1249098,3 5·1523229,1
174	"	XLII XLI XL	88	64 55 54 63 54 4 4 14 61 0 1 23	·29 ·28 ·29	4·8339063,2 4·7852025,1 4·8186925,7	188	,,	VII VIII IX	96	56 6 54.48 61 48 0.14 62 5 5.38	.37 .37 .38	4·8501818,0 4·8761458,8 4·8772964,5
175	,,	XLI XL XXXIX	89	53 27 13°14 55 57 29°62 70 35 17°24	·25 ·26 ·26	4.7642423,5 4.7776843,0 4.8339063,2	189	"	VIII IX X	96 97	52 38 5.63 75 11 6.45 52 10 47.92	·39 ·39 ·38	4·8528365,5 4·9379045,7 4·8501818,0
176	"	XL XXXIX XXXVIII	8 9 9 0	62 57 11.85 64 13 8.05 52 49 40.10	·27 ·27 ·26	4.8125807,3 4.8173459,4 4.7642423,5	190	,,	IX X XI	97	47 29 3.83 75 37 38.68 56 53 17.49	34 35 34	4·7973191,4 4·9159868,7 4·8528365,5
177	,,	XXXIX XXXVIII XXXVII	90	51 2 57.13 57 36 10.04 71 20 52.83	·23 ·23 ·23	4.7268156,7 4.7625359,1 4.8125807,3	191	,,	X XI XII	97 98	54 35 45 85 65 47 59 08 59 36 15 07	· 26 · 27 · 27	4.7727391,4 4.8215857,3 4.7973191,4
178	"	XXXVIII XXXVII XXXVI	90 91	65 19 9 94 69 51 6 11 44 49 43 95	· 27 · 27 · 27	4·8370282,1 4·8512066,6 4·7268156,7	192	,,	XI XII XIII	98	62 22 33.60 69 2 57.98 48 34 28.42	.30 .31	4·8452220,0 4·8680790,2 4·7727391,4
179	"	XXXVII XXXVI XXXV	91 64	48 57 11.57 69 49 46.08 61 13 2.35	·30 ·30	4.7717712,5 4.8668130,8 4.8370282,1	193	,,	XII XIII XIV	98 99	52 9 49 22 60 56 46 96 66 53 23 82	·29 ·29 ·29	4.7790495,1 4.8231447,1 4.8452220,0
180	"	XXXVI XXXV XXXIII	91 64 65	58 22 27.77 65 9 16.24 56 28 15.99	· 26 · 26 · 25	4·7809905,6 4·8086296,0 4·7717712,5	194	,,	XIII XIV XV	99	68 6 55.02 57 19 53.80 54 33 11.18	· 28 · 27 · 27	4·8355945,6 4·7932900,6 4·7790495,1

^{*} B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

SIDES AND ANGLES OF THE CIRCUIT TRANGLES.

umber	Error	Station Numbe	rs		£xcess	Logarithm of	umber	Krror	Station Numbe	rs		Treess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet
195	y x z	o XIV XV XVI	99	56 19 47 65 61 44 6 65 61 56 5 70	.31 .31	4·8101727,0 4·8347839,7 4·8355945,6	209	y x z	I LVIII	106	54 26 52 99 56 59 39 97 68 33 27 04	" 2 I 2 I 2 2	4.7253442,2 4.7385033,9 4.7837886,7
196	"	XV XVI XVII	100	60 32 10.71 63 54 40.70 55 33 8.59	.31 .31	4·8337587,2 4·8472380,4 4·8101727,0	210	,,	LVI LV LIII	107	63 2 31.53 57 50 55.33 59 6 33.14	·20 ·19	4'7418256,2 4'7194841,0 4'7253442,2
197	"	XVI XVII XVIII	100	48 39 29 41 57 10 41 55 74 9 49 04	·24 ·24 ·24	4·7260772,8 4·7750290,2 4·8337587,2	211	,,	LV LIII LIV	107	52 32 29 °00 74 39 44 °76 52 47 46 °24	· 23 · 23 · 23	4.7403527,4 4.8248956,0 4.7418256,2
198	>> .	XVII XVIII XIX	101	71 56 50°19 55 6 26°61 52 56 43°20	· 22 · 22 · 21	4·8021174,9 4·7379746,1 4·7260772,8	212	,,,	LIV LIII	108	78 53 21 94 50 25 15 00 50 41 23 06	· 24 · 23 · 23	4.8435479,2 4.7386758,4 4.7403527,4
199	"	XVIII XIX XX	101	55 57 26 . 93 60 11 2 . 85 63 51 30 . 22	·25 ·25 ·26	4·7673391,7 4·7873158,9 4·8021174,9	213	,,	LIII LIII	109	52 36 35.73 57 13 28.89 70 9 55.38	·27 ·27 ·27	4.7702126,9 4.7948005,8 4.8435479,2
200	. 22	XIX XX XXI	102	85 23 48 34 43 23 14 21 51 12 57 45	· 24 · 23 · 24	4·8741129,7 4·7124261,6 4·7673391,7	214	,,	LII LI	109	71 4 43 ° 02 55 47 36 ° 55 53 7 40 ° 43	· 27 · 27 · 26	4·8430100,1 4·7846494,7 4·7702126,9
201	,,	XX XXI XXII	102	44 38 25 99 51 58 13 38 83 20 63	·24 ·24 ·25	4·7237536,2 4·7733669,9 4·8741129,7	215	,,	LI L XLIX	110	51 16 0.64 53 59 40.12 74 44 19.24	· 25 · 25 · 25	4.7507345,6 4.7665290,6 4.8430100,1
202	,,	XXI XXII XXIII	103	77 27 20.60 54 48 42.48 47 43 56.92	·24 ·24 ·23	4·8440215,7 4·7668766,9 4·7237536,2	216	"	L XLIX XLVIII	110	71 32 32 53 49 2 50 58 59 24 36 89	·21 ·20 ·21	4·7928794,7 4·6939074,4 4·7507345,6
203	,,	XXII XXIII XXIV	103	62 29 48 88 53 40 33 03 63 49 38 09	.30 .30	4·8389192,5 4·7971643,3 4·8440215,7	217	"	XLIX XLVIII XLVII	111	55 50 58.40 59 5 47.37 65 3 14.23	·23 ·24 ·24	4 [.] 7532161,2 4 [.] 7689175,0 4 [.] 7928794,7
204	,,	XXIII XXIV XXV	104	51 28 19 15 48 11 58 48 80 19 42 37	· 22 · 22 · 22	4·7385115,6 4·7175670,1 4·8389192,5	218	,,	XLVIII XLVII XLVII	111	63 38 10·73 61 48 44·89 54 33 4·38	· 25 · 24 · 24	4.7945582,5 4.7874296,2 4.7532161,2
2 05	"	XXIV XXV XXVI	104	70 5 28 99 58 43 45 35 51 10 45 66	· 25 · 24 · 24	4·8201489,3 4·7787376,0 4·7385115,6	219	,,	XLVII XLVI XLV	112 86	56 1 27.09 67 8 3.72 56 50 29.19	·27 ·28 ·28	4.7904475,1 4.8362066,6 4.7945582,5
206	,,	XXV XXVI XXVII	105	57 32 45 14 58 40 46 82 63 46 28 04	·27 ·28 ·28	4.7935772,9 4.7989242,6 4.8201489,3	220	"	XLVI XLV XLIV	112 86 87	57 23 17 09 57 22 27 75 65 14 15 16	·23 ·23 ·24	4.7578243,7 4.7577578,3 4.7904475,1
207	"	XXVI XXVII I LVIII	105 106	72 18 26 25 48 1 55 66 59 39 38 09	·25 ·25 ·25	4·8364984,3 4·7288347,7 4·7935772,9							
208	"	O XXVII LVIII LVI	106	59 18 50°20 44 31 49°96 76 9 19°84	· 23 · 23 · 23	4·7837886,7 4·6951994,2 4·8364984,3	221	,,	B XLII XL P I	113 114	25 34 4 49 25 20 49 88 129 5 5 63	.91 .91	5.0027539,2 4.9992395,3 5.2576726,9

umber	Error	Station Number	r8		Excess	Logarithm of	umber	Error	Station Number	·8		CXCOOL	Tomorithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	Logarithm of side-length in Feet
222	y x z	b III B* XT b I	114 115	66 55 9.40 60 5 17.09 52 59 33.51	" •80 •80 •79	5.0642131,6 5.0383627,1 5.0027539,2	236	y x z	P XVII XVIII XIX	122	60 16 18 76	" -25 -26 -25	4.7697393,0 4.7993015,7 4.7872962,5
223	,,	B XL P III V	1 15	33 46 42 28 101 40 56 38 44 32 21 34	·82 ·82 ·82	4°9633°98,5 5°2091580,0 5°0642131,6	237	"	XVIII XIX XX	122	67 49 40 09 59 27 14 38 52 43 5 53	·28 ·27 ·27	4.8356448,2 4.8041233,4 4.7697393,0
224	"	III V VI	115 116	80 29 28 17 60 15 43 71 39 14 48 12	.80 .80	5°1561304,2 5°1008107,0 4°9633098,5	238	"	XIX XX XXI	123	54 10 58·72 56 47 43·98 69 1 17·30	·26 ·27 ·27	4 [.] 7743926,3 4 [.] 7880117,5 4 [.] 8356448,2
225	"	V VI VII	116	37 22 57 77 81 20 21 02 61 16 41 21	1,11 1,11 1,11	4 [.] 9964353,7 5 [.] 2081686,0 5 [.] 1561304,2	239	,,	XX XXI XXII	123	69 14 9 91 58 36 18 81 52 9 31 28	·28 ·28 ·28	4.8477578,1 4.8081769,3 4.7743926,3
226	,,	VI VII IX	116	31 39 6.28 67 23 11.01 80 57 42.41	·38 ·38 ·39	4.7218189,8 4.9671190,6 4.9964353,7	240	"	XXI XXII XXIII	124	54 28 19·67 63 42 33·66 61 49 6·67	·32 ·33 ·33	4.8130923,8 4.8551358,3 4.8477578,1
227	"	IX VII XI	117 118	61 41 7:38 62 28 21:83 55 50 30:79	.31 .31	4.7487140,9 4.7518768,0 4.7218189,8	241	,,	XXII XXIII XXIV	124 125	63 51 7.69 62 20 16.93 53 48 35.38	.33 .33 .33	4 ^{.8} 592974,7 4 ^{.8} 534733,3 4 ^{.8} 130923,8
228	"	VII XI X	118	59 32 37°31 65 6 17°57 55 21 5°12	·23 ·24 ·23	4'7690118,2 4'7911420,9 4'7487140,9	242	,,	XXIII XXIV XXV	125	54 45 5° 75 58 36 2° 73 66 37 48 52	.31 .31	4.8085790,5 4.8277281,5 4.8592974,7
229	,,	XI X XII	118	58 47 38 90 60 29 0 10 60 43 21 00	·23 ·23 ·23	4·7604893,9 4·7679906,4 4·7690118,2	243	"	XXIV XXV XXVI	125	55 57 23 39 62 20 51 63 61 41 44 98	·27 ·27 ·27	4.7822295,2 4.8112037,6 4.8085790,5
230	,,	X XII XIII	119	55 4 9.84 70 14 4.42 54 41 45.74	·25 ·25 ·24	4 [.] 7624796,4 4 [.] 8223761,2 4 [.] 7604893,9	244	"	XXV XXVI XXVII	126	48 6 39 92 77 46 15 25 54 7 4 83	·26 ·26 ·26	4'7454535,2 4'8636550,0 4'7822295,2
231	,,	XII XIII XIV	119 120	66 24 17 23 50 13 26 12 63 22 16 65	·21 ·20 ·21	4'7732595,3 4'6968487,4 4'7624796,4	245	"	XXVI XXVII XXVIII	126 127	59 21 56 31 74 3 3 06 46 35 0 63	·28 ·28 ·27	4.8190103,9 4.8672434,6 4.7454535,2
232	,,	XIII XIV XV	120	61 47 55 73 57 24 10 56 60 47 53 71	·24 ·23 ·23	4.7774121,6 4.7578510,6 4.7732595,3	246	,,	XXVII XXVIII XXIX	127	61 11 28.74 58 12 19.26 60 33 12.00	·29 ·29 ·29	4.8217051,0 4.8087091,3 4.8190103,9
233	,,	XIV XV XVI	120	64 37 14·29 70 22 7·54 45 0 38·17	34 35 34	4·8837699,9 4·9018397,8 4·7774121,6	247	,,	XXVIII XXIX LXXI	127 128	53 47 18.86	·32 ·31 ·31	4·8728688,8 4·8074430,7 4·8217051,0
234	"	XV XVI XVII	121	48 41 58·35 63 24 53·80 67 53 7·85	·33 ·34 ·34	4 [.] 79 ² 7453,5 4 [.] 8684 ² 49,0 4 [.] 8837699,9	248	,,	P XXIX I LXXI LXIX	128	62 36 17 98 48 47 6 52 68 36 35 50	·31 ·31 ·32	4.8522061,6 4.7802226,7 4.8728688,8
235	"	XVI XVII XVIII	121	59 35 54 57 59 32 47 28 60 51 18 15	·26 ·25 ·26	4:7872962,5 4:7870646,3 4:7927453,5	24 9	"	LXXI LXIX LXX	128	51 23 21 90 58 8 29 32 70 28 8 78	·28 ·28 ·28	4.7708189,4 4.8070313,3 4.8522061,6

^{*} B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

ımper	Error	Station Number	rs		Excess	Logarithm of	umber	Error	Station Number	rs		Ехсева	Logarithm of
Triangle Number	Symbolic Error	Serial	Ттатегве	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical E	side-length in Feet
25 0	y x z	I LXX LXIX LXVIII	129	0 / " 59 48 13 18 61 57 13 11 58 14 33 71	" -24 -25 -24	4'7779223,4 4'7870022,4 4'7708189,4	263	y x z	B XLIV LIII Q I	136	0 , " 39 51 54.731 48 25 10.270 91 42 54.999	1,180	5.1227691,1
25 1	, ,,	LXIX LXVIII LXVII	130	63 48 12.99 54 0 17.61 62 11 29.40	·23 ·23 ·23	4·7841496,9 4·7392032,8 4·7779223,4	264	,,	B LIII Q I III	136	38 11 55.550 86 17 37.025 55 30 27.425	·763 ·764 ·763	4 [.] 93 [.] 93 [.] 93 [.] 4,4 5 [.] 1387576,5 5 [.] 0557 [.] 03,5
252	"	LXVIII LXVII LXVI	130	62 38 40°41 46 40 31°37 70 40 48°22	°20 °20 °20	4.7578197,9 4.6711420,8 4.7841496,9	265	"	I III IV	137	61 47 41 757 66 50 22 948 51 21 55 295	*595 *596 *595	4'9833046,7 5'0017081,9 4'9309304,4
253	"	LXVII LXVI LXV	131	65 28 29:59 57 11 1:36 57 20 29:05	·24 ·23 ·23	4.7914949,1 4.7570513,2 4.7578197,9	266	"	III IV VI	137	80 33 10.62 62 29 32.71 36 57 16.67	1.00 1.00	5°1983680,4 5°1521973,7 4°9833046,7
254	"	LXVI LXV LXIV	131	48 56 43.86 70 41 32.99 60 21 43.15	·24 ·25 ·25	4 ⁻ 7298121,6 4 ⁻ 8272521,2 4 ⁻ 7914949,1	267	,,	IV VI V	138	62 30 49.64 37 30 39.16 79 58 31.20	1.08 1.08	5°1530328,8 4'9896041,3 5'1983680,4
255	,,	LXV LXIV LXIII	132	58 42 36.85 62 0 22.82 59 17 0.33	°20 °20 °20	4.7272012,4 4.7414234,3 4.7298121,6	268	"	V VI VII	138	54 42 22 79 48 21 5 44 76 56 31 77	1,00 1,00 1,00	5.0762077,8 5.0378681,3 5.1530328,8
256	,,	LXIV LXIII LXII	132	57 34 55 34 62 44 37 94 59 40 26 72	·19	4.7175310,2 4.7399925,1 4.7272012,4	269	,,	VI VII IX	138	41 11 0 73 62 56 8·13 75 52 51·14	·67 ·68 ·68	4°9080679,6 5°0391615,5 5°0762077,8
257	"	IXIII LXII LXI	133	65 9 49 48 60 48 36 63 54 1 33 89	.51 .51	4.7672820,8 4.7504483,6 4.7175310,2	270	,,	IX VII XI	139	51 35 8 93 57 10 11 61 57 14 39 46	.53 .52 .52	4'9903102,0 4'9384319,3 4'9080679,6
2 58	,,	LXII LXI LX	133	5° 33 5°11 67 59 8°05 61 27 46°84	·22 ·22 ·22	4 ⁻ 7112630,5 4 ⁻ 7906576,1 4 ⁻ 7672820,8	271	,,	VII XI X	140	38 54 1.59 67 26 26.50 73 39 31.91	·45 ·46 ·46	4 8061565,8 4 9736472,0 4 9903102,0
259	,,	LXI LX LIX	134	59 57 19 79 62 27 38 29 57 35 1 92	.10 .10	4·7221652,8 4·7326030,4 4·7112630,5	272	,,	X XI XII	140	82 34 0°16 42 15 30°68 55 10 29°16	· 26 · 26 · 26	4·8882023,9 4·7195449,0 4·8061565,8
2 60	,,	LX LIX LVII	134	63 45 58·17 67 6 3·37 49 7 58·46	·23 ·23 ·23	4.7963029,4 4.8078617,8 4.7221652,8	273	"	XI XII XIII	140	45 1 48 54 68 52 4 28 66 6 7 18	.34 .34 .34	4·7768422,6 4·8968947,5 4·8882023,9
261	"	LIX LVII LV	135	60 30 28.68 54 31 7.20 64 58 24.12	·24 ·24 ·24	4·7788523,4 4·7499083,2 4·7963029,4	274	"	XII XIII XIV	141	60 26 27 14 55 43 2 46 63 50 30 40	·22 ·22 ·23	4 [.] 7632119,3 4 [.] 7408904,5 4 [.] 7768422,6
262	,,	LVII LV LV	135 107 108	72 32 28 91 48 22 13 42 59 5 17 67	·24 ·23 ·24	4·8249038,1 4·7189705,7 4·7788523,4	275	,,	XIII XIV XV	141	58 59 22 10 65 24 15 59 55 36 22 10	·25 ·25 ·25	4·7796837,3 4·8053577,9 4·7632119,3
			•				276	,,	XIV XV XVI	142	61 54 36 07 58 47 19 55 59 18 4 38	·25 ·25 ·25	4.7908260,2 4.7773539,6 4.7796837,3

设存的

umber	Error	Station Number	s	g . 179	Ехсевя	Logarithm of	umber	Error	Station Numb	ers	a . 171	Excess	Logarithm of
Triangle Number	Symbolio]	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet
277	y x z	Q XV XVI XVII	142	62 47 14 29 62 57 29 55	" 24 24 25	4'75°4593,5 4'79°1623,3 4'79°826°,2	291	<i>y x z</i>	T TXXXII TXXXIII	150	0 , " 75 44 31 73 45 16 22 00 58 59 6 27	" '21 '20 '21	4 [.] 8129919,9 4 [.] 6781226,5 4 [.] 759577 + ,7
278	"	XVI XVII XVIII	143	57 8 4.57 61 52 35.35 60 59 20.08	·21 ·21	4.7329389,6 4.7541224,8 4.7504593,5	292	,,	LXXXII LXXXI LXXX	150 151	49 2 39 24 56 49 28 17 74 7 52 59	*21 *22 *22	4.767937 <i>3</i> ,7 4.7525907,8 4.8129919,9
279	"	XVII XVIII XIX	143	61 115.50 59 59 45.11 58 58 59.60	·21 ·20 ·20	4'7418569,0 4'7374623,1 4'7329389,6	293	,,	LXXXI LXXX LXXIX	151	56 49 48 · 03 71 13 14 · 23 51 56 57 · 74	·21 ·21 ·20	4'7344572,5 4'7879475,7 4'7979373,7
280	"	XVIII XIX XX	144	55 32 8.95 65 0 48.25 59 27 2.80	.51 .51	4 ⁻ 7229367,7 4 ⁻ 7640795,9 4 ⁻ 7418569,0	294	,,	LXXX LXXIX LXXVIII	1 5 1 1 5 2	65 8 0.64 58 59 41.93 55 52 17.43	·23 ·22 ·22	4'7742877,3 4'7495842,7 4'7344572,5
281	"	XIX XX XXI	144	59 46 56·16 63 40 12·94 56 50·16	*20 *21 *20	4.7381658,0 4.7540244,5 4.7229367,7	295	"	LXXIX LXXVIII LXXVII	152	51 28 4.75 67 29 29.33 61 2 25.92	·23 ·23 ·23	4.7256496,1 4.7978869,3 4.7742877,3
282	"	XX XXI XXII	145	61 37 24.65 58 20 24.68 60 2 10.67	°21 °20 °20	4.7448819,5 4.7304976,1 4.7381658,0	296	,,	LXXVIII LXXVII LXXVI	152 153	67 46 53 59 58 6 54 79 54 6 11 62	·22 ·22 ·21	4.7836178,1 4.7460896,1 4.7256496,1
283	"	XXI XXII XXIII	145	66 23 5 31 57 0 57 97 56 35 56 72	·23 ·22	4.7852962,2 4.7469498,0 4.7448819,5	297	,,	LXXVII LXXVI LXXV	153	56 18 9:48 57 3 53:06 66 37 57:46	· 22 · 22 · 22	4 [.] 7408969,7 4 [.] 7446939,8 4 [.] 7836178,1
284	,,	XXII XXIII XXIV	146	61 17 48 73 56 11 58 34 62 30 12 93	· 24 · 24 · 24	4.7804120,8 4.7569436,8 .4.7852962,2	298	,,	LXXVI LXXV LXXIV	153 154	66 47 23 23 57 7 26 48 56 5 10 29	*22 *22 *22	4:7852290,7 4:7460832,3 4:7408969,7
285	,,	XXIII XXIV XXV	146	62 22 54·12 54 44 3·50 62 53 2·38	·23 ·23 ·24	4·7784412,9 4·7429277,1 4·7804120,8	299	,,	LXXV LXXIV LXXIII	154	54 51 36.06 57 43 9.54 67 25 14.40	·22 ·22 ·22	4.7324829,0 4.7469471,1 4.7852290,7
286	,,	XXIV XXV XXVI	147	60 40 46.60 61 7 43.91	*24 *24 *24	4.7765462,2 4.7654062,4 4.7784412,9	300	"	LXXIV LXXIII LXXII	154	52 14 28 01 72 4 52 23 55 40 39 76	·21 ·21 ·21	4.7135202,8 4.7939722,2 4.7324829,0
287	"	XXV XXVI I LXXXV	147	63 54 1.68 50 49 26.70 65 16 31.62	.51 .51	4.7715943,8 4.7077223,9 4.7765462,2	301	,,	LXXIII LXXII LXXI	1 5 5 1 2 8	69 25 4.95 50 15 25.36 60 19 29.69	·18 ·17 ·17	4'7459319,1 4 6604584,6 4'7135202,8
288	,,	Q XXVI I LXXXV LXXXIII	148	63 55 59 71 52 58 35 13 63 5 55 16	·22 ·22 ·22	4.7747784,0 4.7235792,3 4.7715943,8	302	,,,	LXXII LXXI LXX	155 128 129	65 49 5.77 61 45 25.27 52 25 28.96	·25 ·25 ·24	4 [.] 8070180,4 4 [.] 7918543,9 4 [.] 7459319,1
289	,,	LXXXV LXXXIII LXXXIV	148	62 32 56.29 58 46 43.16 58 20.55	·25 ·25 ·24	4.7913365,6 4.7752677,3 4.7747784,0			·				
290	"	LXXXIV LXXXIII LXXXII	149	54 40 56.28 63 55 54.80 61 23 8.92	·25 ·25 ·25	4.7595774,7 4.8013171,5 4.7913365,6	303	,,	B* LVI LIX R I	156	63 13 0'90 59 30 47'52 57 16 11'58	1 · 2 3 1 · 2 3 1 · 2 3	5.1408669,0 5.1255315,2 5.1150652,5

^{*} B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Qualrilateral.

umber	Error	Station Number	:8		Ехсев	Logarithm of	umber	Grror		Station Number	rs		Excess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error		Serial	Traverse	Corrected Plane Angle	Spherical E	side-length in Feet
304	y x z	B LIX R I II	156 157	0 , " 50 45 13 29 52 3 8 39 77 11 38 32	94 94 95	5.0407902,3 5.0486479,0 5.1408669,0	318	y x z	R	XIV XV XVI	163	61 5 49 51 52 3 14 44 66 50 56 05	,10 ,10	4'7314660,1 4'6860913,5 4'7527778,0
305	,,	I II III	157	73 59 38 45 56 37 2 28 49 23 19 27	1.00 1.01 1.01	5'1432954,1 5'0821605,3 5'0407902,3	319	,,		XV XVI XVII	164	67 53 6.02 59 39 40.37 52 27 13.61	·23 ·23 ·23	4.7990811,5 4.7683063,1 4.7314660,1
306	,,	II III IV	157 158	42 40 5 41 50 39 55 09 86 39 55 6	·80 ·80 ·80	4'9751017,0 5'0324741,2 5'1432954,1	320	,,		XVI XVII XVIII	164	53 31 47 26 45 21 8 38 81 7 4 36	.18 .18	4·7096663,6 4·6564599,0 4·7990811,5
307	,,	III IV V	158	48 1 7.01 50 32 51.63 81 26 1.36	.41 .41	4 [.] 8511742,1 4 [.] 8676774,6 4 [.] 9751017,0	321	,,	ĭ	XVII XVIII XCI	165	80 20 48 · 21 50 19 6 · 49 49 20 5 · 30	21 21 20	4.8235001,0 4.7139615,5 4.7096663,6
308	,,	IV V VI	15 8 15 9	51 11 29 18 67 31 40 07 61 16 50 75	·32 ·33 ·33	4 [.] 7998557,2 4 [.] 8738846,7 4 [.] 8511742,1	322	"	R	XVIII XCI XCIII	165	53 24 11 47 42 7 1 85 84 28 46 68	·19	4.7301537,5 4.6520143,6 4.8235001,0
309	"	V VI VII	159	57 26 3 24 58 8 26 91 64 25 29 85	·24 ·25 ·25	4 [.] 7703504,8 4 [.] 7737248,5 4 [.] 7998557,2	323	,,		XCIII XCI XCI	166	77 13 11 34 52 55 14 51 49 51 34 15	·23 ·23 ·23	4 [.] 83,59009,6 4 [.] 7486907,1 4 [.] 7301537,5
310	,,	VIII VII VI	159	54 22 45.02 55 14 16.25 70 22 58.73	·19 ·19	4 ⁻ 7063504,0 4 ⁻ 7109404,2 4 ⁻ 7703504,8	324	,,		XCII XCI XC	167	49 47 31 18 55 9 45 80 75 2 43 02	·24 ·24 ·24	4 [.] 73379 ¹ 4,7 4 [.] 7650909,5 4 [.] 8359009,6
311	,,,	VII VIII IX	160	62 57 33 25 58 9 2 33 58 53 24 42	.18 .18	4.7235006,3 4.7029182,8 4.7063504,0	325	,,		XCI XC LXXXIX	168	58 0 51 94 69 40 38 04 52 18 30 02	·23 ·23 ·23	4.7639322,6 4.8075309,7 4.7337914,7
312	,,,	VIII IX X	160	50 45 42.05 67 36 10.58 61 38 7.37	.18 .18	4.6680891,1 4.7449932,4 4.7235096,3	326	,,		XC LXXXIX LXXXVIII	168	61 47 52°34 54 49 7°92 63 22 59°74	·21 ·21 ·22	4 [.] 7577001,6 4 [.] 7249832,4 4 [.] 7639322,6
313	,,	IX X XI	161	57 6 33 73 68 6 42 65 54 46 43 62	·16 ·17 ·16	4.6800321,6 4.7234109,6 4.6680891,1	327	,,		LXXXIX LXXXVIII LXXXVII	169	57 12 49 61 63 16 53 67 59 30 16 72	·22 ·23 ·22	4.7469984,7 4.7733207,9 4.7577001,6
314	"	X XI XII	161	52 54 57 · 87 75 · 16 · 16 · 49 51 · 48 · 45 · 64	·18 ·18	4.6864815,6 4.7701025,6 4.6800321,6	328	,,		LXXXVIII LXXXVII LXXXVI	169	52 43 31 46 69 23 38 44 57 52 50 10	`2 I `22 `22	4 [.] 7199172,7 4 [.] 7904313,4 4 [.] 7469984,7
315	,,	XI XII XIII	162	60 54 41.85 66 24 26.76 52 40 51.39	.18	4·7274131,8 4·7480579,2 4·6864815,6	329	,,		IXXXVII LXXXVI LXXXV	170 148	68 16 58·53 63 41 22·09 48 1 39·38	·25 ·24 ·24	4 [.] 8166816,7 4 [.] 8011597,8 4 [.] 7199172,7
316	,,	XII XIII XIV	162 163	53 51 16.97 72 50 0.85 53 18 42.18	·22 ·22 ·21	4.7304495,6 4.8035027.2 4.7274131,8	330	,,		LXXXVI LXXXV LXXXIV	170 148 149	58 40 50 97 51 18 54 37 70 0 14 66	·24 ·24 ·24	4·7752874,0 4·7361104,7 4·8166816,7
317	,,	XIII XIV XV	163	56 56 5°14 70 18 37°71 52 45 17°15	·22 ·23 ·22	4·7527778,0 4·8033430,9 4·7304495,6								

umber	Error	Station Number	8	G . 179	Ехсева	Logarithm of	umber	Error		Station Number	8	G 4170	Excess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error		Serial	Тъвтегзе	Corrected Plane Angle	Spherical]	side-length in Feet
331	y x z	B* LXIV LXII S I	171 172	80 1 29 20 56 27 4 50 43 31 26 30	" 1.14 1.14	5·1978856,4 5·1253628,8 5·0425046,7	345	y x z	s	XVIII XIX XX	178	62 10 23.76	" 21 20 21	4·7382747,9 4·7341174,5 4·7501751·5
332	,,	B LXII S I II	172	57 36 6.90 39 57 25.37 82 26 27.73	1.08 1.04	5.1281964,9 5.0093553,5 5.1978856,4	346	"		XIX XX XXI	178 179	50 56 35 98 69 22 37 47 59 40 46 55	·19 ·20 ·20	4·6923097,4 4·7733934,5 4·73 ⁸ 2747,9
333	,,	II I IV	172	56 27 29 68 73 43 20 01 49 49 10 31	1 '49 1 '49	5°1659909,8 5°2273264,4 5°1281964,9	347	,,	1	XX XXI CVII	179	63 13 37 27 68 1 26 95 48 44 55 78	· 2 I · 2 I · 2 I	4·7669456,4 4·7834320,0 4·6923097,4
334	"	I IV V	172	61 43 58 94 61 39 25 08 56 36 35 98	1.27 1.22	5·1891866,4 5·1888761,0 5·1659909,8	34 8	,,	SI	XXI CVIII	179 180	51 49 44 28 67 38 11 18 60 32 4 54	· 22 · 23 · 22	4 [.] 7226167,4 4 [.] 7931428,5 4 [.] 7669456,4
335	,,	IV V VII	173	43 6 19°37 80 41 7°23 56 12 33°40	1.23 1.23	5.1041849,9 5.2637821,5 5.1891866,4	349	,,		CVIII CVII	180 181	58 49 41 · 22 65 12 45 · 04 55 57 33 · 74	· 20 · 21 · 20	4.7365304,9 4.7622736,4 4.7226167,4
336	,,	V VII IX	173 174	64 45 2.77 57 35 50.93 57 39 6.30	1.12	5.1338149,4 5.1039241,8 5.1041849,9	350	,,		CVII CVII	181	62 16 6 77 59 35 42 27 58 8 10 96	. 51 . 51	4.7544768,9 4.7432097,9 4.7365304,9
337	"	IX VII XII	174 175	52 27 28·75 66 45 13·65 60 47 17·60	I . 55 I . 55 I . 55	5.0921114,8 5.1561185,7 5.1338149,4	351	,,		CVI CIII CII	181	59 59 15.04 61 9 26.25 58 51 18.41	· 22 · 23 · 22	4'7595490,1 4'7645514,2 4'7544768,9
338	,,	VII XII XI	175	46 33 38.07 58 31 22.83 74 54 59.10	.77 .77 .78	4.9683353.7 5.0382105,1 5.0921114,8	352	,,		CIII CII	182	55 54 8·87 59 31 6·86 64 34 44·27	·20 ·20 ·21	4.7218503,6 4.7391790,6 4.7595490,1
339	"	XI XII XIII	175	52 46 52.54 61 49 57.23 65 23 10.23	· 52 · 53 · 53	4.9108009,2 4.9549644,1 4.9683353,7	353	,,		CII CI C	182	59 56 19.79	· 20 · 20 · 20	4.7500041,5 4.7364381,2 4.7218503,6
340	,,	XII XIII XV	175 176	62 23 33 33 59 54 34 52 57 41 52 15	*48 *48 *47	4.9313242,8 4.9209543,4 4.9108009,2	354	,,		CI C XCIX	183	75 36 22 35 46 13 12 33 58 10 25 32	· 21 · 20 · 20	4.8069127,1 4.6793026,9 4.7500041,5
341	,,	XV XIII XVII	176 177	58 25 9 11 47 2 3 97 74 32 46 92	·37 ·37 ·38	4.8777062,7 4.8116871,7 4.9313242,8	355	,,		C XCIX XCVIII	183	60 53 5.45 51 52 54.94 67 13 59.61	· 24 · 24 · 24	4.7834747,6 4.7379718,6 4.8069127,1
342	,,	XIII XVII XVI	177	56 33 43.65 50 16 26.81 73 9 49.54	.30 .30	4.8181503,0 4.7827213,5 4.8777062,7	356	,,		XCIX XCVIII XCVII	184	67 50 24 °01 49 56 12 ·85 62 13 23 ·14	·24 ·23 ·23	4.8033188,2 4.7204971,4 4.7834747,6
343	"	XVI XVII XVIII	177	52 55 22 91 54 31 36 73 72 33 0 36	· 23 · 23 · 23	4'7405196,1 4'7494424,5 4'8181503,0	357	,,		XCVIII XCVII XCVI	184 185	56 3 36·80 58 17 15·87 65 39 7·33	·24 ·25 ·25	4.7626543,1 4.7735483,2 4.8033188,2
344	"	XVII XVIII XIX	177	60 7 53 54 61 51 44 61 58 0 21 85	. 31 . 32	4.7501751,5 4.7574491,3 4.7405196,1	358	"		XCVII XCVI XCV	185	65 18 45 31 53 43 58 16 60 57 16 53	·22 ·22 ·22	4.7793987,4 4.7275050,7 4.7626543,1

^{*} B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

umber	Error		Station Number	8	G 4 179	Excess	Logarithm of	umber	Error	Station Number	's	G 4 170	Excess	Logarithm of
Triangle Number	Symbolic Error		Serial	Тгатегве	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Тгатегве	Corrected Plane Angle	Spherical Excess	side-length in Feet
359	y x z	I	XCVI XCV XCIV	18 5 18 6	61 11 50.83 57 4 18.00 61 43 51.17	" 24 23 24	4.7772000,5 4.7584982,5 4.7793987,4	372	y x z	T IX X XI	192	78 39 26·18 52 31 37·93 48 48 55·89	· 18 · 18 · 17	4·7846466,2 4·6928378,4 4·6697734,4
360	"		XCV XCIV XCIII	18 6 16 6	68 47 2 31 53 6 28 82 58 6 28 87	·25 ·24 ·25	4.8177886,7 4.7512333,3 4.7772000,5	373	,,	X XI XII	193	54 55 19 44 62 41 49 48 62 22 51 08	·24 ·24 ·24	4.7501392,9 4.7858923,6 4.7846466,2
361	,,		XCII XCIII XCII	18 6 1 6 6 1 6 7	53 44 12·68 55 16 45·45 70 59 1·87	·23 ·24 ·24	4:7486622,5 4:7569999,4 4:8177886,7	374	,,	XI XII XIII	193	49 31 40 21 70 29 49 00 59 58 30 79	.20 .21	4.6939428,2 4.7870554,4 4.7501392,9
								375	,,	XII XIII XIV	194	67 22 30 18 57 52 30 37 54 44 59 45	.18 .18	4.7471340,0 4.7097396,2 4.6939428,2
362	"	B	LXXXI LXXVIII I	187	59 46 2·92 59 50 16·61 60 23 40·47	·28 ·28 ·28	4.8070143,6 4.8073251,9 4.8097497,2	376	,,	XIII XIV XV	194	47 44 37 96 61 33 25 85 70 41 56 19	·17	4.6415738,9 4.7163899,1 4.7471340,0
363	"	B	LXXVIII I	188	56 31 27 95 52 41 32 28 70 46 59 77	·23 ·22 ·23	4 [.] 7531425,5 4 [.] 7324946,7 4 [.] 8070143,6	377	,,	XIV XV XVI	195	77 5 25 21 52 16 7 74 50 38 27 05	.12	4.7421714,1 4.6514063,8 4.6415738,9
364	"		III I	188	66 18 37 91 47 30 20 51 66 11 1 58	·19	4.7535653,9 4.6594653,4 4.7531425,5	378	,,	XV XVI XVII	195 196	49 24 37 80 77 16 50 97 53 18 31 23	·22 ·22 ·22	4 [.] 7185347,6 4 [.] 8272794,3 4 [.] 7421714,1
365	,,		I III IV	188 189	53 56 11.86 56 38 23.78 69 25 24.36	. 18 . 18	4·6898034,8 4·7040019,9 4·7535653,9	379	,,	XVI XVII XVIII	196	69 53 23.00 60 36 22.19 49 30 14.81	·23 ·23 ·23	4 [.] 8101433,0 4 [.] 7776136,3 4 [.] 7185347,6
366	"		IV III V	189	77 47 41 65 48 59 42 87 53 12 35 48	·18	4 [.] 7763317,9 4 [.] 6640092,3 4 [.] 6898034,8	380	,,	XVII XVIII XIX	196	52 20 47 08 58 9 11 43 69 30 1 49	·23 ·23 ·24	4.7371253,5 4.7676983,7 4.8101433,0
367	"		III V VI	190	49 47 37 89 59 1 5 55 71 11 16 56	·19 ·19	4.6831118,1 4.73333223,2 4.7763317,9	381	,,	XVIII XIX XX	197	61 49 55.48 61 3 44.41 57 6 20.11	.51 .51	4.7582710,3 4.7550961,5 4.7371253,5
36 8	,,		V VI VII	190	48 59 34 28 67 12 40 02 63 47 45 70	·14 ·14 ·14	4 [.] 6079419,1 4 [.] 6949109,3 4 [.] 6831118,1	382	,,	XIX XX XXI	197 198	58 24 32 23 65 0 32 41 56 34 55 36	·24 ·24 ·24	4·7670955,3 4·7940609,4 4·7582710,3
369	,,		VI VII VIII	191	69 34 17 77 68 14 49 56 42 10 52 67	·17 ·17 ·16	4'7526998,1 4'7488275,7 4'6079419,1	383	,,	XX XXI XXII	198	53 17 59 74 51 28 30 10 75 13 30 16	·17	4.6857507,3 4.6750920,1 4.7670955,3
370	"		VII VIII IX	191	70 21 26 83 49 22 8 63 60 16 24 54	·21 ·20 ·21	4'7879413,4 4'6941748,9 4'7526998,1	384	,,	XXI XXII XXIII	198	53 13 43 02 70 56 3 22 55 50 13 76	·17	4.6716607,0 4.7435097,5 4.6857507,3
371	"		VIII IX X	192	45 4 55 31 66 33 10 30 68 21 54 39	· 20 · 21 · 21	4·6697734,4 4·7822393,6 4·7879413,4	385	,,	XXII XXIII XXIV	199	58 37 54·89 74 6 34·70 47 15 30·41	·19 ·20 ·19	4.7370916,4 4.7887938,0 4.6716607,0

mber	Error		Station Number	5		Sxcoss.	Logarithm of	umber	Error		Station Number	18		Lxcess	Logarithm of
Triangle Number	Symbolic]		Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error		Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet
386	y w	T	XXIII XXIV XXV	199	67 52 8 25 49 24 31 69 62 43 20 06	.18 .18	4.7550532,0 4.6687441,1 4.7370916,4	400	y x x	т	XXXVII XXXVIII XXXIX	206	58 52 31 99 55 23 34 66 65 43 53 35	· 23 · 23 · 23	4·7608389,6 4·7437765,6 4·7881598,2
887	"		XXIV XXV XXVI	200	59 17 14 51 63 38 40 16 57 4 5 33	·23 ·24 ·23	4.7654937,3 4.7834622,5 4.7550532,0	401	"		XXXVIII XXXIX XL	207	58 52 31 · 17 56 42 50 · 91 64 24 37 · 92	.31 .30	4.7381712,4 4.7278514,1 4.7608389,6
888	"		XXV XXVI XXVII	200	80 11 24 25 46 8 18 24 53 40 17 51	·24 ·23 ·23	4·8529589,1 4·7173005,9 4·7654937,3	402	,,		XXXIX XL XLI	207	65 9 28 98 57 10 29 45 57 40 1 57	.22 .31	47691700,8 47357869,3 47381712,4
389	"		XXVI XXVII XXVIII	201	44 50 14 17 73 16 37 50 61 53 8 33	.31 .31	4·7557340,1 4·8887188,5 4·8529589,1	403	"		XL XLI XLII	208	59 8 20.99 56 12 54.84 64 38 44.17	.31 .31	4.7468548,0 4.7328272,9 4.7691700,8
390	"		XXVII XXVIII XXIX	201	66 58 12 97 63 15 38 04 49 46 8 99	· 28 · 27 · 27	4·8368846,0 4·8238357,7 4·7557340,1	404	"		XLI XLII XLIII	208	66 44 3.47 56 45 5.04 56 30 51.49	·23 ·23 ·22	4.7888421,8 4.7480383,7 4.7468548,0
391	,,		XXVIII XXIX XXX	202	45 47 16 . 77 55 5 32 . 19 79 7 11 . 04	· 22 · 22 · 23	4.7001390,2 4.7586159,7 4.8368846,0	405	"	x	XLII XLIII CXXV	209	67 14 10.07 48 36 56.14 64 8 53.79	·23 ·22 ·23	4.7994170,7 4.7998653,8 4.7888421,8
392	"		XXIX XXX XXXI	202	52 34 0.23 77 38 20.26 49 47 8.91	*20 *20 *20	4.7171073,3 4.8070802,6 4.7001390,2	406	"	T	XLIII CXXV CXXVI	209	60 39 42 96 50 14 48 88 69 5 28 16	·22 ·22 ·23	4.7693896,9 4.7148182,4 4.7994170,7
393	,,		XXX XXXI XXXII	203	66 4i 30.03 61 52 0.00 51 53 29.97	· 22 · 23 · 23	4.7842447,1 4.7647729,8 4.7171073,3	4 07	"		CXXVI CXXV CXXII	210 211	49 48 47°72 72 22 51°07 57 48 21°21	·23 ·24 ·23	4.7249543,2 4.8210257,6 4.7693896,9
394	,,		XXXII XXXIII XXXIII	203	74 17 53.09 53 36 0.57 52 6 6.34	·29 ·29 ·28	4·8705941,8 4·7928504,9 4·7842447,1	4 08	,,		CXXV CXXII CXXI	211	40 11 10 90 70 47 51 64 69 0 57 46	14 15	4'5645016,0 4'7298951,0 4'7249543,2
395	"		XXXII XXXIII XXXIV	204	54 27 59 27 45 8 4 67 80 23 56 06	·25 ·25 ·26	4.7872250,7 4.7272235,7 4.8705941,8	409	,,		CXXII CXXI CXX	211	70 52 34.85 75 51 23.44 33 16 1.71	·18 ·18	4.8006368,3 4.8119221,5 4.5645016,0
396	,,		XXXIII XXXIV XXXV	204	77 54 22 51 43 19 43 17 58 45 54 32	·23 ·23 ·23	4.8454871,1 4.6916738,4 4.7872250,7	410	"		CXXI CXX CXIX	212	76 0 35.74 46 52 40.30 57 6 43.96	· 27 · 26 · 27	4.8634171,5 4.7397565,8 4.8006368,3
397	"		XXXIV XXXV XXXVI	205	55 11 46.46 55 11 15.02 69 31 1.52	·27 ·28 ·28	4.7882533,8 4.7887290,2 4.8454871,1	411	,,		CXX CXIX CXVIII	212	46 33 10·35 50 0 41·82 83 26 7·83	·23 ·23 ·24	4.7272160,8 4.7506017,6 4.8634171,5
398	"		XXXV XXXVI XXXVII	205	65 16 15.86 52 22 59.50 62 16 44.64	°24 °24 °24	4.7991631,4 4.7397210,3 4.7882533,8	412	,,		CXIX CXVIII CXVII	213	71 37 52 91 49 49 4 14 58 33 2 95	.19 .19	4.7735028,8 4.6793058,9 4.7272160,8
399	"		XXXVI XXXVII XXXVIII	206	64 38 47 94 47 24 3 24 67 57 8 82	·22 ·22 ·23	4.7881598,2 4.6990844,4 4.7991631,4	413	,,		CXVIII CXVII CXVI	213	62 58 0.78 53 18 15.33 63 43 43.89	· 22 · 22 · 22	4·7706039,8 4·7249280,3 4·7735028,8

amber	Error	Station Number	8		Ехоеве	Logarithm of	umber	Error	Station Number	8		Ехоеве	Logarithm of
Triangle Number	Symbolic Error	Serial	Тъвтегве	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Тгатегве	Corrected Plane Angle	Spherical Excess	side-length in Feet
414	y x z	I CXVII CXVI CXV	214	62 10 5.73 59 14 43.59 58 35 10.68	" 25 24 24	4·7860486,8 4·7736160,1 4·7706039,8	427	y x z	X I II IV	219	67 21 55 · 836	* '174 '174 '174	4·6425288,3 4·7363291,0 4·7425462,1
415	"	CXVI CXV CXIV	2 I 4 2 I 5	56 49 19.22 60 19 37.61	·25 ·25 ·25	4·7698082,4 4·7963990,4 4·7860486,8	428	,,	II IV VI	2 1 9 2 2 0	67 38 11 933 65 51 30 717 46 30 17 350	·177 ·177 ·176	4 [,] 747974 ⁸ ,7 4 [,] 7421830,8 4 [,] 6425288,3
416	,,	CXIV CXIV CXIII	215	56 4 12.64 60 23 54.61 63 31 52.75	· 22 · 22 · 23	4.7368312,9 4.7571594,2 4.7698082,4	42 9	, ,	VI IV VII	220 221	63 22 54 850 56 10 7 743 60 26 57 407	.311 .311	4·7598395,6 4·7279303,6 4·7479748,7
417	,,,	CXII CXIII CXIV	215 216	61 37 15 94 63 50 49 51 54 31 54 55	· 23 · 23 · 22	4·7703689,9 4·7790663,2 4·7368312,9	43 0	,,	VIII VIII	221	53 48 32 082 56 45 6 249 69 26 21 669	·188 ·188	4·6953257,4 4·7107876,7 4·7598395,6
418	,,	CXII CXII CXIII	216	59 57 38 50 60 42 39 83 59 19 41 67	· 24 · 24 · 24	4·7731766,2 4·7764161,3 4·7703689,9	431	,,	VIII VII IX	221	55 7 42 667 72 31 2 731 52 21 14 602	·192 ·192 ·191	4·7107551,8 4·7761712,9 4·6953257,4
419	,,	CXII CXI	216	70 17 12.83 53 26 12.08 56 16 35.09	·25 ·25 ·25	4·8269676,5 4·7580197,1 4·7731766,2	432	,,	VII IX X	221	57 50 19 352 67 3 17 278 55 6 23 370	·198 ·198 ·197	4·7244807,2 4·7610287,1 4·7107551,8
420	"	CXI CX CIX	217	49 20 53 83 48 52 12 71 81 46 53 46	· 20 · 20 · 21	4.7115115,0 4.7083734,6 4.8269676,5	433	"	X IX XII	222	71 47 51 · 163 50 41 18 · 768 57 30 50 · 069	·194 ·193 ·193	4·7760891,3 4·6869646,3 4·7244807,2
421	,,	CX CIX CV	217	61 629.36 69 122.60 49 52 8.04	· 22 · 23 · 22	4·7703660,3 4·7983118,1 4·7115115,0	434	,,	IX XII XIII	223	59 19 31 · 171 52 57 18 · 352 67 43 10 · 477	·209 ·208 ·209	4·7443259,1 4·7118800,6 4·7760891,3
422	"	CIX CV CVI	2 8 8	60 35 35 66 54 47 48 99 64 36 35 35	· 2 I · 2 I · 2 2	4.7545775.7 4.7267643,7 4.7703660,3	435	"	XIII XII XIV	223	52 1 25.517 65 46 7.010 62 1473	·197 ·198 ·197	4·6942305,7 4·7575028,0 4·7443259,1
42 3	,,	CV CVI CII	218 181 182	61 40 48 98 58 58 17 12 59 20 53 90	· 23 · 22 · 22	4.7645741,8 4.7528718,6 4.7545775,7	436	,,	XII XIV XV	223	58 43 29 037 68 52 50 076 52 23 40 887		4·7271826,1 4·7651807,2 4·6942305,7
							437	"	XV XIV XVII	224	65 44 21 · 237 57 29 21 · 471 56 46 17 · 237	·207 ·206 ·206	4·7645657,7 4·7306985,4 4·7271826,1
424	,,	I CXXII CXXVI CXXIV	211	66 31 16 48 58 33 31 31 54 55 12 21	.33 .33 .33	4·8705538,7 4·8391242,4 4·8210257,6	438	,,	XIV XVII XVIII	225	52 14 1 914 58 1 33 847 69 44 24 239	.191 .191 .190	4·6902134,4 4·7208460,8 4·7645657,7
425	"	CXXIV CXXVI X I	210	56 55 31 · 526 60 11 17 · 948 62 53 10 · 526	354 355 355	4·8443371,7 4·8594650,3 4·8705538,7	439	,,	XVIII XVII XIX	225	62 8 46 · 849 71 1 11 · 386 46 50 1 · 765	·217 ·217 ·217	4·7737869,4 4·8029857,8 4·6902134,4
4 26	"	I CXXVI X I II	2 I O 2 I 9	51 51 11.493 44 50 55.200 83 47 56.002	·213 ·213 ·213	4.7425462,1 4.6913713,7 4.8443371,7	44 0	"	XVII XIX XX	2 2 5 2 2 6	58 25 49 107 58 33 20 630 63 0 50 263	·227 ·227 ·227	4'7542937,9 4'7548765,1 4'7737869,4

umber	Error	Station Numbe	rs		Treess	Logarithm of	umber	Greer	Station Number	·8		Ехсевв	Toposither of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Тгатегве	Corrected Plane Angle	Spherical F	Logarithm of side-length in Feet
441	y x z	X XX XIX XXII	226	66 5 49 953 56 53 0 738 57 1 9 309	" -232 -232 -232	4.7916651,2 4.7536244,9 4.7542937,9	454	y x z	U X XI XII	233	65 38 1 °078 55 59 54 °561 58 22 4 °361	" - 204 - 203 - 203	4'7610749,0 4'7201583,1 4'7317422,9
442	"	XIX XXII XXIII	227	60 12 19 060 72 3 0 647 47 44 40 293	·337 ·337 ·337	4·8607684,3 4·9006728,1 4·7916651,2	455	, ,,	XI XII XIII	234	55 12 39 460 65 33 52 650 59 13 27 890	·228 ·229 ·228	4.7414715,3 4.7862375,3 4.7610749,0
443	"	XXIII XXII XXIV	227	71 5 3.219 47 51 14.026 61 3 42.455	·333 ·333 ·333	4·8945794,4 4·7887636,3 4·8607684,3	456	,,	XII XIII XIV	234	60 31 38 915 63 38 40 390 55 49 40 695	· · 226 · 226 · 226	4'7635942,0 4'7761154,2 4'7414715,3
							4 57	"	XIII XIV XV	235	58 24 36 395 54 32 50 446 67 2 33 159	.200 .200 .200	4.7297788,7 4.7103731,3 4.7635942,0
414	,,	T I B* LXXXI U I	188	54 42 10 963 58 38 14 201 66 39 34 836	·246 ·247 ·247	4·7561828,8 4·7758048,8 4·8073251,9	45 8	,,	XIV XV XVI	235	61 47 43 812 52 53 51 254 65 18 24 934	·176 ·175 ·176	4.7165331,2 4.6731884,4 4.7297788,7
445	,,	B TXXXI	187	60 21 43 310 64 46 13 846 54 52 2 844	·247 ·247 ·246	4·7826270,7 4·7999839,5 4·7561828,8	4 59	,,	XV XVI XVII	236	62 15 44 049 67 34 13 112 50 10 2 839	·228 ·228 ·227	4.7782031,6 4.7970529,1 4.7165331,2
446	,,	II I IV	229	65 6 17:034 55 10 7:380 59 43 35:586	·250 ·250 ·250	4·8039447,4 4·7605568,8 4·7826270,7	4 60	,,	XVI XVII XVIII	236	51 36 54 387 67 31 18 110 60 51 47 503	·235 ·236 ·236	4 [.] 7311972,7 4 [.] 8026437,1 4 [.] 7782031,6
447	,,	I IV V	230	59 17 42 358 59 54 49 017 60 47 28 625	·272 ·273 ·273	4·7974079,6 4·8001581,1 4·8039447,4	461	,,	XVIII XVII XIX	237	56 58 48 693 63 57 14 933 59 3 56 374	·201 ·201 ·201	4.7213268,9 4.7513235,5 4.7311972,7
448	,,	IV V VI	230	52 56 5.507 58 23 23 878 68 40 30 615	. 226	4.7301854,8 4.7584629,1 4.7974079,6	462	,,	XVII XIX XX	238	62 14 57 354 62 45 54 166 54 59 8 480	210	4.7549726,6 4.7570072,5 4.7213268,9
449	,,	V VI VII	231	46 34 38 · 193 75 25 58 · 482 57 59 23 · 325	·189 ·189	4.6629305,5 4.7876230,0 4.7301854,8	4 63	,,	XIX XX XXI	238	63 0 32 534 54 39 55 955 62 19 31 511	'210 '209 '210	4.7576509,9 4.7193135,3 4.7549726,6
4 50	,,	VI VII VIII	231	65 11 12 827 58 50 38 210 55 58 8 963	. 122	4.7024476,3 4.6768667,7 4.6629305,5	464	,,	XXI XX V I	239	53 50 8.805 62 10 12.077 63 59 39.118	.202	4.7110627,8 4.7506299,5 4.7576509,9
4 51	,,	VII VIII IX	232	59 53 7:290 57 48 22:203 62 18 30:507	.166 .165	4.6923052,7 4.6827764,8 4.7024476,3	465	,,	U XX V I III	240	66 51 54.410 61 54 17.822 51 13 47.768	217	4.7827452,4 4.7647056,7 4.7110627,8
452	"	VIII IX X	232	68 6 21 · 582 56 17 10 · 667 55 36 27 · 751	·179 ·179 ·179	4.7432411,6 4.6957816,4 4.6923052,7	4 66	,,	III I · V	240	57 43 10°235 59 56 48°925 62 20 0°840	.240	4'7625600,4 4'7727734,4 4'7827452,4
4 53	,,	IX X XI	233	58 25 21 · 172 60 33 25 · 833 61 1 12 · 995		4.7317422,9 4.7412784,7 4.7432411,6	467	,,	I V IV	240	59 30 3.830 59 28 37.705 61 118.465	.224	4'7559743,3 4'7558674,8 4'7625600,4

^{*} B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

umber	Error	Station Number	rs		Ехсевв	Logarithm of	umber	Error	Station Numbe	rs		Excess	Logarithm of
Triangle Number	Symbolic Error	Serial	Тгатегве	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse.	Corrected Plane Angle	Spherical I	side-length in Feet
4 68	y x z	V IV V	241	62 55 26 · 135 59 12 48 · 219 57 51 45 · 646	" 232 232 231	4.7777925,4 4.7622393,7 4.7559743,3	482	y x z	V XXIV XXI XXVII	248	0 / " 72 30 46 191 47 27 59 111 60 1 14 698	" '211 '211 '211	4·8007806,8 4·6887280,6 4·7589519,9
469	,,	V VI VIII .	242	59 50 59 92 1 54 32 45 443 65 36 14 636	·219 ·219 ·220	4.755283,11 4.7293452,6 4.7777925,4	483	,,	XXI XXVII XXV	248	50 27 12 169		4.8202576,3 4.7417636,7 4.8007806,8
4 70	,,	VIII VI X	2 4 2	51 11 59 962 69 42 37 701 59 5 22 337	·217 ·218 ·218	4'7135362,1 4'7939912,3 4'7552831,1	484	,,	XXV XXVII XXVIII	249 250	53 36 44 689 58 36 31 655 67 46 43 656	.256	4.7595809,4 4.7850430,6 4.8202576,3
4 71	,,	VI X IX	242	52 54 52·256 66 56 32·091 60 8 35·653	179	4.6772401,4 4.7392205,1 4.7135362,1	485	,,	XXVII XXVIII XXX	250	61 154.685 58 42 46.838 60 15 18.477	. 224	4·7628925,4 4·7526906,1 4·7595809,4
472	,,	IX X XI	243	55 45 45 048 73 54 25 721 50 19 49 231	·184 ·184 ·184	4.7082519,2 4.7735365,8 4.6772401,4	4 86	,,	XXX XXVIII XXXII	250	65 9 45 766 54 30 28 902 60 19 45 332	.225	4.7817792,3 4.7346599,9 4.7628925,4
473	"	X XI XIII'	244	60 53 17 676 68 31 0 618 50 35 41 706	. 217	4.7616024,3 4.7889819,8 4.7082519,2	4 87	,,	XXVIII XXXII XXXI	250 251	58 51 3.836 56 19 25.105 64 49 31.059	·227 ·227 ·228	4.7575087,6 4.7453423,2 4.7817792,3
474	,,	XIII XI XV	244	47 55 30°429 70 37 35°723 61 26 53°848	·209 ·210 ·210	4.6884787,2 4.7926021,8 4.7616024,3	4 88	,,	XXXI XXXII XXXIII	2 5 1 2 5 2	59 51 51 391	· 2 I I	4.7321060,3 4.7446601,6 4.7575087,6
475	"	XI XV XIV	244	56 24 19.790 67 50 12.790 55 45 27.420	• 176	4.6917810,4 4.7378137,4 4.6884787,2	489	,,	XXXII XXXIII XXXV	252	64 57 9 043 62 21 33 509 52 41 17 448	. 232	4.7886562,5 4.7789207,7 4.7321060,3
476	,,	XIV XV XVI	245	61 58 22.074 65 46 50.868 52 14 47.058	.192	4.7396214,3 4.7537827,3 4.6917810,4	4 90	,,	XXXV XXXIII XXXVII	252	56 25 38 545 61 39 0 732 61 25 20 723	•248	4.7637762,4 4.7875491,9 4.7886562,5
477	,,	XV XVI XVIII	246	54 14 39 347 66 34 24 730 59 10 55 923	·206 ·207 ·206	4.7150258,4 4.7683687,8 4.7396214,3	4 91	,,	XXXIII XXXVII XXXVI	2 5 2 2 5 3	58 49 11.569 61 2 30.918 60 8 17.513	*230	4.7578848,6 4.7676377,3 4.7637762,4
478	"	XVIII XVI XX	246	84 46 56 661 45 59 7 297 49 13 56 042	· 201 · 200 · 201	4.8339187,9 4.6925489,5 4.7150258,4	492	,,	XXXVI XXXVII XXXIX	2 5 3 2 5 4	81 27 24 499 54 54 28 818 43 38 6 683	.303	4.9141495,6 4.8318707,9 4.7578848,6
479	,,	XVI XX XIX	246	45 56 39 831	· 268 · 268 · 268	4·8407350,2 4·7298258,4 4·8339187,9	493	,,	XXXVII XXXIX XL	254	70 56 54 772 44 53 15 636 64 9 49 592	393	4.0354216,1 4.8085180,1 4.9141495,6
480	,,	XIX XX XXI	247	57 56 24 170 51 17 12 832 70 46 22 998	265	4.7937973,4 4.7579157,3 4.8407350,2	494	,,	XL XXXIX XLI	254	52 33 9 066 40 46 32 578 86 40 18 356	.304	4·8359265,8 4·7511342,6 4·9354216,1
481	,,	XX XXI XXIV	248	58 2 46 685 55 7 16 379 66 49 56 936	. 231	4.7589519.9 4.7443188.3 4.7937973.4	495	,,	XXXIX XLI XLIII	2 5 4 2 5 5	53 38 37 786	306	4.8475921,1 4.7973689,7 4.8359265,8

mber	rror	Station Number	·8		xcess.	Logarithm of	ımber	Gror	Station Number	·8		xcess	Logarithm of
Triangle Number	Symbolic Error	Serial	Тгатегве	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet
496	y x z	Y XLI XLIII XLIV	255	0 / " 70 12 30°360 50 14 13°205 59 33 16°435	" '328 '328 '328	4·8855859,3 4·7977833,9 4·8475921,1	510	y x z	X XXXV XXXIV XXXVII	260	0 , " 81 45 52·168 39 37 33·206 58 36 34·626	" 399 398 399	4'9816075,2 4'7907748,9 4'9173832,2
497	,,	XLIV XLIII XLV	255	56 23 46 270 67 16 19 483 56 19 54 247	·430 ·430 ·429	4.8859109,6 4.9302219,1 4.8855859,3	511	,,	XXXIV XXXVII XXXVI	260 261	49 51 26 055 48 44 4 726 81 24 29 219	.421 .421 .421	4.8698526,4 4.8625321,6 4.9816075,2
49 8	"	XLIII XLV XLVI	255 256	68 4 24 362 58 6 33 021 53 49 2 617	.455 .455 .455	4.9463526,6 4.9078987,6 4.8859109,6	512	,,	XXXVI XXXVII XXXVIII	2 6 1 2 6 2	45 36 8 991 58 1 57 682 76 21 53 327	·270 ·270 ·270	4.7362725,6 4.8108435,7 4.8698526,4
499	"	XLVI XLV X XXV	256 257	37 22 25 397 91 17 7 504 51 20 27 099	·478 ·479 ·479	4·8369673,6 5·0536611,9 4·9463526,6	513	"	XXXVII XXXVIII XL	262	64 44 34 821 71 17 49 777 43 57 35 402	·289 ·289 ·289	4.8511788,0 4.8712559,2 4.7362725,6
500	,,	Y XI.V X XXV XXII	257 227	65 3 55 147 75 59 59 219 38 56 5 634	·521 ·521	4.9962118,6 5.0256093,2 4.8369673,6	514	"	XXXVIII XL XLI	2 6 2 2 6 3	56 42 30.400 59 2 30.243 64 14 59.357	·316 ·316 ·317	4.8187484,0 4.8298556,6 4.8511788,0
501	"	XXII XXV XXIV	2 2 7 2 5 7 2 2 8	31 43 43 676 51 50 38 851 96 25 37 473	·322 ·322 ·323	4.7198524,5 4.8945,564,0 4.9962118,6	515	,,	XL XLI XLIII	263	59 41 47 134 70 58 50 686 49 19 22 180	·368 ·369 ·368	4.8750474,4 4.9144732,6 4.8187484,0
502	"	XXV XXIV XXVI	257 228 258	67 12 8 775 73 5 18 998 39 42 32 227	·300 ·300 ·299	4.8791018,8 4.8952287,8 4.7198524,5	516	,,	XLI XLIII XLII	263 264	90 40 2.068 30 16 29.105 59 3 28.827	·261 ·260 ·261	4.9416885,5 4.6442752,4 4.8750474,4
503	,,	XXIV XXVI XXVII	2 2 8 2 5 8	62 21 44 125 62 52 44 867 54 45 31 008	·436 ·437 ·436	4.9144081,1 4.9164371,2 4.8791018,8	517	,,	XLIII XLII XLIV	264 265	30 49 10 187 78 14 5 386 70 56 44 427	·320 ·320 ·320	4.6757146,6 4.9569394,6 4.9416885,5
504	,,	XXVII XXVI XXVIII	258	60 15 34 415 57 22 6 366 62 22 19 219	•438	4.8923778,5 4.8923778,5 4.9144081,1							
505	,,	XXVI XXVIII XXX	258 259	55 47 20 347 73 40 11 230 50 32 28 423	.525	4.9354738,0 5.0000988,5 4.9056461,7	518	,,	U XVIII XIX XXII	237 238 266	64 20 34 716 60 16 20 340 55 23 4 944	·239 ·239 ·238	4.7908502,5 4.774 ⁶ 475,4 4.75 ¹ 3 ² 35,5
506	,,	XXVIII XXX XXXI	259	80 55 21 · 289 36 44 24 · 314 62 20 14 · 397	.301 .300	4.9827155,5 4.7650251,7 4.9354738,0	519	,,	XIX XXII XXIII	238 266	56 56 19.487 60 19 29.736 62 44 10.777	·246 ·247 ·247	4.7652830,3 4.7809367,8 4.7908502,5
507	,,	XXXI XXX XXXII	259	38 50 42 976 49 54 45 732 91 14 31 292	·349 ·350 ·350	4.7802370,2 4.8665155,0 4.9827155,5	52 0	"	XXII XXIII XXIV	266 267	65 20 4.509 53 3 9.644 61 36 45.847	. 5 5 1	4.7793709,2 4.7235708,4 4.7652830,3
508	,,	XXX XXXII XXXIV	259 260	46 45 57 422 77 50 16 627 55 23 45 95 1	·248 ·248 ·248	4.7272519,3 4.8549271,0 4.7802370,2	521	,,	XXIII XXIV XXV	267	56 2 7.337 58 43 52.289 65 14 0.374	.223	4.7400294,5 4.7531092,6 4.7793709,2
509	,,	XXXII XXXIV XXXV	260	82 16 20 · 612 57 57 56 · 893 39 45 42 · 495	·295 ·295 ·295	4.9173832,2 4.8496036,0 4.7272519,3	522	"	XXIV XXV XXVI	2 6 7 2 6 8	67 22 8 8 8 0 0 54 58 39 66 9 57 39 11 531	.513	4.7784657,0 4.7265087,0 4.7400294,5

umber	Error	Station Number	rs		Ехсевв	Logarithm of	umber	Error	Station Number	rs		Excess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical I	side-length in Feet
523	y x z	U XXV XXVI XXVII	268	61 39 32.655 53 24 4.608 64 56 22.737	" 222 222 222	4·7659545,8 4·7260275,7 4·7784657,0	537	y x z	U XL XXXIX W XLIX	275 276	53 54 27 595 92 36 5 661 33 29 26 744	" -229 -230 -229	4.8146649,4 4.9067687,8 4.6490003,3
524	,,	XXVI XXVII XXVIII	268 269	59 6 3.719 58 56 46.782 61 57 9.499	· 224 · 223 · 224	4.7537355,6 4.7530316,5 4.7659545,8	53 8	,,	U XXXIX W XLIX XLVII	276	42 20 41 280 83 55 46 808 53 43 31 912	·279 ·280 ·279	4.7366225,1 4.9057844,3 4.8146649,4
52 5	"	XXVII XXVIII XXIX	269	67 58 33 890 47 13 16 230 64 48 9 880	.191 .191	4.7642527,8 4.6628449,4 4.7537355,6	539	"	XLIX XLVII XLVIII	27 6 2 7 7	34 58 58 169 105 38 57 112 39 22 4 719	·204 ·205 ·204	4.6927341,2 4.9179241,4 4.7366225,1
526	"	XXVIII XXIX XXX	269 270	68 40 11.569 49 52 12.929 61 27 35.502	·216 ·216 ·216	4·7897025,9 4·7039465,0 4·7642527,8	540 •	,,	XLVIII XLVII XLVI	277	88 18 23 051 48 15 7 205 43 26 29 744	·208 ·208 ·208	4.8551990,9 4.7281746,7 4.6927341,2
527	,,	XXIX XXX XXXI	270	59 9 21 · 884 55 44 55 · 280 65 5 42 · 836	·234 ·234 ·235	4·7658652,9 4·7493742,6 4·7897025,9	541	,,	XLVII XLVI XLV	278	59 40 8·128 61 38 9·335 58 41 42·537	·360 ·360 ·360	4.8596023,6 -4.8679866,6 4.8551990,9
52 8	,,	XXX XXXI XXXII	27 0 27 1	60 54 42 075 53 52 18 834 65 12 59 091	·209 ·208 ·209	4 7492758,9 4 7150789,3 4 7658652,9	542	,,	XLV XLVI XLIV	278	62 55 17.630 46 58 49.804 70 5 52.566	·286 ·286 ·286	4.8359244,9 4.7503366,7 4.8596023,6
529	,,	XXXI XXXII XXXIII	271	60 11 7.070 58 35 19.144 61 13 33.786	'210 '210 '210	4.7448497,3 4.7376881,4 4.7492758,9	543	,,	XLVI XLIV XLII	278 279	45 24 42 323 67 38 13 719 66 57 3 958	·265 ·266 ·265	4.7246396,8 4.8381004,1 4.8359244,9
530	"	XXXII XXXIII XXXIV	271	59 49 13.262 57 33 54.291 62 36 52.147	· 200 · 200 · 201	4 [.] 7332121,4 4 [.] 7228132,5 4 [.] 744 ⁸ 497,3	544	,,	XLIV XLII XL	279	62 41 1.012 67 32 40.227 49 46 18.761	·239 ·239 ·238	4'7904931,2 4'8075974,1 4'7246396,8
531	,,	XXXIII XXXIV XXXV	272	61 24 44 566 64 9 17 171 54 25 58 263	. 225	4.7664268,7 4.7771200,2 4.7332121,4	54 5	,,	XLII XL XXXIX	279 280	48 20 40 106	·292 ·291 ·291	4'9035897,0 4'7813338,4 4'7904931,2
532	,,	XXXIV XXXV XXXVI	272	62 25 49 048	·22I ·22I ·22I	4 [.] 733 ⁰ 45 ² ,4 4 [.] 7664994,1 4 [.] 7664268,7	546	"	XL XXXIX XXXVIII	280	77 18 26 903 38 30 31 185 64 11 1 912	· 342 · 341 · 341	4.9385080,4 4.7434846,9 4.9035897,0
533	,,	XXXV XXXVI XXXVII	273	61 47 6 154 62 11 45 357 56 1 8 489	217	4.7594384,3 4.7610950,9 4.7330452,4	547	,,	XXXVIII XXXIX XXXVI	280	36 40 48 · 232 56 59 19 · 359 86 19 52 · 409	·298 ·298 ·299	4.7156250,5 4.8629348,0 4.9385080,4
534	"	XXXVI XXXVII XXXVIII	273	55 221.461 53 7 5.581 71 50 32.958	·180 ·179 ·180	4.6951947,5 4.6846442,9 4.7594384,3	548	"	XXXIX XXXVI XXXV	280 281	58 44 18·510 86 52 54·516 34 22 46·974		4·8956949,9 4·9631831,8 4·7156250,5
535	,,	XXXVII XXXVIII XXXIX	274	66 43 18 737 64 7 40 344 49 9 0 919		4 [.] 7795526,6 4 [.] 7705590,8 4 [.] 6951947,5	549	"	XXXVI XXXV XXXIV	281	56 3 14 988 57 44 42 077 66 12 2 935	374 374 374	4 [.] 853141 2, 3 4 [.] 8614971,5 4 [.] 8956949,9
536	"	XXXVIII XXXIX XL	274	53 50 27 190	171	4.6490003,3 4.6940328,5 4.7795526,6	550	,,	XXXIV XXXV XXXII	281	84 52 51 · 156 40 32 40 · 486 54 34 28 · 358	.319 .318	4'9403170,1 4'7549924,1 4'8531412,3

umber	Error	Station Number	rs		Ехсевя	Logarithm of	umber	Error	Station Number	8		Excess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet
551	y x z	W XXXV XXXII XXXIII	281	62 23 35 902 38 59 47 737 78 36 36 36 36 1	341 341 341	4·8964623,6 4·7477952,9 4·9403170,1	563	y x z	W XIV XV XI	288	64 48 18 447 60 9 27 175 55 2 14 378	" '422 '422 '422	4·9166742,5 4·8983083,1 4·8736528,7
552	,,	XXXIII XXXII XXX	282	52 28 16·577 55 27 34·270 72 4 9·153	·336 ·336 ·337	4·8173854,3 4·8338686,3 4·8964623,6	564	,,	XV XI XIII	288 289	44 6 43 418 63 54 58 990 71 58 17 592	353 353 354	4 [.] 7811871,6 4 [.] 8918885,3 4 [.] 9166742,5
553	,,	XXXII XXX XXIV	283	74 40 32 430 55 55 48 583 49 23 38 987	358 358 358	4.9213039,7 4.8552430,7 4.8173854,3	565	,,	XIII XI X	289	76 40 9:202 43 20 12:813 59 59 37:985	· 222 · 222 · 222	4·8318207,8 4·6801889,5 4·7811871,6
554	"	XXX XXIV XXV	283 284	82 43 52 431 42 35 22 464 54 40 45 105	.452 .451 .452	5.0061480,4 4.8400754,8 4.9213039,7	566	,,	XI X IX	290	87 23 17 739 39 35 7 322 53 1 34 939	·290 ·289 ·290	4 [.] 9288702,5 4 [.] 7336158,9 4 [.] 8318207,8
555	,,	XXIV XXV XXI	284	63 52 10.181 54 33 24.100 61 33 25.719	·675 ·675 ·675	5.0151567,5 4.9730176,0 5.0061480,4	567	,,	IX X VIII	290	47 31 30 262 48 52 35 57 83 35 54 181	·317 ·318 ·318	4·7993916,1 4·8085512,1 4·9288702,5
556	,,	XXV XXI XXIII	284 285	57 55 57 808 60 49 17 998 61 14 44 194	.713 .714 .714	5.0004121,9 5.0133779,4 5.0151567,5	5 6 8	,,	X VIII VI	290	49 52 11 007 73 20 47 674 56 47 1 319	· 274 · 274 · 274	4·7602927,7 4·8582601,6 4·7993916,1
557	,,	XXIII XXI XX	285 286	35 57 6 237 57 25 42 303 86 37 11 460	·391 ·392 ·392	4.7698830,9 4.9268514,2 5.0004121,9	569	,,	VIII VI V	291	72 36 33 714 65 22 14 400 42 1 11 886	.339 .339 .339	4.9142938,3 4.8931886,3 4.7602927,7
558	,,	XXI XX XIX	286	65 16 13 920 64 54 58 706 49 48 47 374	·295 ·294 ·294	4·8450474,4 4·8438007,3 4·7698830,9	570	"	VI V III	291	32 31 46.842 65 12 24.883 82 15 48.275	· 261 · 262 · 262	4·6488346,3 4·8762687,3 4·9142938,3
559	"	XIX XX XVI	286	80 51 52 175 35 20 52 769 63 47 15 056	• 246	4.8866324,5 4.6545106,1 4.8450474,4	571	,,	V III I	292	80 44 8 484 54 1 19 854 45 14 31 662	176	4·7918199.3 4·7056018,1 4·6488346,3
560	,,	XX XVI XVIII	286	35 34 45 °075 55 27 3 °636 88 58 11 °289	. 224	4.6514969,7 4.8024409,0 4.8866324,5	572	,,	X XLIV	2 9 2 2 6 5	47 22 30 488 71 25 35 954 61 11 53 558	·240 ·241 ·241	4.7159329,9 4.8259414,3 4.7918199,3
561	,,	XVIII XVI XV	287	60 33 58 316 70 2 28 090 49 23 33 594	171	4.7111278,8 4.7442467,7 4.6514969,7	573	,,	W I X XLIV XLII	265 264	55 50 31 53 045 65 11 53 045	·166 ·166 ·167	4·6757248,6 4·6908428,2 4·7159329,9
562	,,	XVI XV XIV	288	67 47 36 · 640 72 39 9 · 505 39 33 13 · 855		4·8736528,7 4·8869052,6 4·7111278,8							

9.

Preliminary Latitudes, Longitudes and Azimuths of the Stations on the Right-hand Flanks of the Circuit Triangles.

The following table gives the Geodetic Latitudes, Longitudes and Azimuths which have been obtained for all the stations and sides on the right-hand flank of the chains of circuit triangles, by applying the values of the difference of latitude, longitude and azimuth—computed by the formulæ (25), (26) and (27) of Section 5 of the preceding chapter—first to the fixed elements of the several stations of origin of the chains K to T, as given in Section 7 of this chapter, and then to the deduced elements of every subsequent station: the order of succession is indicated by the numbers in block type. Each station is thus regarded, first as the 'Deduced Station B' and afterwards as the 'Fixed Station A'.

In order to ascertain the differential values given by the geodetic calculations on which the tabulated elements are built up, we have for any, the ath, side on the flank of the chain

$$\Delta\lambda_a=(\lambda_{a+1}-\lambda_a); \qquad \Delta L_a=(L_{a+1}-L_a); \ \Delta A_a=B_a-(\pi+A_a);$$

where A_a stands for the forward azimuth at 'fixed station' A_a of 'deduced station' B_a and B_a for the back azimuth of A_a at B_a .

The three differential values depend on the length c_a and forward azimuth A_a of the side a, and also on the latitude λ_a . The logarithmic length is given in the preceding Section, on the same horizontal line as the angle at the Serial station which enters, in the table, between the stations numbered in block type a and (a+1). The forward azimuth of the side a may be deduced by adding all the spherical angles at a, as given in the table, to the back azimuth B_{a-1} . Thus the logarithmic length of flank-side 11 is 4.9970640,5, which occurs in triangle 21, on the same line as the angle for the serial station K XX, entering between the flank stations 11 and 12; and the forward azimuth of this side is equal to the back azimuth of 10 at 11 + the sum of the spherical angles at 11, which occur in triangles 19, 20 and 21, the respective values of which are 10° 49′ 43″·215 and 170° 20′ 15″·360, together amounting to 181° 9′ 58″·575.

In the following table, breaks of continuity in the numbering of the stations necessarily occur at the origins and closing points of all the Circuits. The two values of each of the geodetic co-ordinates and of the azimuth of the side of junction at these closing points, furnish the data for the determination of the absolute terms of the geodetic equations of condition in the Simultaneous Reduction.

No. in Traverse				uced Station B		.E1:	xed Station A	i	Ded	uced Station B	
주습	Azimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A	No. in Traverse	Azimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Asimuth of A
	0 1 "		0 1 4	0 1 4	0 1 "		0 1 #		0 1 4	014	0 / #
1	160 25 38.990	2	· .	79 22 51.134		33	186 21 51.129	34	26 54 17.892		, , ,
2	196 - 7 53.301	3		79 29 45 141	16 10 44.211	34	183 44 56.980	35		80 43 6.780	3 45 24.806
3	217 8 7.931	4		79 47 29.692	37 15 34'245	3 5	179 8 15.896	36	1	80 42 50 903	
4	174 56 21.665	5			354 55 33.077	36	172 34 27.282	3 7		_	352 33 31.214
	174 9 3'237	6		79 42 54.816		37	186 37 23.004	38	1	80 42 35.750	1
6	159 48 58.097	7			339 46 2.015	38	174 25 1.482	39		1	354 24 20.916
7	185 31 49.285	8		79 37 52.506		39	181 49 1.256	40		80 41 35.764	_
8	181 40 55.462	9	26 28 29 147	79 38 21.819	1 41 8.473	40	120 56 57.571	41	ļ		300 51 58.108
9	178 37 28.413	10		79 37 59 451	358 37 18.401	4 1	108 41 40.208	4 2	· -	80 21 11.287	
10	190 48 18.171	11	26 57 10.490	79 41 7.874	10 49 43.215	42	116 17 48.965	43			296 14 1.751
11	181 9 58.575	1 2	27 13 33.983	79 41 30.272	1 10 8.775	43	119 34 12.091	44	1	ì	299 29 45.909
12	184 10 43.695	1 3	27 30 4.477	79 42 51 432	4 11 20.999	44	118 55 53.659	45	28 37 25.587	79 55 22 912	298 51 47.782
13	181 59 16.399	14	27 44 58.721		I 59 32.577	45	138 18 3.872	46		79 48 2-981	
14	176 37 14.027	1 5	28 3 22.994	79 42 12.814	356 36 39 627	46	130 4 22.723	18	28 51 53.169	79 38 18.317	309 59 41.017
15	176 15 12.597	16	28 20 2.403	79 40 58.847	356 14 37.649	18	2 13 33.197	17	•		•
16	170 58 32.749	17	28 38 9.964	79 37 43.057	350 56 59.370						
17	182 13 30.030	18	28 51 53.521	79 38 19.407	2 13 47.514	47	130 28 20 807	48	24 22 24.252	81 26 42.966	310 19 11.111
18	194 55 7.124	19	29 15 14.645	79 45 25 151	14 58 33.916	48	201 5 21.781	49	24 33 14.487	81 31 17:047	21 7 15.283
19	126 4 44.086	20	29 30 23.528	79 21 35.821	305 53 2.847	49	166 41 31.753	50	24 53 6.897	81 26 7.819	346 39 22.440
20	126 19 13.797	2 1	29 45 36.763	78 57 48.679	306 7 28.145	50	209 30 0.550	51	25 14 9.225	81 39 13.407	29 35 32.979
2 1	149 40 0.615	2 2	30 4 5.317	78 45 22.530	329 33 48.507	5 1	184 50 53.449	5 2	25 35 3.704	81 41 10.738	4 51 43.795
2 2	121 43 34.677	LVI •	30 13 26.360	78 27 55.547	301 34 48.874	5 2	114 44 32.135	53	25 41 56.820	81 24 39:036	294 37 22.982
rai.	34 47 54.204	ria .				53	180 28 55.912	5 4	25 50 5.467	81 24 43.581	0 28 57.888
						54	201 14 24.418	5 5	26 1 44.551	81 29 44.540	21 16 35.897
23	234 31 25.577	24	24 16 46.740	81 11 14.972	54 40 10.888	5 5	146 47 23.907	56	26 10 51.470	81 23 7.068	326 44 29.145
24	152 37 22.668	2 5	24 37 23.041	80 59 34.357	332 32 32.667	56	183 54 54.155	57	26 22 7.139	81 23 58.403	3 55 16.880
2 5	134 13 12.887	26	24 51 5.387	80 44 7.299	314 6 44.951	57	185 6 49.230	58	26 32 42.981	81 25 1.670	5 7 17.417
26	181 9 43.101	2 7	25 7 2.296	80 44 28.618	1 9 52.106	58	179 37 13.707	5 9	26 43 28.205	81 24 56.910	359 37 11.573
27	185 34 50.286	28	25 27 17:405	80 46 39.396	5 35 46.147	59	181 48 59 333	60	26 54 49.367	81 25 21:008	1 49 10.306
28	164 36 2.777	29	25 46 34.639	80 40 47.320	344 33 30.263	60	172 48 5.726	61	27 5 41.308	81 23 49:004	352 47 23 951
29	170 7 53.993	30	26 0 43.993	80 38 3.794	350 6 42.579	6 1	177 2 12.951	62	27 17 45 042	81 23 7.070	357 1 53.786
30	165 52 20.959	3 1	26 16 0.764	80 33 47.842	345 50 28.197	62	153 22 52.686	63	27 28 24.744	81 17 7.542	333 20 7.316
3 1	200 22 49.907	3 2	26 28 10.656	80 38 49 177	20 25 3.742	63	216 58 53.556	64	27 38 25.999	81 25 36.192	37 2 48.874
3 2	186 26 55.682	33	26 41 37.889	80 40 30.761	6 27 41.139	64	153 5 48.164	65	27 47 19.324	81 20 31 847	333 3 26.623

^{*} These stations appertain to the Great Arc Meridional Series—Section 21° to 30°—of the North-West Quadrilateral.

Fi	xed Station A		Ded	uced Station B		Fi	xed Station A		Ded	uced Station B	
No. in Traverse	Azimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A	No. in Traverse	Azimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A
	0 1 4	_	0 1 "	0 1 11	0 1 4		0 1 "		0 1 "	0 1 "	0 1 "
65	160 56 43.313	66			340 55 11.326	95	161 49 47 958	96	25 17 49 577		
66	116 43 35.636	67		81 754.925		96	176 47 17.185	97		83 26 28.883	
67	107 51 13.498	68	-	-	287 46 37.879	97	179 11 7.867	98	1	83 26 18.575	
68	129 20 57.629	69			309 17 12 944	98	180 0 6.249	99		83 26 18.598	
69°	136 57 26.514	40	28 16 37.697	80 41 35.281	316 53 22.813	99	180 33 12.689			83 26 25.842	
40	1 49 7.283	39				100	175 3 32.534	101		83 25 29.481	1
						101	180 16 50 966	102		83 25 32.785	
70	204 57 18.442	71		82 38 58 983	-	102	152 10 3.582	103		83 20 27.612	ł · ·
71	156 3 46.334	7 2	ŀ		335 59 48.708	103	172 49 40.328	104	1		352 49 1.204
7 2	145 53 11.048	73			325 49 59.784	104	174 56 7.844	105			354 55 41'410
73	171 37 13.154	74		82 19 55.141		105	177 5 40.910	106		83 17 32.661	
74	173 24 2.710	7 5		82 18 30.904		106	155 43 49.019	107			335 41 55.388
75	173 25 24.861	76			353 24 39.620	107	154 38 47.398	108	27 21 5.123		334 36 22.005
76	185 25 25.550	77	• •	82 17 42.896		108	106 17 30.655	109		82 58 22.239	
77	186 0 24.426	78		82 18 58 197	• • • •	109	105 13 38.136	110	· -	82 47 30 185	
78	181 6 32.391	79	·	82 19 10.292		110	103 47 31.556	111	1	1	283 43 25.871
79	177 27 26.064	80	(357 27 11.583	111	105 52 1.261	112			285 46 59.226
80	186 21 31.973	8 1		82 19 52.105		112	104 51 25.166	87	27 33 21.733	82 17 27.502	284 46 40.913
8 1	199 28 35.412	8 2		82 23 21.428		87	350 0 56.313	86			
8 2	187 9 4.269	8 3		82 24 54.367			٠				
83	183 26 5.679	84		82 25 39.425			153 52 32.161	į.	l	i	i ·
84	163 38 38.383	85			343 37 4 ^{.8} 33		ĺ			1	ł
85	166 14 12.813	86	27 24 2.927	82 19 17-412	346 12 51.647	115	224 58 8.283	116	24 49 22.116	84 29 1.532	45 4 52.627
86	170 1 47.927	87	1		350 0 57.104			ŀ			
87	111 14 53.434	88			291 10 16.941			ł		1	1
88	108 15 28.391	89			288 10 29.565			i :		Ì	
89	108 2 13.085	90			287 59 50.241			•		1	
90	103 44 51.081	91	27 46 4.470	81 32 23.615	283 38 53.677	120	182 26 45.314	121	25 43 10.802	84 26 58.889	2 27 1.405
91	96 40 52:307	65	27 47 18 115	81 20 31.787	276 35 20.560	121	170 28 28.885	122	25 53 9.078	84 25 7.904	350 27 40.576
65	333 3 36.800	64				122	182 21 44.736	123	26 3 39.481	84 25 36.700	2 21 57.347
						123	181 6 57.587	124	26 14 16.503	84 25 50.454	· 1 7 3.649
92	157 41 28 608	93	24 32 49.670	83 33 13.139	337 35 7.766	124	180 50 17.519	125	26 26 2·959	84 26 1.939	0 50 22.314
93	184 48 25.756	94	24 47 20.996	83 33 33.410	4 48 59.258	125	169 12 42.724	126	26 36 32.871	84 23 48.405	349 11 43.096
94	187 22 57.588	95	24 56 54.865	83 34 34 970	7 23 31 888	126	188 1 40 446	127	26 48 35.274	84 25 41 958	8 2 31.484

Fi	red Station A		Ded	uced Station B		Fi	xed Station A	Station A Deduced Station B				
No. in Traverse	Asimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A	No. in Traverse	Azimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Asimuth of A	
127	0 / + 182 36 13'384		0 / 4 26 59 10:317	0 1 1 84 26 14·194	0 1 4 2 36 27:968		0 1 4		0 / 4	0 1 4	0 1 4	
128	159 16 17.298	128	27 9 4.554		339 14 22.948	157 158	177 49 55'497 186 13 54'573	158		86 10 31.176		
129	109 30 45.458	130	' ' ' '	84 11 23.557		159	180 2 35.810	160		86 13 0.131	6 14 32.360	
130	104 19 25.788	131	27 14 21.038			160	179 20 19.662	161			0 2 35·992	
131	101 4 9.280	132		83 50 49.313		161	182 0 5.024	162	•	86 13 12.633		
132	100 55 36.851	133	-		280 21 2.203	162		163		86 11 3.415		
133	91 53 11.673	134		83 29 26.828		163		164		86 10 52.463		
134	99 29 21.702	135		83 17 44 065		164		165		86 10 42.381	1	
135	95 35 34'409	108	27 21 5.334			165	183 40 1.127	166		86 11 13.844	00 .,	
108	334 36 26.848	107				166	165 22 13.561	167	_	86 8 37 923		
						167	85 0 9.900	168		85 57 59.338	1	
136	179 12 14.775	137	24 19 57:350	85 28 15.794	359 12 6.319	168	111 26 38.822	169	26 34 7.031	85 48 55.073	291 22 35.615	
137	202 6 9.741	138	24 41 40.503	85 37 55.082	22 10 10.094	169	110 46 1.145	170	26 37 43 386	85 38 19:059	290 41 16.377	
138	186 10 15.894	139	24 59 38.064	85 40 2.963	6 11 9.624	170	110 56 20.237	149	26 40 55.856	85 28 58.203	290 52 8.623	
139	153 18 41.434	140	25 12 26.007	85 32 58·526	333 15 41.384	149	0 52 23.523	148				
140	179 34 37.614	141	25 25 27.251	85 32 52.176	359 34 34 ^{.8} 99							
141	180 23 7.449	142	25 36 0.013	85 32 56.870	0 23 9.471	171	154 48 10.376	172	24 14 25.183	86 57 55073	334 43 59 927	
142	169 2 8.531	143	25 45 59.848	85 30 48.524	349 1 12.606	172	193 40 15.817	173	24 39 12 167	87 4 30.880	13 42 59.622	
143	174 52 33.466	144	25 54 58.855	85 29 55.076	354 52 10.169	173	215 45 49.862	174	24 56 12.765	87 17 57 585	35 51 28.175	
144	178 38 54.789	145	26 4 20.895	85 29 40 394	358 38 48.354	174	145 58 5.595	175	25 15 48.160	87 3 24.140	325 51 55.076	
145	179 55 9.874	146	26 13 33.995	85 29 39.531	359 55 9.494	175	209 24 9.066	176	25 27 47:370	87 10 50.219	29 27 20.361	
146	175 5 59.364	147	26 22 39·980	85 28 47.561	355 5 36.336	176	145 34 22.461	177	25 36 36.822	87 4 10.356	325 31 29.869	
147	180 4 10.576	148	26 31 5.391	85 28 48.243	0 4 10.880	177	205 0 14.989	178	25 45 10.317	87 8 34.856	25 2 9.615	
148		ł	l	l		l	192 26 38.765	i	25 54 44.338	87 10 54.930	12 27 39.801	
149		ŀ	ì	1			191 59 38.211		26 4 46.075	87 13 16.497	12 0 40'261	
150		1	i	l		i	131 22 26.441	i			311 18 56.543	
151		ł		[ļ		126 51 28.223	182	26 16 49.805	86 56 48.709	306 47 42.253	
152		ì	l	1	311 16 38.585	•	1	183	1	1	308 21 28.032	
153	129 14 7.145	1	į.	1	309 10 30.261			184	ı	ł	292 12 30.884	
154	115 13 19:051	ł	ŀ	ì	295 8 35.591			1	i	i	285 21 40.301	
155		ļ	27 9 3.870	84 22 2.878	286 48 48.009	185		186	ł		285 52 6.492	
129	339 14 17:209	128				186	94 26 39.872	167	26 31 45.408	86 8 37.959	274 21 59.711	
			-			167	345 21 1.821	166				
156	181 20 54.776	157	24 52 2.348	86 11 15.551	121 6.727		,					

Fi	xed Station A		Ded	uced Station B		Fi	xed Station A	Deduced Station B				
No. in Traverse	Azimuth of B	No. ip Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A	No. in Traverse	Azimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A	
	0 / "		0 1 11	0 1 11	0 1 11		0 1 "		0 1 7	0 1 11	0 1 "	
187	181 49 50.637	188		88 27. 0.465		210	276 4 32.694	219	"	88 40 35 706		
188	216 21 45.184	189		88 32 53·107	36 23 51.368	l	313 3 48·269 243 0 16·389	220		88 47 58·575 88 56 41·560		
189	183 36 57.748 164 50 25.872	190			344 49 30.709		310 37 33.671	221		89 441.884		
190	187 13 33.319	191		88 31 40.866		2 2 2	257 35 20.387	223	_	89 13 23 174		
191	212 43 1.597	193		88 36 27.540			315 36 22.100	224	•		77 39 9'938 132 40 21'820	
193	193 47 22.654	194		88 39 4.790			350 48 24.345	1		89 30 30 276		
194	179 24 5.691	195	' ' '		359 24 3.315	l	315 7 21.248		1	89 37 50.003		
195	171 46 45.285	196		88 37 15.185		1	264 17 15.101		"	89 48 8.408		
196	158 1 44.441	197	1	88 33 18:243	, ,		261 17 10.947	ł		90 2 18.204	į	
197	166 58 25.972	198	1		346 57 23.229							
198	148 14 32.289	199	•		328 12 20.997	187	300 49 48.642	229	22 47 35.163	88 36 17·565	120 53 33.385	
199	166 1 18.267	200		88 23 28.124		ı	240 51 53.759	230		88 45 15.772		
200	192 33 52.374	201	24 52 43.715	88 25 31.374	12 34 44.076	230	233 29 53.456	231	22 57 50.672	88 53 29.029	53 33 5.230	
2 O I	206 29 52.876	202	25 2 34 579	88 30 54.784	26 32 9.355	231	262 50 48.027	232	22 58 49.084	89 1 53.651	82 54 4.973	
202	183 57 51.755	203	25 13 8.380	88 31 43.071	3 58 12.262	232	264 46 58.221	233	22 59 33.562	89 10 42.719	84,50 24.830	
203	189 28 14.972	204	25 23 14.818	88 33 34.444	9 29 2.574	233	266 38 20.080	234	23 0 3.786	89 20 3.729	86 41 59.256	
204	184 37 36.854	205	25 31 20.274	88 34 17.745	4 37 55.465	234	271 9 35.840	235	22 59 51.448	89 30 42.839	91 13 45.253	
205	183 57 18.415	206	25 40 22.989	88 34 59.153	3 57 36.305	235	263 24 1.108	236	23 0 44.889	89 39 3.908	83 27 16 932	
206	172 34 56.865	207	25 49 27.493	88 33 40.824	352 34 22.837	236	267 56 50.004	237	23 1 7.016	89 50 23.082	88 1 15.548	
207	180 10 36.727	208	25 58 26.574	88 33 42 665	0 10 37.531	237	205 51 52.181	238	23 9 29.891	89 54 46.787	25 53 35.593	
208	180 47 38.061	209	26 7 41.017	88 33 51.176	0 47 41.799	238	210 43 59.288	239	23 16 56.102	89 59 34.030	30 45 5 2 .535	
209	166 35 13.049	210	26 16 0.642	88 31 39 016	346 34 14.705	239	146 55 33.266	240	23 24 43.602	89 54 4.038	326 53 22.494	
210	105 28 31.045	211	26 18 55.189	88 19 57.527	285 23 20.333	240	212 14 13.076	241	23 32 41.555	89 59 30.822	32 16 23.268	
211	124 52 8.593	212	26 25 2.084	88 10 12.307	304 47 48.647	241	156 13 8.325	242	23 41 25.617	89 55 19.860	336 11 27.782	
212	71 29 41.667	213	26 22 4.725	88 0 25.022	251 25 20.652	242	211 13 29.674	243	23 49 10.316	90 0 26.132	31 15 33.051	
213	87 38 34.052	214	26 21 42.772	87 50 41.890	267 34 15.090	243	147 9 54.114	244	23.57 24.431	89 54 39:079	327 7 33.572	
214	87 22 2.500	215	26 21 13.846	87 39 14 [.] 636	267 16 57.376	244	213 0 19.720	245	24 4 58.652	90 0 0.218	33 2 30.563	
2 1 5	89 37 46.236	216	26 21 9.571	87 28 13.593	269 32 52.796	245	150 46 20.426	246	24 13 9.040	89 55 1.274	330 44 17 992	
216	95 4 40.716	217	26 21 59.408	87 17 46.206	275 0 2.154	246	203 37 55.997	247	24 21 16.538	89 58 54.006	23 39 31.721	
217			1				147 33 58.542			1		
218	67 31 3.209	182	26 16 49.591	86 56 48.596	247 26 48.781	248	208 23 12.582					
182	306 47 42.901	181				249						
						250	203 53 13.785	251	24 53 48.696	89 55 42.484	23 54 56.530	

Fi	xed Station A		Ded	uced Station B		Fi	red Station A		Ded	Deduced Station B				
No. in Traverse	Asimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A	No. in Traverse	Azimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A			
25 I 252	0 , 4 145 54 7 ² 12 211 40 0'486	252 253	25 1 24·266 25 9 37·952	89 50 3.895 89 55 38.563	0 , " 325 51 44'332 31 42 22'410	271 272	0 , " 269 5 13.990 271 4 32.841	272	23 0 47·873 23 0 36·663	90 57 35 541 91 8 0 731	91 8 37·240			
253 254	173 18 4·955 187 17 22·724	254 255	25 20 45.986		353 17 28.118	273 274	270 47 27.773 273 31 29.487	274	23 0 29.810	91 25 26.720	90 50 50.182			
255 256	254 32 22.412 165 49 58.593	256 257	25 52 41.779		• • • • • • • • • • • • • • • • • • •	275 276	226 56 31·256	276 277	23 21 58.454	91 35 58.445	19 26 47.916			
2 5 7 2 2 8 2 5 7	164 58 53.446 81 23 26.029 232 11 2.521	228 227 258		90 16 7.781		277 278 279	147 7 16.098 164 33 24.415 200 56 59.306	278 279 280	23 40 21.504	91 35 41.886				
258° 259	268 0 45.694 272 6 23.779	259 260	26 045.018	90 34 23:695 90 47 28:108	92 12 7.843	280 281	224 56 54·404 240 5 25·014	28 I 28 2		91 47 57·387 91 56 40·788				
260 261 262	295 2 51·310 242 8 46·886 266 35 35·821	261262263	26 0 37 945	90 59 31·275 91 9 58·279 90 59 31·275	62 13 21.442	282 283 284	191 13 51.892 221 58 42.010 209 12 47.236	283 284 285	24 24 32.655	91 59 4'376 92 7 25'129 91 59 4'376	42 2 8.383			
263 264	312 34 53·310 269 55 3·887	264 265	Į	91 36 52.782 91 36 52.78 2	89 58 51.007	285 286	126 28 25·339	286 287	24 47 41·267 24 57 57·983		306 23 16.884			
238	325 37 15 [.] 014	266 267	1	90 I 0.527	145 39 41·469 91 22 57·606	287 288 289	138 22 19 ⁹ 55 184 38 25 ² 62 153 17 21 ⁸ 82	288 289 290	25 17 38.549	91 56 27.734	318 19 30·334 4 38 54·512 333 15 41·357			
267 268	279 5 45·200 269 18 45·741	268 269	22 59 28.421	90 29 55.700	•	290 291	171 35 14·331 146 15 28·097	291	25 36 29.264		351 34 24.662			
269 270	265 24 5·180	270 271		90 48 10·139 90 48 10·139	87 16 51·664 85 27 41·574	292	89 58 37·867	265 264	25 56 22.209	91 36 52.155	329 49 8.530			

10.

Numerical Values of the Absolute Terms in the Primary Equations of Condition, and of their Products by the Equalizing Factors.

The Lengths and Azimuths of the Sides of the triangles, and the Latitudes and Longitudes of the Stations on the right-hand flank of the chains having been computed—as set forth in the two preceding Sections—the values of the several Absolute Terms in the Primary Equations of Condition are indicated by the discrepancies between the two sets of computed values which are presented at the close of the right and left-hand branches of the several Linear and Geodetic Circuits, and between the computed and absolute linear value at the junction with the Base-line. In all cases the closing linear discrepancies are first expressed logarithmically, as the differences between the logarithms of the two values which are given in each instance, and the 7th place of decimals is then treated as unity. Finally the Absolute Terms thus obtained, are multiplied by the Equalizing Factors—see page 59—which were employed for the purpose of obviating the inconveniences arising in treating a number of Simultaneous Equations, when the coefficients of the unknown quantities in some of the equations are generally much larger than those in others.

The Absolute Terms will now be particularized.

Circuit I. Equations 1 to 4.

Equation 1, Linear. Between the sides Tinsmal-Rangír and Ghandial-Chandípahar.

Log. computed length Ghandiál-Chándípahár by Triangle No.
$$44 \dots 5^{121,3051,2}$$
 Log. final value from Great Arc Series—Section 24° to 30° —see page $88 \dots 5^{121,2764,1}$
$$1E = + 287^{\circ}1$$
 Logarithmic Error $+ \frac{1}{2000,0287,1}$

Equations 2 to 4, Geodetic. Terminal Station, Ghandiál. Terminal Side, Ghandiál-Chándípahár.

Branch of Circuit.	$oldsymbol{Latitude}.$	$oldsymbol{Longitude}.$	Azimuth.
	0 / //	0 / //	0 , "
Right-hand	30 13 26.260	78 27 55 547	34 47 54.204
Final values from Great Arc Series— Section 24° to 30°,—see page 88,	30 13 25.321	78 27 54.613	34 47 42.606
Errors	$_{2}E = + \circ .939$	$_{3}E = + \circ 934$	$_{4}E = +11.598$

Circuit II. Equations 5 to 8.

Equation 5, Linear. Junction, Baheri-Atária.

Log. computed length	Baheri-Atária by	y Triangle	No.	92	•	•	•		•	٠	•	4.920,3276,6
**	99	,,	No.	34	•	•	•	•	•	•	•	4.920,3283,9
$_5E=-7.3$				Log	zari	thn	aic	Er	ror		_	.000,0007,3

Equations 6 to 8, Geodetic. Terminal Station, Baheri, 18. Terminal Side, Baheri-Atária, 16-17.

Branch of Circuit.	Latitude.	$\boldsymbol{Longitude}.$	Azimuth.
	0 / //	0 / //	o , ,,
Right-hand	28 51 53·169	79 38 18:317	2 13 33.197
Left-hand	28 51 53.521	79 38 19:407	2 13 47.514
Errors $(R-L)$	$_{6}E=-$ 0.352	$_{7}E=-1.090$	$_{8}E=-14^{\circ}317$

Circuit III. Equations 9 to 12.

Equation 9, Linear. Junction, Rámnagar-Dahlelnagar.

Log. computed length	Rámnagar-Dahlelnagar by	Triangle	No.	138	•	•	•	4 [.] 873,9040,8
,,	22	,,	No.	79	•	•	•	4.873,8558,5
$_{9}E = +482.3$		\mathbf{L}_0	garit	hmic	Err	or	+	- '000,0482,3

Equations 10 to 12, Geodetic. Terminal Station, Rámnagar, 40. Terminal Side, Rámnagar-Dahlelnagar, 40-39.

Branch of Circuit.	$oldsymbol{L}atitude.$	Longitude.	Azimuth.
	o , "		0 / 1/
Right-hand	28 16 37.697	80 41 35.281	1 49 7.283
Left-hand	28 16 36.772	80 41 35.764	1 49 14.081
Errors $(R - L)$	$_{10}E = +0.925$	$E = - \circ 183$	E = -6.798

Circuit IV. Equations 13 to 16.

Log. con	puted ler	ngth Bela-Mási	by Triangle	No.	180	•	•	•		•		•	4.780,9905,6
)) .	. >>	,,	No.	129	•	•	•	.•	•	•	•	4.781,0546,6
$_{13}E=-$	641.0				I	ogar	ith	mi	c E	erro	r	_	.000,0641,0

Equations 14 to 16, Geodetic. Terminal Station, Bela, 65. Terminal Side, Bela-Mási, 65-64.

${\it Latitude}.$	Longitude.	Azimuth.			
0 , ,,	o , "	0 / //			
27 47 18 115	81 20 31.787	333 3 36.800			
27 47 19:324	81 20 31.847	333 3 26.623			
$\overline{{}_{14}E=-1.509}$	$_{15}E = -0.060$	$_{16}E = + 10.177$			
	27 47 18 [.] 115 27 47 19 [.] 324	27 47 18·115 27 47 19·324 81 20 31·787 81 20 31·847			

Circuit V. Equations 17 to 20.

Equation 17, Linear. Junction, Lohápánia-Bansídíla.

Log. computed length	Lohápánia-Bansídíla by I	Fria ngle	No.	220	•	•	•	•	4.757,8243,7
99	33	**	No.	171	•	•	•	•	4.757,8074,3
$_{17}E = + _{169^{\circ}4}$]	Loga	rithmic	Er	ror		+	.000,0169,4

Equations 18 to 20, Geodetic. Terminal Station, Lohápánia, 87. Terminal Side, Lohápánia-Bansídíla, 87-86.

Branch of Circuit.	Latitude.	Longitude.	Azimuth.
	o , ,,	0 / //	o , "
Right-hand	27 33 21.733	82 17 27.502	350 0 56 [.] 313
Left-hand	27 33 21.350	82 17 27 265	350 0 57.104
Errors $(R-L)$	E = +0.383	$_{19}E = + \circ \cdot 237$	E = -0.791

Circuit VI. Equations 21 to 24.

Equation 21, Linear. Junction, Ghaus-Púrena.

Log. computed	length Ghar	us-Púrena b	y Triangle	No. 2	262	•	•	•	•	•		4.824,9038,1
,,		,,	99	No.	211	•	•	•	•	•	•	4.824,8956,0
$_{21}E = +82.1$				I	Logar	ithr	nic	Er	ror	•	+	·000,0082,I

Equations 22 to 24, Geodetic. Terminal Station, Ghaus, 108. Terminal Side, Ghaus-Púrena, 108-107.

Branch of Circuit.	Latitude.	Longitude.	Azimuth.
	0 / //	0 / //	0 , "
Right-hand	27 21 5.334	83 8 6.124	334 36 26.848
Left-hand	27 21 5.123	83 8 6.020	334 36 22.005
Errors $(R - L)$	E = + 0.511	$_{23}E = +0.104$	$_{24}E = +4.843$

Circuit VII. Equations 25 to 28.

Equation 25, Linear. Junction, Rámnagar-Naunangarhi.

Log. computed length	Rámnagar-Naunangarhi	by Triangl	le N o. 30	2.	•	•	4.807,0180,4
"	•	,,	No. 24	9.	•	•	4.807,0313,3
$_{25}E = -132.9$		${f L}$	ogarithm	ic Erro	r	-	000,0132,9

Equations 26 to 28, Geodetic. Terminal Station, Rámnagar, 129. Terminal Side, Rámnagar-Naunangarhi, 129-128.

Branch of Circuit.	sch of Circuit. Latitude. Longitude.		Azimuth.			
	o , "	o , "	0 , ,,			
Right-hand	27 9 3.870	84 22 2.878	339 14 17:209			
Left-hand	27 9 4.227	84 22 2.908	339 14 22 948			
Errors $(R-L)$	E = -0.357	$_{27}E = -0.030$	$_{28}E = -5.739$			

Circuit VIII. Equations 29 to 32.

Equation 29, Linear. Junction, Bulákípur-Madanpur.

Log. computed	length Bulákípu	ur-Madanpu	ır by Triangle	No.	33 0	•	•	•		4.775,2874,0
29		,,	99	No.	289	•	•	•	•	4.775,2677,3
$_{29}E = + 196.7$				Log	arithmi	c]	Err	or	+	000,0196,7

Equations 30 to 32, Geodetic. Terminal Station, Bulákípur, 149. Terminal Side, Bulákípur-Madanpur, 149-148.

Branch of Circuit.	Latitude.	Longitude.	Azimuth.
	0 / //	o , ,,	0 / //
Right-hand	26 40 55.856	85 28 58.203	0 52 23.523
Left-hand	26 40 55.553	85 28 58.230	0 52 19.082
Errors $(R - L)$	$E = + \circ 3 \circ 3$	$\overline{E = - \circ \circ 27}$	E = + 4.441

Circuit IX. Equations 33 to 36.

Equation 33, Linear. Junction, Narhar-Bheria Bisanpur.

Log. computed length	Narhar-Bheria Bisanpur by	Trian	gle No. 361		•		4.748,6622,5
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**	,,	No. 323	•	•	•	4.748,6907,1
$_{33}E = -284.6$			Logarithmic	Erro	r	_	.000,0284,6

Equations 34 to 36, Geodetic. Terminal Station, Narhar, 167. Terminal Side, Narhar-Bheria Bisanpur, 167-166.

Branch of Circuit.	Latitude.	$oldsymbol{Longitude}.$	Azimuth.		
	0 / //	0 / //	o , "		
Right-hand	26 31 45.408	86 8 37.959	345 21 1.821		
Left-hand	26 31 45.722	86 8 37.923	345 21 4.100		
Errors $(R-L)$	$_{34}E = - \circ \cdot 314$	$E = + \circ \circ 36$	$\underbrace{E = -2.579}_{36}$		

Circuit X. Equations 37 to 40.

Equation 37, Linear. Junction, Diwánganj-Chúni.

Log.	measured length	Sonákhoda Base-lin	ie, see page 9	0		4.564,4979,3
,,	computed length	• • • • • • • • • • • • • • • • • • • •	by Triang	le No. 408	4.564,5016,0	
,,	33	Diwánganj-Chúni	by "	No. 423	4.764,5741,8	.200,0725,8
,,	,,	>>	in terms of	Sonákhoda	Base-line .	4.764,5705,1
,,	99	99	by Triangle	No. 351		4.764,5514,2
37 E	= + 190.9			Logarithr	nic Error +	.000,0190,9

Equations 38 to 40, Geodetic. Terminal Station, Diwánganj, 182. Terminal Side, Diwánganj-Chúni, 182-181.

0 , "	0 <i>0 W</i>	o , ,
26 16 49 [.] 591	86 56 48.596	306 47 42'901
26 16 49 [.] 805	86 56 48.709	306 47 42.253
E = -0.314	$\overline{_{39}E = -\circ \cdot 113}$	$_{40}E = +0.648$
	26 16 49.805	26 16 49·591 86 56 48·596 26 16 49·805 86 56 48·709

Base-line Equation.

Equation 41, Linear. Side Sátten-Chinsurah and Sonákhoda Base-line.

" measured length	"	as in Equation 37			_	
$_{41}E = + 36.7$		Logarithmi	C Em	ror	+	.000,0036,7

Circuit XI. Equations 42 to 45.

Equation 42, Linear. Junction, Dhubri-Alangjáni.

Log.	computed	length	Dhubri-Alangjáni	i by Triangle	No. 501		4.894,5564,0
,,	measured	length	Sonákhoda Base-li			• • • •	4.564,4979,3
,,	computed	length	,, ,,	by Triangle	No. 408	4 [.] 564,5016,0	
,,	"	"	Dhubri-Alangjáni	"	No. 443	4 ^{.8} 94,5794,4	.330,0778,4
,.	,,	,,	" in	terms of Son	ákhoda Bas	e-line	4.894,5757,7
₄₂ E =	= — 193.7	•			Logarith	mic Error —	000,0193,7

Equations 43 to 45, Geodetic. Terminal Station, Dhubri, 228. Terminal Side, Dhubri-Alangjani, 228-227.

Branch of Circuit.	Latitude.	Longitude.	Azimuth.		
	o <i>' "</i>	0 / //	0 , "		
Right-hand	26 I 3 [.] 667	90 2 18 [.] 361	81 23 26.029		
Left-hand	26 I 3.238	90 2 18.504	81 23 23.624		
Errors $(R - L)$	$_{43}E = + 0.129$	$E = - \circ 143$	E = + 2.405†		

^{*} This numerical value is the absolute term of the equation

$$_{\mathfrak{o}}\mathbf{U}_{1} + _{\mathfrak{o}}\mathbf{V} - _{\mathfrak{o}}\mathbf{X}_{1} = _{42}E$$

which was employed in the reduction; see page 78. Through an unfortunate mistake the absolute term was taken as 230.4, the value which appertains to the linear equation

$$_{e}$$
 $\mathbf{v}_{1} + _{e}$ $\mathbf{v} - (_{e}\mathbf{r} + _{e}\mathbf{x}_{1}) = E$

-not employed in the reduction-and is deduced as follows:-

The mistake was not discovered until the values of the unknown quantities had been obtained and tested. In order to correct it the equations between the Indeterminate Factors were reverted to and a portion of the solution was re-calculated, giving new values to several of the factors. With the differences between the old and the new factors corrections were found to the previously determined values of the unknown quantities of Circuits XI and XII, as will be explained hereafter. The unknown quantities appertaining to the other Circuits were allowed to stand uncorrected.

† The error in Azimuth at Alangjáni, + 2".424, was by an oversight adopted in place of the error at Dhubri, + 2".405. This mistake was not detected until the Simultaneous Reduction had been completed. It was then arbitrarily adjusted.

Circuit XII. Equations 46 to 49.

Equation 46, Linear. Junction, Tepkilabama-Harogaon.

Equations 47 to 49, Geodetic. Terminal Station, Tepkilabama, 265. Terminal Side, Tepkilabama-Harogaon, 265-264.

Branch of Circuit.	Latitude.	Longitude.	Azimuth.
	0 , "	0 / //	0 / //
Right-hand	25 56 22 [.] 209	91 36 52.155	89 58 37.867
Left-hand	25 56 22.036	91 36 52.782	89 58 51.007
Errors $(R-L)$	$E = + \circ 173$	$_{48}E = - \circ 627$	E = -13.140

The products of the Absolute Terms by the Equalizing Factors are shewn in the following Table.

Absolute Term.	Equalizing Factor.	Product.
₁ E = + 287.1	.03	+ 8.613
$_{2}E = + \circ _{939}$	15	+ 14.085
$_3E = + \circ 934$	15	+ 14.010
₄ E = + 11.598	ı	+ 11.298
$_{5}E=-$ 7.3	.03	– 0.519
$_{6}E=-$ 0.352	15	- 5.580
$_{7}E=-$ 1.090	15	— 16·350
$_8E=-$ 14.317	ı	— 14 [.] 317
	$_{1}E = + 287.1$ $_{2}E = + 0.939$ $_{3}E = + 0.934$ $_{4}E = + 11.598$ $_{5}E = - 7.3$ $_{6}E = - 0.352$ $_{7}E = - 1.090$	$_{1}E = + 287.1$

Equation.	Absolute Term.	Equalizing Factor.	Product.
9. Linear	$_{9}E = + 482.3$.03	+ 14.469
10. Latitude	$_{10}E = + 0.925$	15	+ 13.875
11. Longitude	$_{11}E = -$ 0.183	15	— 2.745
12. Azimuth	$_{12}E = -6.798$	ı	— 6·798
13. Linear	$_{13}E = -641.0$.03	— 19 [.] 230
14. Latitude	$_{14}E=-$ 1.509	15	— 18·135
15. Longitude	$_{15}E = -$ 0.060	15	- 0.900
16. Azimuth	$_{16}E = + _{10.177}$	I	+ 10.177
17. Linear	$_{17}E = + _{169.4}$.03	+ 5.082
18. Latitude	$_{18}E = + \circ _{383}$	15	+ 5.745
19. Longitude	$_{19}E = + \circ 237$	15	+ 3.555
20. Azimuth	$_{20}E = -$ 0.791	ı	— o [.] 791
21. Linear	$_{21}E=+$ 82·1	.03	+ 2.463
22. Latitude	$_{22}E = +$ 0.511	15	+ 3.162
23. Longitude	$_{23}E = +$ 0.104	15	+ 1.260
24. Azimuth	$_{24}E = + 4.843$	I	+ 4.843
25. Linear	$_{25}E = - 132.9$.03	- 3.987
26. Latitude	$_{26}E=-$ 0.357	15	— 5·355
27. Longitude	$_{27}E = -$ 0.030	15	— o [.] 450
28. Azimuth	$_{28}E = - 5.739$	I	– 5.739
29. Linear	$_{29}E = + 196.7$	•03	+ 5.901
30. Latitude	₃∘E = + °3°3	15	+ 4.545

Equation.	Absolute Term.	Equalizing Factor.	Product.
31. Longitude	$_{31}E = -$ 0.027	15	- 0 [.] 405
32. Azimuth	$_{32}E = + 4.441$	I	+ 4.441
33. Linear	$_{33}E = - 284.6$	•03	— 8·538
34. Latitude	$_{34}E = -$ 0.314	15	— 4.410
35. Longitude	$_{35}E = + \circ \circ \circ 36$	15	+ 0.540
36. Azimuth	$_{36}E=-$ 2.279	ı	— 2·279
37. Linear	$_{37}E = + 190.9$.03	+ 5.727
38. Latitude	$_{38}E = -$ 0.214	15	— 3.510
39. Longitude	$_{39}E = -$ 0.113	15	— 1·695
40. Azimuth	$_{40}E = +$ 0.648	1	+ 0.648
41. Linear	$_{41}E = + 36.7$	•03	+ 1.101
42. Linear	$_{42}E^* = - \begin{cases} ^{230.4} \\ _{193.7} \end{cases}$	•03	$-\left\{\substack{6.912\\5.811}\right.$
43. Latitude	$_{43}E = +$ 0.129	15	+ 1.932
44. Longitude	$_{44}E = -$ 0.143	15	– 2·145
45. Azimuth	$_{45}E^* = +$ 2.424	1	+ 2.424
46. Linear	$_{46}E = + 102.0$	·03	+ 3.060
47. Latitude	$_{47}E = +$ 0.173	15	+ 2.292
48. Longitude	$_{48}E = -$ 0.627	15	- 9 [.] 405
49. Azimuth	$_{49}E = -$ 13'140	I	— 13·140

[•] See the note referring to this absolute term on page 125.

11.

Numerical Values of the µs and \$\phi_s\$.

The Table of Substitutions at page 55 together with the formulæ

$$_{\lambda}m = ^{\cdot}23 \,\Delta \,\lambda \,\frac{_{1}}{_{1}0^{6}}; \qquad _{L}m = ^{\cdot}23 \,\Delta \,L \,\frac{_{1}}{_{1}0^{6}}; \qquad _{L}m = ^{\cdot}23 \,\Delta \,A \,\frac{_{1}}{_{1}0^{6}};$$

and

$$_{\lambda}p = _{\lambda}g \,\Delta \,L \, \frac{1}{10^6}; \qquad _{L}p = _{L}g \,\Delta \lambda \, \frac{1}{10^6}; \qquad _{A}p = _{A}g \,\Delta \lambda \, \frac{1}{10^6};$$

which are derived from pages 58 and 51 respectively, shew the general form of the factors μ and ϕ . The numerical values are tabulated in this section: they were constructed in the opposite order to that in which they are now recorded, commencing in each instance at the closing side of the circuit-branch to which they appertain.

In the above formulæ, in place of the total differences $\Delta\lambda$, ΔL and ΔA , the values of the first terms of the expressions (25), (26) and (27), pages 30 and 31, taken from the geodetic calculations, were made use of. For the North-West Quadrilateral the total values were employed; and as these were easily obtainable from the geodetic elements of the traverse stations already given, it was unnecessary to record them. In the case of the South-East Quadrilateral, although, as in the present instance, the first terms only were used, they did not differ so materially from the totals as to make it desirable to alter the form of the tables previously adopted. Here, however, the geodetic calculations, of which the results are given in Section 9, do not follow the course of the zig-zag traverse; hence, where that obtains, there are no data for furnishing the geodetic differences, even approximately, and it has been found necessary to record them; the opportunity has been taken of giving them for the direct traverse also.

To facilitate the calculation of the ϕ s the following table of the factors $_{\lambda}g$, $_{L}g$ and $_{A}g$ —the analytical expressions for which are given in equations (50) page 51—was constructed, and the necessary values, corresponding to the latitude of each traverse station, were obtained

from it by interpolation and employed to one place of decimals only.

λ	s.g	zg .	49
23°	2.49	5:24	2.04
24	•45	• 28	.12
25	•42	.32	•25
26	•38	•36	•35
27	.34	.41	•46
28	.30	• •46	• 56
29	• 26	•51	.67
80	.22	.57	•78
31	.18	•63	.90

Two forms of calculation were made use of, one for the *direct* traverse, in which every traverse station has its traverse number, the other for the *zig-zag* traverse where no traverse station is numbered, but each is defined by the triangle or triangles connecting it with the two preceding stations; the process is, however, the same in both, as will be seen from the examples given below.

Examples.

(1). To find the μ s and ϕ s in latitude for the Right-hand Branch of Circuit I. For this Circuit the Direct Traverse was employed and the right-hand subscripts in the following expressions are therefore the traverse numbers.

(2). To find the μ s and ϕ s in latitude for the Left-hand Branch of Circuit XI. For this Circuit the Zig-zag Traverse was employed and the right-hand subscripts in the following expressions are consequently the triangle numbers.

$$\begin{array}{l} _{\lambda}\mu_{443,443} = _{\lambda}m_{443,443} = ^{\cdot} 23^{\Delta}\lambda_{443,443} \frac{1}{10^{6}} \\ \\ _{\lambda}\mu_{440,441} = _{\lambda}\mu_{449,443} + _{\lambda}m_{440,441} = _{\lambda}\mu_{443,443} + ^{\cdot} 23^{\Delta}\lambda_{440,441} \frac{1}{10^{6}} \\ \\ _{\lambda}\mu_{438,439} = _{\lambda}\mu_{440,441} + _{\lambda}m_{438,439} = _{\lambda}\mu_{440,441} + ^{\cdot} 23^{\Delta}\lambda_{438,439} \frac{1}{10^{6}} \\ \\ \\ _{\lambda}\phi_{443,443} = _{\lambda}p_{442,443} = -_{\lambda}g^{\Delta}L_{443,443} \frac{1}{10^{6}} \\ \\ _{\lambda}\phi_{440,441} = _{\lambda}\phi_{442,443} + _{\lambda}p_{440,441} = _{\lambda}\phi_{443,443} - _{\lambda}g^{\Delta}L_{440,441} \frac{1}{10^{6}} \\ \\ _{\lambda}\phi_{438,459} = _{\lambda}\phi_{440,441} + _{\lambda}p_{438,439} = _{\lambda}\phi_{440,441} - _{\lambda}g^{\Delta}L_{438,439} \frac{1}{10^{6}} \end{array}$$

The necessary data for calculating the numerical values of the expressions in both these examples as also the values themselves will be found in the following Table. With regard to this table, it is to be observed, that although the μ s are recorded to 5 places of decimals and the ϕ s to 4, as they were obtained, the full number of places of decimals was only availed of in the calculations appertaining to the zig-zag traverse. For the direct traverse μ was taken to 4 places and ϕ to 3.

Where the direct traverse has been adopted the numerical values of the ms are required in the calculation of those coefficients of the unknown quantities which take the form (73) on page 79; but they are not tabulated because they are simply the differences between the successive μ s: thus $m_l = \mu_l - \mu_{l+1}$.

The Direct Traverse.

tation		L	titade				Lo	ngitude				A	tation erse		
No. of Station in Traverse	Δλ	$_{\lambda}g$	λ ^μ	λφ		ΔL	L^g	I^{μ}	L^{ϕ}	4	\ <u>A</u>	дg	A^{μ}	Δ¢	No. of Station in Traverse
					Сп	CUIT	<i>I</i> . R	ight-hand	Branch						
1	+ 865	4.4	+.00516	+.0121	-	335	5.3	00082	+ 1211	I —	136	2.3	00043	+1.0223	1
2	1309		496	136	+	413		077	.1162	+	170		40	1.0234	2
3	1281		466	154		1062		o86	.1096		442		44	1.0202	3
4	1175		437	201	-	114		110	1028	_	48		54	1.0477	4
5	1419		410	196		160		107	.0966	ļ	68	2.3	53	1.0421	5
6	994		377	189		403	5.4	103	891		175		51	1.0418	6
7	949		354	171	+	102		094	837	+	45		47	1.0395	7
8	898		332	175		29		096	786		13	2.4	48	1.0373	8
9	837		311	176	–	22		097	738	_	10		48	1.0321	9
10	885		292	175	+	183		096	693	+	85		48	1.0331	10
11	984	4.3	272	183		22		100	645		10	2.2	50	1.0310	11
1 2	991		249	184		81		101	592		37		50	1.0382	12
13	894.		226	187		3 5		103	538		16		51	1.0260	13
14	1104		205	189	_	73		104	490	_	34		51	1.0338	14
15	999		180	186		74	5.2	102	430		35	2.6	50	1,0510	15
16	1088		157	183		195		100	375		93		49	1.0184	16
17	824		132	175	+	36		096	315	+	17		47	1.0126	17
18	1401		113	177		424		097	270		205	2.4	47	1.0132	18
19	911	4.5	081	195	_	1426		107	193	_	697		52	1.0092	19
20	915		060	135		1424		074	143		701		36	1.0023	20
2 1	1109		039	075		744	5.6	041	093	ŀ	369	2.8	20	1.0042	2 1
2 2	562		013			1045		024	1	l	524		12		22
					Cr	RCUIT	II.	Left-hand	Branch.						
1	+ 865	4.4	+ .00403	0026	ı –	335	5.3	+ '00012	+ .0941	1 —	136	2.3	+.00004	+1.0418	1
2	1309		383	41	+	413	-	20	895	+	170		07	1.0399	2
3	1281		353	23		1062		11	826		442		03	1.0340	3
4	1175		324	+ 24	_	114		– 13	758	_	48		- 07	1.0345	4
5	1419		297	19		160		10	696		68	2.3	06	1.0316	5
6	994		264	12		403	5.4	06	621		175		04	1.0583	6
7	949		241	– 06	+	102		+ 03	567	+	45		00	1.0560	7
8	898		219	02		29		01	516		13	2.4	01	1.0538	8

NUMERICAL VALUES OF THE μs AND ϕs .

The Direct Traverse—(Continued).

of Station Traverse		La	titude				Lo	ngitude					A	zimuth		tation erse
No. of S in Trav	Δλ	$_{\lambda}g$	$_{\lambda}^{oldsymbol{\mu}}$	λφ	Δ	L	$_{L}^{g}$	ν	μ	$_{L}\phi$	Δ	1	$_{A}^{\mathcal{G}}$	A^{μ}	Aφ	No. of Station in Traverse
				CIRCUI	т <i>II</i>	<i>T</i> . 1	eft-ha	nd B	rancl	h—(Cont	inu	ed).				-
9	+ 837 4·4 +·00198 -·0001 - 22 5·4 ·0000 +·0468 - 10 2·4 -·0001 +1·0216													9		
10	885		179	02	+	188		+	01	423	+	85		01	1.0196	10
11	984	4.3	159	+ 06		22		-	03	3 75		10	3.2	03	1.0172	11
12	991		136	07		81			04	322		37		03	1.0120	12
13	894		113	10		3 5			06	268		16		04	1.0152	13
14	1104		092	I 2	-	73			07	220	-	34		04	1.0103	14
15	999		067	09		74	5.2		05	160		35	2.6	03	1.0075	15
16	1088		044	06		195			03	105		93		02	1.0049	16
17	824		,019	— 02	+	36		+	01	045	+	17		000	1,0051	17
		•		(Circ	CUIT .	II. R	ight-	hand	l Branch	•					
23	+ 838	4.4	+.00400	+.0182	+	1281	5.3	00	0101	+.0932	+	522	2.3	00047	+1.0416	23
24	1237		381	241	-	699			130	891	-	287		59	1.0398	24
25	823		353	210	1	925			114	825		386		52	1.0321	25
26	957		334	169	+	2 I			093	781	+	9		43	1.0323	26
27	1215		312	170	İ	130			093	730		55	2.3	43	1.0333	27
28	1157		284	176	-	351			096	666	-	151		44	1.0304	28
29	849		257	161	ľ	163	5.4		o88	605		71		41	1.0277	29
30	917		237	154		2 55			084	559		112	2.4	39	1.0227	30
3 1	730		216	143	+	301			078	509	+	133		36	1.0532	31
32	807		199	156		101			085	470		45		39	1.0312	32
33	760		180	160		94			087	426		42		40	1.0198	33
34	839	4.3	163	164		61			089	385		28	2.2	41	1,0180	34
35	942		144	167	_	16			090	340	-	7		42	1.0129	35
36	825		122	166	ı	I 20			090	289	ŀ	55		42	1.0132	36
37	808		103	161	+	105			087	244	+	49		41	1.0114	37
38	785		084	166	-	86	2.2		089	200	-	40-		42	1.0094	38
39	740		066	162	+	26			087	157	+	I 2	3.6	41	1.0074	39
40	335		049	163	-	631			088	. 116	-	299		41	1.0022	40
41	177		041	136		593			073	098		282		34	1.0046	41
42	208		037	111		477			059	088		227		28	1.0041	42
43	279		032	090		557			048	077		266		23	1.0036	43

The Direct Traverse - (Continued).

of Station Traverse		L	atitude				Lo	ngitude				A	zimuth		tation
No. of 8 in Trav	Δλ	$_{\lambda}g$	λμ.	λφ		ΔL	L^g	L ^µ	L^{ϕ}	4	ΔΑ	Ag .	A^{μ}	A^{ϕ}	No. of Station in Traverse
				CIRCUIT	r <i>I1</i>	r. R	ight-ha	ınd Bran	ch—(Con	tinu	ed).				
44	+ 251	4.3	+.00026	+.0066	 -	513	5.2	00032	+ .0063	ļ —	245	2.6	00012	+1.0029	44
45	435		20	44		439		23	48		211	:	11	1.0033	45
46	433		10	25		584	1	13	24		281		06	1.0011	46
				(Cir	CUIT .	III.	Left-han	d Branch	•				•	
23	+ 838	4.4	+ .00321	+ '0022	! +	1281	5.3	00013	+ .0810	l +	522	2.2	— · 00006	+1.0361	23
24	1237	7 7	332	78		699	3 3	42		_	287		18	1.0343	24
25	823		304	47		925		20			386		11	1.0316	25
26	957		285	06	+	21		0.5		+	9		02	1,0308	26
27	1215		263	07		130		05			55	2.3	02	1.0277	27
28	1157		235	13	-	351		08	550	_	151		03	1.0340	28
29	849		208	— 02		163	5.4	00	489		71	•	00	1.0333	29
30	917		188	09		255		+ 04	443		112	2.4	+ 02	1.0303	30
31	730		167	20	+	301		10	393	+	133		05	1.0180	3 1
32	807		150	07		101		0.3	354		45		02	1.0193	3 2
33	760		131	03		94		01	310		42		01	1.0143	33
34	839	4.3	114	+ 01		61		- 01	269		28	2.2	00	1.0125	34
35	942		095	04	-	16		02	224	-	7		- 01	1.0104	35
36	825		073	03		120		02	1		55		10	1,0080	36
37	808		°54	– 02	+	105		+ 01	1	+	49		00	1.0020	37
38	785		035	+ 03	-	86	5.2	- 01		-	40	_	01	1.0030	38
39	740		017	- 01	+	26		+ 01	041	+	12	2.6	00	1.0019	39
	,			. (Circ	CUIT I	III. I	Right-ha	nd Branc	h.					
47	+ 1047	4.4	+.00320	+ .0176	ı –	1336	5.3	00003	+ .0813	ı –	545	3.3	- 00041	+1.0356	47
48	650		326	. 117	+	274		62	758	+	113		28	1.0333	48
49	1193		311	129	-	308		68	724	_	128		31	1.0310	49
50	1263		284	115	+	783		61	1661	+	330		28	1.0393	50
51	1255		255	149		117		79	594		50	2.3	36	1.0562	51
52	414		226	154	-	991		82	527	-	428		37	1.0336	5 2
53	489		216	110	+	5	5.4	59	505	+	2		27	1.0230	53

NUMERICAL VALUES OF THE μ s AND ϕ s.

The Direct Traverse—(Continued).

of Station Traverse		L	stitude				Lo	ngitude				A	zimuth		of Station Traverse
No. of St in Trav	Δλ	x ^g	λ ^μ	λ ^φ	4	ΔL	$_{L}^{g}$	L^{μ}	$_{L}\phi$	4	14	_A g	A ^μ	$_{A}^{\phi}$	No. of S in Trav
				CIRCUIT	II.	<i>t</i> . P	Right-h	and Branc	eh—(Con	itin	ued).				
54	+ 699	4.4	+ .00202	+.0110	+	300	5.4	00020	+ .0479	+	131	3.3	00027	+1.0212	54
5.5	547		189	123	-	397		66	441	-	174	2.4	30	1.0199	5 5
56	676		176	106	+	51		57	411	+	23		26	1.0189	56
57	636		160	108		63		58	374		28		27	1.0120	57
58	645		145	m	-	5		59	340	-	2		28	1.0122	58
59	186		130	111	+	24		59	305	+	11		28	1.0140	59
60	652	4.3	114	112	-	92		60	268	-	42	2.2	28	1.0134	60
61	724		099	108		42		58	233		19		27	3.0108	61
6 2	640		082	106		359		57	194		165		27	1.0000	6 2
63	602		067	091	+	508		49	159	.+	234		23	1.0014	63
64	533	•	053	113	_	304		61	126	_	141		28	1.00.59	64
6.5	506		041	100		197	5.2	5+	097		92		25	1.0040	65
66	250		029	092	i	560		49	069		262	2.6	23	1.0033	66
67	168		023	o68		586		36	055		275		17	1.0030	67
68	347		019	043		477		23	046		224		11	1.0033	68
69	489		110	022	ŀ	515		12	027		243		06	1.0013	69
_					Cir	CUIT	IV.	Left-hand	Branch.	•	•				
47	+ 1047	4 '4	+.00300	+ .0076	l –	1336	5.3	00030	+ .0119	-	545	2.3	00016	+1.0310	47
48	650		285	17	+	274		∘8	661	+	113		03	1.0382	48
49	1193		270	29	-	308		14	627	-	128		06	1.0223	49
50	1263		243	15	+	783		07	564	+	330		03	1.0242	50
51	1255		214	49		117		25	497		50	2.3	11	1.0210	5 1
5 2	414		185	54	_	991		28	430	-	428		12	1.0100	5 2
53	489		175	10	+	5	5.4	05	408	+	2		02	1,0180	53
54	699		164	10		300		05	382		131	i	02	1.0169	54
55	547		148	23	_	397		12	344	_	174	2.4	05	1.0123	5.5
56	676		135	06	+	51		03	314	+	23		10	1.0140	56
57	636		119	о8		63		04	277		28		02	1.0124	57
58	645		104	t 1	_	5		05	243	_	2		0.3	1,0100	58
59	186		089	11	+	24		05	208	+	11		03	1,0004	59
60	652	4.3	073	12	_	92		o 6	171	_	42	2.2	03	1.0018	60
		+ 3	-,5				l		•				!		-

The Direct Traverse—(Continued).

of Station Traverse		La	titude				Lo	rgitude			Aı	imuth		lation rerse
No. of S in Trav	Δλ	$_{\lambda}g$	χμ.	λ ^φ	4	\L	$_{L}g$	$ u^{\mu} $	$_L\!\phi$	ΔΑ	_A g	Δ ^μ	_A φ	No. of Station in Traverse
				Circui	r <i>I</i> 7	<i>v</i> . I	Left-ha	nd Branc	h—(Con	tinued).				
61	+ 724 4.3 + .00058 + .0008 - 42 5.4 00004 + .0136 - 19 2.5 00002 +1.0062													
62	640		41	06		359		03	097	165		02	1.0044	6 2
63	602		26	- 09	+	508		+ 05	062	+ 234		+ 02	1.0058	63
64	533		12	+ 13	_	304		- 07	029	- 141		- 03	1.0013	64
				(Circ	OUIT .	IV. I	Right-han	d Brancl	ı .				
70	+ 930	4 ' 4	+ .00286	+ .0184	+	472	5.3	00098	+ .0670	+ 194	2.3	00043	+1.0393	70
71	1167		265	205	_	566		109	621	– 236		47	1.0373	71
7 2	609		238	180		452		096	559	190		42	1.0342	7 2
73	759		224	160		123		086	527	52	2.3	38	1.0234	73
74	· 661		207	155		84		083	487	36		37	1.0312	74
75	824		192	151		105		081	452	45		36	1.0203	7 5
76	541		173	146	+	57	5.4	079	408	+ 25		35	1.0183	76
77	647		161	149		75		080	379	33		36	1.0121	77
78	578		146	152		12		082	344	5	3.4	37	1.0126	78
7 9	664		133	153	-	33		082	313	- 14		37	1.0143	79
80	599		118	152	+	74		081	277	+ 33		37	1.0156	80
81	532		104	155		209		083	245	93		38	1.0115	81
8 2	664		092	164		93		088	216	42		40	1.0099	82
83	672	4.3	077	168		45		090	180	20		00	1.0083	83
8 4	625		062	170	-	205		091	144	– 93	2.2	41	1.0062	84
8 5	645		048	161		177		086	110	81		39	1.0021	8 5
8 6	558		033	153		110		082	075	51		37	1.0032	86
87	207		020	148		597		079	045	276		36	1.0051	87
88	189		015	122		644		065	034	298		30	1.0019	88
89	202		011	094		694		050	024	322		23	1.0011	8 9
90	167		006	064		767		034	013	3 57		16	1.0006	90
91	74		002	031	l	712		016	004	332	l	08	1.0003	91
					CII	RCUIT	v .]	Left-hand	Branch.					
70	+ 930	4.4	+ .00266	+ .0036	+	472	5.3	00019	+ .0625	+ 194	3.3	00007	+1.0272	70
71	1167		245	57	-	566		030	576	- 236		11	1.0523	71

NUMERICAL VALUES OF THE μs AND ϕs .

The Direct Traverse—(Continued).

of Station Traverse		La	titude				Lo	ngitude			A	zimuth		of Station Traverse
No. of S in Trav	Δλ	$_{\lambda}g$	$_{\lambda}^{oldsymbol{\mu}}$	_λ φ	Δ	L	$_L\!g$	ıμ.	φ	ΔΑ	∆g	A^{μ}	Aφ	No. of S in Tra
				Circui	T V	. L	eft-har	nd Branch	n—(Cont	inued).				
7 2	+ 609	4.4	+.00218	+.0032	-	452	5.3	00017	+ .0514	- 190	2.3	00006	+1.0226	7 2
73	759		204	I 2		123		07	482	52	2.3	02	1.0213	7 3
74	66 I		187	07		84		04	442	36		01	1.0196	74
75	824		172	03		105		02	407	45		00	1.0181	7 5
76	541		153	– 02	+	5 <i>7</i>	5°4	∞	363	+ 25		+ 01	1.0165	76
77	647		141	+ 01		7 5		01	334	33	l	00	1.0120	77
78	578		126	04		I 2		03	299	5	2.4	– or	1.0132	78
79	664		113	05	-	33		03	268	- 14		01	1.0151	79
80	599		098	04	+	74		02	232	+ 33		01	1.0102	80
81	532		084	07		209		04	200	93		02	1.0001	8 1
8 2	664		072	16		93		09	171	42		04	1.0078	8 2
83	672	4.3	057	20		45		11	135	20		05	1.0065	83
84	625		042	22	_	205		12	099	– 93	2.2	05	1.0046	84
8 5	645		028	13		177		07	065	81		03	1.0030	8 5
86	558		013	05		110		03	030	51		OI	1.0014	86
				(Circ	CUIT	V. R	ight-hand	l Branch	•				
92	+ 2066	4.2	+ .00298	+ .0533	-	923	5.3	00122	+.0691	- 375	2 · I	00022	+1.0298	9 2
93	871	4.4	250	192	+	80		101	582	+ 33	3.5	48	1.0255	93
94	574		230	196		81		103	536	34	İ	49	1.0236	94
95	1255		217	200	-	452		105	506	- 191		50	1.0553	95
96	857		188	180		53		095	439	23	2.3	46	1.0195	96
97	657		168	178		10		094	394	4		45	1.0172	97
98	659		153	178		0	5.4	094	359	0		45	1.0190	9.8
99	677		138	178	+	7		094	323	+ 3		45	1.0142	99
100	588		122	178	-	56		094	286	— 25	2.4	45	1.0139	100
101	607		108	176	+	3		093	254	+ 1		44	1.0112	101
102	520		094	176	_	305		093	221	– 136		44	1,0100	102
103	616		082	163		86		086	193	39	1	41	1.0088	103
104	593		068	159		59		084	160	26		40	1.0023	104
105	530	4.3	054	156		30		083	128	14		39	1.0029	105
106	494	. •	042	155		249		082	099	113	2.2	39	1.0046	106
107	598		031	144		317		076	072	145		36	1.0034	107
	79-				<u> </u>	J-1				,				

INTRODUCTORY.

The Direct Traverse—(Continued).

of Station	· ·	L	atitude				Lo	ngitude				A	zimuth		tation er se
No. of S in Trav	Δλ	$_{\lambda}g$	λ ^μ	λφ	4	ΔL	_L g	ιμ	L^{ϕ}	,	ΔΑ	A^g	A^{μ}	⊿ ¢	No. of Station in Traverse
				CIRCUIT	· V.	Ri	ght-ha	nd Branc	ch—(Con	tinu	ıed).				
108	+ 152	4.3	+.00017	+ .0130	ı —	583	5.4	- .00069	+.0040	ı –	268	2.5	-:00033	+1.0019	108
109	158		14	105		652		56	32		300		27	1.0012	109
110	117		10	077		533		41	23		245		20	1.0011	110
111	166		07	054		655		29	17		302		14	1.0008	111
1 12	145		03	026	}	615		14	08		284		07	1.0004	112
					Circ	CUIT	VI.	Left-hand	Branch	•					
92	+ 2066	4.2	+:00281	+ .0103	l —	923	5.3	00053	+ .0621	1 –	375	2.1	- 00024	+1.0279	92
93	871	4.4	233	062	+	8 0		32	542	+	33	2.3	15	1.0236	93
94	574		213	066		81		34	496		34		16	1.0312	94
95	1255		200	070	_	452		36	466	_	191		17	1.0304	95
96	857		171	050		53		. 26	399		23	2.3	13	1.0176	96
97	657		151	048		10		25	354		4		12	1.0126	97
98	659		136	048		0	5.4	25	319		0		12	1.0141	98
99	677		121	048	+	7		25	283	+	3		12	1.0139	99
100	· 588		105	048	-	56		25	246	_	25	2.4	12	1,0110	100
101	607		091	046	+	3		24	214	+	1		11	1.∞096	101
102	520		07 7	046	-	305		24	181	-	136		11	1.0081	102
103	616		065	033		86		17	153		3 9		08	1,0068	103
104	593		051	029		59		15	120		2 6		07	1.0024	104
105	530	4.3	037	026		30		14	o88		14		06	1 '0040	105
106	494		025	025		249		13	059		113	2.2	06	1.0024	106
107	598		014	014		317		07	032		145		03	1.0012	107
				C	Circ	UIT /	VI. R	Right-hand	l Branch	١.					
113	+ 888	4.4	+ '00273	+ .0196	_ `	474	5.3	00107	+ .0638	-	193	2 . 3	00048	+1.0276	113
114	1065		2 53	· 175		209		096	591		86		44	1.0529	114
115	884		229	166	+	966		091	535	+	402		42	1.0533	115
116	877		209	209		300		113	488		126		51.	1.0314	116
117	526		189	222	-	210		120	442	_	89	3.3	54	1.0195	117
118	545		177	213		221		115	414		94		52	1.0183	118

NUMERICAL VALUES OF THE μ s AND ϕ s.

The Direct Traverse—(Continued).

ntion br so		Ls	titude				Lo	ngitude			·····	Aı	imuth		tation
No. of Station in Traverse	Δλ	λ ^g	λ ^μ	λ¢	4	ΔL	_L g	L^{μ}	L^{ϕ}	4	ΔΑ	_A g	Δ ^μ	⊿ ¢	No. of Station in Traverse
				Circuit	VI	r. R	ight-h	and Bran	ch—(Con	itin	ued).				
119	+ 492	4.4	+ .00164	+ .0503	-	28	5.3	00110	+ .0382	-	12	2.3	00050	+1.0140	119
120	789		153	202	+	37		109	359	+	16		50	1,0120	120
121	598		135	204	_	111	5.4	110	317	-	48		50	1,0141	121
122	630		121	199	+	29		107	285	+	13		49	1.0152	122
123	637		107	200		14		108	251		6	2.4	49	1.0113	123
124	7 07		092	201		11		108	217		5		49	1.0098	124
125	630		076	201	-	133		108	179	-	59		49	1.0081	125
126	722		062	195	+	113		105	145	+	51		48	1.0066	126
127	635	4.3	045	200	ł	3 2		108	106		15		49	1.0049	127
128	594		030	201	-	251		109	072	-	114	2.2	49	1.0034	128
129	203		016	190		639		. 103	040		292		46	1.0019	129
130	115		011	163		503		088	029		230		39	1.0014	130
131	128		008	141		73 I		076	023		334		34	1,0011	131
132	103		005	110		598		059	016	1	274		26	1.0008	132
133	20		003	084	l	684		045	010		314		20	1.0002	133
134	105		003	055		703		029	009		322		13	1.0004	134
135	51		001	025		578		013	003		265		06	1.0001	135
				(Circ	TIU	VII.	Left-han	d Branch	ì.					
113	+ 888	4.4	+:00257	+.0006	I –	474	5.3	00004	+ .0298	ı –	193	2.5	-·00002	+1.0257	113
114	1065		237	- 15		209		+ 07	551		86		+ 02	1.0532	114
115	884		213	24	+	966		12	495	+	402		04	1.0514	115
116	877		193	+ 19		300		_ 10	448		126		– 05	1.0192	116
117	526		173	32	_	210		17	402	_	89	2.3	08	1.0176	117
118	545		161	23	1	22 I		12	374		94		06	1.0164	118
119	492		148	13		28		07	345		12		04	1.0121	119
120	789		137	12	+	37		06	319	+	16		04	1.0140	120
121	598		119	14	_	111	5.4	07	277	_	48		04	1.0155	121
122	630		105	09	+	29		04	245	+	13		03	1.0108	122
123	637		091	10	1	14		05	211		6	3.4	03	1.0094	123
124	7 07		076	11		11		05			5		03	1.0079	124
125	630		o6 o	11	-	133		05		-	59		03	_	125

The Direct Traverse—(Continued).

- 26 C			titude				Lo	ngitude				Az	imuth		tation erse
No. of Station in Traverse	Δλ	$_{\lambda}g$	$_{\lambda}^{\mu}$	_λ φ	Δ	L	$_{L}^{g}$	I^{μ}	$_{L}\phi$	ΔΔ	4	_A g	A^{μ}	A^{ϕ}	No. of Station in Traverse
				CIRCUIT	V1	T .]	Left-ha	and Branc	ch—(Con	itinue	ed).				
126	+ 722	4.4	+ .00046	+.0005	+	113	5.4	- 00002	+.0102	+	51	2.4	00002	+1.0047	126
127	635	4.3	29	10		32		05	6 6		15		ാ3	1.0030	127
128	594		14	11	_	251		06	32	_	114	2.2	03	1.0012	128
				C	IRCT	JIT I	II.	Right-han	d Branc	h.					
136	+ 1364	4.2	+ .00266	+ '0174	-	21	5.3	00091	+.0612	-	8	2.1	00044	+1.0566	136
137	1303	4.4	235	173	+	578		091	543	+	238	2.5	44	1.0337	137
138	1078		205	198		128		104	474		53		49	1.0508	138
139	768		180	204		424		107	417	_	179	2.3	50	1.0184	139
140	781		162	185		6		097	376		3		46	1.0166	140
141	633		144	185	+	5		097	335	+	2		46	1.0148	141
142	600		129	185	-	128	5.4	097	301	-	55		46	1.0133	142
143	539		115	179		53		094	269		23		45	1,0119	143
144	562		103	177		15		093	240	1	6		44	1.0102	14 4
145	553	:	090	176		1		093	210		٥	2.4	44	1.0094	145
146	546		077	176		52		093	180		23		44	1,0081	14 6
147	505		064	174	+	I		092	151		٥		43	1.0068	147
148	590		052	174		10		092	124	+	4		43	1.0026	148
149	2 57		038	174	-	636		092	092	-	286		43	1.0045	149
150	– 1		032	146		624		077	078	1	281		36	1.0036	150
151	+ 280	4.3	032	119		535	ļ 1	063	078		241		30	1.0036	151
152	365		026	096	1	462		051	063	1	209		34	1.0029	152
153	349		018	076		477		040	043		216	2.2	19	1.0050	153
154	263		010	055		623		029	024		283		14	1,0011	154
155	178		004	028	1	656		015	010	1	299		07	1.0004	155
				C	lirc	UIT	VIII.	Left-har	nd Branc	h.					
136	+ 1364	4.2	+ 00228		ı –	21	5.3	1+,00001	+ .0523	l	8	3.1	- .00001	+1.0224	136
137	1303	4.4	197	- 01	+	578		01	451	1	238	2.5	01		137
138	1078		167	1		128		– 12	382	1	53		06	1	138
139	768		142	30	_	424		15	325	_	179	2.3	07	i	139
140	781		124	11		6		05	284	}	3		03		140

The Direct Traverse—(Continued).

Station verse		L	atitude				Lo	ngitude				A	zimuth		ation
No. of Station in Traverse	Δλ	_A g	λ ^μ	λφ	4	ΔL	$_L\!g$	IJ4	$L^{oldsymbol{\phi}}$	4	A	$\mathbf{A}^{\mathcal{G}}$	Aµ	4¢	No. of Station in Traverse
				CIRCUIT	V1	III.	Left-l	and Bran	ch—(<i>Coa</i>	ntin	ued).				
141	+ 633	4.4	+.00106	+.0011	+	5	5.3	00005	+ .0243	+	2	2.3	00003	+1.0106	14 1
142	600		091	11	_	128	5 4	05	209	_	55		03	1,0001	142
143	539		077	05		53		02	177		23		02	1.0077	143
144	562		065	03		15		OI	148		6		01	1.0062	144
145	553		052	02		1		01	118		0	2.4	01	1.0023	145
146	546		039	02		52		01	088		23		01	1.0039	146
147	505		026	∞	+	I		00	059		0			1.0036	147
148	590	٠,	014	00		10		00	032	+	4		00	1.0014	148
				Cı	RCU	IIT <i>V</i>	III.	Right-ha	nd Branc	ch.					
156	+ 1108	4.4	+ '00174	+.0110	+	29	5.3	00058	+ .0408	+	I 2	2.5	- 00028	+1.0177	156
157	1067		149	111	_	44		59	349	_	19		28	1.0123	157
15 B	737		124	109	+	88		58	292	+	38	2.3	28	1.0130	158
159	509		107	113		0		60	2 53		0		29	1.0113	159
160	551		095	113	-	7		` 60	226	-	3		29	1,0101	160
161	583		082	113	+	22	5.4	60	197	+	10	•	29	1,0088	161
162	627		069	114	_	72		61	. 166	-	31		29	1.0075	162
163	481		055	111		II		59	132		5	2.4	28	1.0061	163
164	449		044	111		10		59	106		4		. 28	1.0049	164
165	444		034	111	+	32		59	082	+	14		28	1.∞38	165
166	537		024	112	-	156	•	60	058	-	69		28	1.0022	166
167	- 50		012	105		639		56	029		285		26	1.0014	167
168	+ 192		013	077		544		41	032		243		19	1.0012	168
169	217		009	053		636		28	022		284		13	1.0010	169
170	193		∞4	025		561		13	010	•	251		06	1.0002	170
				(CIR	CUIT	IX.	L eft-hand	Branch	•					
156	+ 1108	4.4	+ .00163	+.0002	+	29	5.3	00003	+ .0379	+	12	3.3	- '00002	+1.0163	156
157	1067		137	o 6	-	44		03	320	-	19		02	1.0130	157
158	737		112	04	+	88		02	263	+	38	2.3	02	1.0119	158
159	509		095	08		0		04	224		0		03	1.0099	159
160	551		083	08	_	7		04	197	_	3		03	1.0087	160

INTRODUCTORY.

The Direct Traverse—(Continued).

tation	•	L	atitude				Lo	ngitude				A	simuth		tation
No. of Station in Traverse	Δλ	$\lambda^{\mathcal{G}}$	\ \nu\mu	λφ	4	ΔL	_L g	IJI.	$_L\phi$	ΔΛ		$_{A}g$	Δ ^μ	4ф	No. of Station in Traverse
				CIRCUI	r <i>I</i> Z	<i>x</i> . 1	Left-ha	nd Branc	h—(Con	tinued	·).				
161	+ 583	4.4	+ .00040	+.0008	+	22	5.4	00004	+ .0198	+	10	2.3	00003	+1.0074	161
162	627		57	09	_	72		05	137	-	31		03	1.0061	162
163	481		43	06		. 11		03	103		5	2.4	02	1.0042	163
164	449		32	06		10		03	077		4		02	1.0032	164
165	444		22	06	+	32		03	053	+	14		02	1.0054	165
166	537		12	07	 	156	ļ	04	029	 	69		02	1.0013	166
				(Circ	CUIT .	<i>IX</i> . 1	Right-han	d Branch	1.					
171	+ 1197	4.2	+.00219	+.0160		612	5.3	00083	+ .0203	– 2	48	2 · I	00036	+1.0313	171
172	1487	4.4	191	132	+	395		68	439	+ 1	62	3.3	30	1.0188	172
173	1021		157	149		805		77	3 60	3	36		34	1.0122	173
174	1176		134	184	-	871		96	306	– 3	67		42	1.0133	174
17 5	719		107	146	+	446		76	244	+ 1	90	3.3	34	1.0102	175
176	530		090	166	-	400		86	206	– 1	72		38	1,0000	176
177	514		078	148	+	264	5.4	77	178	+ 1	14		34	1.0048	177
178	574		066	160		140		83	150		61		37	1.0066	178
179	602		053	166		141		86	119		62		38	1.0023	179
180	379		039	172	_	476		89	o86	— 2	09	2.4	39	1.0039	180
181	345		030	151		511		78	o 66	2	25		34	1.0030	181
182	335		022	129		4 69		66	047	2	08		29	1.0033	182
183	205		014	108		557		55	029	2	47		24	1.0014	183
184	157		∞9	083		630		42	018	2	80		18	1.0000	184
185	156		∞5	055		607		28	010	2	71		12	1,0002	185
186	44		001	028		627		14	002	2	80		06	1,0001	186
					Сп	RCUIT	X .	Left-hand	Branch.						
171	+ 1197	4.2	+.00197	+.0031	_	612	5.3	00016	+ .0455	– 2	48	3.1	00007	+1.0101	17 1
17 2	1487	4.4	169	03	+	3 95		02	392	+ 1	62	2.3	01	1.0199	172
173	1021		135	20		805		. 11	313	3	36		05	1.0133	173
17 4	1176		112	55	_	871		30	259	— з	67		13	1,0111	174
17 5	719		085	17	+	446		10	197	+ 1	90	2.3	05	1.0082	175

NUMERICAL VALUES OF THE μs AND ϕs .

The Direct Traverse—(Continued).

of Station Traverse		L	atitude				Lo	ngitude				Azimuth		Station rerse
No. of St in Trav	Δλ	$\lambda^{\mathcal{G}}$	λμ.	λφ	4	ΔL	L.g	I^{μ}	$L^{oldsymbol{\phi}}$	ΔΔ	Ag	Δ ^μ	Δ¢	No. of Station in Traverse
	·			CIRCUI	т <i>Д</i>	7. I	eft-hai	nd Branch	ı—(Cont	inued)				
176	+ 530	4.4	+ .00068	+:∞37	۱ –	400	5.3	00050	+.0159	- 17	2 2.3	00009	+1.0068	176
177	514		56	19	+	264	5.4	11	131	+ 11	4	05	1.0026	177
178	574		44	31		140		17	103	6	1	08	1.0044	178
179	602		31	37		141		20	072	(2	09	1,0031	179
180	379		17	43	-	476		23	039	— 20	9 2.4	10	1.0012	180
181	345		08	22		511		12	019	22	5	05	1,0008	181
				(Circ	CUIT	<i>X</i> . R	ight-hand	l Branch	•				
187	+ 636	4.2	+·∞281	+ .0538	+	22	5.3	- 00120	+ .0620	+	9 2.0	00026	+1.0269	187
188	404		266	239		321		121	617	12	6 2.1	56	1.0256	188
189	456		257	253		31		128	596	1	2	59	1.0248	189
190	474		247	254	_	139	5.3	129	572	- 5	5	59	1.0238	190
191	486		236	248	+	67		126	547	+ 2	7	58	1.0338	191
192	411		225	251		286		128	521	11	5	59	1.0318	192
193	589		216	264		157		135	499	6	3	62	1.0309	193
194	516		202	271	_	6		139	468	_	2	63	1.0197	194
195	659		190	271		104		139	441	4	2 2.3	63	1.0186	195
196	538	4.4	175	266		237		137	406	ç	7	62	1.0125	196
197	601		163	256		152		132	377	6	2	60	1.0190	197
198	467		149	249		316		129	345	13	1	59	1.0142	198
199	448		138	235		I 2 2		122	320		1	56	1.0132	199
200	504		128	230	+	123		119	296	+ 5	2	55	1.0152	200
201	591		116	235		323		122	269	13	6	56	1.0119	201
202	634		102	249		48		129	238	2	0 2.3	59	1.0103	202
203	606		087	2 51		111		130	2 04	4	7	59	1.0088	203
204	485		073	256		43		133	172	,	9	60	1.0074	204
205	543		062	258		41		134	146	1	8	60	1.0063	205
206	545		050	260	_	78	5.4	135	117	– 3	4	60	1.0051	206
207	539		037	257	+	2		133	088	+	1	59	1.0038	207
208	554		025	257		9		133	059		4	59	1.0026	208
209	500		012	257	-	132		133	029	- 5	8 2.4	59	1.0013	209
2 10	175		000	251		701		130	002	31	0	58	1.0001	210

The Direct Traverse—(Continued).

of Station		La	titude			Lor	gitude			A	zimuth		tation rerse
No. of 8 in Tru	Δλ	_A g	λμ	λφ	ΔL	_L g	$ u^{\mu}$	$_{L}\phi$	ΔΑ	$_{A}g$	A^{μ}	$_{A}\phi$	No. of Station in Traverse
				CIRCUIT	X. Ri	ght-hai	nd Brancl	n—(Cont	inued).				
2 1 1	+ 367	4.4	00004	+ '0220	- 585	5.4	00114	0007	- 259	2.4	00021	+1.0003	211
212	- 177		012	194	587		101	27	261		45	0.9988	2 1 2
213	22		008	168	583		087	17	259		. 39	0.9993	21
214	28		007	142	687		074	16	305		33	0.9993	21
215	4		006	112	100		058	14	293		26	0.9994	2 1
216	+ 50		००७	083	627		043	14	278		19	0.9994	2 1
217	– 95		007	055	683		029	17	303		13	0.0003	2 1
218	214		005	025	575		013	12	255		06	0.9992	2 1
cuit e		L	atitude	·	The		ngitude			A	zimuth		cuit
o. of Circuit Triangle	Δλ			λ φ	ΔL	Lo		τ.Φ	ΔΑ				o. of Circuit
No. of Circuit Triangle	Δλ	L.	atitude _λ μ	λφ		Lo Lg	ngitude	_L φ l Branch	<u></u>	A ^g	zimuth A A	лф	No. of Circuit
No. of Circuit Triangle	Δλ + 296				ΔL	Lo Lg	Iμ		<u></u>		A^{μ}	Αφ +1.0241	No. of Circuit
362 363		,g	λ ^μ		Δ <i>L</i> Circuit	Lo ZJ.	_I μ Left-hand	l Branch		A ^g	A^{μ}	+1.0241	3
362 363 864 365	+ 296	,g	λ ^μ	0277	ΔL CIRCUIT + 607	Lo ZJ.	<i>z</i> ^µ Left-hand	 Branch + `°577	. + 237	2.0	4 ^μ	1.0232	30 30 30 30
362 363	+ 296	,g	λ ^μ + ·00251 244	- °0277 250	ΔL CIRCUIT + 607 - 184	Lo ZJ.	<i>L</i> μ Left-hand + '00149	Branch + '°577	 + 237 - 72	2.0	+ · 00059	1.0231	
362 363 864 365 366	+ 296 } 536 } 324	,g	+ · 00251 244 232	250 258	ΔL CIRCUIT + 607 - 184 + 536	Lo Lg XI.	Left-hand + '00149 135	Branch + '0577 562 534	+ 237 - 72 + 212	2.0	4 ^μ + · 00059 54	1.0235	30 30 30 30
362 363 364 365 366 367	+ 296 } 536 } 324 208	,g	+ · 00251 244 232 225	250 258 234	ΔL CIRCUIT + 607 - 184 + 536 - 466	Lo Lg XI.	Left-hand + '00149 135 139	Branch + '°577 562 534 517	+ 237 - 72 + 212 - 184	2.0	4 ^μ + '00059 54 56 51	+ 1 · 0241 1 · 0235 { 1 · 0217 1 · 0213	30 30 30 30 30
362 363 864 365 366 367 368	+ 296 } 536 } 324 208 266	,g	+ · 00251 244 232 225 220	250 258 234 255	ΔL CIRCUIT + 607 - 184 + 536 - 466 + 327	Lo Lg XI.	Left-hand + '00149 135 139 127 138	Branch + '0577 562 534 517 506	+ 237 - 72 + 212 - 184 + 130	2.0	+ · · · · · · · · · · · · · · · · · · ·	+ 1 ° 0241 1 ° 0235	30 30 30 30 30 30 30 30 30 30 30 30 30 3
362 363 364 365 366 367 368 369	+ 296 } 536 } 324 208 266 253	,g	+ · 00251 244 232 225 220 214	250 258 234 255 240	ΔL CIRCUIT + 607 - 184 + 536 - 466 + 327 - 542	Lo Lg XI.	135 139 127 138 130	Branch + '0577 562 534 517 506 492	+ 237 - 72 + 212 - 184 + 130 - 216	2.0	+ · · · · · · · · · · · · · · · · · · ·	+1°0241 1°0235	30 30 30 30 30 30 30 30
362 363 364 365 366 367 368 369 370	+ 296 } 536 324 208 266 253 233	,g	+ · 00251 244 232 225 220 214 208	250 258 234 255 240 264	ΔL CIRCUIT + 607 - 184 + 536 - 466 + 327 - 542 + 609	Lo Lg XI.	135 139 127 138 130 142	534 517 562 534 517 506 492 479	+ 237 - 72 + 212 - 184 + 130 - 216 + 243	2.0	4μ + · · · · · · · · · · · · · · · · · ·	+ 1 · 0241 1 · 0235 { 1 · 0217 1 · 0213 1 · 0207 1 · 0202 1 · 0197	30 30 30 30 30 30 30 30 30 30 30 30 30 3
362 363 364 365 366 367 368 369 370 371	+ 296 } 536 208 266 253 233 322	,g	244 232 225 220 214 208 203	250 258 234 255 240 264 237	ΔL CIRCUIT + 607 - 184 + 536 - 466 + 327 - 542 + 609 - 361	Lo Lg XI.	Left-hand + '00149 135 139 127 138 130 142 128	534 517 506 492 479 467	+ 237 - 72 + 212 - 184 + 130 - 216 + 243 - 145	2.0	+ · · · · · · · · · · · · · · · · · · ·	+ 1 · 0241 1 · 0235 { 1 · 0235 { 1 · 0217 1 · 0213 1 · 0207 1 · 0202 1 · 0197 1 · 0190	3 3 3 3 3 3 3 3 3
362 363 364 365 366 367 368 369 370 371	+ 296 } 536 208 266 253 233 322 89	,g	244 232 225 220 214 208 203 196	250 258 234 255 240 264 237 253	ΔL CIRCUIT + 607 - 184 + 536 - 466 + 327 - 542 + 609 - 361 + 648	Lo Lg XI.	135 139 127 138 130 142 128 136	534 517 506 492 479 467 450	+ 237 - 72 + 212 - 184 + 130 - 216 + 243 - 145 + 260	2.0	4 · · · · · · · · · · · · · · · · · · ·	+ 1 ° 0241 1 ° 0235 { 1 ° 0217 1 ° 0213 1 ° 0207 1 ° 0197 1 ° 0190 1 ° 0188	3 3 3 3 3 3 3 3 3 3 3 3
362 363 364 365 366 367 368 369 370 371 372 373	+ 296 } 536 208 266 253 233 322 89 452	,g	244 232 225 220 214 208 203 196 194	258 258 234 255 240 264 237 253 224	ΔL CIRCUIT + 607 - 184 + 536 - 466 + 327 - 542 + 609 - 361 + 648 - 354	Lo Lg XI.	135 139 127 138 130 142 128 136 121	534 517 562 534 517 506 492 479 467 450 445	+ 237 - 72 + 212 - 184 + 130 - 216 + 243 - 145 + 260 - 142	A ^g	+ '00059 54 56 51 55 57 51 54 48	+ 1 · 0241 1 · 0235 { 1 · 0235 { 1 · 0217 1 · 0213 1 · 0207 1 · 0197 1 · 0190 1 · 0188 1 · 0179	3 3 3 3 3 3 3 3

The Zig-zag Traverse—(Continued).

Sircuit igle		L	atitude	_			Lo	ngitude			A	simuth	 	ircuit gle
No. of Circuit Triangle	Δλ	$_{\lambda}g$	λ ^μ	λφ	,	ΔL	_L g	I^{μ}	L^{ϕ}	ΔΑ	A^g	A^{μ}	A^{ϕ}	No. of Circuit Triangle
				Circui	r <i>X</i>	<i>I</i> .]	Left-ha	nd Branc	h—(Con	tinued).				
377	+ 293	4.2	+ .00140	- 0217	 -	503	5.3	+:00117	+ .0386	- 205	2 · I	+ · 00 046	+1.0162	377
378	366	4.4	163	240	+	400		129	371	+ 164	2 . 3	51	1.0129	378
379	172		155	222	-	672		120	352	– 2 75		47	1 ~0151	379
38 0	366		151	252	+	435		135	343	+ 179		53	1.0142	380
381	180		143	233	-	588		125	324	- 242		49	1.0139	381
382 -	420		139	259	+	436		139	314	+ 180		55	1.0135	382
383	42		129	240	-	523		129	292	- 217		51	1.0126	383
384	425		128	263	+	207		141	290	+ 86		56	1.0122	384
385	76		118	2 54	-	586		136	267	- 244		54	1.0119	385
386	372		116	280	+	463		149	263	+ 194		6 0	1.0114	386
387	220		107	260	_	585		138	243	- 245		56	1.0106	387
3 88	285		102	· 2 86	+	708		151	231	+ 297		62	1,0101	388
389	429		095	25 5	-	402		135	216	- 170		55	1.0095	389
390	162		085	2 73	+	725		144	193	+ 307		59	1.0086	390
391	328		081	241	-	409		127	184	— 174	2.3	52	1.0083	391
392	306		073	2 59	+	457		136	167	+ 195		56	1.004	392
393	258	•	o 6 6	2 39	-	600		125	151	– 2 56		52	1.0062	393
394	350		06 0	265	+	711		139	137	+ 304		58	1.0061	394
39 5	174		052	234	-	640		123	118	– 2 75		51	1.0023	395
396	311		048	262	+	683		138	109	+ 294		57	1.0049	396
897	292		041	232	-	589		I 2 2	093	- 254		50	1.0043	397
398	251		034	258	+	630		136	078	+ 273		56	1.∞32	398
399	244		028	230	-	615	5.4	122	065	– 267		50	1.0039	399
400	3∞		022	257	+	537		136	052	+ 233		56	1.0033	400
401	229		015	233	-	543		124	036	- 237		51	1.0016	401
402	310		010	2 57	+	545		136	024	+ 238		56	1.0011	402
403	225		∞3	233	-	559		123	007	- 245		51	1.0004	403
404	329		- 002	258	+	567		136	- 005	+ 249	2.4	57	0.9999	404
405	171		010	233	-	665		123	023	- 293		51	0.9991	405
406	329		014	262	+	533		138	032	+ 236		58	0.9987	406
407)												(407
424	496		022	239		535		126	050	237		53	0.9979	424
425	,												(425

INTRODUCTORY.

The Zig-zag Traverse—(Continued).

ireuit gle			L	atitude			Lo	ongitude			A	simuth		ircuit gle
No. of Circuit Triangle	4	λ	_A g	λ ^μ	λφ	ΔL	L^g	<i>I</i> ^μ	L^{ϕ}	ΔΑ	_A g	A ^µ	A^{ϕ}	No. of Circuit Triangle
					CIRCUI	r <i>XI</i> . I	Left-ha	nd Branc	h—(Con	tinued).				
426	-	547	4.4	00033	0312	+ 1	5.4	+:00114	0077	+ 0	2.4	+ .00048	+0.9962	426
427	+	181		20	215	439		114	47	194		48	0.9980	427
428 429	}-	314		24	196	527		104	57	234		44	0.9976	428 429
430 431	}+	151		17	173	539		092	40	238		39	0.9984	430 431
432 433	}-	419		20	149	463		080	48	205		34	0.9980{	432 433
434 435	}+	136		10	129	521		069	25	239		29	0.9990{	434 435
436 437	}-	351		. 13	106	506		057	32	223		24	0.9982	436 437
438 439	}+	135		5	084	634		045	13	27 9		19	0.9992	438 439
440 441	}-	479		8	056	424		030	20	187		13	0.9993	440 441
442 443	}+	118		+ 3	037	850		020	+ 6	372		9	1.0003	442 448
					C	IRCUIT 2	<i>YI</i> . I	Right-han	d Branch	ı .				
362 444	}+	279	4.2	+ '00257	- '0255	+ 531	5.3	+.00131	+ .0598	+ 206	2.0	+ .00021	+1.0542	362 444
445 446	}-	321	1	251	231	587		119	583	229		46	1.0530	445 446
447	+	621		258	205	7		105	600	3		41	1.0342	447
448	-	283		244	205	487		105	568	191	2 · I	41	1.0333	448
449	+	435		251	183	149		094	583	58	2.0	37	1.0539	449
450 451	+	376 467		241	176 160	355		091	560 580	139	2°1	36	1.0338	450 451
452	+	423		250 239	153	151 378		o83 o8o	580 556	59 148	2 · I	33	1.0339	452
453	+	499		249	136	207		071	578	81	3.0	29	1.0338	453
454	_	468		238	127	354		066	552	139	2 · I	27	1.0338	454

NUMERICAL VALUES OF THE μs AND ϕs .

The Zig-zag Traverse - (Continued).

ircuit gle		Le	atitude				Ło	ngitude				zimuth		ircuit gle
No. of Circuit Triangle	Δλ	$_{\lambda}g$	λ ^μ	_λ φ	Δ1	L	$L^{\mathcal{G}}$	L^{μ}	φ	ΔΑ	A ^g	A ^µ	A^{ϕ}	No. of Circuit Triangle
			٠	Circuit	XI.	\mathbf{R}	ight-h	and Bran	ch(<i>Co</i>	ntinued).			
455	+ 470	4.2	+ .00249	0111	+ 3	301	5.3.	+.00058	+ .0576	+ 118	3.0	+ '00024	+1.0338	455
456	- 482		238	097	3	338		51	552	133	3 · I	21	1.0229	456
457	+ 495		249	082	ł	212		43	577	83	3.0	18	1.0530	457
458	- 441		238	072	i	90		38	. 551	114	1	16	1.0530	458
459	+ 479		248	059	3	81		31	574	149	2.0	13	1.0338	459
460 461	} 46		237	042	5	62	•	22	549	221	2.1	10	1.0228	460 461
462	477		236	017	— 3	326		09	547	— 128		05	1.0552	462
463 464	} 437		225	032	+ 2	83		16	522	+ 112		08	1.0217	463 464
465 466	} 510		215	019	– 2	85	5.3	09	499	- 113		05	1.0308	465 466
467 468	} 492		203	032	+ 3	60		16	472	+ 144		. 08	1.0192	467 468
469 470	} 476		192	016	– 2	06		08	446	- 83		05	1.0182	469 470
471 472	} 483		181	025	+ 1	65		13	421	+ 67		07	1.0177	471 472
478 474	} 444		170	018	– 2	9		09	395	— 8 ₅		05	1.0162	473 474
475 476	} 501		160	027	+ 2	31		14	371	+ 94	2 · 2	07	1.0128	475 476
477 478	} 482	4.4	148	017	– 5	16		09	344	– 212		05	1.0142	477 478
479 480	} 484		137	040	+ 4	16		21	318	+ 172		10	1.0136	479 480
481 482	} 486		126	022	– 4	.32		11	292	- 179		06	1,0132	481 482
483 484	} 484		115	041	+ 3	28		2 I	266	+ 137		10	1.0114	483 484
485 486	} 491		104	027	– 3	76		13	240	– 158		07	1.0103	485 486
487	468		093	044	+ 2	82		22	214	+ 119		11	1.0093	487

The Zig-zag Traverse—(Continued).

Sirouit gle		I	atitude				Lo	ngitude				Δ.	zimuth		ircuit gle
No. of Circuit Triangle	Δλ	_A g	λ ^μ	,φ	4	ΔL	$_{L}^{g}$	I^{μ}	$_{L}\phi$	4	\ <u>A</u>	A^g	A^{μ}	A^{ϕ}	No. of Circuit Triangle
				CIRCUIT	XI	r. R	ight-h	and Bran	ch—(<i>Cor</i>	itine	ued).				
488	+ 468	4.4	+ .00003	0044	+	282	5.3	+ '00022	+ .0214	+	119	2.3	+.00011	+1.0003	488
489 490	} 512		82	32	-	288		16	189	-	122		8	1.0085	489 490
491 492	} 650		70	4.5	+	536		23	162	+	228	2.3	11	1.0040 {	491 492
493 494	366		55	21	-	630		11	128	_	269		6	1.0022	493 494
495	251		47	49	+	716		25	109	+	308		12	1.0012	495
496 497	} 757		41	17		94		9	096		41		5	1.0041	496 497
498 499	} 543		24	13		453	5.4	7	056		197		4	1.0054	498 499
500	386		12	7	-	998		– 3	027	-	436		- 1	1.0013	500
501	118	11	3	37	1 +	850		+ 20	6		372	3.4	+ 9	1.0003	501
				(CIRC	UIT .	XII.	Left-han	d Branch	١.					
461	+ 46		+ .00331	0292	+	562	5.3	+ .00123	+.0233	+	221	2 · I	+ .00068		461
462 463	477		230	267	-	326		140	531	-	128		63	1.0330	462
464	437		219	282	+	283		147	506	+	112		66	1.0310	463 464
465 466	} 510		209	269	-	285	5.3	140	483	-	113		63	1,0301	465 466
467 468	} 492		197	282	+	360		147	456	+	144		66	1.0100	467 468
469 470	} 476		186	266	_	206		139	430	_	83		63	1.0180	469 470
471 472	} 483		175	275	+	165		144	405	+	67		65	1.0120	471 472
473 474	} 444		164	268	-	209		140	379	_	85		63	1.0100	473 474
475 476	} 501		154	277	+	231		145	355	+	94	2.3	65	1.0121	475 476
477	482	4.4	142	267	_	516		140	328	-	212		63	1.0140	477

. NUMERICAL VALUES OF THE μ s AND ϕ s.

The Zig-zag Traverse—(Continued).

ireuit gle		L	atitude				Lo	ngitude			ircuit gle			
No. of Circuit Triangle	Δλ	λg	λ ^μ	λφ	4	ΔZ	_ g	I^{μ}	φ	ΔΑ	Ag	A^{μ}		No. of Circuit Triangle
				CIRCUIT	X	XII. Left-hand Branch—(Continued).								
478	+ 482	4.4	+ .00143	0267	l –	516	5.3	+.00140	+ .0328	- 212	2.3	+ .00063	+1.0140	478
479 480	} 484		131	290	+	416		152	302	+ 172		68	1.0150	479 480
481 482	} 486		120	272	_	432		142	276	- 179		64	1.0118	481 482
483 484	} 484		109	291	+	328		152	250	+ 137		68	1.0102	483 484
485 486	} 491	٠	098	277	_	376		144	224	– 158		65	1.0000{	485 486
487 488	} 468		087	294	+	282		153	198	+ 119		69	1.0082	487 488
489 490	} 512		076	282	-	288		147	173	- 122	2.3	66	1.0012	489 490
491 492	} 650		064	295	+	536		154	146	+ 228		69	1.0003 {	491 492
498 494	366		049	271	_	630		142	112	.— 269		64	1.0048	498 494
495	251		041	299	+	716		156	093	+ 308		70	1.0040	495
496 497	} 757		035	267		94		140	080	41		63	1.0034	496 497
498 499	} 543		018	263		453	5.4	138	040	197		62	1.0012	498 499
500 501	} 502		006	243	-	149		128	011	- 65		57	1.0002	500 501
502	- 24		— იინ	250	+	830		131	- 016	+ 364	2.4	58	0.0003	502
503 504	} + 674		००५	213		470		112	015	206		. 50	0.3334	503 504
505	- 641		021	192		626		101	051	276		45	0.9948	505
506 507	}+ 420		ဝဝဝ	164		470		087	016	206		39	0.9993 {	506 507
508	- 446		016	143		314		076	039	138		34	0.0083	508
509 510	}+ 398		006	129		954		069	015	418		31	0.3994	509 510
511	- 404		015	087		396		047	036	174		21	0.9984	511

The Zig-zag Traverse—(Continued).

Sironit gle			L	atitude			L	ongitude		Azimuth					
No. of Circuit Triangle	Δλ ,		$_{\lambda}g$	λμ	_λ μ _λ φ		Lg .	ıμ	L^{ϕ}	Δ4	A^g	Aµ	Δ¢	No. of Circuit Triangle	
		•			Circuit	XII.	XII. Left-hand Branch—(Continued).								
512	_	404	4.4	00015	0087	+ 396	5.4	+ .00047	0036	+ 174	2.4	+.00031	+0.9984	512	
513	+	610		06	70	388		38	14	170		17	0.9994	518	
514	-	570		20	53	352		29	47	155		13	0.9979	514	
515	+	553		07	38	549	,	21	16	241		09	0.9993	515	
516	-	848		20	14	— 195		08	46	- 86		03	0.9980	516	
517	+	I		00	23	+ 519		12	00	+ 227	3.3	05	1,0000	517	
					C	IRCUIT	XII.	Right-hai	nd Branc	h.					
461	+	503	4.2	+ '00245	0287	+ 263	5.5	+ .00148	+ .0556	+ 103	2.0	+:00056	+1.0227	461	
518	_	505		233	275	374		142	530	147	3.1	54	1.0212	518	
519	+	519		245	258	273		133	556	107	3.0	51	1.0338	519	
520	_	531		233	246	293		127	529	115	3.1	49	1.0518	520	
521	+	463		245	233	309		120	557	121	2.0	46	1.0550	521	
522	-	547		234	219	254		113	533	100	3.1	43	1.0530	522	
523	+	500		247	208	314		107	561	123	3.0	41	1.0331	523	
524	_	493		235	194	292		100	535	115	3.1	38	1.0531	524	
525	+	546		246	181	198		093	561	77	3.0	35	1.0531	525	
526	_	522		233	172	343		088	533	135	3 · I	33	1.0530	526	
527	+	526		245	157	259	. }	080	560	101	2.0	30	1.0331	527	
52 8	_	485		233	145	295		074	533	116	2'I	28	1.0550	52 8	
529	+	480		244	132	291		067	558	114	2.0	25	1.0330	529	
530	_	472		233	119	275		060	533	108	3.1	. 22	1.0330	580	
531	+	469		244	107	367	,	054	558	143	3.0	20	1.0330	531	
532	_	480		233	090	258		046	534	102	3,1	17	1.0551	532	
533	+	462		244	078	359		040	559	141	2.0	15	1.0531	533	
534	-	469		233	062	158		032	535	62	3°I	12	1.0333	584	
535	+	408		344	055	47 0		028	559	184°	3.0	11	1.0333	535	
536 537	}	108		235	034	68 9		017	538	271	3. I	07	1.0234	536 537	
538		520		233	∞3	- 157		100	532	– 62		01	I '0332	538	
539 540	}	698		221	010	+ 141		∞5	505	+ 56		. 02	1.0311	539 540	
541		330		205	004	- 644	5.3	002	469	– 2 58	1	01	1.0196	541	

NUMERICAL VALUES OF THE μ s AND ϕ s.

The Zig-zag Traverse—(Continued).

No. of Circuit Triangle			La	titude				Lo	ngitude				ircuit gle		
	Δλ		ъ ^g	λ ^μ	λφ	4	L	_L g	I^{μ}	L^{ϕ}	ΔΑ	Ag	Δ ^μ	⊿ ¢	No. of Circuit Triangle
	CIRCUIT XII. Right-hand Branch—(Continued).														
542	+	330	4.2	+ .00202	0004	-	644	5.3	+.00003	+ .0469	– 2 58	3.1	1,00001	+1.0196	542
54 3		327		197	33	+	447		17	452	+ 179		07	1.0189	548
544	1	296		189	13	-	581		07	435	- 234		. 03	1.0183	544
545	1_	262		182	39	+	814		20	419	+ 329		08	1.0176	545
546 547	}	500	!	176	02	-	134		01	405	— 54		∞	1.0140	546 547
54 8		143		164	08	+	834		04	378	+ 339		01	1.0129	548
549 550	}	863		161	+ 30	-	38		- 15	370	– 16.		- 07	1.0126	549 550
551 552	}	76	4.4	141	28	+	705		14	324	+ 290	3.3	07	1.0138	551 552
558		626		139	59	-	590		30	320	- 244		14	1.0136	558
554	_	118		125	33	+	1090		16	287	+ 450		08	1.0133	554
555	+	899		128	81	-	541		41	293	- 226		18	1 0125	555
556 557	}	489	•	107	57	+	348		29	245	+ 146		13	1.0102	556 557
558 559	}	522		096	72	-	610		37	219	- 257		16	1.0094	558 559
560 561	}	5 05		084	45	+	75		23	191	+ 32		10	1.0083	560 561
562 563	}	631		.072	48	-	572		25	164	- 244	2.3	11	1.0072	562 563
564 565	}	562		°57	23	+	406		12	131	+ 174		05	1.0057	564 565
566 567	}	327		044	41	-	586		21	101	- 252		09	1.0044	566 567
568		379		036	15	+	470		о8	084	+ 203		03	1.0036	568
569	ŀ	326		027	36	-	822		19	064	- 357		08	1.0022	569
570		293		020	∞	+	3 65	5.4	∞	047	+ 159		∞	1.0030	570
571		132		013	16	-	662		о8	031	– 288		04	1.0013	571
572		441		010	- 13	+	294		+ 07	024	+ 128		+ 03	1,0010	572.
578											,			1,0000	578

12.

Numerical Values of the Coefficients b and c of the Unknown Quantities y and z.

The following table gives the numerical values of the coefficients b and c of the unknown quantities c and c in every equation of condition. Should it be desired to reproduce any one of these coefficients, as the value of b, in the cth equation, it is first necessary to ascertain, by reference to pages 80-84, whether the coefficient is one of those of an exceptional form for which symbolical expressions are there given. When not found in this list it will be understood to take one of the general forms on page 79; if it occurs in a linear equation the form is c1, if in a geodetic equation, appertaining to any one of the Circuits c1 to c2 inclusive, it takes one of the forms c3 or c4.

Examples.

(1). To find the values of b_{84} and c_{84} in equation (5).

This is a linear equation, and the forms of the coefficients are exceptional, see page 80, being

$$_5b_{34} = + a_{34} = + \text{ t.d. log sin } 49^\circ 31' 10'' = + 17$$
 $_5c_{34} = + (a_{34} + \gamma_{34}) = + \text{ t.d. log sin } 49^\circ 31' 10'' + \text{ t.d. log sin } 59^\circ 1' 58''$
 $= + 17 + 12 = + 29$

The values of the angles are given in the data for Triangle 34, page 93, in the same horizontal lines as the symbolical errors x and z.

(2). To find the values of b_{463} and c_{463} in equation (46).

This is a linear equation and the forms of the coefficients are normal, but the angles appertain to a triangle on the left-hand branch of a circuit.

$$_{46}b_{482} = -\beta_{482} = - \text{ t.d. log sin } 72^{\circ} 30' 46'' = - 7$$
 $_{46}c_{482} = + \gamma_{482} = + \text{ t.d. log sin } 60 \text{ i. 14} = + \text{ i.2}$

(3). To find the values of \mathfrak{b}_{138} and \mathfrak{c}_{138} in equation (12).

The equation is azimuthal, appertaining to Circuit III, and the forms of the coefficients are exceptional, see pages 80 and 81, being

$$_{12}\mathfrak{b}_{138} = -_{12}\mu_{69} a_{138} + _{12}\phi_{69} = + \cdot 0001 \times 12 + 1\cdot 001 = + 1\cdot 002$$

 $_{12}\mathfrak{c}_{138} = 1 - _{12}\mu_{69} (a_{138} + \gamma_{138}) = 1 + \cdot 0001 (12 + 21) = + 1\cdot 003$

(4). To find the values of b_{54} , c_{54} , b_{55} and c_{55} in equation (7).

The equation is longitudinal, appertaining to Circuit II, and the forms of the coefficients are normal. Triangles 54 and 55 are both situated in the right-hand branch of the circuit; the former has a side in the traverse between the stations 27 and 28; the latter has no side in the traverse, but it has an angle at station 28. Thus

(5). To find the values of \mathfrak{h}_{484} and \mathfrak{c}_{484} in equation (47).

The equation is in latitude, appertaining to Circuit XII, for which the zig-zag traverse has been employed, and the forms of the coefficients are normal, while they occur in the left-hand branch of the circuit.

In these coefficients ι stands for +, because Triangle 484 falls to the right of the line of traverse.

The numerical coefficients \mathfrak{b} and \mathfrak{c} which follow, before being manipulated for finding the coefficients of the Indeterminate Factors, were multiplied by equalizing factors—see page 59—which may be symbolized by ${}_{1}f, {}_{2}f,$ &c., the subscripts ${}_{1}, {}_{2}, \ldots$ corresponding to the equation-numbers. The products f \mathfrak{b} and f \mathfrak{c} , were retained to two decimal places only. For the sake of convenience the value of the equalizing factor for each equation is placed at the commencement of the statement of the coefficients and at the head of every succeeding column, in the following table.

Circuit ngle	Coefficient	s of y and z	Jireuit 18le	Coefficient	s of y and s	Circuit ngle	C	Coefficient	s of y and z	Jirouit 1gle	C	oefficiente	of y	and z
No. of Circuit Triangle	Ď	t	No. of Circuit Triangle	ħ	t	No. of Circuit Triangle		b	¢.	No. of Circuit Triangle		b		¢
	Equation	Linear.		Equation	-(Continued).		Equ	ation-	(Continued).		Equ	ation–	-(Conti	inued).
Equa	lizing Fac	tor = .03.	Equa	alizing Fac	tor = .03.	Equa	ılizir	ng Fac	ctor = 15.	Equa	alizin	g Fac	tor =	= 15.
1	+ 15	— I	33	+ 15	- 8	18	+	.020	059	4	-	115	_	.090
2	22	11	34	7	12	19		.042	.026	5		.115		.097
3	15	22	35	12	01	20		.017	.048	6	+	·085	+	. 106
4.	6	22	36	4	28	21		.054	.019	7_		.091		. 108
5	6	14	37	6	15	22		.012	•036	8	_	. 107	_	.084
6	21	6	38	34	. 8	23	_	.048	.071	9	+	.084	+	. 103
7	11	10	39	19	23	24	+	•046	.013	10	-	.101	-	180.
8	9	12	40	14	7	25		.011	.021	11	+	.079	+	.093
9	13	13	41	5	25	26		•050	.002	12	_	.098	_	.076
10	12	8	42	22	4	27	_	.008	•057	13	+	.078	+	.093
11	13	7	43	7	15	28	+	.045	•007	14	-	.092	_	.071
12	15	9	44	6	10	29		.004	.041	15	+	.068	+	.084
13	6	15				3 0		.038	.007	16	_	.087	_	•067
14	16	8		Equation.	Latitude.	31	_	.002	.045	17	+	•063	+	.080
15	11	10	Equa	ilizing Fac	etor = 15.	32	+	.033	.002	18	-	.082	-	•055
16	13	7	1	+ .082	+ .004	33		.002	.028	19	+	.059	+	.079
17	11	11	2	•096	069	34		.023	.001	20	_	.078	_	.024
18	13	14	8	.084	•096	35	_	· o o5	.029	21	+	.020	+	.071
19	10	14	4	.013	•118	36	+	.018	.014	22	-	.072	-	.052
20	13	11	5	.013	•081	37		.031	.001	23		.047		.038
21	15	12	6	.103	.012	38		.006	.019	24	+	•046	+	•066
22	13	7	7	• 060	•029	39		.022	.006	25	-	.067	-	.040
23	- 12	21	8	.017	•069	40	_	.002	.011	26	+	.038	+	.028
24	+ 13	12	9	.066	.037	41		.006	.018	27	-	.054	_	.031
25	13	14	10	.027	•049	42	+	.006	.003	28	+	.033	+	.024
26	16	9	11	.062	.013	43	ļ	.002	.004	29	_	·056	_	.031
27	5	18	12	.036	•049	 			7	3 0	+	.030	+	.021
28	16	11	13	.034	•038		_		Longitude.	81	-	.042	_	.031
29	13	12	14	.032	.044	Equa	แเรท	ng Fac	ctor = 15.	32	+	.024	+	.042
30	13	13	15	.049	.018	1	+	.112	+ .121	33	-	.047	_	.024
31	7	17	16	.022	•040	2	-	.132	108	34	+	.025	+	.039
32	14.	10	17	•047	.010	3	+	.103	+ .128	35	_	.039	_	.012

No. of Circuit Triangle	Coefficient	ts of y and z	Circuit 1gle	Coefficient	s of y and z	lircuit igle	Coefficient	ts of y and z	ircuit gle	Coefficient	s of y and z
No. of Tris	ħ	t	No. of Circuit Triangle	ħ	¢	No. of Circuit Triangle	b	t	No. of Circuit Triangle	Ď	c
	Equation_		4th .	Equation—	-(Continued).	5th	Equation-	-(Continued).	,	Equation-	-(Continued).
Eque	alizing Fac	etor = 15.	Equ	alizing Fa	ctor = 1.	Equa	lizing Fac	tor = .03.	Equa	alizing Fac	tor = .03.
36	+ .033	+ .046	22	- 1.036	1.025	6	- 21	+ 6	47	+ 11	- 13
37	.030	•036	23	1.023	1.018	7	11	10	48	7	7
38	038	008	24	+ 1.033	+ 1.032	8	9	12	49	9	10
89	+ .006	+ .025	25	- 1.033	- 1.019	9	13	13	50	17	6
40	012	006	26	+ 1.018	+ 1.029	10	12	8	51	5	13
41	.011	+ .001	27	- 1.027	- 1.015	11	13	7	52	10	7
42	+ .008	•008	28	+ 1.019	+ 1.027	12	15	9	53	8	11
43	.006	•006	29	- 1.038	- 1.012	13	6	15	54	10	12
	_		30	+ 1.014	+ 1.025	14	16	8	55	13	9
1	Equation.	Azimuth.	· 81	- 1.033	- 1.009	15	11	10	56	21	8
Equ.	alizing Fa	ctor = 1.	32	+ 1.011	+ 1.031	16	13	7	57	18	6
1	+ 1.049	+ 1.053	33	- 1.024	- 1.012	17	11	11	58	14	15
2	- 1.063	- 1.049	34	+ 1.013	+ 1.030	18	13	14	59	14	16
8	+ 1.047	+ 1.060	·35	- 1.020	- 1.009	19	10	14	60	16	15
4	- 1.023	- 1.042	36	+ 1.011	+ 1.023	20	13	11	61	13	6
5	1.023	1.042	87	1.011	1.018	21	15	12	62	13	12
6	+ 1.039	+ 1.049	3 8	- 1.021	- 1.004	22	13	7	63	17	13
7	1.042	1.020	39	+ 1.003	+ 1.014	23	+ 12	21	64	9	19
8	- 1.050	- 1.039	40	- 1.008	- 1.004	24	- 13	12	65	22	9
9	+ 1.038	+ 1.049	41	1.006	1.000	25	13	14	66	10	18
10	- 1.048	- 1.038	42	+ 1.004	+ 1.004	26	16	9	67	20	10
11	+ 1.032	+ 1.044	43	1.004	1.004	27	5	18	68	7	25
12	- 1.048	- 1.035	44	- 1.000	- 1.000	28	16	11	69	19	9
13	+ 1.037	+ 1.04.5				29	13	12	70	8	25
14	- 1.045	- 1.033	5th	Equation	Linear.	3 0	13	13	71	27	6
15	+ 1.031	+ 1.040	E qua	lizing Fac	tor = .03.	31	7	17	72	6	20
16	- 1.042	- 1.031	l -	eft-hand I		32	14	10	73	25	7
17	+ 1.029	+ 1.039	1	- 15	+ 1	33	15	8	74	12	21
18	- 1.040	- 1.026	2	22	11	34	+ 17	29	75	19	15
19	+ 1.028	+ 1.038	8	15	22		ight-hand		76	9	22
20	- 1.038	- 1.025	4.	6	22	45	+ 23	- 17	77	21	7
21	+ 1.023	+ 1.035	5	6	14	46	9	29	78	10	18
							9	1 49	'`	,,,	

Circuit angle	Coefficient	s of y and z	ircuit gle	Coefficie	nts of y and z	Jircuit Igle	c	oefficients	of y and z	Jircuit 1gle	Co	pefficient	of y	and z
No. of Circui Triangle	ъ	t	No. of Circuit Triangle	ħ	c	No. of Circuit Triangle		b	t	No. of Circuit Triangle		b		¢
	Equatio n —	-(Continued).		Equation	(Continued).	6 <i>th</i> .	Equ	ution—	-(Continued).	6 <i>th</i> .	Equa	tion—	-(Conti	nued).
Equa	iliz in g Fac	tor = .03.	Equa	ilizing F	factor = 15.	Eque	alizii	ıg Fac	ctor = 15.	Equa	alizin	g Fac	ctor =	= 15.
79	+ 17] — 11	15	01	9 + .025	56	+	.070	000	88	+	.008	_	.000
80	15	12	16	.03	.014	57		.031	.032	89		.000		.006
81	8	12	17	.01	.025	58		.048	.026	90		.004		.002
82	16	6	18	.02	3 .025	59		.019	.053	91	_	.002		.002
83	10	10	19	.01	.027	60		.049	.023	92	+	.001		.004
84	10	10	20	.02	.019	61		.012	.027	į				
85	8	13	21	.02	.020	62		.015	.040	7th E	quati	ion.	Long	jitude.
86	10	13	22	.01	.011	63		.047	.014	Eque	alizin	g Fac	ctor =	= 15.
87	16	9	23	+ .01	8 .030	64		.002	.054	I	æft-h	and]	Branc	ch
88	12	11	24	01	3 .018	65		.054	.004	1	-	.100	-	.093
89	18	12	25	.01	3016	66		.002	.048	2	+	.086	+	.092
90	10	19	26	.01	2 '012	67		.046	.004	8	_	.092	_	.079
91	5	15	27	.00	4 .017	68	_	.002	.056	4	+	.082	+	· 085
92	5	16	28	.00	9 .012	69	+	.041	+ .001	5		.082		· 084
			29	.00	8 .009	70	_	.006	052	6	_	.079	_	.073
6th	Equation.	Latitude.	80	.00	4 .010	71	+	.047	+ .002	7		.075		.071
	lizing Fac	ctor = 15.	31	.00	2 .008	72	_	.010	041	8	+	.071	+	.069
_	eft-hand]		32	.00	800.	78	+	.040	+ .006	9	_	.069	_	.063
1	049	+ .013	33	.00	3 .002	74	_	.004	037	10	+	.063	+	.061
2	.088	.038	34	+ .00	3 .002	75	+	.030	+ .001	11	_	.064	_	.060
3	.048	.087	\mathbf{R}		l Branch	76	_	.010	035	12	+	.057	+	.057
4	.023	.075	45	+ .07		77	+	.030	+ .008	13	_	.057	_	.052
5	.023	.047	46	.05	\	78	-	.009	029	14	+	.052	+	.052
6	.091	.023	47	.02	9 .032	79	+	:023	+ .006	15	_	.052	_	.047
7	.030	.035	48	.00		80		.021	.007	16	+	.047	+	.047
8	.022	.038	49	.04		81	_	.011	019	17	-	.047	_	.042
9	.033	.041	50	.03		82	+	.020	+ .000	18	+	.042	+	.042
10	.030	.022	51	.00		83		.007	012	19	_	.042	-	.038
11	.029	.013	52	.04		84	+	.012	+ .003	20	+	.038	+	.038
12		.021	53	.00		85	_	.007	013	21	_	.038	_	.032
13	1009	.039	54	.04		86	+	.010	+ .001	22	+	.032	+	.032
14		018	55	10.	1	87	-	.002	010	23		.032	 	.033
<u> </u>		1	l]	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	1			1	1		<u> </u>	

irouit igle	C	oefficient	of y	and z	Sircuit Igle	С	oefficients	of y	and z	lircuit Igle	C	Coefficients	of y	and z	lircuit Igle	Coefficient	of y	and z
No. of Circuit Triangle		ħ		¢	No. of Circuit Triangle		ď		t	No. of Circuit Triangle		b		t	No. of Circuit Triangle	ħ		£
7th	Equ	ation—	(Conti	nued).	7th	Equ	ation—	(Conti	nued).	8 <i>th</i> .	Equ	ation—	(Cont	inued).	8th	Equation-	-(Cont	inued).
Equa	lizir	ng Fac	ctor :	= 15.	Equa	ılizin	g Fac	tor :	= 15.	Equ	alizi	ing Fa	ctor	= 1.	Equ	alizing Fa	ctor	= 1.
24	_	.031	-	.027	65	+	.027	+	.021	2	+	1.038	+	1.041	34	- 1.003	l	0.000
25	+	.028	+	.026	66	_	.025	_	.027	3	_	1.040	_	1.032	${f Ri}$	ght-hand	Bran	ch
26	_	.022	_	.023	67	+	.025	+	•048	4	+	1.032	+	1.032	45	- 1.054	-	1.033
27	+	.023	+	.030	6 8	_	.045	_	.019	5		1.037		1.032	46	+ 1.036	+	1.024
28	_	.030	-	.012	69	+	.022	+	.042	6	_	1.034	_	1.033	47	1.032		1.046
29	+	.017	+	.012	7 0	_	.041	_	.011	7		1.033		1.033	48	- 1.041	-	1.033
30	_	.019	-	.012	71	+	.010	+	.034	8	+	1.033	+	1.031	49	+ 1.032	+	1.042
31	+	.011	+	.011	72	_	.034	_	.011	9	-	1.033	_	1.029	50	- 1.045	-	1.033
32 ·	. –	.011	-	.005	73	+	•006	+	· o3 o	10	+	1.058	+	1.038	5 l	1.032		1.030
33	+	· o o5	+	•005	74	_	.035	_	·co5	11	_	1.028	_	1.039	52	+ 1.031	+	1.036
34	_	.002		•000	7 5	+	.007	+	.034	12	+	1.036	+	1.039	53	- 1.036	-	1.029
Ri	ght-	hand	Bran	ıch	76	_	.028	<u> </u>	•000	13	_	1.036	_	1.024	54	+ 1.029	+	1.032
45	-	117	-	.077	77	+	.001	+	.022	14	+	1.024	+	1.024	55	- 1.032	_	1.039
46	+	.080	+	.119	7 8	_	.025		•000	15	-	1.024	_	1.022	56	+ 1.022	+	1.031
47		.080		.103	79	+	.001	+	.022	16	+	1.022	+	1.022	5 7	- 1.035	-	1.039
48	_	.091	-	.075	80		.003		.023	17	-	1.022	_	1.030	58	+ 1.022	+	1.033
49	+	.079	+	•093	81	_	.016	-	.002	18	+	1.020	+	1.020	59	- 1.032	-	1.020
50	_	.093	-	.073	82	+	.002	+	.012	19	_	1.020	_	1.018	60	+ 1.020	+	1.030
51	-	.083	_	•066	83	_	.012	_	.003	20	+	1.018	+	1.018	6 1	- 1.029	_	I . 022
52	+	•069	+	.079	84	+	.006	4.	.016	21	_	1.018	_	1.012	62	1.029		1.019
53	_	•080	-	•063	85	-	.012	_	.001	22	+	1.012	+	1.012	63	+ 1.012	+	1.027
54	+	•063	+	.078	86	+	.006	+	.015	23	+	1.012	+	1.012	64	- 1.036	_	1.014
55	_	•080	-	·058	87	_	.012	_	.002	24	_	1.012	_	1.013	65	+ 1.013	+	1.024
56	+	.049	+	.070	88	+	.005	+	.010	25	+	1.013	+	1.013	66	- 1.024	_	1.013
57	_	.077	_	·056	89	_	.009	_	.003	26	_	1.013	_	1.010	67	+ 1.013	+	1.022
58	+	.050	+	.070	90	+	.005	+	.007	27	+	1.010	+	1.010	68	- 1.031	_	1.008
59	_	.067	_	.043	91	_	.003		.000	28	_	1.010	-	1.008	69	+ 1.010	+	1.030
6 0	+	.044	+	•064	92	+	.004	+	.004	29	+	1.008	+	1.008	70	- 1.019	_	1.006
61	_	.061	_	.046	8 <i>th</i> 3	Equa	tion.	Azin	nuth.	30	_	1.008	_	1.002	71	+ 1.005	+	1.016
62		.061		.041		~	ng Fa			31	+	1.002	+	1.002	· 72	- 1.016	_	1.006
63	+	.035	+	.056	L	eft-h	and E	Branc	eh	32	.	1.002		1.003	73	+ 1.004	+	1.014
64	_	.052	_	.030	1	_	1.044	_	1.040	33	+	1.003	+	1.003	74	- 1.019	_	1.003
<u></u>																		

irouit iglo	Coefficient	s of y and z	Sircuit igle	Coefficient	of y and z	Sircuit ngle	Coefficient	of y and z	lo. of Circuit Triangle	Coefficient	of y and z
No. of Circuit Triangle	Ď	t	No. of Circuit Triangle	ъ	¢	No. of Circuit Triangle	ħ	t	No. of (Trian	ъ	¢
	Equation—	(Continued).	9th	Equation-	-(Continued).	9th	Equation-	-(Continued).	9th	Equation-	-(Continued).
Equ	alizing Fa	ctor = 1.	Equa	lizing Fac	tor = .03.	Equa	lizing Fact	tor = .03.	Equa	lizing Fac	tor = .03.
75	+ 1.003	+ 1.012	55	- 13	+ 9	99	+ 11	- 6	131	+ 11	- 9
76	- 1.013	- I.ooc	56	21	8	100	7	44	132	8	14
77	+ 1.001	+ 1.010	57	18	6	101	20	6	183	13	10
78	- 1.011	- 1.000	58	14	15	102	7	19	134	14	8
79	+ 1.000	+ 1.010	59	14	16	103	11	6	135	14	13
80	1:002	1.011	60	16	15	104	23	I	136	8	14
81	- 1.007	- 1.001	61	13	6	105	17	. 5	137	15	9
82	+ 1.002	+ 1.008	62	13	12	106	6	11	188	6	21
83	- 1.007	- 1.001	63	17	13	107	21	7			
84	+ 1.004	+ 1.009	64	9	19	108	6	26	10th.	Equation.	Latitude.
85	- 1.006	- 1.001	65	22	9	109	19	+ 2	Equa	alizing Fac	tor = 15.
86	+ 1.004	+ 1.008	66	10	18	110	18	- 14	I	eft-hand I	Branch
87	- 1.006	- 1.001	67	20	10	111	7	11	45	079	+ .062
88	+ 1.003	+ 1.002	68	7	25	112	11	13	46	.031	.092
89	- 1.004	- 1.001	69	19	9	113	16	14	47	.037	.042
90	+ 1.002	+ 1.004	70	8	25	114	14	13	48	.019	.026
91	- 1.003	- 0.999	71	27	6	115	11	16	49	.027	.033
92	+ 1.003	+ 1.004	72	6	20	116	11	14	50	.048	.018
			78	25	7	117	12	12	51	.014	.039
9th	Equation.	Linear.	74	12	21	118	12	12	52	.023	.023
1	lizing Fact		75	19	15	119	11	14	58	.020	.030
_	eft-hand E		76	9	22	120	13	12	54	.021	.034
45	- 23	+ 17	77	21	7	121	15	11	55	.030	.023
46	9	29	78	10	18	122	13	12	56	.042	.022
47	11	13	79	+ 10	21	123	12	18	57	.038	.013
48	7	7	\mathbf{R}^{i}	ight-hand	Branch	124	8	12	58	.025	.032
49	9	10	98	+ 24	- 6	125	14	11	59	.028	.029
50	17	6	94	18	2	126	11	14	60	.025	.032
51	5	13	95	12	20	127	12	12	61	.024	• 008
52	10	7	96	13	4	128	12	15	62	.024	.018
53	8	11	97	9	21	129	12	7	63	.023	.024
54	10	12	98	31	3	130	14	8	64	.012	.028
L		!					<u>'</u>		<u> </u>		

)irouit igle	Coefficient	s of y and z	Sircuit 1gle	Coefficient	ts of y and z	Jirouit 1gle	C	Coefficient	s of y	and z	Sircuit igle	C	oefficient	s of y	and #
No. of Circuit Triangle	ħ	¢	No. of Circuit Triangle	þ	t	No. of Gircuit Triangle		b		¢	No. of Circuit Triangle		ъ		ε
	Equation-	-(Continued).	10 <i>th</i>	Equation	-(Continued).	11 <i>th</i> 2	Equa	ition.	Lon	gitude.	11 <i>th</i>	Eqr	iation-	-(Cont	inued).
Equa	lizing Fac	tor = 15.	Equal	ilizing Fac	etor = 15.	Equa	ılizii	ng Fac	ctor :	= 15.	Equa	ılizir	ig Fac	tor =	= 15.
65	026	+ .019	109	+ .024	008	I	æft-l	hand I	Bran	ch	76	+	.008	+	.008
66	.013	.023	110	.043	.017	45	+	.084	+	.080	77	_	.008	_	.004
67	.020	.012	111	.002	.031	46	-	.076	-	.079	78	+	.004	+	.004
68	.008	.028	112	.009	.034	47		.078		•079	79	_	.004		.000
69	.017	.013	113	.036	.015	48	+	.073	+	•069	R	ight.	hand	Bran	ch
70	.008	.025	114	.011	.032	49	_	.074	-	.074	93	+	.070	+	.084
71	.017	.008	115	.026	.017	50	+	.069	+	.066	94	_	.087	-	.075
72	004	.014	116	.006	.032	51		.068		.066	95		.083		.064
73	.011	.007	117	.025	.009	52	_	•066	-	.062	96	+	.064	+	.071
74	.006	.011	118	.005	.027	53	+	.062	+	.060	97		.068		.082
75	.007	009	119	.021	.009	54	_	.060	-	.056	98	_	·085	_	.064
76	.004	.009	120	.003	.024	55	+	.056	+	.054	99		.073		.062
77	.002	.005	121	.024	.003	56	_	· 0 56	_	.021	100	+	.059	+	.084
78	.002	.004	122	.002	.023	57	+	.049	+	.049	101	_	.075	_	.054
79	+ .003	.004	123	.019	.009	58	_	.049	_	.044	102	+	.053	+	•068
\mathbf{R}	ight-hand	Branch	124	005	.021	59	+	.044	+	.044	103		.050		•060
93	+ .092	011	125	+ .019	.002	60	_	.047	_	.040	104	_	.065	_	.050
94	.047	.019	126	001	.019	61	+	.038	+	.040	105		.061		.048
95	.028	.078	127	.001	.017	62	i	.038		.040	106	+	•047	+	. 055
96	.047	•005	128	+ .014	100.	63		.038	_	.033	107	_	.061	_	.044
97	.036	.055	129	.014	+ .004	64	+	.032	+	.035	108	+	.043	+	.059
98	.075	•020	130	004	013	65	_	.035	_	.031	109	_	057	_	.045
99	.019		131	+ .011	+ .003	66	+	.031	+	.031	110	+	.034	+	.052
100	.029	.109	132	.009	.001	67	_	.031	_	027	111	_	.045	_	.034
101	.037	.031	133	004	000	68	+	.027	+	.027	112		.048		.033
102	.028	.037	134	+ .010	+ '002	69	_	.027	_	.022	113	+	.031	+	.042
103	.037	.002	135	001	co2	70	+	.022	+	.022	114	_	.045	_	.029
104	•040	.013	136	+ .003	.003	71	_	.022	_	.017	115	+	.030	+	.044
105	.026	.022	137	.000	.003	72	+	.017	+	.017	116	_	.041	_	.026
106	.022	.012	138	.001	003	78	_	.017	_	.013	117	+	.027	+	.038
107		.015	100	100	003	74					117	_	•		. 024
	.033						+	.013	+	.013		_	.038		
108	.020	· 045				75		.013		.008	119	+	.024	+	.032

)ircuit igle	C	oe ffi cient	of y	and s	Jircuit Igle	Coefficient	of y	and z	Jircuit Igle	Co	pefficiente	of y	and z	Sircuit igle	Coefficients	of y and s
No. of Circuit Triangle		ď		¢	No. of Circuit Triangle	ħ		t	No. of Circuit Triangle		ď		t	No. of Circuit Triangle	ħ	t
11 <i>th</i>	Equ	ation-	–(Con	tinued).	12 <i>th</i>	Equation	-(Con	tinued).	12 <i>th</i>	Equ	ation -	–(Cor	itinued).	12 <i>th</i>	Equation-	-(Continued).
Eque	ılizin	ıg Fac	tor =	= 15.	Equ	alizing Fa	ctor	= 1.	Equ	alizii	ng Fa	ctor	= 1.	Equ	alizing Fa	ctor = 1.
120	_	.032	-	.020	54	- 1.028	-	1.022	98	- :	1 .038	-	1.038	130	- 1.009	- 1.003
121	+	.018	+	•030	55	+ 1.025	+	1.052	99	. 1	1 .033		1.022	131	+ i.oo3	+ 1.006
122	_	.031	-	•016	56	- 1.025	_	1.055	100	+	1 .026	+	1.040	132	1.003	1.008
123	+	.019	+	.030	57	+ 1.022	+	1.033	101	- :	1 .032		1.052	133	- 1.006	- 1.001
124	-	.024	_	.012	58	- t.033	-	1.050	102	+ :	1 · C24	+	1.035	134	+ 1.004	+ 1.006
125	+	.013	+	.024	59	+ 1.020	+	1.050	103	:	1 .033		1.022	135	- 1.003	- 1.001
126	_	.022	_	.009	6 0	- 1.022	_	1.018	104	- :	1.030	_	1.053	136	+ 1.003	+ 1.004
127		.022		.010	61	+ 1.012	+	1.019	105	:	1.028		1.051	137	- 1.003	- 1.000
128	+	.008	+	.030	62	1.012		1.019	106	+ :	1 . 031	+	1.032	138	+ 1.003	+ 1.003
129		.009		.016	63	- 1.018	_	1.012	107	- :	1.028	_	I .050			
130	_	.017	<u>-</u>	•006	64	+ 1.019	+	1.016	108	+ :	1.020	+	1.038	13th	Equation.	Linear.
131	+	.006	+	.014	65	- 1.016	_	1.014	109	_ :	1 · 026	_	1.031	Equa	lizing Fac	tor = .03.
132		.006		.012	66	+ 1.014	+	1.014	110	+ :	1.012	+	1.053	L	eft-hand I	Branch
133	_	.011	_	.002	67	- 1.014	_	1.013	111	- :	1.021		1.019	93	- 24	+ 6
134	+	.002	+	.010	68	+ 1.013	+	1.013	112		1.022		1.012	94	18	2
135	_	.008	_	.002	69	- 1.013	_	1.010	113	+ :	1.014	+	1.031	95	12	20
136	+	.006	+	.008	70	+ 1.010	+	1.010	114	-	1.031	_	1.013	96	13	4
137	_	.002	_	.002	7 1	- 1.010	_	1.008	115	+	1.014	+	1.031	97	9	21
138	+	.004	+	.003	72	+ 1.008	+	1.008	116	_	1.019	_	1.013	98	31	3
					73	- 1.008	_	1.006	117	+	1.012	+	1.018	99	11	6
12th	Equa	ation.	Az	imuth.	74	+ 1.006	+	1.006	118	_ :	1.018	_	1.010	100	7	44
Equ	alizi:	ng Fa	ctor	= 1.	75	- 1.006	_	1.004	119	+	1.011	+	1.016	101	20	6
1 -		and I			76	+ 1.004	+	1.004	120	_	1.016	_	1.008	102	7	19
45	+	1.038	+	1.034	77	- 1.004	_	1.003	121	+	1.007	+	1.014	103	. 11	6
46	_	1.033	_	1.036	78	+ 1.002	+	1.003	122	-	1.012	_	1.007	104	23	I
47		1.034		1.036	79	- 1.002		.000	123	+	1.007	+	1.014	105	17	5
48	4.	1.033	+	1.031	\mathbf{R}	ight-hand	Bra	nch	124	_	1.011	_	1.002	106	6	11
49	_	1 .034	_	1.033	93	+ 1.030		1.036	125	+	1.006	+	1.010	107	21	7
50	+	1.030	+	1.030	94	- 1.038	_	1.033	126	_	1.009	_	1.004	108	6	26
51		1.030		1.030	95	1.037		1.027	127		1.009		1.002	109	19	_ 2
52	_	1.030	_	1.038	96	+ 1.029	+	1.033	128	+	1.002	+	1.008	110	18	+ 14
53	+	1.038	+	1.038	97	1.029		1.032	129		1.003		1.007	111	7	. 11

Jircuit ngle	Coefficient	s of y and z	Jircuit 1gle	Coefficient	s of y and z	Jirouit 1gle	Coefficienta	of y and z	ircuit gle	Coefficient	s of y and z
No. of Circuit Triangle	ъ	¢	No. of Circuit Triangle	ħ	ε	No. of Circuit Triangle	ħ	¢	No. of Circuit Triangle	b	t
13 <i>th</i>	Equation-	-(Continued).	13th	Equation-	—(Continued).		Equation.	Latitude.		Equation-	-(Continued).
Equa	lizing Fac	etor = .03.	Equa	alizing Fac	tor = .03.	Equa	alizing Fac	tor = 15.	Equa	alizin g Fac	tor = 15.
112	- 11	+ 13	152	+ 16	- 10	L	eft-hand I	Branch	124	003). + ·oo6
113	16	14	153	9	19	93	076	+ .019	125	.003	.007
114	14	13	154	16	10	94	•050	.008	126	.004	.003
115	11	16	155	11	13	95	.033	•060	127	.005	.003
116	11	14	156	14	13	96	.032	.014	128	+ .001	.005
117	12	12	157	16	13	97	.023	.057	129	.001	.003
118	12	12	158	17	13	98	.072	.009	\mathbf{R}	ight-hand	Branch
119	iı	14	159	11	16	99	.024	.019	139	+ .008	079
120	13	12	160	12	14	100	.019	.103	140	.065	.007
121	15	11	161	6	16	101	.037	.018	141	.043	.052
122	13	12	162	15	8	102	•015	.038	142	.025	.037
123	T 2	18	163	13	15	103	.023	.012	143	.036	.005
124	8	12	164	16	II	104	•040	.003	144	.035	.038
125	14	11	165	14	16	105	.030	.010	145	.033	,019
126	11	14	166	11	12	106	•009	.021	146	.022	.035
127	12	12	167	18	11	107	.033	.012	147	.032	.015
128	12	15	168	11	20	108	co8	.042	148	.010	.036
129	+ 18	25	169	16	11	109	.027	001	149	.030	.021
Ri	ight-hand	Branch	170	9	14	110	.026	+ .021	150	.033	.029
139	+ 9	- 21	171	11	10	111	•009	.019	151	.025	.013
140	18	9	172	13	9	112	.014	.019	152	.011	.031
141	10	25	173	6	12	113	.019	.020	153	.027	.012
142	18	8	174	10	12	114	.016	.017	154	.009	.030
143	9	8	175	16	8	115	.010	.020	155	.028	•006
144	23	10	176	11	16	116	.010	.012	156	.003	.032
145	. 9	15	177	17	7	117	.010	.013	157	.032	•004
146	18	9	178	10	21	118	.010	.012	158	.005	.031
147	10	13	179	18	11	119	.007	.014	159	.025	•004
148	13	11	180	13	14	120	.008	•009	160	004	.030
149	10	18				121	.008	•009	161	+ .010	.002
150	28	8				122	.007	.008	162	003	.023
151	7	16				123	.004	.012	163	+ .024	+ .001
			<u> </u>	<u> </u>						1 024	

lircuit igle		Coefficien	ts of y	and z	ircuit gle		Coefficier	nts of y	and z	Circuit ingle		Coefficient	s of y	and s	ircuit	Coeffici	ents of	y and z
No. of Circuit Triangle		b		ε	No. of Circuit Triangle		ð		¢	No. of Circui Triangle		b		¢	No. of Circuit Triangle	ъ		¢
14 <i>th</i>	Eq	uation	—(Con	tinued).	15 <i>th</i>	Eqv	uation	—(Con	tinued).			uation-	—(Con	tinued).	15 <i>th</i>	<i>Equation</i>	n—(Co	ontinued).
Equ	alizi	ng Fa	ctor	= 15.	Equ	alizi	ng Fa	ctor	= 15.	Equ	alizi	ng Fu	ctor	= 15.	Equ	alizing F	actor	= 15.
164	-	.004	-	.026	104	+	.043	+	.041	144	-	.074	-	.044	176	+ .00	1 +	.011
165	+	.024	+	•003	105		.043		.040	145	+	.046	+	•063	177	00	5	.001
166	-	.010	_	.024	106	_	.040	-	.039	146	-	.063	_	.042	178	+ .00	ı	•008
167	+	.025	+	•008	107	+	.040	+	•037	147	+	.041	+	.052	179	00	4	.002
168	-	.010	_	.026	108	_	.036	_	•036	148	_	.055	_	•036	180	+ .00	2	.003
169	+	.019	+	.007	109	+	.036	+	.034	149	+	.037	+	.055				
170	_	.012	_	.019	110	_	.035	-	.033	150	_	.063	-	.035	16th	Equation	. A	zimuth.
171	+	.012	+	.010	111	+	.031	+	.031	151	+	.035	+	.051	Equ	alizing 1	actor	r = 1.
172		.019		.008	112		.031		.031	152	_	٠٥5١	_	.030	1	eft-hand	Bran	nch
173	_	.011	_	.014	113	_	.031	-	.028	153	+	.031	+	.049	93	- 1.03	2 -	1.031
174	+	.013	+ .	.007	114	+	.028	+	.028	154	_	.047	_	.026	94	+ 1.02	+ (1.029
175	_	.007	_	.010	115	_	.027	_	.024	155	+	.025	+	.041	95	1.03		1.029
176	+	.009	+	·co3	116	+	.025	+	.023	156	_	.042	_	.021	96	- 1.02	3 _	1.027
177	_	.004	_	.007	117	_	.023	_	.022	157	+	.018	+	.038	97	1.02	,	1.027
178	+	.006	+	.001	118	+	.022	+	.020	158	<u> </u>	.042	_	.018	98	+ 1.02	5 +	1.022
179	_	.003	_	•∞3	119	_	.020	_	.018	159	+	.019	+	•038	99	1.02	5	1.025
180	+	.003		.000	120	+	.018	+	.016	160	_	.035	_	.014	100	- 1.02	. -	1.022
İ					121	_	.017	_	.012	161	+	.018	+	.033	101	+ 1.02	+	1.031
15 <i>th 1</i>	Equa	tion.	Long	itude.	122	+	.014	+	.014	162	-	.036	_	.012	102	- 1:02	_	1.021
Equa	lizin	g Fac	tor =	= 15.	123	_	.014	_	.010	163	+	.010	+	.032	103	1.02		1.021
L	eft-b	and H	Branc	h	124	+	.010	+	.010	164	_	.032	_	.008	104	+ 1.018	+	1.018
93	_	.073	_	.071	125		.012	_	.007	165	+	.005	+	.028	105	1.018	3	1.018
94	+	.068	+	.066	126	+	.005	+	.007	166	_	.024	_	.003	106	- 1.018	-	1.014
95		.067		.064	127		· o o5		007	167		.001	+	.022	107	+ 1.013	+	1.017
96	_	.062	_	.060	128	_	.004		.000	168		.021		.007	108	- 1.016	-	1.012
97		•063		.059	129		.002	_	003	169		.002		.018	109	+ 1.013	+	1.012
98	+	.059	+	.056	${f Ri}$	ght-	hand	•	ıch	170		.012		.003	110	- 1.013	: _	1.012
99		.057		.055	139	-	.076	-	.046	171		100.		.013	111	+ 1.014	+	1.014
100	_	.053	_	.053	140	+	.046	+	.070	172		.002		.012	112	1.014		1.014
101	+	.056	+	·c48	141		.053		·085	173		.007		.005	113	- 1.014	. _	1.013
102	_	·048	-	.049	142	_	.074	_	·048	174	+	.001		.013	114	+ 1.013	+	1.013
103		•046		.047	143	+	.050	+	.063	175	_	.010		.002	115	- 1.013	-	1.011

irouit gle	Coefficient	s of y and z	Sircuit Igle	· Coefficient	s of y and z	Sircuit 1gle	Coefficient	ts of y and z	Circuit agle	Coefficient	s of y and z
No. of Circuit Triangle	b	t	No. of Circuit Triangle	ъ	¢	No. of Circuit Triangle	b	t	No. of Circuit Triangle	ħ	£
16 <i>th</i>	Equation-	-(Continued).	16th	Equation-	-(Continued).		Equation-			Equation -	
Equ	alizing Fac	ctor = 1.	Equ	alizing Fa	ctor = 1.	Equa	lizing Fac	tor = .03.	Equa	ilizing Fac	tor = .03.
116	+ 1.011	+ 1.011	156	- 1.020	- 1.009	142	– 18	+ 8	182	+ 19	- 14
117	- 1.011	- 1.009	157	+ 1.008	+ 1.018	143	9	8	183	14	6
118	+ 1.009	+ 1.009	158	- 1.030	- 1.008	144	23	10	184	30	+ 7
119	- 1.009	- 1.008	159	+ 1.009	+ 1.017	145	9	15	185	6	- 9
120	+ 1.008	+ 1.008	160	- 1.016	- 1·005	146	18	9	186	2	25
121	- 1.008	- 1.006	161	+ 1.009	+ 1.016	147	10	13	187	34	4
122	+ 1.006	+ 1.006	162	- 1.016	- 1·007	148	13	11	188	14	11
123	- 1.006	- 1.004	163	+ 1.005	+ 1.014	149	10	18	189	16	17
124	+ 1.004	+ 1.004	164	- 1.014	– 1.004	150	28	8	190	19	14
125	- 1.004	- 1·∞3	165	+ 1.002	+ 1.013	151	7	16	191	15	12
126	+ 1.003	+ 1.003	166	- 1.011	- I·002	152	16	10	192	11	19
127	1.003	1.003	167	+ 1.000	+ 1.009	153	9	19	193	16	9
128	- 1.002	- 1.000	168	- 1.009	- 0.997	154	16	10	194	8	15
129	1.001	.000	169	+ 0.999	+ 1.008	155	11	13	195	14	11
${f R}$ i	ght-hand	Branch	170	- 1.0c8	- 0.998	156	14	13	196	12	14
139	- 1.033	- 1.021	171	+ 1.000	+ 1.006	157	16	13	197	19	6
140	+ 1.020	+ 1.031	172	1.000	1.008	158	17	13	198	7	16
141	1.024	1.039	173	- 1.004	- 0.998	159	11	16	199	15	10
142	- 1.032	- I·022	174	+ 1.003	+ 1.002	160	12	14	200	2	17
143	+ 1 021	+ 1.026	175	- 1.004	- 0.999	161	6	16	201	21	2
144	- 1.032	- 1.019	176	+ 1.000	+ 1.002	162	15	8	202	5	19
145	+ 1.019	+ 1.028	177	- 1.004	- 1.000	163	13	15	203	11	10
. 146	- 1.029	- 1.018	178	+ 1.001	+ 1.002	164	16	11	204	17	4
147	+ 1.018	+ 1.025	179	- 1.003	- 0.999	165	14	16	205	7	17
148	- 1.025	- 1.016	180	+ 1.001	+ 1.003	166	11	12	206	14	11
149	+ 1.016	+ 1.022				167	18	11	207	6	12
150	- 1 .029	<u> </u>	17th	Equation.	Linear.	168	11	20	208	13	5
151	+ i.o12	+ 1.023		lizing Fac		169	16	11	209	15	9
152	- 1.023	- 1.013	_	eft-hand I		170	9	14	210	11	13
153	+ 1.013	+ 1.024	139	– 9	+ 21	171	+ 15		211	16	16
154	- 1.022	— 1.012	140	18	9		ght-hand		212	4	17
155	+ 1.012	+ 1.019	141	10	25	181	+ 15	— 18	213	16	8
											l

Toth Equation	
	ctor = 15. +
214	+ · · · · · · · · · · · · · · · · · · ·
215	- '041 + '041 - '036 + '036 - '033 + '030 + .030 - '027
216	+ '041 - '036 + '036 - '033 + '030 + .030 - '027
217	- '036 + '036 - '033 + '033 - '030 + .030 - '027
218	+ '036 - '033 + '033 - '030 + .030 - '027
219	- ·033 + ·033 - ·030 + ·030 - ·027
220 13 10 166 ·oo2 ·oo7 206 - ·oc9 - ·o22 152 + ·o33 18th Equation. Latitude. 168 ·oo2 ·oo7 208 - ·oo11 - ·oo18 154 + ·o30 Equalizing Factor = 15. 169 ·oo1 ·oo4 209 + ·o20 + ·oo9 155 - ·o30 Left-hand Branch 170 ·oo0 ·oo2 210 - ·oo11 - ·oo18 156 + ·o27 139 - ·o20 + ·oo1 171 + ·oo1 ·oo3 211 + ·oo16 + ·oo7 157 - ·o27 140 ·o47 ·o20 Right-hand Branch 212 ·oo13 ·oo8 158 + ·o23 141 ·o26 ·o62 181 + ·o58 - ·o38 218 - ·oo9 - ·oo12 159 - ·o23 142 ·o37 ·o21 182 ·o29 ·o54 214 + ·o12 + ·co6 160 + ·o20 143 ·oo19 ·oo19 183 ·oo16 ·o34 215 - ·oo6 - ·oo9 161 - ·oo17 144 ·o45 ·o21 184 ·o82 + ·o32 216 + ·oo9 + ·oo4 162 + ·oo19 145 ·oo16 ·oo31 185 ·oo30 - ·oo4 217 - ·co4 - ·oo6 163 - ·oo16 165 + ·033 - ·030 + ·030 - ·027	
167	- ·030 + .030 - ·027
18th Equation. Latitude. 168 ·oo2 ·oo7 208 - ·oo1 - ·oo2 - ·oo1 - ·oo2 + ·oo2 + ·oo9 155 - ·oo3o Left-hand Branch 170 ·oo0 ·oo2 210 - ·oo1 - ·oo18 156 + ·oo2 139 - ·oo20 + ·oo6 171 + ·oo1 ·oo3 211 + ·oo6 + ·oo7 157 - ·oo27 140 ·oo47 ·oo20 Right-hand Branch 212 ·oo13 ·oo8 158 + ·oo23 141 ·oo26 ·o62 181 + ·o58 - ·o38 218 - ·oo9 - ·oo12 159 - ·oo23 142 ·o37 ·oo21 182 ·oo29 ·oo4 214 + ·oo12 + ·co6 160 + ·oo20 143 ·oo19 ·oo19 183 ·oo16 ·o34 215 - ·co6 - ·co99 161 - ·co17 144 ·oo45 ·oo21 184 ·oo82 + ·co32 216 + ·coo9 <th>+ .030</th>	+ .030
Equalizing Factor = 15. 169 .001 .004 209 + .020 + .009 155 030 Left-hand Branch 170 .000 .002 210 011 018 156 + .027 139 020 + .061 171 + .001 .003 211 + .016 + .007 157 027 140 .047 .020 Right-hand Branch 212 .013 .008 158 + .023 141 .026 .062 181 + .058 038 218 009 012 159 023 142 .037 .021 182 .029 .054 214 + .012 + .006 160 + .020 143 .019 .019 183 .016 .034 215 006 009 161 017 144 .045 .021 184 .082 + .032 216 + .009 + .004 162 + .019 145 .016 .031 185 .030 004 217 004	027
Left-hand Branch 170 ·ooo ·oo2 210 — ·o11 — ·o18 156 + ·o27 139 — ·o20 + ·o61 171 + ·o01 ·oo3 211 + ·o16 + ·o07 157 — ·o27 140 ·o47 ·o20 Right-hand Branch 212 ·o13 ·oo8 158 + ·o23 141 ·o26 ·o62 181 + ·o58 — ·o38 218 — ·o09 — ·o12 159 — ·o23 142 ·o37 ·o21 182 ·o29 ·o54 214 + ·o12 + ·co6 160 + ·o20 143 ·o19 ·o19 183 ·o16 ·o34 215 — ·co6 — ·co9 161 — ·o17 144 ·o45 ·o21 184 ·o82 + ·o32 216 + ·co9 + ·co4 162 + ·co19 145 ·o16 ·o31 185 ·o30 — ·co4 217 — ·co4 — ·co6 163 — ·co16	
139	+ .027
140 .047 .020 Right-hand Branch 212 .013 .008 158 + .023 141 .026 .062 181 + .058 038 213 009 012 159 023 142 .037 .021 182 .029 .054 214 + .012 + .006 160 + .020 143 .019 .019 183 .016 .034 215 006 009 161 017 144 .045 .021 184 .082 + .032 216 + .009 + .004 162 + .019 145 .016 .031 185 .030 004 217 004 006 163 016	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	023
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ .023
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	020
144 • • • • • • • • • • • • • • • • • • •	+ .020
145 · · · · · · · · · · · · · · · · · · ·	- '015
35 100 030 217 2 004 217 2 000 105 2 010	+ .016
	016
146 033 018 186 - 016 075 218 + 005 + 001 164 + 016	+ .013
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- '012
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+ .000
149 149 167 - 169	000
150 ·042 ·012 190 ·014 ·042 19th Equation. Longitude. 168 + ·008	+ .005
151 · · · · · · · · · · · · · · · · · ·	004
152 · · · · · · · · · · · · · · · · · · ·	+ .003
153	•000
154 ·021 ·013 194 - ·007 - ·039 140 - ·057 - ·059 Right-hand	•
155 · · · · · · · · · · · · · · · · · ·	+ .081
156 014 015 196 - 004 - 035 142 + 055 + 049 182 - 077	044
157 015 016 197 + 038 + 010 143 - 052 - 052 183 072	1
158 017 013 198 - 010 - 036 144 + 050 + 047 184 + 028	.023
159	+ .047

Jircuit 1gle	C	oefficient	s of y	and s	Cirouit 1gle	Coefficient	s of y and z	Sirouit ngle	Coefficient	s of y and s	Sirouit 1gle	Coefficient	s of y and z
No. of Circuit Triangle		b		¢ .	No. of Circuit Triangle	ъ	t	No. of Circuit Triangle	ħ	c ·	No. of Circuit Triangle	ъ	t
19 <i>th</i>	Eqi	iation-	—(Cont	inued).	19th	Equation-	–(Continued).	20th	Equation-	-(Continued).	20 <i>th</i>	Equation-	-(Continued).
Eque	alizi	ng Fac	ctor =	= 15.	Eque	alizing Fac	ctor = 15.	Equ	alizing Fa	actor = 1.	Equ	alizing Fa	ctor = 1.
186	_	•053	-	.023	218	+ .003	+ .008	164	+ 1.008	+ 1.002	204	- 1.014	- 1.002
187	+	.018	+	.049	219	003	.000	165	- 1.002	- 1.007	205	+ 1.004	+ 1.013
188	-	.058	-	.033	220	+ .003	.002	166	+ 1.000	+ 1.004	206	- 1.013	- 1.003
189	+	.030	+	.056				167	- 1.002	- 1.004	207	+ 1.004	+ 1.010
190	_	.056	-	.026	2 0 <i>th</i> .	Equation.	A z imuth.	168	+ 1.003	+ 1.003	208	- 1.010	- 1.003
191	+	.022	+	.047	Equ	aliziny Fa	ctor = 1.	169	- 1.003	- 1.001	209	+ 0.999	+ 1.007
192	_	.046	-	.019	L	eft-hand I	Branch	170	+ 1.001	+ 1.001	210	- 1.007	- 0.998
193	+	.033	+	•040	139	+ 1.028	+ 1.025	171	- 1.001	0.000	211	+ 0.998	+ 1.008
194	_	.039	_	.018	140	- 1.025	- 1.026	R	ight-hand	Branch	212	1.003	1.009
195	+	.019	+	.039	141	1.022	1.022	181	+ 1.023	+ 1.038	213	- 1.007	- 1.000
196	_	.040	_	.019	142	+ 1.015	+ 1.022	182	- 1.036	- 1.019	214	+ 1.003	+ 1.007
197	+	.012	+	.030	143	- 1.023	- 1.022	183	1.033	1.033	215	- 1.004	- 1.000
198	-	.031	_	.011	144	+ 1.031	+ 1.031	184	+ 1.011	+ 1.020	216	+ 1.003	+ 1.006
199	+	.011	+	•031	l 45	- 1.021	- 1.030	185	1.031	1.027	217	- 1.003	- 1.000
20 0	_	.024	-	•007	146	+ 1.020	+ 1.020	186	- 1.023	- 1.000	218	+ 1.001	+ 1.003
201	+	•005	+	.023	147	- 1.030	- 1.018	187	+ 1.002	+ 1.033	219	- 1.001	- 0.999
202	1	.014	_	.002	i 48	+ 1.018	+ 1.018	188	- 1.027	- 1.014	220	+ 1.001	+ 1.002
203	+	.010	+	.025	149	- 1.018	- 1.016	189	+ 1.013	+ 1.027			
204	-	.030	_	.013	150	+ 1.016	+ 1.016	190	- 1.028	- 1.011	21st	Equation.	Linear.
205	+	.010	+	.027	151	- 1.016	- 1.015	191	+ 1.010	+ 1.022	Equa	alizing Fac	tor = .03.
206	_	.024	_	.004	152	+ 1.012	+ 1.012	192	- 1.022	- 1.006	I	eft-hand 1	Branch
207	+	.008	+	.020	153	- 1.015	- 1.014	193	+ 1.008	+ 1.020	181	- 15	+ 18
208	_	.030	_	•006	154	+ 1.014	+ 1.014	194	- 1.019	- 1.007	182	19	14
209		.001	+	.012	155	- 1.014	- 1.013	195	+ 1.008	+ 1.019	183	14	6
2 10		.016		.003	156	+ 1.013	+ 1.013	196	- 1.019	- 1.006	184	30	- 7
211		.003		810.	157	- 1.013	- 1.011	197	+ 1.002	+ 1.012	185	6	+ 9
212	+	· o o4		.017	158	+ 1.011	+ 1.011	198	- 1.012	- 1.006	186	2	25
213	_	.013		.002	159	- 1.011	- 1.009	199	+ 1.006	+ 1.014	187	34	4
214	+	.003		.015	160	+ 1.009	+ 1.000	200	- 1.011	- 1.003	188	14	11
215	-	.009		.000	161	- 1.009	- 1.008	201	+ 1.002	+ 1.010	189	16	17
216	+	.003		• oo 9 ·	162	+ 1.008	+ 1.008	202	- 1.011	- 1.001	190	19	14
217	_	.006		.001	163	- 1.007	— I.000	203	+ 1.005	+ 1.011	191	15	12
<u></u>						<u> </u>		<u> </u>	J	1		1	

Jironit ngle	Coefficiente	of y and z	Sirouit 1gle	Coefficient	of y and z	Jircuit igle	c	oefficient	of y a	and z	Jircuit gle	c	oefficient	of y	nd s
No. of Circuit Triangle	ъ	¢	No. of Circuit Triangle	ħ	c	No. of Circuit Triangle		ħ		t	No. of Circuit Triangle		ď		t
	Equation—	-(Continued).	21 <i>st</i>	Equation-	(Continued).	22nd	Equ	ation.	Lat	itude.		Eq	iation-	-(Cont	inued).
Equa	lizing Fact	tor = .03.	Equa	lizing Fac	tor = .03.	Equa	lizir	ig Fac	tor =	= 15.	Equa	ılizin	ng Fac	tor =	= 15.
192	- 11	+ 19	232	+ 12	- 12	L	eft-l	and I	Branc	ch	$\mathbf{R}_{\mathbf{i}}$	ight-	hand	Bran	.ch
193	16	9	233	10	21	181	-	.042	+	.047	221	+	.121	+	.055
194	8	15	234	18	9	182		.038		.038	222		.037	_	.025
195	14	11	235	12	12	183		.026		.020	223		.057		•065
196	12	14	236	13	12	184		.063	_	.017	224		.023		.039
197	19	6	237	8	16	185		.016	+	.012	22 5		.036		.044
198	7	16	238	16	8	186	+	.003		.057	226		.086	+	.014
199	15	10	239	8	16	187	-	.062		.006	227		.041	_	.007
200	2	17	240	15	11	188		.019		.024	228		.002		•046
201	21	2	241	11	15	189		.028		.025	229		.041		.003
202	5	19	242	14	9	190		.024		.026	230		.004		.044
203	11	10	243	14	12	191		.024		.012	231		.032		.000
204	17	4	244	19	15	192		.010		.032	232	_	.002		.038
205	7	17	245	12	19	193		.022		.010	233	+	.033		.013
206	14	11	246	11	12	194		.005		.023	234	ŧ	.002		.033
207	6	12	247	7	14	195		.018		.010	235		.033	+	.003
208	13	5	248	11	8	196		.008		.020	236	_	.004	-	.034
209	15	9	249	17	7	197		.021		.003	237	+	.028		.000
210	11	13	250	12	13	198		•001		.019	238	_	.003		.029
211	+ 6	22	251	11	11	199		.016		· o o5	239	+	.024		100.
Ri	ght-hand	Branch	252	11	7	200	+	.003		.019	240	_	.006		.030
221	+ 44	+ 17	253	10	14	201	_	810.		.001	241	+	.027	+	.004
222	9	- 16	254	19	12	202		100		.019	242	_	.009	_	.027
223	32	21	255	13	13	203		.007		.006	243	+	.027	+	.009
224	4	25	256	13	12	204		•006		.002	244	_	.009	_	.029
225	27	11	257	10	16	205		· o o5		.007	245	+	.025	+	.008
226	35	3	258	17	11	206		.003		.007	246	_	.014	_	.026
227	11	· 14	259	13	13	207		.003		.004	247	+	.019	+	.010
228	13	14	260	11	18	208		.001		.005	248	_	.017	_	.022
229	13	12	261	12	10	209		.004		.003	249	+	.022	+	.016
230	15	15	262	7	13	210		.000		.002	250		.019		.012
281	9	11				211		.000		.003	251	-	.012	_	.017

Circuit Igle	C	oefficient	of y	und z	Jircuit ngle	С	oefficient	of y	ınd s	Circuit angle	C	Coefficient	of y	and z	Circuit agle	Coefficien	s of y	and z
No. of Circuit Triangle		ð		t	No. of Circuit Triangle		ъ		¢	No. of Circui Triangle		b		t	No. of Circuit Triangle	b		t
22nd	Eq	uation	—(Con	tinued).	23rd	Equ	uation-	–(Cont	inued).	23rd	Eq	uation-	-(Con	tinued).	24 <i>th</i>	Equation-	-(Con	tinued).
Equa	lizin	ng Fac	tor =	= 15.	Equa	lizin	g Fac	tor =	= 15.	Equa	lizis	ng Fac	tor:	= 15.	Equ	alizing Fa	ctor	= 1.
252	+	.012	+	.013	198	+	.033	+	.018.	238	_	.043	-	.010	184	- 1.018	-	1.031
253	-	.013	_	.012	199	_	.018	-	. 020	239	+	.010	+	.040	185	1.021		1.022
254	+	.019	+	.010	200	+	810.	+	.012	240	_	.039	_	.010	186	+ 1.020	+	1.012
255	-	.010	_	.012	201	_	.019	-	.017	241	+	.010	+	.032	187	- 1.012	-	1.019
256	+	.011	+	.007	202	+	.019	+	.011	242	_	.033	_	.008	188	+ 1.019	+	1.012
257	_	.008	-	•008	203	_	.013	-	.014	243	+	.003	+	.028	189	- 1.016	-	1.018
258	+	.008	+	.006	204	+	.012	+	.011	244	_	.036		.002	190	+ 1.018	+	1.012
259		.006	_	•006	205	_	.011	-	.012	245	+	.002		.032	191	- 1.014	-	1.012
260	+	•006	+	.003	206	+	.010	+	.008	246	_	.023		.002	192	+ 1.012	+	1.013
261	1	.003	_	.003	207	_	.008	_	.007	247	+	.003		.022	193	- 1.013	_	1.014
262	+	•003		.000	208	+	.007	+	.005	248	_	.019		.002	194	+ 1.014	+	1.011
					209	_	.002	_	.002	249		•009		.013	195	- 1.013	_	1.013
23rd	Equ o	stion.	Long	itude.	210	+	.004	+	.002	250		.005		.018	196	+ 1.013	+	1.010
	-	g Fac	-		211	_	.004	_	.003	251		.013		.007	197	- 1.009	_	1.011
L	eft-l	and I	Branc	e h	Ri	ght-	hand	Bran	ch	252		.004		.010	198	+ 1.011	+	1.008
181	_	.061	. –	•064	221	+	.024	+	.044	253		.010		•009	199	- 1.008	_	1.009
182	+	.060	+	.050	222		.052		.071	254		.008		.013	200	+ 1.008	+	1.006
183		.058		.052	223	_	•083		.035	255		.01ó		.006	201	- 1·006	_	1.007
184	_	.045	_	.048	224	+	.048	+	.070	256		.004		.009	202	+ 1.008	+	1.002
185		.048		.050	225	_	•079	_	.037	257		.006		•007	203	- 1.006	_	1.006
186	+	.048	+	.037	226	+	.006	+	.046	258		.002		.009	204	+ 1.007	+	1.002
187	_	.038	_	.043	227		.032		.059	259		•005		.003	205	- 1.004	_	1.006
188	+	.044	+	.037	228	_	.057	_	.024	260	+	.003		.007	206	+ 1.005	+	1.003
189	_	.035	_	.040	229	+	.028	+	.054	261	_	.001		.001	207	- 1.003	_	1.004
190	+	.041	+	.031	230	_	·056	_	.022	262	+	.003		•003	208	+ 1.004	+	1.003
191	_	.030	_	•036	231	+	.029	+	.048						209	- 1.003	_	1.003
192	+	.035	+	.026	232	_	•049	_	.023	24th .	Equ	ation.	Az	imuth.	210	+ 1.003	+	1.003
193	_	.027	_	.031	233	+	.025	+	•055	Equ	- alizi	ng Fac	ctor	= 1.	211	- 1.003		0.000
194	+	•030	+	.023	234	_	.052	_	.022	_		nand H			Ri	ight-hand	Brai	nch
195	_	.024	_	.028	235	+	.019	+	.042	181	_	1.036	-	1.029	221	+ 1.010		1.017
196	+	.029	+	.021	236	_	.043	_	.016	182	+	1.028	+	1.031	222	1.033		1.029
197	_	.031	_	.023	237	+	.020	+	.043	183		1.027		1.023	223	- 1.036	_	1.012
	L													<u> </u>		<u> </u>		

ireuit gle	Coefficient	of y and z	Jircuit Igle	Coefficient	s of y and z	ircuit gle	Coefficient	s of y and z	lireuit gle	Coefficient	s of y and s
No. of Circuit Triangle	b	¢	No. of Circuit Triangle	b	£	No. of Circuit Triangle	ъ	¢	No. of Circuit Triangle	ъ	¢
24 <i>th</i>	Equation-	—(Continued).	24 <i>th</i>	Equation-	-(Continued).	25 <i>th</i>	Equation-	—(Continued).	25th	Equation	-(Continued).
Eque	alizing Fa	ctor = 1.	Equ	alizing Fa	ctor = 1.	Equa	lizing Fac	tor = .03.	Equ	alizing Fa	ctor = 1.
224	+ 1.020	+ 1.030	256	+ 0.999	+ 1.006	242	- τ4	+ 9	286	+ 12	- 12
225	- 1.035	- 1.015	257	- 1.003	- 0.998	243	14	12	287	10	10
226	+ 1.003	+ 1.033	258	+ 1.000	+ 1.003	244	19	15	288	11	10
227	1.014	1.025	259	- 1.001	- 0.999	245	12	19	289	11	12
228	- 1.025	- 1.011	260	+ 1.000	+ 1.003	246	11	12	290	15	11
229	+ 1.011	+ 1.023	261	- 1.001	- 0.999	247	7	14	291	6	12
230	- 1.025	- 1.009	262	+ 1.002	+ 1.003	248	11	8	292	18	6
231	+ 1.013	+ 1.033				249	+ 13	20	293	13	17
232	- 1.033	- 1.010	25th	Equation.	Linear.	\mathbf{R}	ight-hand	Branch	294	9	14
233	+ 1.011	+ 1.025	Equa	lizing Fac	tor = .03.	263	+ 25	0	295	17	12
234	- 1.033	- 1.009	L	eft-hand l	Branch	264	27	- 14	296	9	15
235	+ 1.008	+ 1.019	221	- 44	- 17	265	11	17	297	14	9
236	- 1.030	- 1.007	222	9	+ 16	266	4	28	2 98	9	14
237	+ 1.009	+ 1.019	223	32	21	267	11	3	299	15	9
238	- 1.019	- 1.007	224	4	25	268	15	5	300	17	15
239	+ 1.007	+ 1.018	225	27	11	269	24	5	3 01	8	12
240	- 1.018	- 1.004	226	35	3	270	7	17	802	10	16
241	+ 1.004	+ 1.016	227	11	14	271	26	6			
242	- 1.012	- 1.003	228	13	14	272	3	15	26 <i>th</i>	Equation.	Latitude.
243	+ 1.001	+ 1.013	229	13	12	273	21	9	Equa	lizing Fac	tor = 15.
244	- 1.017	- 0.999	230	15	15	274	12	10	L	eft-hand E	Franch
245	+ 1.001	+ 1.012	231	9	11	275	13	14	221	098	033
246	- 1.011	- 0.999	232	12	12	276	11	13	222	.012	+ '042
247	+ 1.001	+ 1.010	233	10	21	277	15	11	223	• 069	.042
248	- 1.009	- 0.999	234	18	9	278	14	11	224	•004	.053
249	+ 0.994	+ 1.006	235	12	12	279	11	13	225	.049	.023
250	o·998	1.009	236	13	12	280	15	12	226	.060	.∞5
251	- 1.005	- o·997	237	8	16	281	12	14	227	.020	.023
252	+ 1.000	+ 1.006	238	16	8	282	11	13	228	.019	.024
258	- 1.004	- 0.997	239	8	16	283	9	14	229	.021	.019
254	+ 0.996	+ 1.006	240	15	31	284	12	11	230	.022	.024
255	- 1.005	- 0.997	241	11	15	285	11	11	231	.013	. 018

Jircuit Igle	Co	efficient	s of y	and z	jircuit gle	С	oefficient	s of y	and z	lircuit Igle	С	oefficient	of y	and z	of Circuit Triangle	С	oefficients	of y	and z
No. of Circuit Triangle	3	ь		c	No. of Circuit Triangle		b		¢	No. of Circuit Triangle		ħ		¢	No. of (Tria		ъ		¢
26th	Equa	ıtion–	-(Conti	nued).		Eqi	ıation-	-(Cont	inued).	27th	Equ	ation-	-(Conti	nue d).	27 <i>th</i>	Equ	ation-	-(Cont	inued).
Equa	lizing	g Fac	tor =	= 15.	Equa	lizin	ng Fac	etor =	= 15.	Equa	ılizin	ng Fac	tor =	= 15.			ng Fac		
232	_	.016	+	.018	276	-	.005	-	.036	222	-	.057	-	.049	266	+	.049	+	.071
233		.012		.029	277	+	.036	+	.003	223	+	.047	+	.052	267	_	.058	_	.044
234		.031		.013	278	_	.001	- .	.031	224	_	.048	_	•040	268		.062		.042
235		.013		.014	279	+	.028	+	.001	225	+	.048	+	•044	269	+	.031	+	.047
236		.013		.014	280	_	.003	_	.030	226	_	.037	_	.039	270		.036		.058
237		•007		·018	281	+	.028	+	.003	227		.010		.041	271	_	.064	_	.032
238		.013		.008	282	_	.008	_	•030	228	+	.038	+	•036	272		.041		.023
239		•004		.016	283	+	.024	+	.004	229	_	.037	_	.037	273	+	.012	+	•043
240		.011		.010	284	_	.008	-	.027	230	+	.037	+	.033	274	_	.046	-	.024
241		•006		.013	285	+	.023	+	•006	231	_	.034	_	.033	275	+	.021	+	.044
242		.007		•006	286	-	.010	-	.024	232	+	.033	+	•031	276	_	.041	_	.017
243		.007		•007	287	+	.020	+	•009	233	_	.031	_	•030	277	+	.016	+	.038
244		.009		•009	288	_	.011	_	.022	234	+	.030	+	.027	278	_	.040	_	.017
245		.004		.010	289	+	.020	+	.010	235	_	.028	_	.026	279	+	.012	+	.036
246		.003		.002	290		.031		.010	236	+	.025	+	.025	280	_	.038	-	.013
247	+	.001		•006	291	_	.013	_	.019	237	-	.024	_	.021	281	+	.013	+	.034
248		.000		•002	292	+	.020	+	.010	238	+	.023	+	.020	282	-	.031	-	.009
249		•000		.002	293	_	.008	_	.017	239	_	.020	_	.020	283	+	.013	+	.031
R	ight-l	hand	Bran	ch	294	+	.014	+	.005	240	+	.020	+	.017	284	_	.029	_	.008
263	+	.021	-	.012	295	_	.005	_	.014	241	_	.017	_	.016	285	+	.008	+	.025
264		.083		.021	296	+	.011	+	:002	242	+	•015	+	.013	286	_	.026	_	.004
265		.009		·058	297	_	.005	_	.010	243	_	.014	_	.012	287	+	.006	+	.031
266		.033		.020	298	+	·c08	+	.002	244	+	.011	+	.011	288	_	.022	_	.003
267		.003		.026	299	_	.004	_	.007	245	_	.010	_	.007	289	+	.002	+ .	.020
268		.013		.031	300	+	.005		.000	246	+	.008	+	•006	290	_	.001		.020
269		.090	+	.006	301	_	.003		.003	247	_	.006	_	.004	291		.013		.002
270		•028	-	.012	302	+	.003		.000	248	+	.004	+	.002	292		.002		.014
271		.023		.029						249	_	.004	_	.002	293		.016		.002
272	<u> </u>	.014		.043	27th 1	Equa	tion.	Long	itude.	${f Ri}$	ght-	hand	Bran	.ch	294	+	.001		.012
273	+	•046	+	.003	Equa	alizii	ng Fac	etor =	= 15.	263	-	.082	_	.062	295	_	.012		.000
274	_	.002	-	.033	L	eft-l	and I	Branc	eh	264	+	.038	+	•067	296	+	.003		.013
275	+	•034		.003	221	_	•068	-	•059	265	_	.064	_	.039	297	_	.010		.000

Jircuit 1gle	Coefficients	s of y and z	Sircuit ngle	Coefficients	of y and	d z	Sircuit 1gle	Coefficient	s of y and z	Sircuit 1gle	Coefficient	s of y and z
No. of Circuit Triangle	Ď	t	No. of Circuit Triangle	Ď	t		No. of Circuit Triangle	ъ	t	No. of Circuit Triangle	b	t
27th	Equation-	-(Continued).	28 <i>th</i>	Equation-	-(Continu	ıed).	28 <i>th</i>	Equation-	-(Continued).	29th	Equation-	-(Continued).
Equa	clizing Fac	ctor = 15.	E qu	alizing Fa	ctor =	: 1.	Eque	alizing Fa	ctor = 1.	Equa	ilizing Fac	tor = .03.
298	+ .003	+ .000	244	+ 1.002	+ 1	·005	288	- 1.010	- 1.002	276	- 11	+ 13
299	007	.001	245	- 1.002	- 1	.003	289	+ 1.003	+ 1.009	277	15	11
300	•000	.007	246	+ 1.003	+ 1	•003	290	0.999	1.009	278	14	11
301	.003	.001	247	- 1.003	– 1	·002	291	- 1.006	- 0.999	279	11	13
302	+ .003	•005	248	+ 1.002	+ 1	.002	292	+ 1.000	+ 1.007	280	15	12
			249	- 1.003	0	.000	293	- 1.008	- 0.999	281	12	14
28th	Equation.	Azimuth.	\mathbf{R}^{i}	ght-hand	Brancl	h	294	+ 1.003	+ 1.008	282	11	13
Equ	alizing Fac	ctor = 1.	263	- 1.037	– 1	.027	295	- 1.006	- 1.001	283	9	14
L	eft-hand 1	Branch	264	+ 1.016	+ 1	.030	296	+ 1.003	+ 1.006	284	12	11
221	- 1.026	- 1.024	265	- 1.028	_ 1	.017	297	- 1.002	- 1.000	285	11	11
222	1.024	1.031	266	+ 1.021	+ 1	.031	298	+ 1.002	+ 1.002	286	12	12
223	+ 1.031	+ 1.031	267	- 1.027	_ ı	.019	299	- 1.003	- 1.000	287	10	10
224	- 1.020	- 1.019	268	1.029	ı	810.	300	+ 1.000	+ 1.003	288	11	10
225	+ 1.033	+ 1.019	269	+ 1.000	+ 1	.021	3 01	- 1.001	- 0.999	289	+ 12	24
226	- 1.016	- 1.018	270	1.014	1	.026	302	+ 1.001	+ 1.003	Ri	ght-hand	Branch
227	1.017	1.017	271	- 1.030	_ 1	.014			· ·	3 03	+ 10	- 13
228	+ 1.017	+ 1.012	272	1.010	1	.000	29 <i>th</i>	Equation	. Linear.	304	17	5
229	- 1.016	- 1.016	273	+ 1.006	+ 1	.020		lizing Fac		305	6	18
230	+ 1.012	+ 1.012	274	- 1.021	- 1	.010	-	eft-hand I		3 06	23	. 1
231	- 1.015	- 1.014	275	+ 1.008	-j- 1	.020	263	- 25	0	307	19	3
232	+ 1.014	+ 1.014	276	- 1.010		.006	264	27	+ 14	308	17	12
233	- 1.014	- 1.013	277	+ 1.002		810.	265	11	17	309	13	10
234	+ 1.013	+ 1.013	278	- 1.019		.006	266	4	28	310	15	7
235	- 1.013	- 1.011	279	+ 1.008		.018	267	11	3	311	. 11	13
236	+ 1.011	+ 1.011	280	- 1.017		.006	268	15	5	312	17	11
237	- 1.011	- 1.000	281	+ 1.006		.012	269	24	5	313	14	14
238	+ 1.000	+ 1.009	282	- 1.013		.004	270	7	17	314	16	17
239	- 1.000	- 1.008	283	+ 1.002		.014	271	26	6	315	11	16
240	+ 1.008	+ 1.008	284	- 1.013 + 1.002	Ì	.004	272		15	316	16	15
241	- 1.008	- 1.009	285	+ 1.004		.011	273	3 21		317	13	16
242	+ 1.006		286		l	i	274		9	318	11	
243	- 1.009	- 1·005	287	- 1.003		·002	274 275	12		319	8	9
~*·)	_ 1 000	- 1-005	201	+ 1.003	T 1	0.0	210	13	14	019	"	10

Jircuit Igle	Coefficients	s of y and z	Sircuit 1gle	C	oefficiente	of y	and z	Jircuit igle	C	oefficient	of y	and z	Sircuit Igle	C	oefficient	of y	and z
No. of Circuit Triangle	Ď	¢	No. of Circuit Triangle		b		t	No. of Circuit Triangle		b		¢	No. of Circuit Triangle		ħ		¢
29 <i>th</i>	Equation-	-(Continued).	30th	Eqi	iation-	–(Cont	inued).		Eqi	ation-	-(Cont	inued).	31 <i>st</i>	Equ	iation-	–(Con	tinued).
Equa	lizing Fact	tor = .03.	E quo	ılizin	g Fac	tor =	= 15.	Equa	lizin	ig Fac	tor =	= 15.	Equa	lizin	ng Fac	tor :	= 15.
320	+ 16	– 3	280	-	.011	+	.008	324	+	.013	+	.007	284	+	.009	+	.009
321	4	18	281		.005		.011	325	-	.007	_	.010	285	_	.009	_	•006
322	16	3	282		.006		.007	326	+	.009	+	.004	286	+	•006	+	.006
323	5	17	283		.003		.008	327	_	.004	-	.006	287	-	.006	-	.003
324	18	6	284		· o o5		.004	328	+	.004	+	.001	288	+	.003	+	•003
325	13	16	285		.001		.006	329	_	.003	-	.003	289	_	.003		.000
326	12	11	286		.004		.004	330	+	.003		.000	R	ight-	hand	Brar	ch
327	14	13	287	+	.001		.002						303	-	.047	-	.033
328	16	14	288	-	.001	1	.001	31 <i>st 1</i>	Equa	tion.	Long	itude.	304	+	.031	+	•038
329	9	18	289	+	.001		.003	Equa	lizin	g Fac	tor =	= 15.	305	-	.039	-	.024
33 0	13	8	\mathbf{R}	ight-	hand	Bran	.ch	L	eft-l	nand I	Branc	e h	306	+	.021	+	.030
			303	+	.006	-	.033	263	+	.052	+	.052	307	_	.040	-	.027
30th	Equation.	${\it Latitude}.$	304		.032		.003	264	_	.052	_	.045	308	+	.019	+	.032
Equa	alizing Fac	etor = 15.	305	_	.002		•038	265	+	.045	+	•045	309	_	.033		.019
L	eft-hand I	Branch	306	+	.034	+	.004	266	-	.044	-	.037	310	+	.019	+	.027
263	028	•000	307		.012	_	.015	267	+	.039	+	.038	311	_	.030	_	.015
264	.054	+ .035	308		.028		.002	268		•040		.037	312	+	.013	+	.027
265	.022	.034	3 0 9		.003		.033	269	_	.033	_	.034	313	_	.038	_	.012
266	.004	.057	310		.025	+	.002	270		.033		.032	314	+	.010	+	.027
267	.017	.007	311		.000	_	.024	271	+	.031	+	.027	315	_	.024		.007
268	.024	.011	312		.024		100.	272		.028		.026	316	+	.007	+	.022
269	.033	•009	313		.000		.022	273	_	.026	-	.025	317	-	.021	_	.⁺003
270	•008	.026	314		.021		.004	274	+	.025	+	.023	318	+	.006	+	.019
271	.030	.008	315	_	•003		.022	275	_	.023	_	.022	319	_	.019	_	.001
272	.003	.019	316	+	.030		.001	276	+	.022	+	.020	320	+	.001	+	.010
273	.022	.012	317	-	.003		.021	277	_	.031	_	.019	321	_	.010		.003
274	.012	012	318	+	.013	+	.004	278	+	.018	+	.018	322		.003		.008
275	.011	.019	319	_	.008	-	.017	279	_	.018	-	.012	323	+	.003		.013
276	.009	.013	320	+	.014	+	.008	280	+	.012	+	.012	324	_	.001		.010
277	.013	.010	321	_	.010	_	.016	281	_	.012	_	.012	325		.008		.003
278	.010	.010	322	+	.013	+	· o o8	282	+.	.012	+	.012	326		.000		.007
279	•008	.011	323		.010		.006	283	-	.012	_	.009	327		.006		.002

Sirouit 1810	Coefficient	s of y and z	Sircuit agle	Coefficient	s of y	and #	Jircuit ngle	Coefficient	s of y and z	Sircuit ngle	Coefficients	s of y and s
No. of Circuit Triangle	ъ	¢	No. of Circuit Triangle	ъ		t	No. of Circuit Triangle	ħ	¢	No. of Circuit Triangle	ħ	t
31st	Equation-	-(Continued).	32nd	Equation-	—(Con	tinued).	33rd	Equation	. Linear.	33rd	Equation-	-(Continued).
Equa	ilizing Fac	tor = 15.	Equ	alizing Fa	ctor	= 1.	Equa	lizing Fac	tor = .03.	Equa	lizing Fac	tor = .03.
328	100 +	+ .000	288	+ 1,001	+	1.001	\mathbf{L}	eft-hand 1	Branch	34 0	+ 11	- 13
329	003	.001	289	- 1.001		0,000	303	- 10	+ 13	841	13	6
330	+ .003	•003	${f R}$ i	ght-hand	Brar	nch	804	17	5	342	14	7
			303	- 1.031	_	1,014	305	6	18	343	16	7
32nd	Equation.	Azimuth.	304	+ 1.013	+	1.012	306	23	1	344	12	13
Equ	alizing Fac	ctor = 1.	305	- 1.017	_	1.010	307	19	3	345	13	11
L	eft-hand I	Branch	306	+ 1.008	+	1.013	308	17	12	346	17	13
263	+ 1.022	+ 1.033	3 0 7	- 1.019		1.013	309	13	10	347	11	18
264	- 1.033	- 1.030	308	+ 1.008	+	1.012	3 10	15	7	348	16	12
265	+ 1.030	+ 1.020	309	- 1.012	_	1.008	311	11	13	349	13	74
266	- 1.019	- 1.016	310	+ 1.006	. +	1.013	312	17	11	350	11	13
267	+ 1.018	+ 1.014	311	- 1.013	_	1.000	313	14	14	351	12	13
268	1.019	1.019	312	+ 1.002	+	1.013	314	16	17	352	14	10
269	- 1.015	- 1.012	313	- 1.013	_	1.002	315	. 11	16	353	10	14
270	1.014	1.014	314	+ 1.004	+	1.013	316	16	15	354	5	13
271	+ 1.013	+ 1.013	315	- 1.011	_	1.003	317	13	16	355	11	9
272	1.013	1.013	316	+ 1.003	+	1.011	318	11	9	356	9	11
273	- 1.013	- 1.011	317	- 1.010	_	1.001	319	8	16	357	14	10
274	+ 1.011	+ 1.011	318	+ 1.003	+	1.008	320	16	3	358	10	11
275	- 1.011	- 1.009	319	- 1.007	_	1.000	321	4	18	359	12	11
276	+ 1.000	+ 1.000	320	+ 1.000	+	1.002	322	16	3	3 60	8	13
277	- 1.009	- 1.008	321	- 1.002	_	0.999	32 3	+ 16	33	361	16	7
278	+ 1.008	+ 1.008	322	+ 0.999	+	1.004	${f R}$ i	ght-hand			•	·
279	- 1.008	- 1.007	323	1.001		1.006	331	+ 3	- 23	34 <i>th</i>	Equation.	Latitude.
280	+ 1.003	+ 1.007	324	0.999		1.006	332	13	3	l	lizing Fac	
281	- 1.007	- 1.002	325	- 1·005	_	0.999	333	14	18	, –	eft-hand E	
282	+ 1.002	+ 1.002	326	+ 1.003	+	1.004	334	11	14	303	— ·015	
283	- 1.005	- 1.004	327	- I.003	_	1.000	335	22	14	304	.020	.012
284	+ 1.004	+ 1.004	328	+ 1.000	+	1.003,	836	10	14	305	.007	.026
285	- 1.004	- 1.003	329	- 1.002	_	0.999	337	16	11	306	.021	:006
286	+ 1.003	+ 1.003	330	+ 1.003		1.003	338	20		307	.021	.003
287	- 1.003	- 1.001 - 1.003	090	+ 1 003	-	1 003	339	16	5	308		_
		- 1 001	<u> </u>				บบฮ	10	9	308	.012	.014

irenit gle	Coefficie	nts of g	y and s	Xircuit igle		Coefficien	its of y	and z	Jircuit 1gle		Coefficient	s of y	and z	Circuit angle	Coefficien	ts of y and z
No. of Circuit Triangle	ħ		£	No. of Circuit Triangle		b		c	No. of Circuit Triangle		b		c	No. of Circui Triangle	Ď	c
	Equation	2— (Co	ntinued).		Equ	uation-	—(Cont	tinued).	35 <i>th</i>	Eq	uation	— (Con	tinued).	35 <i>th</i>	Equation	—(Continued).
Equ	alizing F	ictor	= 15.	Equ	alizi	ng Fac	ctor =	= 15.	Equa	ıliziı	ng Fac	ctor	= 15.	Eque	alizing Fa	ctor = 15.
809	013	+	.011	847	-	.011	-	.036	816	-	.014	-	.013	854	006	+ .002
310	.013	;	.007	34 8	+	.022	+	.010	317	+	.010	+	.010	855	+ .001	.009
811	•008	:	.011	849		.020		.008	318	-	.010	_	.008	356	006	.002
312	.013	,	•009	850	-	.012	-	.019	319	+	•008	+	.008	857	1001	•006
818	•009	,	.011	851	+	.019	+	.008	820	-	.008	-	.002	358	.004	.002
314	.010	•	.012	852	-	.010	-	.012	321	+	•005	+	•005	859	+ .001	.004
815	•006	;	.011	353	+	.013	+	•007	322	_	.005		.003	860	001	.001
816	•006	;	•009	354	_	.010	_	.012	828		.003		•000	361	+ .002	.003
317	•004		.007	855	+	.010	+	•005	R	ight	hand :	Bran	ch			
818	•002	,	•005	356	-	.007	_	•009	331	+	.049	+	•063	36th	Equation.	Azimuth.
819	.001		•006	357	+	.009	+	.005	882	-	.053	_	.042	Equ	alizing Fa	ctor = 1.
820	•002		.002	358	_	.005	_	.007	333		.054		.031	1	eft-hand I	Branch
821	•000		•005	359	+	•006	+	.002	334	+	.034	+	•045	808	+ 1.016	+ 1.016
822	.001	-	.003	360	_	•003	_	.003	335	_	.054	_	.025	304	- 1.016	- 1.014
823	+ .001		.004	861	+	.003		.000	336	+	.023	+	•039	805	+ 1.014	+ 1.014
$\mathbf{R}_{\mathbf{i}}$	ght-hand	Braz	nch						837		.020		.037	306	- 1.014	- 1.013
331	+ .018	-	•042	35th .	Eque	ation.	Long	ritude.	338	_	•040	_	.020	807	+ 1.013	+ 1.013
832	.012	.	.019	Equa	ılizir	ng Fac	ctor :	= 15.	3 39		.037		.017	808	- 1.013	- 1.010
333	.014		.047	I	eft-l	hand I	Branc	ch	34 0	+	.013	+	.030	309	+ 1.010	+ 1.010
334	.028		.012	808	+	•038	+	•038	841		.013		.025	3 10	- 1.010	- 1.009
385	.030		.037	304	_	.038	_	.032	842	_	.039	<u> </u>	.012	311	+ 1.009	+ 1.009
836	.025		.007	805	+	.032	+	.032	843		.031		.012	312	- 1.009	- 1.007
887	.033		.002	806	_	.032	_	.026	344	.+	.007	+	.024	813	+ 1.007	+ 1.007
338	.007		.031	307	+	.026	+	.026	845	_	.025	_	.006	314	- 1.007	- 1.006
889	.003		.025	3 08	_	.026	_	.022	846		.000	+	.022	815	+ 1.000	+ 1.000
840	.023	+	.001	309	+	.022	+	.022	347		.022		.004	316	– 1.006	- 1·005
841	•025		•008	810	_	.022	_	.020	348		:002		.020	317	+ 1.005	+ 1.002
342	004	_	.021	311	+	.030	+	.030	849		.000		.021	318	- 1.005	- 1.004
343	•002		.021	812	_	.020	_	.017	850		.019		.003	819	+ 1.004	+ 1.004
344	+ .022	+	•005	313	+	.017	+	.017	851		.000		.016	320	- 1.004	- 1.002
345	007	-	.024	314	_	.015	_	.014	352		.012		.002	321	+ 1.003	+ 1.002
346	+ '024	+	•007	815	+	.012	+	.012	353		.000		.014	322	- 1.003	- 1.001

Circuit agle	Coefficient	s of y	and s	Sircuit ngle	Coefficient	s of y and z	Jirouit 1gle	Coefficient	s of y and z	Jircuit Igle	C	Coefficient	s of y	and z
No. of Circuit Triangle	ъ		t	No. of Circuit Triangle	Ď	c	No. of Circuit Triangle	ħ	t	No. of Circuit Triangle		b		¢
36 <i>th</i>	Equation-	–(Con	tinued).	36 <i>th</i>	Equation	-(Continued).	37 <i>th</i>	Equation-	–(Continued).	38 <i>th</i>	Eqi	uatio n -	–(Cont	inued).
Equ	alizing Fa	ctor	= 1.	Equ	alizing Fo	actor = 1.	Equa	lizing Fac	tor = .03.			ng Fac		
323	- 1.001		0,000	861	+ 1.002	+ 1.003	414	+ 12	- 13	349	-	.004	+	.002
\mathbf{R}_{i}	ight-hand	Bran	ch				415	13	12	350	+	.001		•003
331	+ 1.031	+	1.029	37 <i>th</i>	Equation	Linear.	416	14	10	851	_	.001		.002
832	- 1.023	_	1.018	Equ a	lizing Fac	etor = .03.	417	12	15	R	ight.	-hand	Bran	ch
833	1.033		1.014	L	eft-hand	Branch	418	12	13	362	+	.054	-	·012
334	+ 1.016	+	1.030	331	– з	+ 23	419	8	14	363		.014		.043
835	- 1.023	_	1.013	832	13	3	420	18	3	864		.000		•051
3 36	+ 1.011	+	1.019	833	14	18	421	11	18	865		.065	+	.002
837	1.009		1.016	334	11	14	422	12	10	366		.036	_	.016
338	- 1.017	-	1.009	335	22	14	423	12	13	867		.018		.043
339	1.019		1.008	336	10	14				368		•067		.001
34 0	+ 1.007	+	1.013	337	16	11	38th .	Equation.	Latitude.	869	_	.008		•080
841	1.002		1.010	338	20	5	Equa	ilizing Fac	ctor = 15.	370	+	.039		•006
342	- 1.013	_	1.006	839	16	9	L	eft-hand 1	Branch	371		.023		•046
343	1.013		1.006	340	11	13	831	004	+ .050	372		.032		.030
344	+ 1.003	+	1.011	341	13	6	332	.033	•005	373		.007		•050
345	- 1.013	_	1.003	342	14	7	833	.024	.031	374		.061		.000
346	+ 1.000	+	1.010	843	16	7	334	.012	.025	375	_	.009		•057
347	- 1.009	_	0.998	344	12	13	835	.029	.022	376	+	.063	+	·012
348	+ 0.999	+	1.009	845	13	11	386	.010	.017	377	-	.012	-	.061
349	1.001		1.010	846	17	13	337	.017	.013	378	+	•060		.004
350	- 1.006	-	0.999	847	11	18	888	.019	•007	379	-	.014		•059
851	+ 1.000	+	1.002	348	16	12	339	.013	.010	880	+	.053	+	.011
352	- 1.006	_	0.999	349	13	14	34 0	.008	.010	381	-	.008	_	•048
358	+ 1.001	+	1.006	350	11	13	841	.010	.004	382	+	.045	+	.003
354	- 1.003	_	0.998	351	+ 12	25	342	.006	.006	383	_	.001	_	.033
355	+ 1.001	+	1.002	$\mathbf{R}_{\mathbf{i}}$	ight-hand	Branch	843	.008	•006	384	+	•046	+	•002
856	- 1.003	-	0.999	409	+ 7	- 32	344	•006	•006	885	_	•006	-	.052
857	+ 1.001	+	1.004	410	5	13	345	.002	•007	386	+	.034	+	•006
858	- 1.003	_	1.000	411	20	2	346	.007	*002	387	-	•006	_	•040
859	+ 1.001	+	1.003	412	7	13	347	+ .001	.009	388	+	.026	+	•001
360	- 1.001	_	0.999	418	10	11	348	006	.001	389		100	_ -	.037

Circuit angle	C	oefficient	of y	and s	of Circuit riangle	C	oefficient	s of y	and z	ircuit	C	oefficient	s of y	and s	ircuit gle	Coef	Rciente	of y	and s
No. of Circui Triangle		b		¢	No. of Circui Triangle		ъ		t	No. of Circuit Triangle		b		t	No. of Circuit Triangle	Ď			¢
38 <i>th</i>	Equ	ıatio n -	-(Con	tinued).	38 <i>th</i>	$Eq \imath$	iation-	-(Cont	inued).	39th	Equ	iation-	-(Cont	inued).		Equa	tion-	-(Cont	inued).
Equa	lizin	ng Fac	tor =	= 15.	Equa	lizin	ng Fac	tor =	= 15.	Equa	- ılizi 1	ig Fac	tor =	= 15.		alizing			
390	+	.032	+	.002	422		.004) –	.002	366	+	.053	+	.077	398		001	+	.026
391	_	.005	_	.029	428	+	.004	+	.002	867	_	.079	_	•048	399		026	·	.001
392	+	•038	+	•006						368	+	.034	+	.068	400		004	+	•023
393	_	.017	_	.039	39th]	Equa	ition.	Long	itude.	369	_	•064	_	.025	401		025		.004
394	+	.027	+	.009	Equa	ılizin	ng Fac	tor =	= 15.	370	+	.046	+	•068	402		004		.023
395	_	.012	_	.029	L	eft-l	nand I	Branc	h	371	_	.079	_	.040	403		023		.007
396	+	.027	+	.015	331	-	.047	-	•045	372	+	.044	+	.073	404	1	007		.021
897	-	.012	_	.031	332	+	.039	+	.039	373	_	.071	_	.035	405		015		.011
3 98	+	.029	+	.017	333		.039		.039	874	+	.025	+	.064	406		013		.010
399	_	.021	_	.030	334	_	.037	-	•030	375	_	•060	_	.026	407		019		.017
400	+	.029	+	.019	335	+	.033	+	•030	376	+	.020	+	.054	408		027		.010
401	-	.031	_	.030	336	_	.025	_	.024	377	_	.021	_	.019	409		007		.033
402	+	.028	+	.030	337		.026		.025	378	+	.017	+	.063	410		002		.019
403	_	.022	_	.029	338	+	.022	+	.019	379	_	.021	_	.016	411		019		.002
404	+	.026	+	.031	339		.022		.019	380	+	.020	+	.050	412	.	004		.014
405	_	.025	_	.027	340	_	.017	_	.019	381	_	.052	_	.020	413		007		.010
406	+	.034	+	.022	341		.017		.019	382	+	.021	+	.053	414		006		.011
407		.025		.022	342	+	.014	+	.012	383	_	.056	_	.028	415		008		•009
408	_	.033	_	.022	343		.015		.012	384	+	.017	+	.051	416		007		.007
409	+	.030	+	.018	344	_	.010	_	.010	385	_	•048	_	•008	417		004		.010
410	-	.030	_	.018	345	+	.013	+	.008	386	+	.021	+	.043	418		004		.006
411	+	.012	+	.012	346	-	.007	_	.010	387	_	•046	_	.014	419		001		•006
412	-	.018	_	.019	347	+	.009	+	•003	388	+	.025	+	.046	420	•	003		•003
413	+	.019	+	.012	348	_	.004	_	.006	389	_	.052	_	.014	421	•	100		•006
414	-	.012	_	.013	849		.004		•006	390	+	.014	+	.045	422		000		.002
415	+	.013	+	.013	850	+	.003	+	.001	391		.050	_	.019	423		000		.002
416	-	.013	_	.010	851	–	.003	-	.002	392	+	.003	+	.043					
417	+	.010	+	.010	Ri	ight.	hand	Bran	ch	393	-	.032	}	.001	4 0th	Equat	ion.	Azi	muth.
418	-	.009	_	•007	362	+	.021	+	.076	394	+	.013		.039	Equ	alizing	Fa	ctor	= 1.
419	+	•007	+	.007	363	_	.079		.054	395	-	.037	_	.013	I	eft-ha	nd I	Branc	e h
420	_	.008	-	.006	364		.073		•050	396	+	.010	+	.032	331	– 1.	020	-	1.020
421	+	•005	+	.002	365	+	.040	+	•069	397	_	.032	_	•005	332	+ 1.	017	+	1.012

ircuit gle	Coefficiente	s of y and z	Jirouit Igle	Coefficient	s of y and z	Sircuit ngle	Coefficient	s of y and z	Jircuit 1gle	Coefficient	of y and z
No. of Circuit Triangle	ъ	t	No. of Circuit Triangle	b	t	No. of Circuit Triangle	ħ	¢	No. of Circuit Triangle	b	¢
	Equation-	–(Continued).	4 0 <i>th</i>	Equation-	-(Continued).	4 0 <i>th</i>	Equation-	-(Continued).	41 st	Equation-	-(Continued).
Eque	alizing Fa	ctor = 1.	Equ	alizing Fa	ctor = 1.	<i>Equ</i>	alizing Fac	ctor = 1.	Equa	ilizing Fac	ctor = .03.
883	+ 1.014	+ 1.017	374	+ 1.010	+ 1.027	406	+ 0.994	+ 1.∞5	373	+ 15	- 11
334	- 1.016	- 1.013	375	- 1.022	- 1.011	407	0.993	1.009	374	18	12
335	+ 1.012	+ 1.013	376	+ 1.000	+ 1.023	408	- 1.013	- 0.996	875	9	15
336	- 1.011	- 1.011	877	- 1.033	- 1.008	409	+ 0.994	+ 1.016	376	19	7
337	1.010	1.011	878	+ 1.008	+ 1.027	410	- 1.003	- 0.992	377	5	18
338	+ 1.011	+ 1.008	379	- 1.031	- 1.006	411	+ 0.993	+ 1.002	878	19	16
339	1.011	1.008	380	+ 1.007	+ 1.031	412	- 1.003	- 0.994	379	7	18
340	- 1.008	- 1.008	381	- 1.023	- 1.008	413	+ 0.998	+ 1.005	380	17	8
341	1.006	1.002	382	+ 1.008	+ 1.023	414	- 1.003	- 0.995	381	11	14
342	+ 1.007	+ 1.002	383	- 1.025	- 1.013	415	+ 0.996	+ 1.004	882	13	14
343	1.008	1.002	384	+ 1.002	+ 1.033	416	- 1.003	- 0.996	383	16	5
344	- 1.005	- 1.005	385	- I.033	- 1.003	417	+ 0.998	+ 1.005	384	16	14
345	+ 1.002	+ 1.003	886	+ 1.009	+ 1.020	418	- 1.001	- 0.996	385	13	20
346	- 1.003	- 1.004	387	- 1.031	- 1.005	419	+ 1.000	+ 1.004	386	9	11
347	+ 1.004	+ 1.001	388	+ 1.011	+ 1.022	420	- 1.001	- 0.999	887	13	13
348	- 1.001	- 1.003	389	- 1.025	- 1.005	421	+ 0.999	+ 1.003	888	4	16
349	1.003	1.003	890	+ 1.007	+ 1.031	422	- 1.000	- 0.998	889	21	11
350	+ 1.003	+ 1.000	891	- 1.022	- 1.008	423	+ 1.000	+ 1.003	390	9	18
351	- 1.003	- 0.003	892	+ 1.000	+ 1.030	}			891	20	4
$\mathbf{R}_{\mathbf{i}}$	ght-hand	Branch	898	- 1.014	- 0.999	41 st	Equation.	Linear.	392	16	18
362	+ 1.030	+ 1.033	394	+ 1.005	+ 1.017	Equa	lizing Fac	tor = .03.	893	9	16
363	- 1.034	- 1.022	395	- 1.016	- 1.005	362	+ 12	– 12	894	6	17
364	1.031	1.030	396	+ 1.004	+ 1.014	363	14	7	395	15	4
365	+ 1.016	+ 1.030	397	- 1.012	- 1.001	364	9	10	396	5	13
366	1.033	1.033	398	+ 1.000	+ 1.013	365	16	8	397	15	. 8
367	- 1.034	- 1.020	399	- 1.011	- 1.000	366	5	15	398	10	11
368	+ 1.013	+ 1.029	400	+ 0.998	+ 1.010	367	17	7	399	10	8
369	- 1.027	- 1.009	401	- 1.011	- 0.998	368	18	10	400	. 12	10
370	+ 1.019	+ 1.029	402	+ 0.998	+ 1.011	369	7	23	401	12	10
371	- 1.035	- 1.017	403	- 1.011	- 0.997	370	7	12	402	10	13
372	+ 1.020	+ 1.032	404	+ 0.997	+ 1.009	371	21	9	403	13	10
373	- 1.030	- 1.014	405	- 1.006	- 0.994	372	4	19	404	10	14
		<u> </u>				<u> </u>	<u> </u>	1			

Jironit Igle	Coefi	iciente	of y and z	Sircuit igle	Coefficient	s of y and z	Jircuit 1gle	Coefficient	of y and z	Jircuit 1gle	Coeffic	iente	of y	and s
No. of Circuit Triangle	ħ		¢	No. of Circuit Triangle	ъ	t	No. of Circuit Triangle	b	¢	No. of Circuit Triangle	b			t
41 <i>st</i>	Equat	ion-	-(Continued).		l Equation	-(Continued).	42nd	Equation-	-(Continued).	4 3 <i>rd</i>	Equati	on.	Lat	itude.
Equa	lizing	Fac	tor = .03.	Equa	ilizing Fac	tor = .03.	Equa	lizing Fac	tor = .03.	Equa	ilizing I	Fac	tor =	= 15.
405	+	9	- 11	R	ight-hand	Branch	474	+ 19	- 11	I	eft-han	d J	Branc	ch
406		12	8	362	_ 12	- 24	475	14	14	362	- .0	58	_	.004
407		18	13	414	+ 15	9	476	11	16	363	· •	59		.008
408		25	8	445	12	14	477	15	12	364	.0	47		.001
•				446	10	13	478	2	19	365	۰۰	11	+	.044
42nd	Equa:	tion.	Linear.	447	13	12	479	8	9	366	+ .c	14		.061
Equa	lizing	Fac	tor = .03.	448	16	8	480	13	7	367	- ·c	62	_	.008
L	eft-hai	nd I	Branch	449	20	13	481	13	9	368	.c	14	+	•048
407	+	24	+ 6	45 0	10	14	482	7	12	3 69		39		.022
408		25	_ 8	451	12	12	483	8	12	370	+ .0	12		.021
424	_	9	+ 15	452	9	15	484	15	8	371	- ·c	66	_	.002
425		13	11	453	13	11	485	12	13	372	+ .c	18	+	.063
426		17	3	454	10	13	486	9	12	373	- ·c	52	-	.001
427		20	8	455	15	13	487	13.	10	374	٠.	09	+	•046
428		9	20	456	11	15	488	13	11	375		38		•006
429		11	11	457	13	9	489	10	16	376		09		•036
430		15	8	458	11	9	490	14	12	377	••	30		.009
431		15	16	459	11	18	491	13	12	378		07		.020
432		13	14	.460	17	11	492	4	22	379		33		.006
433		7	14	461	14	12	493	7	10	380		01		.037
434		12	9	462	11	15	494	16	1	381	• •	39	-	.003
4 35		17	11	463	11	11	495	10	12	382	+ .0	800	+	.045
43 6		13	17	464	15	10	496	8	13	383	0	45	-	.018
437		10	13	465	9	17	497	14	14	384	+ .0	06	+	.044
438		16	8	466	13	12	498	9	15	385	0	41	-	.002
439		11	20	467	12	11	49 9	27	17	386	+ .0	81	+	.041
440		13	11	468	10	13	500	10	26	387	0	40	-	.012
441		9	14	469	12	10	501	- 17	15	388	+ .0	25	+	.045
442		12	19	470	17	13				389	- ·c	46	_	.012
443		7	12	471	16	12				39 0	+ .0	20	+	.043
				472	14	17				391	- ·c	40	_	.021
				473	12	17				392	+ .0	14	+	.039
				5		<u> </u>		l					!	

Circuit ıngle	C	oefficient	of y	and z	Circuit	Coefficient	of y and z	Circuit ngle	Coeffi	cients	of y and z	Circuit ingle	C	oefficient	ts of y and z	
No. of Circu Triangle		b		¢	No. of Circui Triangle	b	¢	No. of Circuit Triangle	ħ		c	No. of Circu Triangle		b		¢
4 3rd	Equ	uation-	—(Con	tinued).	43rd	Equation-	–(Continued).	43rd	Equat	ion–	-(Continued).	44th .	Eque	ition.	Long	itude.
Equ	alizi	ng Fac	tor =	= 1 5.	Equa	ilizing Fac	tor = 15.	Equa	lizing .	Fac	tor = 15.	Eque	alizi1	ıg Fac	tor :	= 15.
393	_	•030	-	.013	441	+ .009	+ .002	472	+ .0	23	033	L	æft-l	and]	Branc	e h
394	+	.023	+	.037	442	004	003	473	٠.	22	.027	362	-	.032	-	.071
395	_	.031	_	.021	443	.004	.003	474	• •	34	.017	363	+	.037	+	.066
396	+	.024	+	.032	\mathbf{R}_{i}	ight-hand	Branch	475	٠.	20	.022	364		.044		.070
397	-	.029	_	.020	444	+ .064	+ .002	476	٠.	15	.028	365	-	.076	_	*042
398	+	.022	+	.030	445	.007	058	477	• 0	24	.019	366		.060		.033
399	_	.026	_	.021	446	.002	•056	478	• 0	005	.026	367	+	.030	+	.001
400	+	.023	+	.028	447	.054	.011	479	.0	007	.019	368	_	.075	_	.037
401	_	.025	_	.022	448	.019	•040	480	• 0	14	.014	369	+	.040	+	.079
402	+	.025	+	.027	449	.069	.014	481	• 0	19	•009	370	_	.058	_	.031
403	_	.024	_	.023	450	.007	.051	482	• 0	11	.013	371	+	.020	+	.058
404	+	.026	+	.026	451	•046	.014	483	• 0	005	.018	372	_	.050	_	.019
405	_	.033	_	.024	452	.006	•051	484	• c	013	.013	373	+	.026	+	·058
406	+	.028	+	•025	453	.046	•014	485	• 0	015	.011	374	_	•065	_	.027
407		.023	_	.004	454	110.	•044	486	• 0	2 2	.010	375	+	.031	+	.059
424	_	.022		.027	455	.049	.021	487	• 0	800	.014	376	_	.064	_	.031
425		.031		.026	456	.017	.045	488	٠.	800	.012	377	+	.033	+	•060
426	+	.027	+	.021	457	.041	.014	489	• 0	11	.010	378	_	.062	_	.017
427	_	.018	_	.023	458	.019	.029	490	• 0	15	.007	379	+	.027	+	.057
428	+	.022	+	.015	459	.033	•039	491	• 0	×05	.013	380	_	.057	_	.024
429		.022		.017	46 0	•036	•030	492		002	.020	381	+	.019	+	.050
430	_	.015	_	.019	461	.029	.033	493	+ •	206	•003	382	_	.050	_	.012
431		.012		.020	462	.028	.034	494	• 0	110	+ .002	383	+	.009	+	.036
432	+	.018	+	.012	463	.022	.028	495	٠.	000	011	384	_	.052	_	•009
433		.016		.012	464	.031	.026	496	• c	005	.004	385	+	.009	+	•054
434	_	.012	_	.014	465	.021	.035	497		007	•004	386	_	.040	_	.010
435		110		.014	466	.030	.024	498		100	•005	387	+	.006	+	.042
436	+	.012	+	.008	467	.031	.036	499		×05	•005	388	_	.029		100.
437		.013	-	•009	468	.017	.030	500		100	•004	389		.007		.037
438	_	.008	_	.009	469	.025	.018	501		003	•000	390		.032		.007
439		.008		.009	470	.034	.023			-5		391		.007		.024
440	+	.007	+	.005	471	.027	.024					392	1	.039		.008
330			T		7/1	02/	024					00%		~39		

Jircuit Igle	Coefficient	of y and z	Jircuit Igle	Coefficient	s of y	and s	Circuit ıngle	C	oefficients	of y	and z	Sircuit ngle	Coefficient	of y and z	
No. of Circuit Triangle	ħ	c	No. of Circuit Triangle	ħ		t	No. of Circui Triangle		ħ		t	No. of Circuit Triangle	ħ	¢	
44 <i>th</i>	${\it Equation}-$	-(Continued).	44 <i>th</i>	Equation-	-(Conti	inued).	44 th	Equ	iation-	-(Cont	inued).		Equation.	Azimuth.	
Equa	lizing Fac	tor = 15.	Equa	lizing Fa	ctor =	= 15.	Eque	ılizi	ng Fac	tor =	= 15.	Equalizing Factor = 1.			
393	+ .004	+ .032	441	001	+	•006	472	+	.044	+	.040	I	eft-hand 1	Branch	
394	022	.010	442	.002		.004	473	_	.038	_	.041	362	- 0.013	- 1.029	
395	.007	.017	443	.001		.003	474		.038		.041	363	+ 1.019	+ 1.027	
396	.018	.007	$\mathbf{R}_{\mathbf{i}}$	ight-hand	Bran	ch	475	+	.039	+	.035	364	1.019	1.029	
397	.009	.019	444	040	-	.072	476		.039		.035	365	- 1.031	- 1.018	
398	.021	.007	445	+ .073	+	.042	477		.033	_	.036	366	1.025	1.014	
399	•006	.019	446	.070		.043	478		.034		.036	367	+ 1.013	+ 1.025	
400	.022	.008	447	046	_	.073	479	+	.034	+	.030	368	- 1.031	- 1.016	
401	.011	.019	448	+ .074	+	•048	480		.035		.030	369	+ 1.012	+ 1.033	
402	.019	.012	449	040	-	.071	481	_	.028	_	•030	370	- 1.024	- 1.013	
403	.012	.013	450	+ .065	+	.043	482		.028		.031	371	+ 1.009	+ 1.024	
404	.013	.020	451	048	-	•068	483	+	.028	+	.024	372	- 1.031	- 1.000	
405	.013	.011	452	+ .063	+	.044	484		.030	<u>.</u> :	.025	373	+ 1.013	+ 1.024	
406	.013	.014	453	049	-	.066	485	_	.022	_	.026	374	- 1.027	- 1.013	
407	+ .013	.024	· 454	+ .062	+	•047	486		.023		.026	375	+ 1.014	+ 1.025	
424	019	. 014	455	049	-	•065	487	+	.024	+	.019	376	- 1.026	- 1.013	
425	.031	.009	456	+ .001	+	•048	488		.024		.019	377	+ 1.014	+ 1.025	
426	.013	.011	457	052	-	.062	489	_	.017	_	.022	378	- 1.026	- 1.008	
427	.028	.004	458	+ .059	+	.052	490		.017		.031	379	+ 1.013	+ 1.034	
428	• .004	.027	459	054	_	.063	491	+-	.019	+	.013	380	- 1.024	- 1.011	
429	.006	.017	46 0	+ .029	+	.053	492		.017		.011	381	+ 1.009	+ 1.031	
430	.018	.003	461	.058		.052	493	_	.012	_	.014	382	- 1.021	- 1.006	
431	.018	.011	462	054	-	•056	494		.011		.013	383	+ 1.004	+ 1.012	
432	•006	.019	463	+ .054	+	.050	495	+	.013	+	.008	384	- 1:022	- 1.002	
433	.001	.019	464	.055		.051	496	_	.009	_	.011	385	+ 1.005	+ 1.033	
434	.011	•004	465	049	_	.051	497		.008		.011	386	- 1.017	- 1.002	
435	.014	.005	466	.049		.021	498	+	.006	+	.005	387	+ 1.003	+ 1.018	
436	•004	.013	467	+ .049	+	.045	499		.008		.004	388	- 1.013	- 1.000	
437	.003	.011	468	.049		.045	500	_	.003	_	.002	389	+ 0.998	+ 1.016	
438	•009	.002	469	044	_	.045	501		.001		.003	390	- 1.014	- 0.998	
439	•006	.008	470	.043		.046			•		J	391	+ 0.998	+ 1.010	
44 0	.002	.002	471	+ .044	+	·041						392	- 1.016	- 0.997	

ircuit gle	Coefficient	s of y and z	o. of Circuit Triangle	Coefficient	s of y and z	Sircuit ngle	Coefficient	s of y and z	Sircuit Igle	Coefficient	of y and z	
No. of Circuit Triangle	b	t	No. of C Trian	ħ	¢	No. of Circuit Triangle	ħ	¢	No. of Circuit Triangle	b	¢	
	Equation-	-(Continued).		Equation-		45 <i>th</i>	Equation-		46th	*		
Equ	alizing Fa	ctor = 1.	Equ	alizing Fa	ctor = 1.	Equ	alizing Fac	etor = 1.	Equalizing Factor = '03.			
393	+ 1.003	+ 1.012	441	- 1.000	- 0.997	472	+ 1.019	+ 1.012	\mathbf{L}	eft-hand I	Branch	
394	- 1.010	- 0.996	442	+ 0.999	+ 1.003	473	- 1.019	- 1.018	461	- 25	- 11	
895	+ 0.998	+ 1.002	443	1.000	1.001	474	1.019	1.012	462	11	+ r 5	
396	- 1.008	- 0.998	\mathbf{R}	ight-hand	Branch	475	+ 1.014	+ 1.012	463	11	11	
397	+ 0.997	+ 1.008	444	- 1.017	- 1.029	476	1.012	1.012	464	15	10	
398	- 1.009	- 0.997	445	+ 1.029	+ 1.018	477	- 1.014	- 1.012	465	9	. 17	
899	+ 0.998	+ 1.007	446	1.029	1.018	478	1.012	1.019	466	13	12	
400	- 1.009	- 0.997	447	- 1.019	- 1.029	479	+ 1.014	+ 1.013	467	12	11	
401	+ 0.996	+ 1.007	448	+ 1.030	+ 1.020	480	1.012	1.013	468	10	13	
402	- 1.007	- 0.994	449	- 1.017	- 1.029	481	- 1.013	- 1.013	469	12	10	
403	+ 0.994	+ 1.000	450	+ 1.027	+ 1.018	482	1.013	1.013	47 0	17	13	
404	- 1.006	- 0.992	451	- 1.030	- 1.028	483	+ 1.013	+ 1.010	471	16	12	
405	+ 0.992	+ 1.002	452	+ 1.026	+ 1.018	484	1.013	1.011	472	14	17	
406	- 1.006	- 0.994	453	- 1.020	- 1.027	485	- 1.010	- 1.011	473	12	17	
407	0.995	+ 0.010	454	+ 1.026	+ 1.010	486	1.010	1.011	474	19	11	
424	+ 0.993	1.000	455	- 1.020	- 1.027	487	+ 1.011	+ 1.008	475	14	14	
425	0.991	1.004	456	+ 1.022	+ 1.020	488	1.011	1.008	476	11	16	
426	- 1.005	- 0.995	457	- I.033	- 1.026	489	- 1.007	- 1.010	477	15	12	
427	+ 0.998	+ 1.003	458	+ 1.022	+ 1.022	490	1.007	1.000	478	2	19	
428	- I.003	- 0.989	459	- 1.022	- 1.026	491	+ 1.008	+ 1.000	479	8	• 9	
429	1.003	0.963	460	+ 1.022	+ 1.022	492	1.007	1.002	480	13	7	
430	+ 0.993	+ 1.003	461	1.024	1.022	493	- 1.002	- 1.006	481	13	9	
431	0.993	1.002	462	- 1.022	- 1.034	494	1.002	1.006	482	7	. 12	
432	- 1.003	- 0.993	463	+ 1.023	+ 1.031	. 495	+ 1.006	+ 1.003	483	8	12	
433	1.000	0.993	464	1.033	1.031	496	- 1.004	- 1.002	484	15	8	
434	+ 0.996	+ 1.003	465	— 1.030	- 1.033	497	1.003	1.002	485	12	13	
435	0.884	1.003	466		1.031	498	+ 1.003	+ 1.003	486	9	12	
436	- I·002		467	1.020	į.	499		1.002	487	13	10	
437	•	- 0.995		+ 1.021	+ 1.010	١.	1.004		488		11	
	1.001	0.996	468	1.071	1.010	500	- 1.001	- 1.001		13	16	
438	+ 0.997	+ 1.001	469	- 1,018	- 1.019	501	1.003	0.001	489	10		
439	0.997	1.003	470	1.018	1.019	}			490	14	12	
440	- 1.001	- o.998	471	+ 1.019	+ 1.012				491	13	12	

Sircuit 1gle	Coefficient	s of y a	nd ≉	Sircuit Igle	Coefficient	s of y and z	Sireuit 1gle	C	oefficient	s of y and z	Sirouit 1gle	C	Coefficient	of y	and z
No. of Circuit Triangle	ħ		c	No. of Circuit Triangle	ħ	¢	No. of Circuit Triangle		ħ	¢	No. of Circuit Triangle		b		¢
4 6 <i>th</i>	Equation-	–(Conti	nued).	4 6 <i>th</i>	Equation-	-(Continued).	46 <i>th</i>	Equ	ation-	-(Continued).	47 <i>th</i>	Equ	ation-	-(Cont	inued).
Equa	alizing Fac	tor =	·03.	Equa	ilizing Fac	tor = 03.	. Equa	ılizin	ng Fac	tor = .03.	Eque	alizis	ng Fac	ctor :	= 15.
492	- 4	+	22	523	+ 11	- 10	555	+	11	- 11	470	-	.058	-	*002
493	7		10	524	13	11	556		13	11	471		1001	+	.049
494	16		1	525	9	10	557		29	2	472	+	•003		•057
495	10		12	526	8	11	558		10	18	473	-	•047		.001
496	8		13	527	13	9	559		4	10	474		.058	_	.009
497	. 14		14	528	12	10	560		29	0	475	+	.006	+	•049
498	9		15	5 2 9	12	12	561		12	18	476		.011		.052
499	27		17	530	12	11	562		8	26	477	_	.048	_	•010
500	10	i	26	531	11	15	563		10	15	478	Ĺ	.030		•000
501	34	-	2	532	15	11	564		22	7	479	+	.019	+	•041
502	9	+	25	533	11	14	565		5	12	480		.012		•038
503	11		15	534	15	7	566		1	16	481	_	.043	_	.016
504	12		11	535	9	18	567		19	2	482		.036		.013
505	14		18	536	20	3	568		18	14	483	+	.030	+	.042
506	3		11	537	15	32	569		7	23	484		.013		.038
507	26	_	1	538	23	15	570		33	3	485		.040	-	.015
508	20	+	15	539	30	25	571		4	21	486		.037		.016
509	3		26	540	I	22	572		19	12	487	+	.018	+	.038
510	3		12	541	13	13	573		14	10	488		.018		.039
511	17		3	542	10	7					489	_	•036	_	.016
512	21		5	543	20	9	47th.	Equa	ation.	Latitude.	490		.039		.019
513	. 10		22	544	11	18	Equa	ılizin	ig Fac	ctor = 15.	491	+	.021	+	.037
514	14		10	545	3	18	L	eft-h	and H	Branch	492		.027		.044
515	12		18	546	5	10	461	_	.059	+ .001	493	_	.031	_	.022
516	+ 1		13	547	28	1	462		.052	.008	494		.035		.027
517	- 35		8	548	13	31	463	+	.004	•052	495	+	.026	+	.035
\mathbf{R}^{i}	ight-hand	Branc	eh	549	14	9	464		.005	.050	496	_	.030	_	.022
518	+ 10		15	550	1	15	465		.046	•009	497		.032		.022
519	13		11	551	11	4	466		.054	003	498	+	025	+	.029
520	10		12	552	17	7	467	+	.005	+ .050	499		.021	,	.029
521	14		9	553	5	18	468		.009	. 054	500	-	.025	_	.023
522	8		13	554	3	15	469	_	.049	008	501		.026		.024
			- 5		3	-3	100		~ 4 9						

No. of Circuit Triangle				ınd z	Jirc 1gle	C	oefficiente	of y a	nd ≰	Sircu 1gle	C	oefficient	of y	and s	Sircu 1gle	· C	oefficient	or y	and z
		b		¢	No. of Circuit Triangle		ħ		¢	No. of Circuit Triangle		b		£	No. of Circuit Triangle		b		¢
47th.	Equ	ation-	–(Cont	inued).	47 <i>th</i>	Equ	ation-	(Cont	inued).	47th	Eqi	iation-	-(Cont	inued).	48 <i>th</i>	Equ	ation-	–(Cont	inu ed).
Equal	lizin	g Fac	tor =	= 15.	Equa	lizin	g Fac	tor =	= 15.	Equa	lizin	g Fac	tor =	= 15.	Equalizing Factor = 15 .				
502	+	.026	+	.024	533	+	.035	–	.026	565	+	.002	-	.005	481	+	.009	+	.040
503	_	.031	_	.022	534		.029		.023	566	_	.004		.011	482		.018		.045
504		.021		.022	535		.028		·038	567	+	.004		.002	483	_	.037	_	.007
505	+	.022	+	.012	536		.044		.011	568		.008		•004	484		.048		.013
506	_	.016	_	.017	537		.032		.079	569	_	.002		.010	485	+	.005	+	.041
507		.015		.019	538		.054		.035	570	+	.007		.001	486		.009		.040
508	+	.018	+	.012	539		.065		.056	571	_	.001		.004	487	_	.040	_	.002
509	_	.013	_	.012	540		100.		.050	572	+	.001		.003	488		.040		.003
510		.013		.014	541		.027		•026						489	+	.003	+	.041
511	+	.011	+	·008	542		.021		.014	48 <i>th</i> 1	Equa	tion.	Long	itude.	49 0	_	.003		.035
512		.012		.008	543		.036		.021	Equa	lizin	g Fac	tor =	= 15.	491		.035		.004
513	_	.006	_	.008	544		.022		.033	\mathbf{L}	eft-l	nand I	Branc	h	492		.021		.019
514	+	.008	+	.003	545		.002		.037	461	_	.036	-	.069	493	+	.001		.025
515	_	.003	_	.005	546		.009		.017	462	+	.038	+	.074	494	_	.012		.013
516	+	.001		.001	547		.050		.002	463		.067	_	.034	495		.025		.009
517	_	.002		.002	548	i	.021		.052	464		.073		.036	496		.003		.026
${f R}$ ig	ght-	hand I	Bran	ch	54 9		.020		.018	465	+	.036	+	.072	497	-	.012		.028
518	_	.004	_	•063	550	-	.001		.027	466		.030		.065	498		.016		.017
519	+	.058		.001	551	+	.018		.003	467	-	.063	_	.029	49 9		.041		.020
520	_	.001		.053	552		.027		.007	468		.060		.027	500		.012		.034
521	+	·058	+	.001	553		.001		.031	469	+	.026	+	.057	501		.042	_	.002
522	_	.003	-	.052	554		.007		.016	470		.019		.001	502		.010	+	.034
523	+	.048		·oc4	555		•006		.022	471	_	•064	_	.023	503		.014		.012
524		.011		.045	556		.020		•006	472		.061		.019	504		.015		.011
525		•040		.007	557		.037	+	.004	473	+	.021	+	.062	505		.009		.023
526		100.		.043	558		.002	_	.025	474		.011		.053	506		.004		. 008
527		.048		•006	559	_	.003		.017	475	_	.056	_	.012	507		.024	_	.003
528		.014		.038	560	+	.029	+	.005	476		.052		.012	508		.011	+	.012
529		.043		.016	561		.015	_	.011	477	+	.012	+	.050	509		.004		.016
530		.019		.038	562		100.		.024	478		.030		.059	510		.004		.007
531		.038		.026	563		.002		.016	479	_	.042	_	.017	511		.004		.005
532		.026		.035	564		.015		.002	480		.050		.020	512		.006		.006

ircuit gle	Coefficients of y and z			and z	Circuit ıngle	• c	oefficients	of y	and z	ircuit gle	Coefficier	its of y and z	ircuit gle	Coefficients of y and z				
No. of Circuit Triangle		ħ		¢	No. of Circui Triangle		b		t	No. of Circuit Triangle	ħ	c	No. of Circuit Triangle	ъ	¢			
	Equ	ation-	-(Cont	inued).		Equ	ation-	-(Cont	inued).	49th	Equation	. Azimuth.	49th	Equation-	-(Continued).			
Equa	lizin	ng Fac	ctor =	= 15.	Equa	ilizin	g Fac	tor =	= 15.	Equ	alizing F	actor = 1.	Equ	Equalizing Factor = 1.				
513	_	.002	+	.007	544	-	.043	-	.045	L	eft-hand	Branch	492	- 1.009	- 0.991			
514	+	.001		.008	545	+	.043	+	.038	461	- 0.012	- 1.027	493	+ 1.000	+ 1.011			
515	_	.004		•002	546	_	.040	_	.041	462	+ 1.012	+ 1.032	494	0.995	1.002			
516	+	•005		•006	547		.040		.041	463	- 1.028	- 1.014	495	- 1.011	- 0.996			
517	-	.004		.001	548	+	.038	+	.037	464	1.031	1.014	496	+ 0.998	+ 1.013			
Ri	ght-	hand	Bran	ch	549	_	.039	_	•036	465	+ 1.014	+ 1.031	497	0.995	1.013			
518	+	.067) +	.032	550		.037		.035	466	1.013	1.038	498	- 1.007	- 0.992			
519	_	.038	-	.070	551	+	.031	+	.033	467	- 1.027	- 1.013	499	1.018	0.991			
520	+	.066	+	.038	552		•030		.033	468	1.036	1.010	500	+ 0.995	+ 1.015			
521	_	.039	-	.067	553	_	.034	_	.027	469	+ 1.010	+ 1.024	501	0.981	0.999			
522	+	.062	+	.039	554	+	.028	+	.031	470	1.007	1.036	502	- 1.005	- 0.985			
52 3	_	.044	_	.067	555	_	.034	_	.025	471	- 1.027	— 1.009	503	+ 0.994	+ 1.007			
524	+	.067	+	.043	556	+	.021	+	.028	472	1.026	1.006	504	0.993	1.002			
525	_	.048	_	.065	557		.016		.025	473	+ 1.008	+ 1.027	505	- 1.004	- 0.990			
526	+	.060	+	.044	558	_	.026	_	.012	474	1.004	1.023	506	+ 0.998	+ 1.004			
527	_	.046	_	.063	559		.023		.018	475	- 1.024	- 1.006	507	0.989	0.999			
528	+	.062	+	•046	560	+	.012	+	.019	476	1.033	1.002	508	- 1.005	- 0.993			
529	_	.048	_	.064	561		.016		.023	477	+ 1.002	+ 1.022	509	+ 0.999	+ 1.008			
530	+	.061	+	.047	562	_	.018	_	.010	478	1.013	1.026	510	0.999	1.003			
531	_	.050	_	.064	563		.019		.013	479	— 1.018 	1	511	- 1.002	- 0.998			
532	+	.060	+ '	• • • • • • • • • • • • • • • • • • • •	564	+	.011	+	.014	480	1.033	•	512	1.003	0.997			
533	_	.052	_	.062	565		.013		·015	481	+ 1.004	}	513	+ 0.998	+ 1.003			
534	+	.058	+	.051	566	_	.010	_	.007	482	1.007			- 1.000	- 0.997			
535	_	.053	_	.061	567		.014		.010	483	- 1.016		515	+ 0.998	+ 1.001			
536	+	.057	+	.053	568	+	.007	+	.010	484	1.031		1	- 0.998	- 0.998			
537	-	·o ₅ 6		•048	569	_	.008	_	.002	485	+ 1.003	_	517	+ 0.998	+ 1.000			
538	_	.053	_	•053	570	+	•005	+	.002	486	1.004		1	ght-hand	'			
539	+	.052	+	.049	5 7 1	_	.003	_	.001	487	- 1·018		518	+ 1.027	+ 1.014			
540	•	.021	'	.049	572	+	.004	+	.002	488	1.018		519	- 1.016	- 1·028			
541	_	.047	_	.047	31.2	-	∞ 4	T	CO2	489	+ 1.001		520	1	+ 1.016			
542	_	.047			,					490			1	+ 1.027				
543	+			:047					•		0.998		521	- 1.017	- 1.027			
040	<u>т</u>	.049	+	.044						491	- 1.012	- 0.998	522	+ 1.025	+ 1.016			

INTRODUCTORY.

No. of Circuit Triangle	Coefficient	s of y and z	to. of Circuit Triangle	Coefficient	s of y and z	No. of Circuit Triangle	Coefficient	s of y and z	Circuit ıngle	Coefficient	s of y and z		
No. of Tria	ħ	¢	No. of (Tria)	ħ	¢	No. of Tria	ħ	¢	No. of Circu Triangle	b	t		
49 th	Equation-	-(Continued).	49 th	Equation	—(Continued).	49 th	Equation-	-(Continued).	4 9 <i>th</i>	Equation-	–(Continued).		
Eque	alizing Fa	ctor = 1.	Eque	alizing Fa	ctor = 1.	<i>Equ</i>	alizing Fac	ctor = 1.	Equ	Equalizing Factor = 1 .			
523	- 1.019	- 1.027	536	+ 1.024	+ 1.022	549	- 1.017	- 1.015	562	- 1.008	- 1.004		
524	+ 1.027	+ 1.018	537	1.024	1.030	550	1.019	1.012	563	1.008	1.006		
525	- 1.020	- 1.027	538	- 1.022	- 1.022	551	+ 1.013	+ 1.014	564	+ 1.002	+ 1.006		
526	+ 1.025	+ 1.018	539	+ 1.022	+ 1.031	552	1.013	1.014	565	1.002	1.006		
527	- 1.019	- 1.026	540	1.021	1.031	553	- 1.014	- 1.011	566	- 1.002	- 1:-003		
528	+ 1.025	+ 1.019	541	- 1.020	- 1.020	554	+ 1.012	+ 1.013	567	1.009	1.004		
529	- 1.020	- 1.026	542	1.030	1.020	555	- 1.012	- 1.011	568	+ 1.003	+ 1.004		
530	+ 1.022	+ 1.020	543	+ 1.030	+ 1.018	556	+ 1.000	+ 1.013	569	- 1.003	- 1.001		
531	- 1.031	- 1.026	544	- 1.018	- 1.019	557	1.007	1.011	570	+ 1.003	+ 1.002		
532	+ 1.025	+ 1.020	545	+ 1.018	+ 1.016	558	- 1.011	- 1.007	571	- 1.002	- 1.001		
533	- 1.031	- 1.025	546	- 1.017	- 1.017	559	1.010	1.008	572	+ 1.003	+ 1.001		
534	+ 1.024	+ 1.021	547	1.017	1.012	560	+ 1.002	+ 1.008	573	- 1.000	- 1.000		
535	- 1.023	– 1.025	548	+ 1.016	+ 1.019	561	1.007	1.010					

13.

The Weights of the Angles.

The last Section has furnished us with the coefficients of the unknown quantities, 1146 in number, which enter the 49 circuit equations; the absolute terms of the same equations are shewn in Section 10. The next step, therefore, in order to obtain the most probable system of values of the unknown quantities which satisfies these equations, is to ascertain the weights of the angles, for employment in the expression for the minimum—see equation (67) page 60—which is to govern the solution of the equations. This is done—for reasons which have been set forth at length in Section 5 of Chapter VII, Volume II—by multiplying the preliminary weights,—viz., those obtained from the evidence afforded by the actual measures of each angle—by certain factors or moduli which are required to reduce them all to a common and absolute unit of accuracy. Each group of angles, measured with the same instrument and under similar circumstances, has a constant value of the modulus, ρ , obtained as shewn in Section 2 of the preceding chapter.

Disparity of circumstance necessarily occurs whenever there are very marked variations in the general elevation of the observing and signal stations above the level of the ground; for on this condition freedom from grazing rays—and their concomitant lateral refractions greatly depends. Disparity also occurs when the system of operation is varied, even without a change of instrument; for although there is a standing rule, to which no exception has ever been permitted, that the measurement of every angle must rest on readings taken at equidistant points of the azimuthal circle; yet the number of points read has varied with the number of microscopes attached to the theodolite, and with the number of changes of zero which were effected in each instance: again the number of standard measures on each zero has been sometimes 2, sometimes 3. Moreover certain of the theodolites, after having been employed for some years with three azimuthal microscopes, have had two more added—all five being placed at equal distances apart—which has led to a corresponding change in the arcs between the circle readings before and after the alteration. Now it has been found that the value of ρ^2 is frequently more influenced by changes of circumstance than by change of instrument; and consequently considerable circumspection is necessary before applying a value of this factor to any observations other than those of the group for which it was determined, even when made with the same instrument; for though this factor is partly dependent on the instrument, it is also dependent, and probably—in the case of all the best instruments, viz., the 36-inch and 24-inch theodolites—to a greater extent, on various extraneous influences; and of these there can be little doubt that the most important is lateral refraction, which is liable to be greater in the plains than in the hills, and much greater in tracts of country which are covered with dense forest and jungle, than in tracts which are open and cultivated.

It has already been stated, at page 24, that the trigonometrical figures which are ordi-

narily employed in the operations of this Survey have too few angles and geometrical conditions to permit of a reliable value of the modulus being usually determinable from the evidence of a single figure. In order therefore to obtain a fairly exact value, it was necessary to group together the several figures of which the angles have been measured with the same instrument and as nearly as possible under similar circumstances, to determine an average value of the Absolute Weights of all the observed angles from the geometrical errors exhibited in the several figures, and then to find the ratio of that average to the average of the Preliminary Weights of the same angles. This ratio gives the value of the modulus ρ^2 . The several figures appertaining to the North-East Quadrilateral have been collected into 33 groups, for each of which a separate value of ρ^2 has been determined. The values of the weights of the angles which are obtained by multiplying the preliminary weights by ρ^2 are considered to be absolute and final; thus, with these values, independent measures of the same angles, made with different instruments, may be legitimately combined together; moreover the several angles of portions of the triangulation, which have been measured with different instruments, or under different circumstances, may also be combined together in the final reduction, with due regard to the relative accuracy of each angle.

The details on which the determinations of ρ^2 have been based will now be given. The symbols e_1 , e_2 and e_3 will be here employed, as in Section 2 of the preceding chapter, to indicate the several values of the e.m.s., which are respectively deduced from the preliminary weights, the triangular errors, and the geometrical errors of the angles of the polygonal figures. The values of e_1 , e_2 and e_3 will be given for each group for comparison, and because e_1 is always the numerator of ρ , while either e_2 , e_3 , or a combined value of them, has been taken as the denominator of ρ .

Putting w for the preliminary weight of any angle, w_o for the average preliminary weight—or the unit of weight—of the whole of the angles, t in number, which are contained in any figure, and n for the number of geometrical equations of condition presented by the figure, we have

$$e_1^2 = rac{1}{w_o}$$
; $e_3^2 = rac{[wx^2]}{w_o n}$; $e_2^2 = rac{ ext{sum of squares of triangular errors}}{ ext{number of triangles} imes 3}$.

Then, when we accept e_3 as the most probable value of the e. m. s., we have

$$ho^2 = egin{cases} rac{n}{\lfloor wx^2
floor} & ext{for a single polygonal figure,} \ & \underline{n} \ & \lfloor wx^2
floor & ext{for a group of figures.} \end{cases}$$

The value of the quantity $[w x^2]$ for each polygonal figure is given at the end of the reduction of the figure, among the numerical details of the series to which it appertains.

The following table gives the data from which the values of e_1 , e_2 and e_3 were determined for each group of figures; also the approximate values of e_3 which are given by each figure.

Data for the Calculation of ρ —(Continued).

	angle		Data	for e_1	Data	for e_2		Data	for e_3		A
Group	Series and Figure or Triangle	Hills or Plains	Number of Angles	Sum of Preliminary Weights [w]	Number of Triangles	Sum of Squares of Triangular Errors	Number of Geometrical Equations	Average of Preliminary Weights Wo	$[wx^2]$	$egin{bmatrix} [wx^2] \ w_o \end{bmatrix}$	Approxi- mate Single Values of e ₃
I	[Fig. 1	н	18	247.95	6	4.79	10	13.78	32.17	2.33	± '48
İ	" 2	,,	8	102.43	3	4.19	4	12.80	12.06	0.94	. '49
	" 3	,,	8	65.05	3	4.12	4	8.13	7.78	0.96	•49
	,, 4	P	15	74.32	5	10.29	7	4.95	10.49	2.18	· 56
	Tri. 91	,,	3	20.18	1	0.77					
	r	otals	52	509.93	18	24.49	25		•	6.41	
II	Triangles 79-90 129-138	P ,,	36 30	321·37 453·32	12 10	1.38					
	177-180	,,	12	95.31	4	2.55					
	7	Cotals	78	870.00	26	4.17			<u> </u>		
III	I Fig. 5	P	18	296.38	6	2.31	8	16.47	66 · 27	4.03	± '71
	Triangles 171-176	,,	18	303.07	6	0.21					
	212-220	"	27	710.30	9	0.81					
	249-260	"	36	1077.47	12	5.13					
	289-302	"	42	1175.09	14	2.39	·				
	j	Cotals	141	3562.31	47	11.12	8			4.03	
IV	Triangles 323 — 330 354 — 361	P	24 24	94·49 95·19	8 8	9.78					
	<u>.</u>	rotals [48	189.68	16	21.48			1.		
v	I Fig. 6	P	30	30.99	10	10.39	14	1.03	6.41	6.33	± ·67
VI	Triangles	P	36	271 · 80	12	9.99					

INTRODUCTORY.

Data for the Calculation of ρ —(Continued).

	angle		Data	for e_1	Data	for e_2		Data	for e_3		
Group	Series ' and Figure or Triangle	Hills or Plains	Number of Angles	Sum of Preliminary Weights [10]	Number of Triangles	Sum of Squares of Triangular Errors	Number of Geometrical Equations	Average of Preliminary Weights	$[wx^2]$	$rac{[wx^2]}{w_o}$	Approxi- mate Single Values of e ₃
VII	[Fig. 7	P	18	222.60	6	4.11	8	12.37	16.31	1.32	± '41
VIII	K Triangles 1—19	H & P	57	87.17	19	175.09					
IX	K Tri. 20	P	3.	5.11	1	5.06					
x	K Triangles 21 24—33	P "	3 30	3·74 33·43	10	0·21 94·68					
	T	otals	33	37:17	11	94.89					
XI	K Fig. 8	P	9	14.01	3	0.32	5	1.26	0.18	0.13	± '15
XII	L Triangles 45-71	Н&Р	81	36.87	27	258.46				-	
XIII	L Triangles 72-78	P	21	26.91	7	18.31					
XIV	M Fig. 9	Н	8	16.15	3	55. 23	4	2.02	33.62	16.64	± 2.04
	" 10	,,	54	85.49	. 18	148:37	26	1.28	81.48	51.76	1'41
	7	otals	62	101.64	21	203.60	30			68.40	
ΧV	M Triangles 105-108 Fig. 11 Triangles 112-113	P "	12 12 6	23·22 16·95 6·45	4 4 2	11·00 11·82	6	1.41	4.61	3.52	± '74
	ŋ	l'otals	30	46.62	10	43.91	6			3.52	

Data for the Calculation of ρ —(Continued).

	series and or Triangle		Data	for e_1	Data	for e_2		Data	for e_3		Annuari
Group	Series and Figure or Tri	Hills or Plains	Number of Angles	Sum of Preliminary Weights	Number of Triangles	Sum of Squares of Triangular Errors	Number of Geometrical Equations	Average of Preliminary Weights	$[wx^2]$	$\begin{array}{ c c }\hline [vox^2] \\ \hline vo_o \end{array}$	Approxi- mate Single Values of e ₃
XVI	M Triangles 114-128	P	45	31.13	15	70.77					·
XVII	N Triangles 139-149	Н&Р	33	22.45	11	77.78					
XVIII	N Triangles 150 – 170	P	63	219.68	.21	52.58	·				
XIX	O Triangles 181-182 Fig. 12 Triangles	Н	6 23	8·58 27·56	2 8	5°37 15°75	11	1 · 20	14.41	12.01	± 1°04
	188 - 208	P	92	76.40	21 31	67·01	11			12.01	
xx	P Fig. 13	Н	31	6.07	11	15.38	19	0.30	1.78	8 · 88	± ·68
ıxx	P Fig.14 Triangles	P & H	18	36.54	6	21.37	8	2.01	19.17	9.24	± 1.09
	229 - 232	P otals	12	36.53	4	8.79	8				
		Otals	30	72.47	10	30.16	0	•		9.24	
XXII	P Triangles 233 – 248	P	48	158.50	16	201 · 86					
XXIII	Q Fig.15	н	15	58.98	5	16.87	7	3.93	8.37	2.13	± .55
	,, 16	"	8	9.21	3	4.13	4 ·	1.12	33.31	28.97	2.69
	,, 17 Triangles 272-283	" P	18 36	22·68 60·50	6	19.90	8	1 · 26	12.96	10.39	1.13
		otals	77	151.37	26	63.38	19			41.39	

INTRODUCTORY.

Data for the Calculation of ρ —(Continued).

	iangle		Data	for e_1	Data	for e_2		Data i	for e_3		Annuaria
Group	Series snd Figure or Triangle	Hills or Plains	Number of Angles	Sum of Preliminary Weights [w]	Number of Triangles	Sum of Squares of Triangular Errors	Number of Geometrical Equations	Average of Preliminary Weights	$[wx^2]$	$egin{bmatrix} [wx^2] \ w_o \end{bmatrix}$	Approxi- mate Single Values of e ₃
XXIV	Q Triangles 284—288	P	15	342.55	5	3.06			•		
xxv	R Triangles 303-322	H & P	60	234.33	20	48.11					
XXVI	S Fig. 18	Н	21	14.21	7	22:46	9	0.69	10.12	14.70	± 1.38
	,, 20	P	18	12.49	6	59.22	8	0.69	11.33	16.43	1.43
	Triangles 343 — 348	,,	18	14.51	6	16.26					
	Т	otals	57	41.31	19	98 · 24	17			31.13	
XXVII	S Fig. 19	н	21	24.76	7	26.71	9	1.18	15.94	13.21	± 1.53
XXVIII	Triangles 362-406	P	135	15.94	45	185.80					
XXIX	Մ Fig. 21	P	18	264.92	6	2.09	8	14.72	9.99	0.68	± '29
	Triangles 448-460	"	39	497:82	13	2.95					
	Fig. 22	,,	18	281.33	6	0.81	8	15.63	4.94	0.33	'20
	Triangles 520-538	Н&Р	57	815.11	19	13.11					
	r	'otals	132	1859.18	44	18.96	16			1.00	
xxx	X Fig. 23	P	30	102.57	10	18.45	14	3.42	28.88	8.44	± ·78
	,, 24	"	18	77:37	6	3.53	8	4.30	19.52	4.24	.75
	<u>'</u>	otals	48	179.94	16	21.68	22		1	12.98	

Data for the Calculation of ρ —(Continued).

	•	or Triangle		Data	for e_1	Data	for e_2		Data	for e_3		4
Group	Series	Figure or Tr	Hills or Plains	Number of Angles t	Sum of Preliminary Weights [w]	Number of Triangles	Sum of Squares of Triangular Errors	Number of Geometrical Equations	Average of Preliminary Weights	$[wx^2]$	$rac{[wx^2]}{w_o}$	Approxi- mate Single Values of es
XXXI	x	F 25	P	18	83.75	6	4.31	8	4.65	12.10	2.60	± '57
		,, 26	,,	18	80.42	6	9.56	8	4.47	19.66	4.40	.74
		,, 27	H & P	15	71.37	5	7:30	7	4.76	9.41	1.98	•53
		,, 2 8	н	15	46.84	5	6.17	7	3.15	15.48	4.96	·8 ₄
		,, 29	,,	15	67.43	5	1.60	7	4.20	2.27	0.21	. 27
		,, 30	,,	8	28 · 84	3	1.19	4	3.61	3.23	0.98	.49
		,, 31	,,	24	104.73	8	4.06	12	4.36	10.36	2.38	-44
		,, 32	,,	8	30.91	3	2.22	4	3.83	2.14	0.26	• 37
		7	otals	121	513.99	41	36.41	57			18.37	
XXXII	W	F 33	н	39	141 · 43	13	6.08	19	3.63	9.74	2.68	± ·38
		,, 34	,,	18	76.97	6	2:70	8 .	4.58	7:34	1.72	•46
		,, 35	,,	54	159.00	18	11.24	26	2.94	44.35	15.08	.76
		,, 36	"	15	75.69	5	0.63	7	5.02	3.4	0.74	.33
		,, 37	"	8	32.92	3	1.79	4	4.12	1.40	0.41	.32
	İ	,, 38	,,	15	78.11	5	2.15	7	5.31	4.47	0.86	*35
		,, 39	,,	27	164.17	9	4.03	13	6.08	14.71	2.42	.43
		,, 4 0	"	8	51.38	3	0.33	4	6.42	0.33	0.02	-11
		,, 41	,,	8	45.28	3	2.98	4	5.66	4.47	0.79	.44
		7	otals	192	824.95	65	31 · 78	92			24.75	
XXXIII	V	F 42	P	18	228.81	6	5.67	8	12.71	24.88	1.96	± '49
		,, 43	,,	18	199.10	6	2.77	8	11.06	10.50	0.92	*34
	·	,, 44	"	18	264.25	. 6	2.75	8	14.68	14.95	1.02	• 36
		,, 45	"	18	351.97	6	1.40	8	19.55	13.88	0.41	.30
		,, 46	,,	27	355.87	9	14.59	13	13.18	54.13	4.11	.56
		,, 47	"	18	91.86	6	3.04	8	5.10	4.90	0.96	.35
		,, 4 8	"	30	232.41	10	11.24	14	7.75	38.85	2.01	.60
	i	,, 49	H, P	15	125.86	5	9.85	7	8.39	33° 4 5	3.99	·75
		,, 50	"	18	180.97	6	4.30	8	10.02	17.14	1.71	•46
		7	otals	180	2031.10	60	56.11	82			20.39	

Synopsis of the Values of ρ^2 , and the evidence for their determination.

Series	Group	Hills or Plains	Number of Angles	Instrument	Arc between Circle readings	Number of measures on each Zero	Minimum number of measures	e_1	e_2	e ₃	Adopted denominator of ρ	$ ho^2$
ĭ	I	H,P P	52 78	Col. Waugh's 24-inch No. 1 Troughton and Simms' 24-inch No. 2	7 12 10 0	2 2	20 24	± ·319	± ·673	± ·506	† 0.23	.39
1	III	"	141	Barrow's 36-inch	*9 0 12 0	2 2	16 12	•199	•281	.709	0.33	.37
I	IV	"	48	Barrow's 24-inch No. 1	10 0	2	24	• 503	•669		0.67	• 56
I	V	"	80	Cary's 15-inch	10 0	2	24	•984	• 586	•666	0.67	2.14
I	VI	,,	3 6	Troughton and Simms' 36-inch	9 0	2	16	.364	.527		0.23	•46
I	VII	,,	18 {	Troughton and Simms' 36-inch Col. Waugh's 24-inch No. 2	9 0 7 12	2 2	16 20	•284	•478	•406	0.41	•47
ĸ	VIII	H,P	57	Cary's 18-inch L	10 0	2	24	.809	1.753		۲	. 23
K	IX	P	3	Cary's 18-inch M. O. Harris and Barrow's 15-inch	10 0	2	24	• 766	1.599		1.7	• 21
ĸ	X	,,	33	Cary's 18-iuch M. O.	10 0	2	24	•942	1.696			.31
ĸ	XI	,,	9	Harris and Barrow's 15-inch	10 0	2	24	.801	• 165	.153	l	. 22
L	XII	н,Р	81	Troughton and Simms' 18-inch No. 1	10 0	2	24	1 . 482	1.786		1.8	•68
L	XIII	P	21	Troughton and Simms' 18-inch No. 2	10 0	2	24	•883	•934		1.0	.77
М	XIV	н	62	Troughton and Simms' 18-inch No. 1	10 0	2	24	. 781	1.798	1.210	1.2	. 27
М	xv	P	30	Harris and Barrow's 15-inch	10 0	2	24	.802	1.310	· 738	0.9	. 79
М	XVI	,,	45	Saiyad Mir Mohsin's 18-inch	10 0	2	24	1.505	1 · 254		1.5	1.00
				۲	†10 O	2	247					
N	XVII	н,р	33	""""	6 40	2	36 }	1.515	1.232		1.2	.65
	į	į			5 0	2	48					

^{*} The angles were measured on two sets of zeros. † The angles were measured on three sets of zeros.

[‡] The values of the Adopted Denominator of ρ , are those which were employed in deducing the Average Errors of Mean Square of the Observed Angles in each Series of Triangles, which are given at page 64.

Synopsis of the Values of ρ^2 , and the evidence for their determination—(Continued).

Series	Group	Hills or Plains	Number of Angles	Instrument	Arc between Circle readings	Number of measures on each Zero	Minimum number of measures	e_1	e_2	e_3	Adopted denominator of $ ho$	$ ho^2$
KY	XVIII	P	63	Col Wanakia 94 inch No. 1	9 0	2	16				‡	6
N				Col. Waugh's 24-inch No. 1				. 536	.913		0.9	.36
0	XIX	H,P	. 92	Harris and Barrow's 15-inch	10 0	2	24	.904	.974	1.042	1.0	.81
p	XX	H	31	Troughton and Simms' 18-inch No. 1	10 0	2	24	2.260	•680	•683	0.4	10.42
p	XXI	H,P	30	Troughton and Simms' 18-inch No. 2	10 0	2	24	•643	1.003	1.092	1.0	.41
p	XXII	P	48	Barrow's 24-inch No. 2.	10 0	2	24	. 550	2.021		2.0	.08
Q	XXIII	н,Р	77	Troughton and Simms' 18-inch No. 2	10 0	2	24	. 713	.901	1.476	1.3	.35
Q	XXIV	P	15	Barrow's 36-inch	*9 0	2	16)	• 200	.452		0.2	.18
~					12 0	2	12)		43-			
R	XXV	H,P	60	Barrow's 24-inch No. 1	10 0	2	24	• 506	•895		0.0	.32
S	XXVI	"	57	Cary's 15-inch	10 0	2	24	1.176	1.313	1.353	1.3	·82
S	XXVII	Н	21	Troughton and Simms' 18-inch No. 2	10 0	2	24	.921	1.138	1.522	1 · 2	. 59
T	XXVIII	P	147	Troughton and Simms' 18-inch No. 1	10 0	2	24	3.100	1.170		1.4	4.32
מ	XXIX	н,Р	132	Troughton and Simms' 24-inch No. 2	7 12	3	30	•266	.379	. 249	0.34	.61
x	xxx	P	48 {	Barrow's 24-inch No. 1 Col. Waugh's 24-inch No. 2	7 12	3	30	.516	.672	• 768	0.77	•45
X	XXXI	н,Р	121	Barrow's 24-inch No. 1	7 12	3	30	.485	. 544	.567	0.22	.72
W	XXXII	н	192	"	7 12	3	30	.482	.404	.219	0.25	.86
V	xxxIII	H,P	180	Troughton and Simms' 24-inch No. 2	7 12	3	30	• 298	.558	.499	0.20	.36

^{*} The angles were measured on two sets of zeros.

[‡] The values of the Adopted Denominator of ρ , are those which were employed in deducing the Average Errors of Mean Square of the Observed Angles in each Series of Triangles, which are given at page 64.

A few remarks in explanation of the details given in the preceding table are here necessary.

In forming the several combinations of angles, angles observed at hill stations have been combined with those observed at stations in the plains, wherever the magnitudes of the triangular or polygonal errors shewed that either instrumental defects, or want of skill on the part of the observer, had influenced the observations in a greater degree than they were influenced by variations in the atmospheric conditions of the localities of operation. Thus, as the instruments employed were frequently of an inferior character, hill and plain observations have been combined together far more frequently than in the reductions of the North-West and South-East Quadrilaterals.

The value of ρ had in previous reductions been taken as $=e_1 \div e_3$ wherever possible, otherwise as $=e_1 \div e_2$. In the present reduction the denominator of ρ has sometimes been assigned a value intermediate between e_2 and e_3 , as in groups which are composed both of single triangles and of polygonal figures; for this reason a column has been added giving the adopted value of the said denominators for each group. It is from the quantities in this column that the average values of the e.m. s's of the observed angles in each series of triangles, which are given in Section 1 of the present chapter, were determined, as has already been explained in a foot note to page 64.

Group III comprises 41 single triangles and one polygonal figure composed of 6 triangles: all the angles were measured with Barrow's 36-inch theodolite, and the denominator of ρ for the whole group was taken as

$$\frac{41\,e_2+6\,e_3}{47}$$

Groups VIII, IX, X and XI. These groups make up the Rangir Meridional Series. The first three were almost entirely executed with Cary's two 18-inch theodolites and the last with Harris and Barrow's 15-inch. As Group IX only contained one triangle and Group XI only three, the data afforded by each for the calculation of ρ was insufficient, and a value of the denominator of ρ for all four groups was obtained by taking the mean of e_2 for Groups VIII and X.

Group XII. There is some doubt as to the instrument employed in measuring the angles of this group. It was one of the two 18-inch theodolites by Troughton and Simms, but the present distinguishing numbers of these instruments were not assigned to them originally, nor until some years after they had both been extensively employed; thus it is only possible to arrive at any conclusions as to which of the two instruments had previously been employed in any particular instance by an examination of the observations. The zero means by the instrument now known as No. 1 have of late years exhibited far larger discrepancies than those by No. 2; and these discrepancies have formed the subject of the special investigations which are mentioned at page 96 of Vol. II, and are given in detail in Appendix No. 4 of the same volume, where they are shown to be due to periodic errors of graduation, entering the zero means but eliminated in the general mean of the zeros. Thus for all the later obser-

Digitized by Google

vations with this instrument, e_1 is always much larger than e_2 or e_3 , as previously pointed out and here shewn in Groups XX and XXVIII. But in Group XII e_1 is materially less than e_2 , and is much smaller than usual, while e_2 is much greater than usual. An interval of about four years elapsed between the measurement of the angles of this group and that of the angles of the next group, XIV—taken, it is believed, with the same instrument—in which the value of e_1 is only half as great, while that of e_2 is the same as in Group XII. This may arise from the circumstance that the observer of XIV is known to have discovered that the large differences between the results obtained at successive zero-settings with his instrument, were due to systematic graduation error which might be eliminated to a great extent by taking the means of pairs of zero means, on face left and face right, for circle readings 180° apart from each other; he operated accordingly, and recorded the results without giving any details of the circle readings; thus his angles give much smaller values of e_1 than those of other observers who recorded the whole of their observations in the usual way; on the other hand his e_2 is as large as that of Group XII. The angles of that group were measured in 1833-38, those of XIV in 1841-44, those of XXVIII in 1845-47, and of XX in 1848-49. All the old instruments that were employed in the principal triangulation are known to have been occasionally modified as well as repaired in the Mathematical Instrument Department at Calcutta. Thus it is very possible that No. 1, which had been unfavorably reported of and removed from the Karára Series and sent to that Department for repair in August 1844, was modified before being again employed a few months afterwards, in April 1845, on the Calcutta Meridional Series; if so, it appears that the alterations, while improving the general efficiency of the instrument and rendering it capable of giving much more accurate results, must in some way have increased the magnitude of the periodic but eliminable errors of its azimuthal circle. On this subject however no information is now forthcoming.

Group XIII comprises 7 triangles of which the angles were measured with Troughton and Simms' 18-inch theodolite No. 2, and as the same theodolite was employed for measuring the angles of Group XXI, which comprises 4 triangles and 1 polygonal figure, a mean value of e_2 from both groups was taken as the denominator of ρ for each.

Group XV comprises 6 triangles and 1 polygonal figure, and the value of the denominator of ρ has been taken intermediately between e_2 and e_3 .

Group XXI.—See remarks on Group XIII.

Group XXIII comprises 12 triangles and 3 polygonal figures, and the mean of e_3 and e_3 has been taken as the denominator of ρ .

Group XXIX comprises 32 single triangles, and 2 polygonal figures embracing 12 triangles. The angles were all measured with Troughton and Simms' 24-inch theodolite No. 2, and the denominator of ρ was obtained as in Group III.

It is to be noted that the values of e_1 for angles observed with the old and less accurate instruments were computed with the old "probability" formula—page 21—and are

therefore not comparable with those for the modern angles and better instruments which were computed with the modern "weight" formula—page 23. When both formulæ are applied to the same observations, the modern one gives the largest value of e_1 ; but the difference between the two results is usually insignificant when the graduation errors of the azimuthal circles are larger than errors of observation, as generally happened in the case of the old instruments. The value of e_1 is not required to be known absolutely, as it merely furnishes a determination of relative weight, which is eliminated in the calculation of the final and absolute weight to be employed in the simultaneous reduction of the triangulation as a whole.

The Weights employed in the Simultaneous Reduction of the North-East Quadrilateral.

On multiplying the several Preliminary Weights of the angles in each group by the corresponding value of the Factor ρ^2 , as now set forth, we acquire the most exact values of the Final or Absolute Weights of the observed angles which appear to be obtainable. And had it been desirable, in the Simultaneous Reduction, to introduce the circuit errors of the whole of the angles of the polygonal figures and net-works, we should have wanted nothing more; for then the weights to be employed would have been the absolute weights of the observed angles. But this would have caused so large a number of equations to be presented for simultaneous treatment, that the solution would not have been manageable. Thus such portions only of the polygonal figures and net-works have been introduced into the Simultaneous Reduction as are necessary to complete the chains of single triangles, and the remaining were reserved for subsequent treatment, figure by figure.

This departure from rigorous accuracy in the treatment of the facts of observation, has necessitated a transition from the weights of the observed angles to those of the corrected angles, for reasons which have been fully set forth at page 168 of Volume II. The transition is performed with all desirable exactitude, by multiplying the average absolute weight of all the angles appertaining to any single triangle, polygonal figure, or net-work, by the factor $t \div (t-n)$ —in which t is the number of observed angles and n the number of geometrical conditions for the figure—as is demonstrated in Section 5 of Chapter XV, Volume II, for figures in which all the observed angles are of equal weight. Illustrations of the differences of this value of the factor and the value which obtains when the variations of weight are recognised, will be found at pages 220 and 241 of the same volume.

If we now put w_o for the average value of the Preliminary Weights of the Observed Angles of a single triangle, or those of a polygonal figure, as formerly; also w_o for the average value of the Absolute Weights of the Corrected Angles of the same triangle or figure, we have

$$w_c = w_o imes
ho^2 imes rac{t}{t-n}$$
 .

It will be evident that w_c corresponds to the $\frac{1}{u}$ of the formulæ for the normal equa-

Digitized by Google

tions from which the values of the Indeterminate Factors are determined for the Simultaneous Reduction; see Section 11 of Chapter II.

In the formation and calculation of the Normal Equations between the Indeterminate Factors it was considered that if the adopted value of any weight does not differ by more than a tenth part from its computed value, it is sufficiently accurate, arithmetical nicety being here out of place. A table was therefore employed, which is given below, for determining the working values of $\frac{u}{3}$ from the values of w_c in the formation of the equations between the Indeterminate Factors and those in which the most probable values of the angular errors are expressed in terms of those factors; see again Section 11 of Chapter II.

w_c	$\frac{u}{3}$	$w_{ m c}$	<u>u</u> 3	w_{c}	$\frac{u}{3}$	$oldsymbol{w}_{ extsf{c}}$	<u>u</u> 3.	w c	$\frac{u}{3}$
60·6 51·2 44·4 39·2 35·0 31·7 28·9 26·6 24·6 22·9 21·5	.006 .007 .008 .009 .010 .011 .012 .013 .014 .015	21·5 18·5 14·8 12·1 10·2 8·8 7·8 7·0 6·0 5·1 4·4	·016 ·02 ·025 ·03 ·035 ·04 ·045 ·05 ·06 ·07	4·4 3·9 3·5 3·1 2·8 2·6 2·4 2·2 1 1·85 1.48	·08 ·09 ·10 ·11 ·12 ·13 ·14 ·15 ·16 ·2	1·48 1·21 1·02 ·88 ·78 ·70 ·60 ·51 ·44 ·39 ·35	·25 ·3 ·35 ·4 ·45 ·5 ·6 ·7 ·8 ·9	·35 ·31 ·28 ·26 ·24 ·22 ·21 ·18 ·14 ·12	1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0

The following table gives the average values of w_c for the angles of every circuit triangle and also the corresponding value of $\frac{u}{3}$ employed in the calculations.

The Absolute Weights of the Figurally Corrected Angles with the data for their determination.

All Angles in Triangles	Figure	w_o	$ ho^2$	t t-n	$w_c = w_o \cdot \frac{\rho^2 t}{t - n}$	$rac{u_c}{3}$	All Angles in Triangles	Figure	w_o	$ ho^2$	$\frac{t}{t-n}$	$w_c = w_o \cdot \frac{ ho^2 t}{t-\pi}$	$\frac{u_c}{3}$
1		10.4	ρ ³ 8, 0°23	3 ÷ 2, 1 · 5	3.64	0.00	50		0.2	ρ ² 13, 0°68	3÷ 2, 1'5	0.21	0.4
2		0.6	"	3 2, 1 5	0.51	1.6	51		0.3	,,	3 2, 1.5	0.31	1.1
8		0.6	"	3 2, 1 5	0.51	1.6	52		0.3	"	3 2, 1.5	0.31	i.i
4		0.0	"	3 2, 1.5	0.33	1.0	53		0.3	"	3 2, 1 5	0.31	1.1
5		0.2	,,	3 2, 1.5	0.18	2.0	54		0.4	"	3 2, 1.2	0.41	0.45
6		2.3	"	3 2,1.5	0.77	0.4	55]	0.4	"	3 2, 1.5	0.41	0.8
7		2.4	,,	3 2, 1.5	0.84	0.4	56	ļ	0.3	"	3 2, 1.5	0.31	I.I
8		1.6	"	3 2, 1.5	0.26	0.6	57 ~~		0.2	,,	3 2,1'5	0.21	0.7
9		1.6	>>	3 2,1.5	1	0.6	58 50		0.2	"	3 2, 1.5	0.21	0.4
10		0.0	"	3 2, 1.5	0.51	1.6	59 60		0.4	27	3 2, 1.5	0.41	
11		0.7	"	3 2, 1'5	0.52	1.3	60 61		0.8	"	3 2,1.5	0.91	0.2
12		0.1	"	3 2, 1.5	0.18	1,3	62		0.4	"	3 2,1.5	0.41	0.8
18 14		o·6	"	3 2, 1.5	0.51	1.6	63		0.4	"	3 2, 1.5	0.41	0.8
15		0.4	"		0.14	2.2	64		0.4	"	3 2, 1.5	0.41	0.8
16		0.4	"	3 2, 1.5	0.52	1.3	65		0.4	"	3 2,1'5	0.41	0.8
17		o [.] 7	"	3 2,1.5	0.52	1.3	66		0.4	,,	3 2, 1.5	0.41	0.8
18		1.0	, »	3 2, 1.5	0.67	0.2	67		0.3	,,	3 2, 1'5	0.31	1.1
19		1.0	, ,,	3 2, 1.5	0.26	0.6	68		0.3	,,	3 . 2, 1 . 5	0.31	1.1
20		1.7	ρ ² 9, 0.31	3 2, 1.5	1	0.6	69		0.3	>>	3 2, 1.5	0.31	1.1
21		1.3	$\rho_{310}^{10}, 0.31$	3 2, 1.5	0.26	0.6	70		0.4	,,	3 2,1'5	0.41	0.8
22,23	8	1.6	ρ ² 11, 0.52	9 4,2'3	0.82	0.4	71		0.4	,,	3 2, 1.5	0.41	0.45
24		1.0	ρ ³ 10, 0.31	3 2, 1.5	0.47	0.4	72		1.0	ρ ³ 13, ο·77	3 2,1.5	1.10	0.3
25		1.1	"	3 2, 1.5	0.25	0.6	73		1.0	,,	3 2, 1.5	1.10	0.3
26		0.8	,,	3 2,1.5	0.38	0.0	74		2.0	"	3 2, 1.5	2.32	0.14
27		1.1	,,	3 2, 1.5	0.25	0.6	75		1.2	"	3 2, L'5	1.92	0.16
28		0.8	,,	3 2, 1 5	0.38	0.0	76		0.0	"	3 2, 1.5	1	0.3
29		1.0	"	3 2,1.5	0.47		77		1.4	,,	3 2,1.5	1	0.5
3 0		τ.8	,,	3 2, 1.5	0.82	1	78		1,1	,,	3 2, 1.5	1	1
81		1.0	"	3 2, 1.5		0.4	79		7.6	ρ ⁹ 2, 1.20	3 2, 1 5	19.38	1
82		1.2	"	3 2, 1.5	0.41	-	80		4.7	"	3 2, 1.5	11.00	0.03
33		1.0	,,	3 2,1'5	0.47	0.4	81		6.7	"	3 2, 1.5	17.09	0.016
34—36	4	5.0	ρ_{3}^{1} , 0.39	15 8, 1.9	3.40	0.00	82 82		8.1	,,	3 2,1.5	ľ	0.000
37,38	3	8.1	"	8 4,2.0	6.33	_	83 84		15°2	"	3 2,1.5	20.40	-
39,40 41—44	2	12.8	,,	8 4, 2°0 18 8, 2°3	9.98	0.032	85		10.6	"	3 2,1'5	27.03	0.015
45	1	0.8	ρ ³ 13, ο 68	3 2, 1.5	0.85		86		8.0	"	3 2, 1.5	22.40	0.012
46 46		0.6	Ì	3 2,1.5	1 .	0.2	87		9.8	"	3 2, 1.5	24.99	0.013
47		0.2	"	3 2,1.5	0.21	-	88		6.5	,,	3 2,1.5	18.81	0.05
4 8		0.2	"	3 2,1.5	0.41	Ī	89		10.3	"	3 2, 1.5	26.52	ı
49		0.2	"	3 2, 1.5	0.21	0.4	90		11.3	,,	3 2,1'5	28.56	
			"										

The Absolute Weights of the Figurally Corrected Angles with the data for their determination—(Continued).

All Angles in Triangles	Figure	w_o	ρ ^ę	$\frac{t}{t-n}$	$w_c = w_o \cdot \frac{\rho^2 t}{t-n}$	$\frac{u_o}{3}$	All Angles in Triangles	Figure	w_o	$ ho^{2}$	$\frac{t}{t-}$; - %	$v_{o} = \frac{v_{o}}{t-n}$	$\frac{u_o}{3}$
91		6.7	ρ ² 1, ο.30	3÷ 2,1.5	3.95	0.08	144		0.0	ρ ³ 17, 0.65] 3 ÷	2, 1 . 5	0.88	0.4
92	4	5.0	» »	15 8, 1.9	3.70	0.00	145		0.8	, 11, 3	3	2, 1.5	0.78	0.45
93,94	9	3.0	ρ ⁸ 14, 0·27	8 4,2.0	1.08	0.3	146		0.5	, ,,	3	2, 1 . 5	0.30	1.6
95—104	10	1.6	, 12 ,	54 28, 1.9	0.82	0.4	147		0.4	,,	3	2, 1 . 5	0.30	0.0
105		2.5	ρ ⁹ 15, 0.79	3 2, 1 5	2.08	0.11	148		0.2	,,,	3	2, 1 . 5	0.49	0.2
106		1.7	,,	3 2, 1.5	2.03	0.19	149		0.6	,,	3	2, 1.5	0.29	0.6
107		1.2	,,	3 2, 1.5	1.49	0.3	150		2.0	ρ ² 18, ο 36	3	2, 1 . 5	1.22	0.5
108		2 · I	,,	3 2, 1.5	2.20	0.13	151		4.0	,,	3	2, 1.5	2.10	0.12
109—111	11	1.4	,,,	12 6,2.0	2.31	0.12	152		4.4	,,	3	2, 1.5	2.38	0.14
112		1.3	,,	3 2,1.5	1.22	0.3	153		2.4	,,	3	2, 1 . 5	1.30	0.32
113		0.8	,,	3 2,1.5	0.02	0.32	154		1.2	,,	3	2, 1.5	0.81	0.4
114		0.2	ρ216, 1.00	3 2, 1.5	1.05	0.3	155		3.4	"	3	2, 1.5	1.84	0.3
115		0.6	,,	3 2,1.5	0.00	0.32	156		1.5	,,	3	2, 1.5	0.65	0.2
116		1,0	,,	3 2, 1.5	1.20	0.3	157	j	5.5	,,	3	2, 1.5	3.81	0.13
117		0.6	,,	3 2,1.5	0.00	0.32	158		2.4	,,	3	2, 1.5	1.30	0.52
118		1.1	,,	3 2, 1.2	1.65	0.3	159		. 2.1	"	3	2, 1.5	2.75	0.13
119		0.1	"	3 2, 1.2	1.02	0.3	160 .		4. 1	,,	3	2, 1.5	2.21	0.12
120		0.2	"	3 2,1.5	0.22	0.42	161		3.9	,,	3	2, 1.5	1.22	0.5
121		0.4	,,	3 2, 1.5	0.00	0.6	162		7.1	,,	3	2, 1.5	3.83	0.00
122	i	0.0	"	3 2, 1.5	0.00	0.32	163		3.9	,,	3	2, 1.5	2.11	0.10
123		0.6	"	3 2, 1.2	0.00	0.32	164		5.3	,,	3	2, 1.5	2.86	0,15
124		0.6	>,	3 2, 1.5	0.00	0.32	165		7.0	,,	3	2, 1 5	3.78	0.00
125		0.6	"	3 2, 1.2	0.00	0.32	166		3.8	"	3	2, 1.5	2.05	0.10
126		0.6	"	3 2, 1 5	0.00	0.32	167		1.4	, "	3	2, 1.5	0.02	0.32
127		1,1	"	3 2, 1.5	1.65	0.5	168		1'4	"	3	2,1'5	0.76	0.42
128		0.1	"	3 2, 1.5	1.05	0.3	169		1.1	"	3	2, 1.5	1.46	1
129 130		15.2	ρ2, 1.70	3 2, 1.5	39.53		170		2.7	,,	3	2, 1.5	8.29	0.5
131		10.8	"	3 2, 1.5	27.24	i i	171 172		21.6	ρ ³ 3, 0°37	3	2, 1'5 2, 1'5	13.10	0.03
132		11.8	"	3 2,1.5	30.00	0.001	172		19.3	"	3	2, 1 5	10.42	0.03
133		23.6	,,,	3 2,1.5	90.18	0.000	174		14.7	,,	3	2, 1.5	8.53	0.04
134		11,1	"	1	28.31	0.013	175		20.6	,,	3	2, 1.5	11.24	0.03
135		22.2	"		57.38	0.006	176		10.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	2, 1.5	5.41	0.06
136		18.3	"	3 2, 1.5	46.67	0.002	177		10.4	ρ ² 2, 1	3	2,1'5	26.25	0.013
137		14.0	,,	3 2,1.5	35.40	0.000	178		6.1	,,	3	2, t'5	15.26	0.03
138		8.1	"	3 2,1.5	20.66	0.010	179		6.6	,,	3	2, 1.5	16.83	0.03
139		1.0	ρ ³ 17, ο·65	3 2,1.2	0.08	0.32	180		8.6	,,	3	2, 1 · 5	21.03	0.012
140		1.1	Ì	3 2,1.5	1.08	0.3	181		0.8	ρ ³ 19, 0·81	3	2, 1 5	0.08	0.35
141		1.0	"	3 2,1.5	0.08	0.32	182		2.0	,,	3	2, 1.5	2.44	0.14
142		0.2	"	3 2,1.2	0.49	0.2	183—187	12	1,5	,,	_	2, 1'9	1.85	0.5
143		o. Q	"	3 2,1'5	0.20	0.6	188		1.3	,,	3	2, 1 '5	1.29	0.3
			"	J -, - J						"	-			

INTRODUCTORY.

The Absolute Weights of the Figurally Corrected Angles with the data for their determination—(Continued).

All Angles in Triangles	Figure	w _o	$ ho^2$	$\frac{t}{t-n}$	$w_c = w_o \cdot \frac{\rho^2 t}{t - n}$	$\frac{u_c}{3}$	All Angles in Triangles	Figure	w _o	$ ho^2$	$\frac{t}{t-n}$	$w_c = w_o \cdot \frac{\rho^2 t}{t-n}$	$\frac{u_o}{3}$
189		1,0	ρ ² 19, 0.81	3÷ 2, 1 · 5	1.55	0.52	238		3*4	ρ²22, 0.08	3÷ 2, 1'5	0.41	0.8
190		1.5	"	3 2, 1 5	1.46	0.52	2 39		3.6	,,	3 2, 1'5	0.43	o.8
191		1.3	,,	3 2, 1 5	1.29	0.3	240		3.9	,,	3 2, 1 5	0.47	0.4
192		1.1	,,	3 2, 1 5	1.34	0.52	241		3.4	,,	3 2, 1 5	0.41	0.8
193		1.2	,,	3 2, 1.5	1.83	0.5	242		1.0	,,	3 2, 1 5	0.53	1.4
194		1.3	,,	3 2, 1 5	1.29	0.3	243		3.3	,,	3 2, 1 5	0.58	1.3
195		1.3	"	3 2, 1.5	1.29	0.3	244		3.5	"	3 2, 1 5	0.38	0.0
196		0.9	"	3 2, 1.2	1.10	0.3	245		2.9	"	3 2, 1'5	0.32	1.0
197		1.0	"	3 2, 1.5	1.55	0;25	246		3.6	"	3 2, 1 5	0.43	0.8
198		1.4	"	3 2, 1.2	1.41	0.5	247		3.4	"	3 2, 1 5	0.41	0.8
199		0.0	"	3 2, 1.2	1,10	0.3	248		2.8	,,	3 2, 1 5	0.34	1.0
200		I 5	"	3 2, 1.2	1.46	0.52	249		26.4	ρ3, 0.37	3 2, 1.5	14.48	0.052
201		1.1	,,	3 2, 1.2	1.34	0.52	2 50		52.8	"	3 2.1.5	29.57	0.011
202 203		1.3	"	3 2, 1.5	1.29	0.5	251 250		66.7	"	3 2, 1 5	37.35	0.009
203 204		1.0	"	3 2, 1.5	1.33	0.52	252		14.3	"	3 2, 1 5	8.01	0.04
205		0.4	,,	3 2, 1°5	0.85	0.4	253 254		66.7	"	3 2, 1'5	37.35	0.009
206		1.3	"	3 2, 1.5	1.29	0.3	254 255		30.6	"	3 2,1'5	17.14	0.03
207		0.0	"	3 2, 1 5	3.02	0.11	256 256		26.4	• "	3 2,1.5	14.48	0.052
208		1.3	**	3 2, 1.5 3 2, 1.5	1.29	0.3	257		7.4	"	3 2, 1'5	4.14	0.08
209—211	5	16.2	ρ ³ 3, 0·37	18 10, 1.8	11.06	0.03	258		15.3	"	3 2,1'5	8.57	0.08
212		16.3		3 2, 1 5	9.07	0.032	259		7°4 7°7	"	3 2,1.5	4.31	0.08
213		13.4	"	3 2,1'5	7.67	0.042	260		37.7	"	3 2,1.5	31,11	0.016
214		8.8	,,	3 2, 1.5	4.93	0.04	261,262	5	16.2	"	18 10, 1.8	11.06	0.03
215		18.8	,,	3 2,1.5	10.23	0.03	263—265	15	3.9	ρ ³ 23, Ο΄ 35	15 8, 1 9	2.61	0.13
216		19.2	,,	3 2, 1 5	10.42	0.03	266,267	16	I · 2	,,	8 4,2.0	0.84	0.4
217		112.0	,,	3 2, 1 5		0.002	26 8—271	17	1.3	,,	18 10, 1.8	1	0.4
218		17.3	,,	3 2, 1 . 5	9.69	0.032	272		1.3	"	3 2,1'5	0.69	0.2
219		15.4	,,	3 2, 1 5	8.79	0.04	273		1.1	,,	3 2, 1 5	0.28	0.6
220		11.3	"	3 2, 1.5	6.27	0.02	274		1.6	"	3 2, 1.5	0 85	0.4
221—224	13	0.3	ρ ² 20, 10.42	31 12, 2.6	5.42	0.06	275		1.3	,,	3 2,1.5	0.64	0.2
225—228	14	2.0	ρ ² 31, 0'41	18 10, 1.8	1.48	0.52	276		1.4	,,	3 2, 1 5	0.90	0.32
229		2.8	"	3 2, 1 5	1.4	0.3	277		3.1	"	3 2, 1 5	1.64	i
230		2.0	,,	3 2, 1.5	1.54	0.52	27 8		1.6	,,	3 2, 1.5	0.82	ı
231		2.2	"	3 2, 1.5		0.5	279		1.2	,,	3 2, 1 . 5	0.80	1
232		4.8	,,	3 2, 1.5	1	0,11	280		1.3	"	3 2, 1.5	0.69	-
233		4.9	ρ ² 22, 0.08	3 2, 1.5		0.6	281		1.6	"	3 2, 1.5	0.85	I
234		3.0	"	3 2, 1.5	0.36	0,0	282		1.3	"	3 2, 1.5	0.69	0.2
235		3.3	"	3 2, 1.5		0.0	283		2.7	,,	3 2, 1 5	1	0.52
236		2.0	"	3 2, 1, 5	0.54	i l	284		14'2	$\rho_{34}, 0.18$	3 2, 1 5	1	· -
237		5.3	"	3 2, 1.5	0.64	0.2	285		55.6	"	3 2, 1 5	12.01	0.03

THE WEIGHTS OF THE ANGLES.

The Absolute Weights of the Figurally Corrected Angles with the data for their determination—(Continued).

All Angles in Triangles	Figure	w_o	ρ٤	t t-n	$w_c = w_o \cdot \frac{\rho^2 t}{t-n}$	$rac{u_c}{3}$	All Angles in Triangles	Figure	w_o	$ ho^{\mathrm{s}}$	$\frac{t}{t-n}$	$w_c = w_o \cdot \frac{\rho^2 t}{t-n}$	$\frac{u_c}{3}$
286		11.1	ρ ² 24, 0.18	3 ÷ 2, 1 · 5	3.00	0.11	827		2.0	ρ ³ 4, 0.26	3÷ 2, 1.5	. 2 . 44	0.14
287		19.4	,,	3 2, 1 5	5.24	0.06	32 8		3.6	"	3 2, 1 5	3.03	0.11
2 88		13.9	,,	3 2, 1 5	3.75	0.09	329		4.1	"	3 2, 1.5	3.44	0.10
289		21'4	$\rho^{9}_{3}, \circ 37$	3 2, 1 5	11.08	0.03	330		3.8	"	3 2, 1.5	3.19	0.10
290		19.7	,,	3 2, 1 5	11.03	0.03	331—334	18	0.4	$\rho^{2}_{26}, 0.82$	21 12, 1.8	1.04	0.3
291		16.3	"	3 2, 1 5	9.13	0.032	335—338	19	1.3	ρ ² 27, 0.29	21 12, 1.8	1.27	0.52
292		14.3	"	3 2, 1.5	7.95	0'04	339—342	20	0.2	ρ ² 26, 0.82	18 10, 1.8	1.04	0.3
293		12.8	"	3 2, 1.5	7.17	0.042	843		1.0	"	3 2, 1.2	1.53	0.52
294		20.3	"	3 2, 1.5	11.32	0.03	844		0.9	"	3 2, 1.2	1.11	0.3
295		25.9	"	3 2, 1.5	14.50	0.052	345		0.0	"	3 2, 1.2	1.11	0.3
296		11.6	"	3 2, 1.5	6.20	0.02	346		0.2	"	3 2, 1 5	0.62	0.6
297		21.1	"	3 2, 1 5	28.62	0,015	347		0.2	"	3 2, 1 5	0.62	0.6
298		54.8	"	3 2, 1 5	30.69	0.011	348	0	0.8	,,	3 2, 1 5	0.08	0.08
299		44.4	"	3 2, 1.5	24.86	0.013	349—353	6	1.0	ρ_{5}^{2} , 2.14	30 16, 1.9	4.07	0.08
300		17.6	"	3 2, 1 5	9.86	0.032	354 355		5.3	ρ34, 0.26	3 2, 1 5	3·36	0.10
301 302		58.3	"	3 2, 1 5	32.65	0.01	356		4.8	"	3 2, 1.5	4.03	0.08
302 303		23·3 6·7	»	3 2, 1 5	3.55	0.052	357			"	3 2, 1.5	3.95	0.08
303 304		4.8	ρ^{2}_{35} , 0.32	3 2, 1.5	3 22	0.14	35 8		3.3	"	3 2,1'5	2.77	0.15
305		3.9	"	3 2, 1.5	1.87	0.19	859		3.7	· »	3 2,1'5	3,11	0.11
306		3.3	"	3 2, 1 5	1.28	0.5	860		3.7	"	3 2,1.2	3.11	0.11
307		5 · 2	"	3 2,1'5	2.20	0.13	361		3.3	"	3 2,1'5	1.03	0.16
308		2,1	"	3 2,1'5	2.45	0.14	362		0.13	ρ ³ 28, 4·32	3 2,1'5	0.84	0.4
809		2.5	"	3 2, 1.2	1.06	0.3	363		0.13	. "	3 2,1'5	0.84	0.4
810		2 · I	,,	3 2, 1 5	1.01	0.32	364		0.12	,,	3 2,1'5	1.10	0.3
311		2.2	,,	3 2, 1 5	1.50	0.3	365		0.13	,,	3 2, 1 5	0.84	0.4
812		2.2))))	3 2, 1 ' 5	1.50	0.3	366		0.13	,,	3 2, 1.5	0.84	0.4
813		2.1	" -	3 2, 1 5	2.45	0.14	367		0.1	,,	3 2, 1 5	0.62	0.2
814		9.0	"	3 2, 1 5	4.35	0.08	36 8		0.1	"	3 2, 1.5	0.62	0.2
315		3.9	,,	3 2, 1'5	1.82	0.19	369	ŀ	0.13	"	3 2, 1.2	0.84	0.4
316		2.1	"	3 2, 1.5	2.45	0.14	370		0.1	"	3 2, 1.2	0.62	0.2
317		3.4	"	3 2, 1 5	1.63	0.3	871		0.1	"	3 2, 1.2	0.65	0.2
3 18		3.0	,,	3 2, 1.5	1.44	0.52	872		0.13	"	3 2, 1.2	0.84	0.4
319		2.8	"	3 2, 1.5	1.34	0.52	373		0.1	"	3 2, 1.2	0.65	0.2
820		2.3	"	3 2, 1.5	1.10	0.3	374		0.13	"	3 2, 1.2	0.84	0.4
821		3.3	"	3 2, 1.5	1.28	0.3	375		0.13	"	3 2, 1.5	0.84	0.4
322		2.0	,,	3 2, 1.5	0.96	0.32	376		0.1	"	3 2, 1.5	0.65	0.2
823		2.8	ρ_{3} , 0.56	3 2, 1.5	2.32	0'14	377		0.13	"	3 2, 1 5	0.84	0.4
824		4.8	"	3 2, 1.5	4.03	1	378 270		0,1	",	3 2, 1 5	0.65	0.2
325		4.9	"	3 2, 1 5	4,15	0.08	379		0.1	"	3 2, 1 5	0.65	0.2
326		4.7	"	3 2, 1.5	3.95	0.08	3 80		0.1	>>	3 2, 1:5	0.65	0.2

The Absolute Weights of the Figurally Corrected Angles with the data for their determination—(Continued).

All Angles in Triangles	Figure	10o	$ ho^2$	$\frac{t}{t-n}$	$egin{array}{c c} w_c = & u_c \ w_o \cdot rac{ ho^2 t}{t-n} & rac{u_c}{3} \end{array}$	All Angles in Triangles	Figure	100	$ ho^2$	$\frac{t}{t-n}$	$w_c = w_o \cdot \frac{\rho^2 t}{t - n}$	$\frac{u_c}{3}$
881		0.1	ρ ² 28, 4·32	3÷ 2, 1 . 5	0.65 0.2	425-430	23	3.4	ρ ⁸ 30, ο·45	30÷ 16, 1.9	2.02	0.11
382		0.1	,,	3 2, 1.5	0.65 0.2	431-434	24	4.3	,,	18 10, 1.8	3.48	0.10
883		0.13	"	3 2,1.5	0.84 0.4	435—438	25	4.7	ρ3, 0.72	18 10, 1.8	6.11	0.02
384		0.13	"	3 2, 1 5	0.84 0.4	439—442	26	4.2	,,	18 10, 1.8	5.85	0.06
885		0.1	,,	3 2, 1.5	0.62 0.2	44 3	27	4.8	"	15 8,1.9	6.28	0.02
886		0.1	"	3 2,1.5	0.62 0.2	444447	21	14.2	ρ ³ 29, ο · 61	18 10, 1.8	16.14	0.03
387		0.1	"	3 2,1.5	0.62 0.2	44 8		7.6	"	3 2,1.5	6.99	0.02
388		0.13	,,	3 2,1.5	0.84 0.4	449		9.8	,,	3 2, 1.5	9.02	0.032
889		0.13	"	3 2,1'5	0.84 0.4	4 50		9.3	,,	3 2, 1.5	8.26	0.04
390		0.13	"	3 2,1.5	0.84 0.4	451		9.3	,,	3 2,1.5	8.26	0.04
391 392		0.13	,,	3 2,1.5	0.84 0.4	452		13.4	"	3 2,1.5	12.60	0.032
893		0.13	"	3 2,1.5	0.84 0.4	453		14.8	,,	3 2,1.5	13.62	0.022
394		0.1	"	3 2, 1 5	0.65 0.2	454		23.2	,,	3 2,1.5	21.62	0.012
395		0.13	"	3 2,1.5		455 456		12.3	,,	3 2, 1.5	11,33	0.03
396		0.13	"	3 2, 1.5	0.84 0.4	457		17 9	"	3 2,1.5	16.47	0.03
397		0.13	"	3 2,1.5	0.84 0.4	458		13.3	,,	3 2,1.5	11.35	0.03
398		0.1	,,	3 2,1.5	0.62 0.2	459		10.1	"	3 2,1.5	1	0.032
399		0.1	"	3 2,1.5	0.62 0.2	460		12.4	,,	3 2,1.5	11.41	0.03
400		0.13	,, ,,	3 2,1.5	0.84 0.4	461—463	22	15.6	,,,	18 10, 1.8	17.16	0.03
401		0.1	,,	3 2,1.5	0.65 0.5	464467	42	12.7	ρ ³ 33, ο·36	18 10, 1.8	8.26	0.04
402		0.13	,,	3 2, 1.5	0.84 0.4	468-471	43	11.1	,,	18 10, 1.8	7.33	0.042
403		0.1	,,	3 2,1.5	0.62 0.2	472—475	44	14.7	,,	18 10, 1.8	9.56	0.032
404		0.1	,,	3 2, 1.5	0.65 0.2	476-479	45	19.6	,,	18 10, 1.8	12.74	0.022
405		0.1	,,	3 2, 1.5	0.65 0.2	480—483	46	13.5	,,	27 14, 1.9	8.98	0.032
406		0.13	,,	3 2, 1.5	0.84 0.4	484-487	47	2.1	,,	18 10, 1.8	3.32	0.10
407—409	7	13.4	ρ ² γ, ο·47	18 10, 1.8	10.24 0.03	488493	48	7.8	,,	30 16, 1.9	5.30	0.00
410		5.4	ρ²6, ο·46	3 2, 1.5	3.43 0.00	494—496	49	8.4	,,	15 8, 1.9	5.41	0.06
411		6.3	,,	3 2, 1.2	4.32 0.08		50	10.1	,,	18 10, 1.8	6.22	0.02
412		6.3	"	3 2, 1.5	4.58 0.08		27	4.8	$\rho^{2}_{31}, \circ 72$	15 8,1.9	6.28	0.02
413		7.7	"	3 2,1'5	2.31 0.00	1	28	3.1	"	15 8, 1.9	4.5	0.08
414	1	8.0	,,	3 2,1.5	2.25 0.00		29	4.2	"	15 8,1.9	6.17	0.02
415 416		5.4	"	3 2,1.5	3.43 0.00	l l	30	3.6	,,	8 4,2.0	2.18	0.00
417		14.6	"	3 2,1.5	10.04 0.03		31	4.4	"	24 12,2'0	6.34	0.02
417 418		11.4 8.3	"	3 2,1.5	7.87 0.07		32	3.8	,,	8 4,2'0	5.47	0.00
419		6.3	"	3 2,1.5	4.35 0.06	· · · · · ·	22	15.6	ρ ² 29, ο ΄ δι	18 10, 1.8	17.16	0.03
420		4.5	"	3 2,1.5	7.00 0.11			13.3	"	3 2,1'5	12.54	0.03
421		6.9	"	3 2,1 5	4.76 0.0			13.8	,,,	3 2,1.5	11'41	0.03
422,423	6	1.0	ρ ³ ₅ , 2·14	30 16, 1.9	4.07 0.08			35.1	"	3 2,1.5	12.40	0.011
424	7	12.4	$\rho^{3}_{7}, \circ 47$	18 10, 1.8	10.24 0.03	4		13.0	,,	i	11.96	0.03
		-	- ''' - - '' /	,. 0	34 0.			13 0	,,	3 2,1.5	90	03

The Absolute Weights of the Figurally Corrected Angles with the data for their determination—(Continued).

All Angles in Triangles	Figure	w_o	$ ho^2$	$\frac{t}{t-n}$	$w_c = \frac{\omega_c}{t}$	$\frac{u_c}{3}$	All Angles in Triangles	Figure	wo	ρ²	$\frac{t}{t-n}$	$w_c = \frac{\varphi^2 t}{w_o \cdot \frac{\rho^2 t}{t - \pi}}$	$\frac{u_o}{3}$
525		10:0	3 0:61	a :- a	1.2 10.03	0.032	537		00:0	ρ ²²³ , ο. Q1	0: 0 Y:5	27.78	0.013
526		10.0	ρ ² 29, ο 6 τ		• I	1	538		30.3	ρ'39, Ο ΟΙ	3÷ 2,1'5	l	1
		7.4	"	1		1			25.6	,,	3 2, 1.5	23.22	0.014
527		7.0	,,	3 2,	1.2 9.44	0.02	539	41	5.7	ρ ² 82, ο·86	8 4,2.0	9.80	0.032
52 8		6.5	,,	3 2,	1.2 2.98	0.00	540,541	40	6.4	,,	8 4,2.0	11,01	0.03
529		5.9	,,	3 2,	5.43	0.00	542—546	39	6.1	,,	27 14, 1.9	9.94	0.032
530		2 ~ 2	,,	3 2,	1.2 5.03	0.10	547—549	38	5.3	,,	15 8, 1 9	8.48	0.04
531	ŀ	8.0	,,	3 2,	7.36	0.042	550,551	37	4.1	,,	8 4,2.0	7.05	0.042
532	Ì	10.3	,,	3 2,	1.2 9.38	0.032	552—554	36	2.1	,,	15 8, 1.9	8.31	0.04
533		13.8	,,	3 2,	1.2 12.70	0.022	555—562	85	2.0	,,	54 28, 1.9	4.73	0.02
534	-	15.6	,,	3 2,	1.2 14.35	0.025	563—566	34	4.3	,,	18 10, 1.8	6.67	0.02
535		22.0	,,,	3 2,	1.2 50.3	0.016	567—573	33	3.6	,,	39 20,2.0	6.19	0.02
536		21.0	,,	3 2,	1.2 50.1	3.016							
<u> </u>													

14.

The Coefficients of the Indeterminate Factors in the Values of the Unknown Quantities.

On reference to equations (20) on page 28 it will be seen that the general expression for the error x_p of any angle X_p appertaining to a trigonometrical figure, is

$$x_p = u_p (a_p \lambda_a + b_p \lambda_b + \dots + n_p \lambda_n)$$

so that the coefficients of λ_s , λ_b , λ_s , the indeterminate factors, are products of the reciprocal weight of the angle by the coefficients of the x_p in the several absolute geometrical equations to which the indeterminate factors are respectively related. But one of the three unknown quantities appertaining to every triangle having been eliminated, as a preliminary to the Simultaneous Reduction of the North-East Quadrilateral, the coefficients

of the indeterminate factors take a more complex form, which is given by equations (69) on page 61. The expressions are

$$y_p = {}_{1}\mathfrak{B}_{p} {}_{1}\Lambda + {}_{2}\mathfrak{B}_{p} {}_{2}\Lambda + \ldots + {}_{n}\mathfrak{B}_{p} {}_{n}\Lambda.$$
 $z_p = {}_{1}\mathfrak{C}_{p} {}_{1}\Lambda + {}_{2}\mathfrak{C}_{p} {}_{2}\Lambda + \ldots + {}_{n}\mathfrak{C}_{p} {}_{n}\Lambda.$

where

$${}_{1}\mathfrak{B}_{p} = \frac{u_{p}}{3} (2 {}_{1}\mathfrak{b}_{p} - {}_{1}\mathfrak{c}_{p}); \qquad {}_{2}\mathfrak{B}_{p} = \frac{u_{p}}{3} (2 {}_{2}\mathfrak{b}_{p} - {}_{2}\mathfrak{c}_{p}); \qquad . \qquad .$$

$${}_{1}\mathfrak{C}_{p} = \frac{u_{p}}{3} (2 {}_{1}\mathfrak{c}_{p} - {}_{1}\mathfrak{b}_{p}); \qquad {}_{2}\mathfrak{C}_{p} = \frac{u_{p}}{3} (2 {}_{2}\mathfrak{c}_{p} - {}_{2}\mathfrak{b}_{p}); \qquad . \qquad .$$

the left-hand subscripts indicating the number of any one of the equations into which the errors y and z of any, the pth, triangle happen to enter.

In the present instance, however, the coefficients b and c and the absolute term E of each primary equation of condition have been multiplied by an equalizing factor—see pages 59 and 153—before the subsequent calculations were proceeded with.

It is evident that this is a mere computer's artifice for facilitating the solution of the problem, which does not alter the application of any of the formulæ or the results arrived at, although it changes the numerical values of certain of the symbolical coefficients. For instance, instead of \mathfrak{b} , \mathfrak{c} and E we now have to deal with \mathfrak{b}' , \mathfrak{c}' and E', where

$$_{q}b' = {}_{q}f_{q}b, \quad _{q}t' = {}_{q}f_{q}t \quad \text{and} \quad _{q}E' = {}_{q}f_{q}E,$$

 $_qf$ denoting the equalizing factor employed for the qth equation. Corresponding to these values we have

$$_{a}\mathbf{B}' = _{a}f_{a}\mathbf{B}, \quad _{a}\mathbf{C}' = _{a}f_{a}\mathbf{C}$$

and

$$_{q}\Lambda' = \frac{_{q}\Lambda}{_{q}f} \cdot *$$

The coefficients b_p and c_p of y_p and z_p , in each equation into which these unknown quantities enter, and the corresponding equalizing factors are given in the table in Section 12; the value of $\frac{u}{3}$ for every triangle will be found in the table on pages 198 to 203. From these data B'_p and C'_p were obtained and entered in the following table. As the continued use of the accents is now no longer necessary they have not been introduced in the headings to the table.

Examples.

$$\begin{array}{rcl}
{}_{5}\mathbf{B}_{55} &= \frac{u_{55}}{3} \left(2 \times {}_{5}f \times {}_{5}\mathbf{b}_{55} - {}_{5}f \times {}_{5}\mathbf{c}_{55} \right) \\
&= {}_{8}\left(2 \times {}_{9}3 \times {}_{13} - {}_{9}3 \times {}_{9} \right) = + {}_{840} \\
{}_{23}\mathbf{C}_{245} &= \frac{u_{245}}{3} \left(2 \times {}_{23}f \times {}_{23}\mathbf{c}_{245} - {}_{23}f \times {}_{23}\mathbf{b}_{245} \right) \\
&= {}_{10}\left(2 \times {}_{15} \times {}_{932} - {}_{15} \times {}_{902} \right) = + {}_{930}
\end{array}$$

Digitized by Google

^{*} The introduction of equalizing factors, is in fact the same thing as employing indeterminate factors with numerical coefficients, thus $_1f_1\Lambda'$, $_2f_2\Lambda'$, &c., in place of $_1\Lambda$, $_2\Lambda$, &c., which is perfectly legitimate.

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	26	Œ
1st	Equation.	Linear.	1 <i>st</i> .	Equation—	(Continued).	2nd	Equation-	-(Continued).	3rd	Equation-	-(Continued).
1	+ 0.084	- 0.046	83	+ 0.798	- 0.651	19	+ 0.990	- o·846	6	+ 0.388	+ 0.760
2 ·	2.640	2.113	34	0.070	0.084	20	0.744	1.030	7	0.448	0.748
8	2.496	2.832	3 5	0.092	0.086	21	1.119	0.774	8	- 1.176	- 0.546
4	1.030	1.200	36	0.092	0.163	22	0.400	0.274	9	+ 0.582	+ 1.104
5	1.260	2.040	87	0.041	0.024	23	- 0.148	0.268	10	- 2.912	- 1:472
6	0.576	0.396	38	0.114	0.072	24	+ 1.106	0.763	11	+ 1.274	+ 2.093
7	0.384	0.372	39	0.064	0.068	25	0.666	1.036	12	- 2.340	- 1.053
8	0.240	0.294	40	0.037	0.039	26	1.422	0.819	13	+ 1.880	+ 3.260
9	0.403	0.403	41	0.036	0.041	27	0.372	0.960	14	- 2.864	- 1.136
10	1.236	1.344	42	0.036	0.033	28	1.323	0.810	15	+ 1.950	+ 3.750
11	1 • 287	1.023	43	0.033	0.038	29	0.218	0.010	16	- 2.093	- 0.923
12	1.221	1 · 287	44	0.017	0.030	3 0	0.200	0.316	17	+ 0.010	+ 1.882
13	1.630	2.160				31	0.322	0.875	18	- o·815	- 0.312
14	1.920	1.236	2nd	Equation.	Latitude.	82	0.446	0.243	19	+ 0.354	+ 0.894
15	2.400	2.322	1	+ 0.325	- 0.104	33	0.336	0.609	20	- 0.918	- 0.270
16	1 · 287	1.023	2	6.272	5.632	84	0.062	0.032	21	+ 0.258	+ 0.834
17	1 · 287	1 · 287	8	6.336	6.624	35	0.032	0.072	22	- 0.552	- 0.192
18	0.600	0.612	4	2.170	3.740	36	0.068	0.063	23	0.340	0.172
19	0.613	0.684	5	3.240	5.380	37	0.033	0.018	24	+ 0.273	+ 0.903
20	o·666	0.630	6	1.312	0.764	3 8	0.034	0.034	25	- 0.852	- 0.114
21	0.756	0.702	7	0.896	0.712	3 9	0.026	0.018	26	+ 0.243	+ 1.053
22	0.396	0.324	8	0.936	1.404	40	0.004	0.011	27	- 0.690	- 0.078
23	– 0.036	0.360	9	1.524	1.266	41	0.003	0.011	28	+ 0.171	+ 1.008
24	+ 0.798	0.777	10	2.496	3.024	42	0.002	0.004	29	- o·847	- 0.070
25	0.730	0.738	,11	2.678	1.729	43	0.003	0.004	30	+ 0.052	+ 0.436
26	1.102	0.018	12	2.366	2.626			-	31	- 0.728	0.038
27	0.204	0.738	13	3.180	3.300	3rd 1	Equation	Longitude.	32	+ 0.041	0.402
28	1.191	1.036	14	2.752	2.960	1	+ 0.139	+ 0.176	33	- 0.742	- 0.007
29	0.798	0.777	15	4.375	3.300	2	- 3.904	- 1.936	34	+ 0.012	+ 0.072
80	0.468	0.468	16	1.638	1.989	8	+ 1.888	+ 3.664	35	- 0.083	0.000
81	0.621	0.891	17	2.223	1.677	4	- 2.110	- 0.970	36	0.003	0.092
32	0.213	0.459	18	0.745	1.040	5	4.000	2.380	37	+ 0.003	0.039

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36		Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
3rd	Equation-	-(Continued).	4th	Equation—	(Conti	nued).	5 <i>t</i> h	Equation-	-(Continued).	5 <i>th</i>	Equation_	-(Continued).
38	– 0.021	+ 0.017	25	- 0.624	ı —	0.606	10	- 1.536	+ 1.344	51	+ 0.759	- 1.023
39	0.007	0.033	26	+ 0.000	+	0.936	11	1 · 287	1.023	52	0.891	0'792
40	0.013	0.002	27	- 0.624	-	0.606	12	1.21	1.287	53	0.891	0.990
41	0.000	0.002	28	+ 0.909	+	0.936	13	1.620	2.160	54	0.432	0.459
42	+ 0.003	0.003	29	- 0.728	-	0.707	14	1.920	1.236	55	0.840	0.744
43	0.003	0.003	3 0	+ 0.396	+	0.420	15	2.400	2.322	56	1.620	1.531
			31	- 0.721	_	0.700	16	1 · 287	1.023	57	0.882	0.630
4th.	Equation.	Azimuth.	82	+ 0.450	+	0.464	17	1 · 287	1 · 287	58	0.903	0.924
1	+ 0.092	+ 0.092	83	- 0.431	-	0.700	18	0.600	0.612	59	1.056	i.104
2	- 1.712	- 1.664	34	+ 0.090	+	0.093	19	0.913	0.684	60	1.221	1.218
3	+ 1.664	+ 1.712	3 5	- 0.093	_	0.000	20	0.666	0.630	61	0.480	0.375
4.	- 1.060	- 1.030	3 6	+ 0.000	+	0.093	21	0.756	0.403	62	0.913	o·888
5	2.100	2.100	37	0.020		0.023	22	0.396	0.324	63	1.138	1.032
6	+ 0.413	+ 0.424	3 8	- 0.052	_	0.049	23	+ 0.036	0.360	64	0.888	1.138
7	0.413	0.424	39	+ 0.032	+	0.036	24	– 0·798	0.777	65	1.272	0.960
8	- o·636	- 0.918	40	– 0.036	-	0.032	25	0.720	0.438	66	0.913	1.104
9	+ 0.918	+ 0.636	41	0.036		0.052	26	1.102	0.018	67	1.620	1.320
10	- 1.696	– 1.648	42	+ 0.022	+	0.032	27	0.204	0.438	68	1.287	1.881
11	+ 1.352	+ 1.352	43	0.032		0.032	28	1.191	1.039	69	1.221	1.331
12	- 1.378	- 1.339	44	- 0.022	_	0.032	29	0.408	0.777	70	0.984	1.392
13	+ 2.060	+ 2.120					30	0.468	0.468	71	0.810	0.222
14	- 1.413	- 1.919		Equation.			81	0.621	0.891	72	0.388	0.414
15	+ 2.220	+ 2.625	L	eft-hand H			32	0.213	0.459	73	0.213	0.321
16	- 1.362	- 1.326	1	- 0.084	+	0.046	83	0.798	0.621	74	0.189	0.227
17	+ 1.326	+ 1.365	2	2.640		2.113	34	+ 0.014	0.111	7 5	0.224	0.335
18	- 0.225	- 0.210	3	2.496		2.832	$\mathbf{R}_{\mathbf{i}}$	ght-hand	Branch	76	0.360	0.477
19	+ 0.613	+ 0.630	4	1.030		1.200	45	+ 0.756	- o·684	77	0.394	0.310
20	– 0.630	- 0.613	5	1.260		2.040	46	0.705	1.002	78	0.282	0.342
21	+ 0.600	+ 0.636	6	0.276		0.396	47	o·735	o· <i>777</i>	79	0.033	0.019
22	- 0.420	- 0.408	7	0.384		0.372	48	0.284	0.384	80	0.038	0.032
23	0.408	0.408	8	0.240		0.294	49	0.288	0.609	81	0.014	0.019
24	+ 0.707	+ 0.728	9	0.403		0.403	50	0.840	0.609	82	0.018	0.013

No. of Circuit Triangle	316	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
5th	Equation—	(Continued).	6th	Equation–	-(Continued).	6 <i>th</i>	Equation–	-(Continued).	7th E	Equation.	Longitude.
83	+ 0.008	- 0.008	20	0.234	+ 0.528	61	+ 0.435	- 0.525	L	eft-hand I	Branch
84	0.014	0.014	21	0.240	0.240	62	0.848	1.144	1	- 0.144	- 0.117
85	0.010	0.013	22	0.276	0.340	63	1.304	0.904	2	+ 1.920	+ 2.352
86	0.012	0.019	23	+ 0.036	0.252	64	0.696	1.320	8	- 2.212	- 1.600
87	0.019	0.013	24	- 0.469	0.218	65	1.344	0.744	4	+ 1.180	+ 1.330
88	0.031	0.030	25	0.384	0.408	66	0.624	1.176	5 ·	2.400	2:58ი
89	.0.019	0.019	26	0.486	0.486	67	1.284	0.891	6	- 0.212	- 0:404
90	0.014	0.012	27	0.338	0.348	68	0.748	1.760	7	0.476	0.404
91	0.060	0.084	28	0.414	0.450	69	1.342	0.638	8	+ 0.660	+ 0.606
92	0.040	0.100	29	0.366	0.380	70	0.480	1.176	9	- 0.678	- o-516
			30	0.108	0.144	71	0.290	0.331	10	+ 1.568	+ 1.424
6th 1	Equation	Latitude.	31	0.136	0.189	72	0.096	0.322	11	- 1.326	- 1.092
L	Left-hand Branch		82	0.054	0.108	73	0.333	0.136	12	+ 1.118	+ 1.118
1	- 0.151	+ 0.103	38	0.001	0.077	74	0.063	0.148	13	– 1.88 0	- 1.400
2	5.136	3.936	34	+ 0.003	0.010	75	0.141	0.066	14	+ 1.248	+ 1.248
8	4.400	5.344	\mathbf{R}^{i}	ight-hand	Branch	76	0.069	0.273	15	- 2.125	- 1.600
4.	1.830	2.610	45	+ 1.404	– 1.488	77	0.126	0.042	16	+ 0.923	+ 0.923
5	2.820	3.240	46	1.480	1.790	78	0.040	0.182	17	- 1.027	- 0.715
6	0.876	0.648	47	1.282	1.295	79	0.010	0.003	18	+ 0.312	+ 0.312
7	0.572	0.604	48	0.362	0.648	80	0.019	0.003	19	- 0.414	- 0.306
8	0.798	0.912	49	1 · 225	0.959	81	- 0.001	0.008	20	+ 0.342	+ 0.342
9	0.972	1.044	50	1.318	1.192	82	+ 0.007	0.000	21	- 0.396	- 0.234
10	1.968	1.776	51	0.990	1.980	83	0.000	0.003	22	+ 0.192	+ 0.193
11	1.273	1.430	52	1.617	1.026	84	0.002	0.001	23	0.192	0.192
12	1.872	1.260	53	1.111	1.826	85	0.000	0.003	24	- o·371	- 0.245
13	1.40	2.640	54	0.716	0.294	86	0.004	0.003	25	+ 0.270	+ 0.316
14	2.128	1.712	55	0.952	1.256	87	0.001	0.004	26	- 0.369	- 0.388
15	2.400	2.625	5 6	2.464	1.463	88	0.002	0.003	27	+ 0.340	+ 0.120
16	1 · 287	1.023	57	0.994	1.001	89	0.001	0.003	28	- 0.306	- 0.108
17	1.170	1.326	58	1.381	1.050	90	0.003	0.001	29	+ 0.303	+ 0.140
18	0.240	0.255	59	1.104	1.212	91	0.003	0.010	30	- 0.130	- 0.048
19	0.486	0.613	60	2.013	1.284	92	0.009	0.013	31	+ 0.110	+ 0.110

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
7th	Equation-	-(Continued).	7th	Equation-	(Continued).	8 <i>th</i>	Equation–	-(Continued).	8th	Equation-	-(Continued).
82	- 0.117	+ 0.002	73	- 0.081	+ 0.243	10	+ 1.648	+ 1.648	51	- 1.155	- 1.122
83	+ 0.026	0.026	74	0.137	0.023	11	- 1.339	- 1.339	52	+ 1.122	+ 1.152
84	- 0.014	0.007	75	0.046	0.146	12	+ 1.339	+ 1.339	53	- 1.155	- 1.122
Ri	ight-hand	Branch	76	0.323	0.136	13	- 2.080	- 2.020	54	+ 0.459	+ 0.473
45	- 0.944	- 0.324	77	0.028	0.138	14	+ 1.632	+ 1.632	55	- 0·840	- 0.816
46	+ 0.330	+ 1.140	78	0.100	0.092	15	- 2.550	- 2.550	56	+ 1.111	+ 1.144
47	0.292	1.330	79	0.002	c. 010	16	+ 1.326	+ 1.326	57	- 0.735	- 0.714
48	- 0.725	- 0.401	80	0.008	0.030	17	- 1.326	- 1.326	58	+ 0.707	+ 0.728
49	+ 0.686	+ 1.127	81	0.009	0.004	18	+ 0.210	+ 0.210	59	- o·832	- o·8o8
50	- 1.100	– 0·560	82	0.003	0.002	19	- 0.612	- 0.612	6 0	+ 1.111	+ 1.144
51	1.661	0.803	83	0.004	0.001	20	+ 0.613	+ 0.613	61	- o·520	- 0.505
52	+ 0.979	+ 1.474	84	0.001	0.006	21	- 0.613	- 0.612	62	0.833	0.808
53	- 1.595	- 0.770	85	0.004	0.003	22	+ 0.408	+ 0.408	63	+ 0.808	+ 0.832
54	+ 0.329	+ 0.626	86	0.001	0.000	23	0.408	0.408	64	- 0.840	- 0.792
55	- 1.324	- 0.432	87	0.004	0.003	24	- 0.721	- 0.700	65	+ 0.800	+ 0.824
56	+ 0.473	+ 1.496	88	0.000	0.004	25	+ 0.606	+ 0.606	66	- o·824	- 0.800
57	- 1.036	- 0.364	89	0.003	0.001	26	- 0.909	- 0.909	67	+ 1.100	+ 1.133
58	+ 0.312	+ 0.942	90	+ 0.001	0.003	27	+ 0.606	+ 0.606	68	- 1.133	- 1.100
59	- 1.096	- 0.232	91	- 0.008	0.004	28	- 0.909	- 0.909	69	+ 1.100	+ 1.133
60	+ 0.396	+ 1.386	92	+ 0.002	0.002	29	+ 0.707	+ 0.707	70	- 0.824	- 0.800
61	- 0.575	- 0.230				30	- 0.404	- 0.404	71	+ 0.450	+ 0.464
62	0.976	0.256	8 <i>th</i> .	Equation.	Azimuth.	31	+ 0.707	+ 0.707	72	- 0.309	- 0.300
63	+ 0.176	+ 0.920	I	eft-hand I	Branch	32	- 0.459	- o·446	73	+ 0.397	+ 0.306
64	- 0.968	- 0.056	1	- 0.094	- 0.094	83	+ 0.700	+ 0.700	74	- 0.146	- 0.137
65	+ 0.040	+ 0.904	2	+ 1.664	+ 1.664	84	- 0.180	0.090	75	+ 0.122	+ 0.166
66	- 0.920	- 0.032	8	- 1.664	- 1.664	Ri	ght-hand	Branch	76	- 0.306	- 0.297
67	+ 0.044	+ 1.166	4	+ 1.040	+ 1.040	45	- 0.438	- 0.404	77	+ 0.108	+ 0.304
68	- 1.332	0.330	5	2.080	2.080	46	+ 0.212	+ 0.230	78	- 0.255	- 0.248
69	+ 0.033	1.033	6	- 0.413	- 0.412	47	0.721	0.742	79	+ 0.016	+ 0.016
70	- 0·856	0.224	7	0.413	0.413	48	- o·473	- 0.459	80	0.030	0.031
71	0.092	0.392	8	+ 0.618	+ 0.918	49	+ 0.728	+ 0.728	81	- 0.030	- 0.030
72	0.252	0.021	9	- 0.618	- 0.918	50	- 0.735	- 0.714	82	+ 0.016	+ 0.016

No. of Circuit Triangle	36	œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	25	Œ
	Equation—	(Continued).	9th.	Equation—	(Continued).	9th	Equation—	-(Continued).		Equation. eft-hand I	
83	- 0.009	- 0.009	64	- o.888	+ 1.128	108	+ 0.148	- 0.326	45	- 1.324	+ 1.320
84	+ 0.016	+ 0.016	65	1.272	0.960	109	0.163	0.068	46	1.182	1.665
85	- 0.013	- 0.013	66	0.913	1.104	110	0.322	0.302	47	1.552	1.274
86	+ 0.012	+ 0.012	67	1.650	1.320	111	0.113	0.131	48	0.393	0.459
87	- 0.013	- o.o13	68	1.287	1.881	112	0.510	0.333	49	0.924	0.987
88	+ 0.030	+ 0.030	69	1.221	1.551	113	0.483	0.462	50	1.197	0.882
89	- 0.013	- 0.013	7 0	0.984	1.392	114	0.369	0.360	51	1.111	1.229
90	+ 0.013	+ 0.013	71	0.810	0.22	115	0.399	0.452	52	1.122	1.122
91	- 0.080	- 0.080	72	0.388	0.414	116	0.319	0.534	53	1.152	1.320
92	+ 0.090	+ 0.090	73	0.213	0.351	117	0.378	0.378	54	0.218	0.603
			74	0.189	0.227	118	0.319	0.319	5 5	1.000	0.920
9th	Equation.	Linear.	75	0.254	0.232	119	0.334	0.321	56	1.749	1.419
L	Left-hand Branch		76	0.360	0.477	120	0.213	0.200	57	0.938	0.679
45	- 0.756	+ 0.684	77	0.394	0.310	121	0.438	0.666	58	0.903	1.008
46	0.702	1.002	78	0.282	0.342	122	0.399	0.389	59	1.024	1.040
47	0.735	0.777	79	0.000	0.012	123	0.441	0.204	60	1.364	1.474
48	0.384	0.284	$\mathbf{R}_{\mathbf{i}}$	ight-hand	Branch	124	0.394	0.336	61	0.420	0.300
49	0.288	0.609	93	+ 0.486	- 0.324	125	0.410	0.378	62	0.792	0.720
50	0.840	0.609	94	0.342	0.108	126	0.378	0.410	63	0.848	0.856
51	0.759	1.033	95	0.28	0.624	127	0.319	0.319	64	0.404	0.856
52	0.891	0.792	96	0.360	0.323	128	0.321	0.378	65	0.819	0.696
58	0.891	0.990	97	0.468	0.913	129	0.007	0.006	66	0.600	0.720
54	0.432	0.459	98	0.780	0.444	130	0.013	0.011	67	0.913	0.836
55	0.840	0.744	99	0.336	0.276	131	0.008	0.008	· 68	0.726	1.026
56	1.650	1.551	100	0.696	1.140	182	0.010	0.013	69	0.770	0.682
57	0.882	0.630	101	0.225	0.384	133	0.006	0.006	7 0	0.496	0.4
58	0.903	0.924	102	0.396	0.240	184	0.013	0.011	71	0.388	0.332
59	1.026	1.104	103	0.336	0.276	135	0.002	0.002	72	0.099	0.144
60	1.221	1.218	104	0.264	0.300	136	0.000	0.008	73	0.132	0.112
61	0.480	0.372	105	0.129	0.089	137	0.011	0.000	74	0.049	0.060
62	0.912	0.888	106	0.110	0.134	138	0.016	0.033	7 5	0.028	0.062
63	1.138	1.032	107	0.294	0.310				76	0.078	0.103

No. of Circuit Triangle	36	Œ.	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
10 <i>th</i>	Equation-	–(Continued).	10 <i>th</i>	Equation-	-(Continued).	11 <i>th</i>	Equation-	-(Continued).	11 <i>th</i>	Equation-	—(Continued).
77	- 0.038	+ 0.038	121	+ 0.462	- 0.276	56	- 1.001	- 0.770	100	+ 0.308	+ 0.652
78	0.030	0.038	122	0.144	0.256	57	+ 0.218	+ 0.218	101	- o·580	- 0.196
79	0.000	0.001	123	0.252	0.300	58	- o·574	- 0.406	102	+ 0.332	+ 0:496
R	ight-hand	Branch	124	0.026	0.196	59	+ 0.528	+ 0.28	103	0.340	0.420
93	+ 0.909	- 0.231	125	0.314	0.153	60	- 0.902	- 0.239	104	- 0.484	- 0.308
94	0.213	0.387	126	0.088	0.196	61	+ 0.370	+ 0.312	105	0.133	0.024
95	0.804	1.104	127	0.044	0.100	62	0.433	0.204	106	+ 0.094	+ 0.12
96	0.600	0.348	128	0.133	0.072	63	- 0.212	- 0.344	107	- 0.236	- 0.080
97	0.764	0.880	129	0.003	0.001	64	+ 0.424	+ 0.424	108	+ 0.053	+ 0.147
98	1.034	0.692	130	0.001	0.004	65	- 0.472	- 0.328	109	- 0.126	- 0.075
99	0.408	0.468	131	0.003	0.001	66	+ 0.376	+ 0.376	110	+ 0.036	+ 0.128
100	1.008	1.488	132	0.003	0.001	67	- o·583	- 0.385	111	- 0.138	- 0.021
101	0.636	0.600	133	0.000	0.001	68	+ 0.451	+ 0.451	112	0.188	0.056
102	0.260	0.919	134	0.003	0.001	69	- 0.239	- 0.275	113	+ 0.001	+ 0.313
103	0.480	0.388	135	0.000	0.001	70	+ 0.264	+ 0.364	114	- 0.276	- 0.060
104	0.260	0.400	136	0.001	0.001	. 71	- 0.180	- 0.086	115	+ 0.084	+ 0.302
105	. 0.122	0.119	137	0.000	0.001	72	+ 0.078	+ 0.078	116	- 0.170	- 0.033
106	0.142	0.136	138	0.001	0.003	73	- 0.096	- 0.042	117	+ 0.088	+ 0.256
107	0.278	0.326				74	+ 0.038	+ 0.038	118	- 0.126	- 0.030
108	0.166	0.316	11th .	${\it Equation.}$.	Longitude.	75	- 0.045	- 0.006	119	+ 0.022	+ 0.310
109	0.136	0.000	I	eft-hand 1	Branch	76	+ 0.036	+ 0.036	120	- 0.342	- 0.033
110	0.534	0.176	45	+ 0.28	+ 0.456	77	- 0.036	0.000	121	+ 0.024	+ 0.378
111	0.080	0.146	46	- 0.242	- 0.620	78	+ 0.012	0.012	122	- 0.245	- c:004
112	0.128	. 0.232	47	0.802	0.847	79	- 0.003	0.001	123	+ 0.011	+ 0.531
118	0.459	0.350	48	+ 0.222	+ 0.441	\mathbf{R}	ight-hand	Branch	124	- 0.189	0.000
114	0.246	0.339	49	- 0.777	- 0.777	93	+ 0.252	+ 0.441	125	+ 0.014	0.183
115	0.364	0.319	50	+ 0.763	+ 0.658	94	- 0.447	- 0.382	126	- 0.183	0.018
116	0.132	0.310	51	1.122	1.026	95	0.919	0.268	127	0.103	0.000
117	0.312	0.531	52	- 1.155	- 0.957	96	+ 0.340	+ 0.472	128	0.018	0.144
118	0.114	0.180	53	+ 1.056	+ 0.957	97	0.324	0.576	129	0.000	0.003
119	0.534	0.180	54	- 0.432	- 0.351	98	- 0.640	- 0.256	130	0.002	0.001
120	0.302	0.347	55	+ 0.696	+ 0.624	99	0.208	0.304	131	0.000	0.003

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	35	Œ	No. of Circuit Triangle	36	Œ
11 <i>th</i>	Equation-	-(Continued).	12 <i>th</i>	Equation-	-(Continued).	12th	Equation-	—(Continued).	13 <i>th</i>	Equation-	-(Continued).
132	- 0.001	+ 0.004	67	- 1.111	- 1.111	111	- 0.123	- 0.123	94	- 0.342	+ 0.198
133	0.003	0.001	68	+ 1.111	+ 1.111	112	0.304	0.304	95	0.28	0.624
134	0.000	0.003	69	- 1.111	- 1.111	113	+ 0.320	+ 0.361	96	0.360	0.252
135	0.001	0.000	70	+ 0.808	+ 0.808	114	- 0.309	- 0.300	97	0.468	0.612
136	0.000	0.001	71	- 0.455	- 0.455	115	+ 0.350	+ 0.361	98	0.780	0.444
137	0.001	0.000	72	+ 0.303	+ 0.303	116	- 0.306	- 0.300	99	0.336	0.276
138	+ 0.001	0.001	73	- 0.303	- 0.303	117	+ 0.350	+ 0.361	100	0.696	1.140
			74	+ 0.141	+ 0.141	118	- 0.306	- 0.300	101	0.22	0.384
12th	Equation.	Azimuth.	75	- 0.163	- o·158	119	+ 0.300	+ 0.309	102	0.396	0.240
L	eft-hand 1	Branch	76	+ 0.300	+ 0.300	120	- 0.464	- 0.450	103	0.336	0.276
45	+ 0.420	+ 0.408	77	- 0.300	- 0.300	121	+ 0.606	+ 0.606	104	0.264	0.300
46	- 0.210	- 0.525	78	+ 0.250	+ 0.250	122	- 0.361	- 0.350	105	0.139	0.089
47	0.714	0.735	79	- 0.033	0.019	123	+ 0.354	+ 0.354	106	0.110	0.134
48	+ 0.464	+ 0.464	Ri	ght-hand	Branch	124	- 0.354	- o.354	107	0.394	0.310
49	- 0.721	- 0.721	93	+ 0.306	+ 0.315	125	+ 0.354	+ 0.354	108	0.148	0.326
50	+ 0.721	+ 0.721	94	- 0.312	- 0.306	126	- 0.357	- 0.347	109	0.162	0.068
51	1.133	1.133	95	0.420	0.408	127	0.202	0.303	110	0.322	0.302
52	- 1.133	- 1.133	96	+ 0.412	+ 0.412	128	+ 0.297	+ 0.306	111	0.113	0.131
53	+ 1.133	+ 1.133	97	0.408	0.420	129	0.008	0.008	112	0.310	0.333
54	- 0.464	- 0.464	98	- 0.420	- 0.408	130	- 0.013	- 0.013	118	0.483	0.462
55	+ 0.824	+ 0.824	99	0.412	0.412	131	+ 0.009	+ 0.009	114	0.369	0.360
56	- 1.144	- 1.111	100	+ 0.408	+ 0.420	182	0.011	0.011	115	0.399	0.452
57	+ 0.714	+ 0.714	101	- 0.420	- 0.408	133	- 0.006	- 0.006	116	0.316	0.234
58	- 0.714	- 0.714	102	+ 0.404	+ 0.416	134	+ 0.013	+ 0.013	117	0.378	0.378
59	+ 0.816	+ 0.816	103	0.404	0.416	135	- 0.006	- 0.006	118	0.316	0.316
60	- 1.122	- 1.133	104	- 0.416	- 0.404	136	+ 0.001	+ 0.007	119	0.324	0.321
61	+ 0.210	+ 0.210	105	0.114	0.111	137	- 0.009	- 0.009	120	0.213	0.200
62	0.819	0.819	106	+ 0.163	+ 0.166	138	+ 0.016	+ 0.016	121	0.738	0.666
63	- 0.816	- 0.816	107	- 0.308	- 0.303				122	0.399	0.389
64	+ 0.816	+ 0.819	108	+ 0.131	+ 0.132	13 <i>th</i>	Equation	. Linear.	123	0.441	0.204
65	- 0.824	- 0.800	109	- 0.156	- 0.152		eft-hand I		124	0.294	0.336
66	+ 0.808	+ 0.808	110	+ 0.123	+ 0.123	93	- 0·486	+ 0.324	125	0.410	0.378
<u> </u>	<u> </u>										1 3,

No. of Circu Triangle	33	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	325	Œ	No. of Circuit Triangle	16	Œ
13 <i>th</i> 2	Equation-	-(Continued).	13 <i>th</i>	Equation-	-(Continued)	. 14th	Equation-	-(Continued).	14 <i>th</i>	Equation-	-(Continued).
126	- o·378	+ 0.410	166	+ 0.163	- 0.10	8 107	- 0.236	+ 0.172	147	+ 1.071	- o·846
127	0.316	0.316	167	0.494	0.42	o 108	0.113	0.179	148	0.288	0.861
128	0.321	0.378	168	0.267	0.08	9 109	0.130	0.026	149	0.732	0.654
129	+ 0.003	0.008	169	0.774	0.08	4 110	0.162	0.122	150	0.388	0.276
${f R}$ ig	ght-hand	Branch	170	0.340	0.2	8 111	0.048	0.093	151	0.144	0.112
139	+ 0.410	– 0·536	171	0.038	0.0	7 112	0.142	0.128	152	0.113	0.122
140	0.402	0.324	172	0.033	0.0	8 113	0.308	0.312	153	0.270	0.233
141	0.473	0.630	173	0.033	0.0	7 114	0.333	0.338	154	0.393	0.416
142	0.924	0.714	174	0.038	0.07	л 115	0.310	0.263	155	0.186	0.120
143	0.468	0.450	175	0.036	0.0	9 116	0.106	0.122	156	0.290	0.202
144	0.672	0.216	176	0.068	0.0	7 117	0.172	0.193	157	0.133	0.072
145	0.446	0.227	177	0.019	0.0	2 118	0.096	0.103	158	0.128	0.252
146	2.160	1 · 728	178	0.022	0.0	1 119	0.129	0.129	159	0.098	0.060
147	0.891	0.972	179	0.038	0.0	4 120	0.171	0.180	160	0.020	0.136
148	0.777	0.735	180	0.018	0.01	8 121	0.338	0.240	161	0.133	0.070
149	0.684	0.838				122	0.110	0.153	162	0.036	0.060
150	0.384	0.364	14th	Equation.	Latitud	. 123	0.102	0.147	163	0.113	0.021
151	0.132	0.176	L	eft-hand I	Branch	124	0.023	0.074	164	0.033	0.086
152	0.176	0.121	93	– 0.771	+ 0.2	6 125	0.074	0.092	165	0.060	0.033
153	0.278	0.323	94	0.486	0.30	7 126	0.060	0.056	166	0.010	0.001
154	0.204	0.432	95	0.760	0.0	0 127	0.042	0.036	167	0.224	0.049
155	0.310	0.333	96	0.468	0.30	0 128	0.013	0.042	168	0.041	0.284
156	0.612	0.600	97	0.624	0.8	8 129	0.000	0.001	169	0.383	0.042
157	0.162	0.121	98	0.920	0.24	4 R	ight-hand	Branch	170	- 0.018	0.100
158	0.323	0.323	99	0.384	0.33	6 139	+ 0.201	- 0.875	171	+ 0.013	+ 0.003
159	0.137	0.155	100	0.804	1.3	o 140	0.621	0.360	172	0.011	0.000
160	0.141	0.180	101	0.556	0.44	0 141	0.728	0.774	173	- 0.004	- 0.008
161	0.198	0.228	102	0.413	0.27	8 142	0.924	1.020	174	+ 0.013	+ 0.001
162	0.103	0.084	103	0.352	0.38	4 143	0.696	0.420	175	- 0.003	- 0.006
163	0.192	0.306	104	0.200	0.5	0 144	0.652	0.668	176	+ 0.014	0.003
164	0.122	0.132	105	0.119	0.0	3 145	0.281	0.486	177	0.000	0.003
165	0.110	0.134	106	0.096	0.13	5 146	1.904	2.224	178	0.003	0.001

180	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	33	Œ	No. of Circuit Triangle	36	Œ
180	14th	Equation-	-(Continued).	15th	Equation-	-(Continued).	15 <i>t</i> h	Equation-	–(Continued).	16 <i>th</i>	Equation	—(Continued).
122	179	- 0.001	- 0.001	120	+ 0.132	+ 0.092	160	o·128	+ 0.017	101	+ 0.408	+ 0.408
15th Equation. Longitude. 123	180	+ 0.003	0.001	121	- o·174	- 0.130	161	+ 0.008	0.146	102	- 0.408	- 0.408
Left-hand Branch 124				122	+ 0.074	+ 0.074	162	- 0.077	0.007	103	0.408	0.408
93	15th .	Equation	$oldsymbol{Longitude}.$	123	- 0.092	- 0.032	163	0.029	0.130	104	+ 0.408	+ 0.408
94 + 0'315 + 0'288 126 + 0'018 + 0'049 166 0'107 0'042 107 + 0'204 + 0'204 95 0'424 0'364 127 0'010 0'028 167 0'130 0'238 108 0'133 0'139 0'238 108 0'133 0'139 0'404 0'332 129 0'001 0'000 169 0'198 0'342 110 0'153 0'139 0'356 0'320 139 0'057 0'084 171 0'010 0'017 112 0'202 0'201 100 0'384 0'320 140 0'099 0'404 0'123 172 0'007 0'012 113 0'354 0'33 102 0'288 0'324 110 0'112 0'616 173 0'009 0'088 114 0'303 0'34 102 0'384 0'320 142 0'320 0'321 174 0'066 0'015 115 0'354 0'33 103 0'268 0'292 143 0'320 0'684 171 0'010 0'015 115 0'354 0'33 103 0'268 0'292 143 0'320 0'694 175 0'010 0'006 116 0'354 0'33 105 0'077 0'061 145 0'320 0'084 176 0'008 0'019 177 0'354 0'33 105 0'077 0'061 145 0'194 0'0545 177 0'003 0'002 118 0'320 0'33 107 0'070 0'061 147 0'369 0'094 178 0'002 0'004 118 0'303 0'033 107 0'070 148 0'174 0'066 0'071 118 0'072 149 0'174 0'066 0'001 120 0'033 0'002 118 0'033 0'033 111 0'070 0'071 150 0'784 0'175 180 0'000 0'001 121 0'0666 0'6	I	eft-hand F	Branch	124	+ 0.023	+ 0.053	164	0.101	0.039	105	0.113	0.113
95	93	- 0.339	- 0.312	125	- o.o88	- 0.014	165	0.033	0.068	106	- 0.163	- 0.163
96	94	+ 0.312	+ 0.388	126	+ 0.018	+ 0.049	166	0.102	0.042	107	+ 0.304	+ 0.304
97	95	0.424	0.364	127	0.010	0.038	167	0.130	0.238	108	- 0.133	- 0.133
98 + 0·376 + 0·316 Right-hand Branch 170 0·123 0·083 111 + 0·152 + 0·13 100 - 0·320 139 - 0·557 - 0·084 171 0·010 0·017 112 0·202 0·22 100 - 0·320 - 0·320 140 + 0·099 + 0·423 172 0·007 0·012 113 - 0·354 - 0·33 101 + 0·384 + 0·240 141 0·112 0·616 173 0·009 0·008 114 + 0·303 + 0·30 102 - 0·280 - 0·304 142 - 1·050 - 0·231 174 0·006 0·015 115 - 0·354 - 0·33 103 0·268 0·292 148 + 0·330 + 0·690 175 0·010 0·006 116 + 0·202 + 0·23 104 + 0·272 + 0·236 144 - 0·624 - 0·084 176 0·008 0·019 117 - 0·354 - 0·33 105 0·077 0·061 145 + 0·194 + 0·545 177 0·003 0·002 118 + 0·202 + 0·20 106 - 0·098 - 0·093 146 - 2·032 - 0·496 178 0·002 0·004 119 - 0·303 - 0·33 107 + 0·128 + 0·104 147 + 0·369 + 0·936 179 0·003 0·002 120 + 0·455 + 0·4 108 - 0·070 - 0·070 148 - 0·784 - 0·175 180 0·000 0·001 121 - 0·666 - 0·66 110 - 0·084 - 0·071 150 - 0·274 - 0·022 16th Equation. Azimuth. 123 - 0·357 - 0·3 111 + 0·071 + 0·071 151 + 0·044 + 0·152 1eft-hand Branch 124 + 0·350 + 0·3 114 + 0·360 + 0·361 154 - 0·153 - 0·18 10 0·094 0·094 152 - 0·153 - 0·18 19 0·141 0·141 128 - 0·350 + 0·3 114 + 0·126 + 0·126 154 - 0·412 - 0·028 10 0·412 0·412 129 0·016 + 0·351 116 - 0·161 - 0·109 155 + 0·028 + 0·172 196 - 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 170 0·016 + 0·016 170 0·016 + 0·0171 - 0·130 - 0·109 155 + 0·028 + 0·172 196 - 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 197 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 197 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 197 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 197 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 197 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 197 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 197 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 197 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 - 0·055 197 0·412 0·412 129 0·016 + 0·03 116 + 0·082 + 0·064 156 - 0·470 -	96	- 0.384	- 0.348	128	- 0.036	0.018	168	0.338	0.343	109	+ 0.123	+ 0.123
99 0 3356 0 320 139 - 0 557 - 0 084 171 0 010 0 017 112 0 202 0 20 100 - 0 320 - 0 320 140 + 0 099 + 0 423 172 0 007 0 012 113 - 0 354 - 0 3. 101 + 0 384 + 0 240 141 0 112 0 0616 173 0 009 0 008 114 + 0 303 + 0 30 102 - 0 280 - 0 304 142 - 1 050 - 0 231 174 0 006 0 015 115 - 0 354 - 0 3. 103 0 268 0 292 143 + 0 330 + 0 690 175 0 010 0 006 116 + 0 202 + 0 20 104 + 0 272 + 0 236 144 - 0 064 - 0 084 176 0 008 0 019 117 - 0 354 - 0 3. 105 0 077 0 061 145 + 0 194 + 0 545 177 0 003 0 002 118 + 0 202 + 0 20 106 - 0 098 - 0 093 146 - 2 032 - 0 0496 178 0 002 0 004 119 - 0 303 - 0 30 107 + 0 128 + 0 104 147 + 0 369 + 0 936 179 0 003 0 002 120 + 0 0455 + 0 04 108 - 0 070 - 0 070 148 - 0 0784 - 0 0175 180 0 0 000 0 001 121 - 0 0606 - 0 060 110 - 0 084 - 0 071 150 - 0 274 - 0 022 16th Equation. Azimuth. 123 - 0 357 - 0 31 111 + 0 071 + 0 071 151 + 0 044 + 0 0152 16th Equation. Azimuth. 123 - 0 357 - 0 03 113 - 0 0182 - 0 0130 153 + 0 050 + 0 0253 94 + 0 0309 125 - 0 0350 - 0 03 114 + 0 0350 + 0 031 100 - 0 0412 0 0041 127 0 0020 0 002 115 - 0 0350 - 0 03 114 - 0 0041 100 100 100 100 120 100 10	97	0.404	0.332	129	0.001	0.000	169	0.108	0.342	110	- o.123	- 0.123
100	98	+ 0.376	+ 0.316	\mathbf{R}^{i}	ight-hand	Branch	170	0.158	0.083	111	+ 0.12	+ 0.123
101	99	0.356	0.320	139	- o·557	- 0.084	171	. 0.010	0.012	112	0.202	0.303
102	100	- 0.320	- 0.320	140	+ 0.099	+ 0.423	172	0.002	0.013	113	- 0.354	- 0.354
103	101	+ 0.384	+ 0.340	141	0,117	0.616	173	0.009	0.008	114	+ 0.303	+ 0.303
104	102	- 0.380	- 0.304	142	- 1.050	- 0.331	174	0.006	0.012	115	- 0.354	- 0.354
105	103	0.268	0.292	143	+ 0.330	+ 0.690	175	0.010	0.006	116	+ 0.303	+ 0.303
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	104	+ 0.272	+ 0.236	144	- 0.624	- 0.084	176	0.008	0.019	117	- 0.354	- 0.354
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	0.077	0.061	145	+ 0.194	+ 0.242	177	0.003	0.003	118	+ 0.303	+ 0.303
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	106	- 0.008	- 0.093	146	- 2.032	- 0.496	178	0.003	0.004	119	- 0.303	- 0.303
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	107	+ 0.138	+ 0.104	147	+ 0.369	+ 0.936	179	0.003	0.003	120	+ 0.455	+ 0.455
110	108	- 0.070	- 0.070	148	- 0.784	- 0.175	180	0.000	0.001	121	- 0.606	- 0.606
111	109	+ 0.086	+ 0.072	149	+ 0.174	+ 0.660				122	+ 0.354	+ 0.354
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	- 0.084	- 0.071	150	- 0.274	- 0.033	16th	Equation.	Azimuth.	123	- 0.357	- 0.347
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	+ 0.011	+ 0.071	151	+ 0.044	+ 0.12	1	eft-hand	Branch	124	+ 0.350	+ 0.350
114 + 0.126 + 0.126 154 - 0.412 - 0.028 95 0.412 0.412 127 0.200 0.20 115 - 0.161 - 0.109 155 + 0.028 + 0.172 96 - 0.412 - 0.412 128 - 0.300 - 0.3 116 + 0.082 + 0.064 156 - 0.470 - 0.005 97 0.412 0.412 129 0.016 + 0.0 117 - 0.130 - 0.109 157 0.004 + 0.104 98 + 0.412 + 0.412 Right-hand Branch	112	0.094	0.094	152	- 0.153	- 0.018	93	- 0.309	- 0.309	125	- 0.350	- 0.350
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	113	- 0.183	- 0.130	153		+ 0.253	94	+ 0.309	+ 0.309	126	+ 0.320	+ 0.350
116 + 0.082 + 0.064 156 - 0.470 - 0.005 97 0.412 0.412 129 0.016 + 0.064 117 - 0.130 - 0.109 157 0.004 + 0.104 98 + 0.412 + 0.412 Right-hand Branch	114	+ 0.136	+ 0.126	154	i		95	0.412	0.412	127	0.300	0.300
116 + 0.082 + 0.064 156 - 0.470 - 0.005 97 0.412 0.412 129 0.016 + 0.006 117 - 0.130 - 0.109 157 0.004 + 0.104 98 + 0.412 + 0.412 Right-hand Branch	115	- 0.161	- 0.109	155	+ 0.038	+ 0.172	96	- 0.412	- 0.412	128	- 0.300	- 0.300
117 - 0.130 - 0.109 157 0.004 + 0.104 98 + 0.412 + 0.412 Right-hand Branch	116	+ 0.082	+ 0.064	156	- 0.470	- 0.005	97	0.412	0.412	129	0.016	+ 0.008
	117	- 0.130	- 0.109	157	0.004	+ 0.104	98	+ 0.412	+ 0.412	Ri	ght-hand	Branch
118 + 0.041 + 0.024 198 0.348 0.023 99 0.412 0.412 199 -0.304 -0.30	118	+ 0.072	+ 0.024	158	0.248	0.033	99	0.412	0.412	139	- 0.364	
	119	- 0.099	- 0.072	159	+ 0.001	0.103	100	İ	- 0.408	140	+ 0.303	+ 0.312

No. of Circuit Triangle	36	Q		No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	25	Œ	No. of Circuit Triangle	35	Œ
16 <i>th</i>	Equation	–(Continu	ued).	16th	Equation_	-(Continued).	17th	Equation-	-(Continued).	17 <i>th</i>	Equation-	-(Continued).
141	+ 0.350	+ 0	.371	178	- 0.030	- 0.030	160	- 0.171	+ 0.180	200	+ 0.128	- 0.270
142	- 0.728	- 0	. 707	174	+ 0.040	+ 0.041	161	0.198	0.338	201	0.330	0.188
143	+ 0.606	+ 0	·624	175	– 0.030	- 0.030	162	0.103	0.084	202	0.14	0.258
144	- 0.416	- 0	.404	176	+ 0.059	+ 0.001	163	0.162	0.306	203	0.340	0.533
145	+ 0.455	+ 0	·468	177	- 0.013	- 0.013	164	0.122	0.132	204	0.456	0.300
146	- 1.664	- 1	.619	178	+ 0.020	+ 0.030	165	0.110	0.134	205	0.189	0.246
147	+ 0.909	+ 0	.936	179	- 0.030	- 0.020	166	0.163	0.198	206	0.321	0.324
148	- o·728	- 0	.707	180	+ 0.012	+ 0.012	167	0.494	0.420	207	0.079	0.099
149	+ 0.606	+ 0	.624				168	0.264	0.689	208	0.186	0.138
150	- 0.308	- 0	.202	17th	Equation.	Linear.	169	0.774	0.684	209	0.032	0.030
151	+ 0.153	+ 0	153	${f L}$	eft-hand H	Branch	170	0.240	ò•278	210	0.033	0.033
152	- 0.144	- 0	.140	139	- 0.410	+ 0.536	171	+ 0.006	0.042	211	0.043	0.043
153	+ 0.250	+ 0	·258	140	0.402	0.324	${f R}$ i	ght-hand	Branch	212	0.036	0.040
154	- 0.412	- 0	·400	141	0.473	0.630	181	+ 0.204	- 0.536	213	0.024	0.043
155	+ 0.300	+ 0	•206	142	0.924	0.414	182	0.318	0.164	214	0.063	0.083
156	- 0.212	- 0	. 500	143	0.468	0.450	183	0.304	0.126	215	0.036	0.036
157	+ 0.130	+ 0	124	144	0.672	0.216	184	0.318	0.096	216	0.024	0.030
158	- o·258	- 0	.250	145	0.446	0.22	185	0.136	0.144	217	0.006	0.002
159	+ 0.130	+ 0	124	146	2.160	1.728	186	0.174	0.313	218	0.039	0.043
160	- 0.155	- 0	150	147	0.891	0.672	187	0.432	0.225	219	0.020	o •050
161	+ 0.300	+ 0	206	148	0.77 7	0.735	188	0.534	0.319	220	0.024	0.020
162	- 0.093	– 0	.090	149	0.684	0.828	189	0.368	0.372			
163	+ 0.193	+ 0	. 162	150	0.384	0.364	190	0.390	0.323	18 <i>th</i>	Equation.	Latitude.
164	- 0.133	- 0	.119	151	0.132	0.176	191	0.252	0.234	${f L}$	eft-hand I	Branch
165	+ 0.089	+ 0	.092	152	0.176	0.121	192	0.308	0.368	139	- 0.232	+ 0.749
166	- 0.163	- 0	158	153	0.278	0.323	193	0.246	0.304	140	0.219	0.393
167	+ 0.347	+ 0	357	154	0.204	0.432	194	0.186	0.338	141	0.299	0.788
168	- 0.459	- 0	•446	155	0.310	0.333	195	0.334	0.319	142	1.008	0.8 40
169	+ 0.294	+ 0	.612	156	0.612	0.600	196	0.342	0.360	143	0.253	0.252
170	- 0.255	- 0	• 248	157	0.162	0.121	197	0.330	0.533	144	0.672	0.28
171	+ 0.040	+ 0	.041	158	0.323	0.323	198	0.180	0.334	145	0.428	0.231
172	0.030	0	.031	159	0.134	0.122	199	0.360	0.312	146	2.032	1.664

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
18 <i>th</i>	Equation-	-(Continued).	18 <i>th</i>	Equation-	-(Continued).	18 <i>th</i>	Equation-	—(Continued).	19th	Equation-	–(Continued).
147	- 0.792	+ 0.963	187	+ 0.474	- 0.310	219	- 0.002	- 0.003	166	+ 0.032	+ 0.018
148	0.665	0.637	188	c·174	0.264	220	+ 0.002	0.003	167	- 0.049	- o·049
149	0.240	0.720	189	0.388	0.380				168	+ 0.073	+ 0.018
150	0.388	0.108	190	0.363	0.368	19 th .	Equation.	$oldsymbol{Longitude}.$	169	- 0.096	- 0.006
151	0.099	0.132	191	0.248	0.142	L	eft-hand H	Branch	170	+ 0.013	+ 0.013
152	0.133	0.102	192	0.198	0.320	139	+ 0.375	+ 0.380	171	- 0.004	0.002
153	0.182	0.258	193	0.333	0.103	140	- 0.249	- 0.276	\mathbf{R}^{i}	ight-hand	Branch
154	0.336	0.388	194	0.074	0.314	141	0.287	0.329	181	+ 0.124	+ 0.564
155	0.130	0.138	195	0.196	0.092	142	+ 0.644	+ 0.455	182	- 0.332	- 0.033
156	0.322	0.332	196	0.133	0.300	143	- o·468	- o·468	183	0.276	0.096
157	0.084	0.082	197	0.248	0.068	144	+ 0.316	+ 0.368	184	+ 0.026	+ 0.300
158	0.180	0.162	198	0.048	0.186	145	- 0.338	- 0.297	185	0.104	0.318
159	0.028	0.072	199	0.252	0.087	146	+ 1.056	+ 1.056	186	- 0.250	0.030
160	0.069	0.075	200	0.002	0.100	147	– 0.630	- 0.222	187	0.040	0.343
161	0.060	0.090	201	0.302	0.032	148	+ 0.434	+ 0.434	188	0.248	- 0.036
162	0.036	0.034	202	0.033	0.125	149	- 0.420	- 0.276	189	+ 0.012	+ 0.308
163	0.066	0.074	203	0.143	0.038	150	+ 0.108	+ 0.108	190	- 0.323	0.012
164	0.046	0.048	204	0.068	0.308	151	- o·o87	- 0.069	191	+ 0.010	0.308
165	0.032	0.032	205	0.109	0.038	152	+ 0.070	+ 0.070	192	- 0.273	0.038
166	0.022	0.040	206	0.012	0.126	153	- 0.138	- 0.100	193	+ 0.013	0.174
167	0.084	0.074	207	0.040	0.000	154	+ 0.180	+ 0.180	194	- 0.183	0.010
168	0.077	0.113	208	- 0.014	0.014	155	- 0.098	- 0.074	195	0.003	0.148
169	0.060	0.084	209	+ 0.014	0.001	156	+ 0.202	+ 0.202	196	0.388	0.036
170	0.008	0.012	210	- 0.003	0.011	157	– 0·056	- 0.035	197	0.033	0.180
171	0.000	0.003	211	+ 0.011	0.001	158	+ 0.088	+ 0.088	198	0.124	0.036
Ri	ight-hand	Branch	212	0.010	+ 0.001	159	- 0.048	- 0.030	199.	0.039	0.331
181	+ 0.809	- 0.704	213	- 0.002	- 0.010	160	+ 0.042	+ 0.045	200	0.123	0.032
182	0.532	0.288	214	+ 0.019	0.000	161	- 0.058	- 0.040	201	0.048	0.122
183	0.108	0.222	215	- 0.001	0.006	162	+ 0.031	+ 0.017	202	0.138	0.060
184	0.396	0.054	216	+ 0.001	0.001	163	- 0.038	- 0.038	203	0.030	0.123
185	0.193	0.114	217	0.000	0.001	164	+ 0.034	+ 0.019	204	0.380	0.030
186	0.130	0.404	218	0.002	0.001	165	- 0.030	- 0.014	205	0.033	0.134

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	œ	No. of Circuit Triangle	36	Œ
19th	Equation-	–(Continued).	20 <i>th</i>	Equation-	-(Continued).	20th Equation—(Continued).			21st Equation—(Continued).		
206	- 0.108	+ 0.072	158	- 0.258	- 0.250	193	+ 0.300	+ 0.306	182	- 0.218	+ 0.197
207	0.004	0.023	154	+ 0.404	+ 0.404	194	- 0.306	- 0.300	183	0.304	0.126
208	0.103	0.024	155	- 0.303	- 0.303	195	+ 0.300	+ 0.306	184	0.318	0.096
209	0.008	0.014	156	+ 0.202	+ 0.202	196	- 0.309	- 0.300	185	0.136	0.144
210	0.019	0.010	157	- 0.131	- 0.131	197	+ 0.250	+ 0.258	186	0.174	0.313
211	0.011	0.018	158	+ 0.523	+ 0.253	198	- 0.306	- 0.300	187	0.432	0.252
212	0.002	0.019	159	- 0.131	- 0.131	199	+ 0.303	+ 0.303	188	0.234	0.319
213	0.010	0.013	160	+ 0.12	+ 0.12	200	- 0.255	- 0.248	189	0.368	0.372
214	0.009	0.039	161	- 0.303	- 0.303	201	+ 0.348	+ 0.255	190	0.390	0.323
215	0.008	0.004	162	+ 0.001	+ 0.001	202	- 0.304	- 0.168	191	0.323	0.234
216	0.003	0.008	163	– 0·162	- 0.163	203	+ 0.523	+ 0.253	192	0.308	0.368
217	0.001	0.001	164	+ 0.131	+ 0.131	204	- 0.404	- 0.404	193	0.346	0.304
218	0.001	0.004	165	- 0.001	- 0.001	205	+ 0.108	+ 0.304	194	0.189	0.338
219	0.003	0.001	166	+ 0.163	+ 0.128	206	– 0.306	- 0.297	195	0.334	0.319
220	+ 0.003	0.003	167	- 0.357	- 0.347	207	+ 0.100	+ 0.113	196	0.345	0.360
			168	+ 0.450	+ 0.450	208	- 0.304	- 0.198	197	0.330	0.333
L	Equation.		169	- 0.600	- 0.600	209	+ 0.030	+ 0.031	198	0.180	0.234
1	eft-hand H	Branch	170	+ 0.320	+ 0.250	210	- 0.031	- 0.030	199	0.360	0.312
139	+ 0.361	+ 0.361	171	- 0.080	0.040	211	+ 0.030	+ 0.031	200	0.128	0.270
140	- 0.309	- 0.309	$\mathbf{R}_{\mathbf{i}}$	ght-hand	Branch	212	0.032	0.036	201	0.330	0.188
141	0.361	0.361	181	+ 0.320	+ 0.371	213	- 0.046	- 0.042	202	0.14	0.258
142	+ 0.728	+ 0.707	182	- 0.148	- 0.140	214	+ 0.069	+ 0.071	203	0.340	0.333
143	- 0.613	- 0.612	183	0.308	0.303	215	— о ·озо	- 0.030	204	0.456	0.300
144	+ 0.408	+ 0.408	184	+ 0.300	+ 0.306	216	+ 0.030	+ 0.031	205	0.189	0.246
145	- 0.4 59	- 0.459	185	0.303	0.308	217	- 0.002	- o·∞5	206	0.321	0.324
146	+ 1.632	+ 1.632	186	- 0.306	- 0.300	218	+ 0.032	+ 0.032	207	0.079	0.099
147	- 0.018	- 0.918	187	+ 0.300	+ 0.306	219	- 0.040	- 0.040	208	0.189	0.138
148	+ 0.414	+ 0.714	188	- 0.310	- 0.108	220	+ 0.020	+ 0.050	209	0.032	0.030
149	- 0.913	- 0.913	189	+ 0.248	+ 0.263		_		210	0.033	0.033
150	+ 0.304	+ 0.304	190	- 0.363	- 0.248		Equation.		211	0.000	0.034
151	- 0.123	- o.123	191	+ 0.300	+ 0.306		eft-hand I	Branch	Ri	ght-hand	Branch
152	+ 0.143	+ 0.143	192	- o·258.	- 0.250	181	- 0.204	+ 0.236	221	+ 0.138	- 0.018

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	œ	No. of Circuit Triangle	35	Œ
21st	Equation-	-(Continued).	21st	Equation-	-(Continued).	22nd	Equation-	-(Continued).	22nd	Equation-	-(Continued).
222	+ 0.001	- 0.074	254	+ 0.030	- 0.026	201	- 0 .140	+ 0.078	241	+ 0.608	- 0.232
223	0.123	0.133	255	0.029	0.029	202	0.056	0.100	242	0.185	0.952
224	0.059	0.097	256	0.001	0.089	203	0.078	0.073	243	0.819	0.126
225	0.488	0.368	257	0.043	0.020	204	0.104	0.100	244	0.144	0.666
226	0.248	0.308	258	0.108	0.094	205	0.024	0.000	245	0.640	0.140
227	0.370	0.393	259	0.094	0.094	206	0.063	0.081	246	- 0.024	0.456
228	0.300	0.308	260	0.019	0.033	207	0.018	0.010	247	+ 0.344	+ 0.∞8
229	0.338	0.333	2 61	0.031	0.029	208	0.034	0.036	248	- 0.190	- 0.400
230	0.338	0.338	262	0.034	0.030	209	0.002	0.002	249	+ 0.011	+ 0.004
231	0.174	0.186				210	0.001	0.003	250	0.004	0.001
232	0.110	0.110	22nd	Equation.	Latitude.	211	0.003	0.003	251	- 0.003	- 0.003
233	0.738	0.936	I	eft-hand I	Branch	\mathbf{R}^{i}	ght-hand	Branch	252	+ 0.013	+ 0.006
234	1.312	0.972	181	- 0.690	+ 0.718	221	+ 0.169	- 0.010	253	- 0.003	- 0.003
235	0.972	0.972	182	0.339	0.339	222	0.000	0.079	254	+ 0.007	+ 0.001
236	1.596	1.224	183	0.319	0.108	223	0.163	0.169	255	- 0.003	- 0.002
237	0.480	0.600	184	0.328	0.086	224	0.077	0.093	256	+ 0.018	+ 0.004
238	0.960	0.768	185	0.142	0.140	225	0.432	0.462	257	- 0.002	- 0.002
239	0.768	0.960	186	0.125	0.334	226	0.293	0.318	258	+ 0.013	+ 0.002
240	0.861	0.777	187	0.390	0.323	227	0.338	0.510	259	- 0.007	- 0.007
241	0.888	0.984	188	0.188	0.303	228	0.188	0.323	260	+ 0.003	0.000
242	1.554	1.344	189	0.302	0.292	229	0.258	0.144	261	- 0.003	0.003
243	1.440	1.368	190	0.278	0.382	230	0.192	0.342	262	+ 0.003	0.003
244	1.431	1.323	191	0.100	0.164	231	0.193	0.096			
245	1.290	1.200	192	0.192	0.278	232	0.056	0.155	23rd .	Equation.	$oldsymbol{Longitude}.$
246	0.819	0.840	193	0.163	0.136	233	0.720	0.240	L	eft-hand 1	Branch
247	0.672	0.840	194	0.103	0.126	234	0.594	0.972	181	- 0.308	- 0.320
248	0.900	0.810	195	0.138	0.114	235	0.873	0.396	182	+ 0.147	+ 0.084
249	0.031	0.033	196	0.163	0.319	236	0.546	1.344	183	0.192	0.138
250	0.013	0.013	197	0.173	0.102	237	0.420	0.310	184	- 0.138	- 0.125
251	0.000	0.000	198	0.066	0.130	238	0.304	o·68o	185	0.138	0.126
252	0.032	0.030	199	0.198	0.130	239	0.292	0.320	186	+ 0.176	+ 0.080
253	0.000	0.010	200	0.048	0.133	240	0.189	0.267	187	- 0.098	- 0.146

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	
23rd	Equation-	-(Continued).	23rd Equation—(Continued).			23rd Equation—(Continued).			24th Equation—(Continued).			
188	+ 0.12	+ 0.092	228	- 0.340	+ 0.032	260	- 0.001	+ 0.003	207	- 0.110	- 0.110	
189	- 0:115	- o·168	229	+ 0.006	0.340	261	0.003	0.003	208	+ 0.300	+ 0.300	
190	+ 0.193	+ 0.080	230	- o·338	0.042	262	0.000	0.003	209	- 0.030	- 0.030	
191	- 0.072	– 0·126	231	+ 0.032	0.300			1	210	+ 0.030	+ 0.030	
192	+ 0.168	+ 0.063	232	- 0.134	0.004	24 <i>th</i>	Equation.	Azimuth.	211	— o·o6o	0.030	
193	- 0.070	- 0.106	233	0.042	0.768	I	eft-hand 1	Branch	\mathbf{R}	ight-hand	Branch	
194	+ 0.110	+ 0.020	234	1.102	0.108	181	- 0.361	· - 0.361	221	+ 0.060	+ 0.062	
195	- o.oeo	- 0.096	235	0.042	0.873	182	+ 0.146	+ 0.141	222	0.001	0.063	
196	+ 0.168	+ 0.000	236	1 · 484	0.238	183	0.308	0.303	223	- o·o64	- 0.060	
197	- 0.073	- 0.095	237	0.032	0.200	184	- 0.304	- 0 ² 04	224	+ 0.061	+ 0.062	
198	+ 0.078	+ 0.042	238	0.848	0.136	185	0.304	0.304	225	- 0.265	- 0.250	
199	- 0.072	- 0.099	239	0.096	0.768	186	.+ 0.304	+ 0.304	226	+ 0.245	+ 0.260	
200	+ 0.078	+ 0.048	240	0.721	0.303	187	- 0.304	- 0.304	227	0.248	0.263	
201	- 0.055	- 0.070	241	0.184	0.728	188	+ 0.304	+ 0.304	228	- 0.263	- o·248	
202	+ 0.063	+ 0.020	242	1.535	0.364	189	- 0.255	- 0.255	229	+ 0.300	+ 0.306	
203	- o·o48	- 0.055	243	0.384	0.948	190	+ 0.255	+ 0.255	230	- 0.263	- 0.248	
204	+ 0.116	+ 0.044	244	0.999	0.240	191	- 0.300	- 0.306	231	+ 0.300	+ 0.206	
205	- 0.032	– о·оз8	245	0.420	0.930	192	+ 0.258	+ 0.320	232	- 0.113	- 0.110	
206	+ 0.024	+ 0.027	246	0.284	0.328	193	- 0.303	- 0.303	233	+ 0.294	+ 0.630	
207	- o·014	- 0.011	247	0.184	0.488	194	+ 0.303	+ 0.303	234	- 0.927	- 0.900	
208	+ 0.028	+ 0.010	248	0.910	0.320	195	- 0.303	- 0.303	235	+ 0.900	+ 0.927	
209	- 0.003	- 0.003	249	0.012	0.014	196	+ 0.303	+ 0.303	236	- 1.442	- 1.400	
210	+ 0.003	0.000	250	0.002	0.007	197	- 0.253	- 0.253	237	+ 0.200	+ 0.212	
211	- 0.003	0.001	251	0.002	0.004	198	+ 0.202	+ 0.303	238	- 0.824	- 0.800	
R	ight-hand	Branch	252	0.011	0.014	199	- 0.303	- 0.303	239	+ 0.800	+ 0.824	
221	+ 0.004	+ 0.058	253	0.004	0.004	200	+ 0.253	+ 0.253	240	- 0.728	- o·686	
222	0.039	0.083	254	0.000	0.010	201	- 0.253	- 0.253	241	+ 0.784	+ 0.832	
223	- 0.118	0.011	255	0.010	0.008	202	+ 0.303	+ 0.303	242	- 1.456	- 1.372	
224	+ 0.023	0.083	256	0.031	0.027	203	- 0.253	- o·253	243	+ 1.188	+ 1.224	
225	- o·455	0.018	257	0.013	0.013	204	+ 0.404	+ 0.404	244	- 0.936	- o·88 ₂	
226	0.138	0.323	258	0.019	0.022	205	- 0.108	- 0.304	245	+ 0.980	+ 1.040	
227	+ 0.018	0.322	259	0.017	0.014	206	+ 0.306	+ 0.397	246	- 0.816	- 0.792	

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	
24 <i>th</i>	Equation–	-(Continued).	25th Equation—(Continued).			25th Equation—(Continued).			26th Equation—(Continued).			
247	+ 0.792	+ 0.816	234	- 1.215	+ 0.972	278	+ 0.468	- 0.432	225	- 0.458	+ 0.360	
248	— 1.03 0	- 0.990	235	0.972	0.972	279	0.420	0.444	226	0.470	0.265	
249	+ 0.024	+ 0.026	236	1.296	1.554	280	0.630	0.282	227	0.238	0.250	
250	0.011	0.011	237	0.480	0.600	281	0.456	0.480	228	0.232	0. 253	
251	- 0.009	- 0.009	238	0.960	0.768	282	0.222	0.252	229	0.189	0.180	
252	+ 0.040	+ 0.041	239	0.768	0.960	283	0.240	0.278	230	0.252	0.263	
253	- 0.009	- 0.009	240	0.861	0.777	284	0.092	0.092	231	0.136	0.144	
254	+ 0.030	+ 0.030	241	0.888	0.984	285	0.030	0.030	232	0.083	o;o86	
255	- 0.036	0.025	242	1.554	1.344	286	0.119	0.110	233	0.480	0.636	
256	+ 0.079	+ 0.082	243	1.440	1.368	287	0.024	0.024	234	0.738	0.613	
257	- 0.040	- 0.040	244	1.431	1.323	288	0.086	0.084	235	0.249	0.558	
258	+ 0.080	+ 0.080	245	1.390	1.200	289	0.031	0.033	236	0.854	0.868	
259	- o∙o8o	- o·o8o	246	0.819	0.840	290	0.037	0.033	237	0.245	0.322	
260	+ 0.016	+ 0.016	247	0.672	0.840	291	0.022	0.033	238	0.416	0.352	
261	- 0.030	· – 0·030	248	0.900	0.810	292	0.020	0.036	239	0.388	0.432	
262	+ 0.030	+ 0.030	249	+ 0.002	0.030	293	0.028	0.063	240	0.343	0.329	
			$\mathbf{R}_{\mathbf{i}}$	ight-hand	Branch	294	0.039	0.033	241	0.304	0.392	
25th	Equation.	Linear.	263	+ 0.192	- 0.098	295	0.032	0.031	242	0.434	0.406	
L	eft-hand H	Branch	264	0.362	0.512	296	0.020	0.029	243	0.396	0.396	
221	- 0.138	+ 0.018	265	0.123	0.176	297	0.013	0.013	244	0.378	0.378	
222	0.001	0.074	266	0.432	0.720	298	0.011	0.013	245	0.270	0.360	
223	0.123	0.133	267	0.300	0.304	299	0.012	0.013	246	0.113	0.125	
224	0.020	0.092	268	0.420	0.300	300	0.021	0.049	247	0.040	0.138	
225	0.488	0.368	269	0.636	0.408	301	0.008	0.010	248	0.030	0.060	
226	0.248	0.308	270	0.372	0.492	302	0.027	c·032	249	0.001	0.003	
227	0.270	0.293	271	0.696	0.456				\mathbf{R} i	ght-hand	Branch	
228	0.300	0.308	272	0.312	0.492	26th	Equation.	Latitude.	263	+ 0.334	- o·168	
229	0.338	0.323	273	0.918	0.702	L	eft-hand 1	Branch	264	0.361	0, 543	
230	0.338	0.338	274	0.408	0.384	221	- 0.146	+ 0.028	265	0.120	0.344	
231	0.174	0.186	275	0.600	0.612	222	0.065	0.089	266	0.264	0.732	
232	0.110	0.110	276	0.368	0.389	223	0.163	0.138	267	0.196	0.333	
233	0.738	0.936	277	0.346	0.333	224	0.022	0.100	268	0.333	0.448	

No. of Circuit Triangle	36	O C	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	
26th	Equation-	-(Continued).	26th Equation—(Continued).			27th	Equation-	-(Continued).	27th Equation—(Continued).			
269	+ 0.684	- 0.388	301	- 0.001	- 0.001	248	+ 0.090	0.000	292	- 0.011	+ 0.018	
270	0.428	0.352	302	+ 0.003	0.001	249	- 0.003	0.000	293	0.033	0.014	
271	0.456	0.492				\mathbf{R}^{i}	ight-hand	Branch	294	0.003	0.013	
272	0.112	0.242	27th .	Equation	Longitude.	263	- 0.313	- 0.075	295	0.013	0.006	
273	0.798	0.354	I	eft-hand I	Branch	264	+ 0.012	+ 0.189	296	0.002	0.018	
274	0.176	0.388	221	- 0.069	- 0.046	265	- 0.173	- 0.029	297	0.004	0.003	
275	0.232	0.302	222	0.029	0.037	266	+ 0.164	 + 0.260	298	0.001	0.003	
276	0.133	0.320	223	+ 0.038	+ 0.021	267	- 0.432	- o.180	299	0.003	0.003	
277	0.306	0.088	224	- o·o50	- 0.029	268	0.493	0.133	300	0.004	0.008	
278	0.172	0.368	225	+ 0.192	+ 0.120	269	0.028	+ 0.440	301	0.001	0.001	
279	0.328	0.125	226	- 0.133	- 0.155	270	+ 0.084	0.480	302	+ 0.001	0.003	
280	0.172	0.425	227	0.142	0.160	271	- 0·576	0.000				
281	0.316	0.138	228	+ 0.120	+ 0.138	272	0.445	- 0.040	28 <i>th</i>	Equation.	Azimuth.	
282	0.102	0.390	229	- 0.113	- 0.113	273	0.078	+ 0.624	I	eft-hand 1	Branch	
283	0.165	o .060	230	+ 0.122	+ 0.110	274	0.408	- 0.013	221	- 0.062	- 0.061	
284	0.012	0.063	231	- 0.104	- 0.098	275	0.010	+ 0.200	222	0.001	0.061	
285	0.013	0.003	232	+ 0.028	+ 0.048	276	0.343	0.032	223	+ 0.001	+ 0.001	
286	0.007	0.063	233	- 0.294	- o·258	277	0.018	0.180	224	- 0.061	- 0.001	
287	0.038	0.001	234	+ 0.441	+ 0.333	278	0.376	0.033	225	+ 0.255	+ 0.255	
288	- 0.001	0:044	235	- 0.402	- 0.324	279	0.008	0.328	226	- 0.255	- 0.255	
289	+ 0.014	0.000	236	+ 0.232	+ 0.532	280	0.470	0.082	227	0.255	0.255	
290	0.012	0.001	237	- 0.300	- 0.140	281	.0.044	0.328	228	+ 0.255	+ 0.255	
291	- 0.004	0.013	238	+ 0.320	+ 0.300	282	0.400	0.092	229	- 0.304	- 0.304	
292	+ 0.018	0.000	239	- 0.340	- 0.240	283	0.018	0.182	230	+ 0.255	+ 0.255	
293	0.001	0.018	240	+ 0.238	+ 0.124	284	0.068	0.018	231	- 0.306	- 0.300	
294	0.010	0.003	241	- 0.334	- 0.176	285	0.003	0.013	232	+ 0.111	+ 0.111	
295	0.001	0.000	242	+ 0.364	+ 0.238	286	0.079	0.030	233	- 0.606	- 0.606	
296	0.019	0.006	243	- 0.388	- 0.180	287	0.008	0.033	234	+ 0.909	+ 0.909	
297	0.000	0.003	244	+ 0.123	+ 0.123	288	0.055	0.031	235	- 0.909	- 0.909	
298	0.003	0.001	245	- 0.100	- 0.070	289	0.002	0.012	236	+ 1.414	+ 1.414	
299	0.000	0.003	246	+ 0.130	+ 0.048	290	0.010	c.019	237	- o·505	- 0.505	
300	0.006	0.003	247	- o.o9g	- 0.024	291	0.012	0.000	238	+ 0.808	+ 0.808	

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	
28 <i>th</i>	28th Equation—(Continued). 28th Equation—(Continued).						Equation	—(Continued).	29th Equation—(Continued).			
239	- 0.808	- 0.808	283	+ 0.253	+ 0.253	272	- 0.315	+ 0.495	316	+ 0.197	- 0.193	
240	+ 0.707	+ 0.707	284	- 0.092	- 0.089	273	0.018	0.702	317	0.252	0.270	
241	- o.808	- o·8o8	285	+ 0.030	+ 0.030	274	0.408	0.384	318	0.333	0.318	
242	+ 1.414	+ 1.414	286	- 0.113	- 0.109	275	0.600	0.612	319	0.340	0.300	
243	- 1.313	- 1.212	287	+ 0.059	+ 0.001	276	ი•368	0.389	32 0	0.312	0.108	
244	+ 0.000	+ 0.909	288	-, 0°092	- 0.089	277	0.246	0.333	321	0.126	0.240	
245	- 1.030	- 0.990	289	+ 0.030	+ 0.031	278	0.468	0.432	322	0.368	0.331	
246	+ 0.800	+ 0.800	290	0.030	0.031	279	0.420	0.444	323	0.113	0.164	
247	- o·800	- o·800	291	- o·o36	- 0.035	280	0.630	0.585	324	0.101	0.072	
248	+ 1.000	+ 1.000	292	+ 0.040	+ 0.041	281	0.456	0.480	325	0.101	0.108	
249	- o·o50	0.022	293	- o·o46	- 0.045	282	0.222	0.222	326	0.084	c·082	
R	ight-hand	Branch	294	+ 0.030	+ 0.031	283	0.240	0.278	327	0.172	0.198	
263	- 0.137	- 0.133	295	- 0.036	- 0.025	284	0.092	0.093	328	0.152	0.142	
264	+ 0.131	+ 0.135	296	+ 0.050	+ 0.021	285	0.030	0.030	329	0.108	0.132	
265	- 0.132	- 0.131	297	- 0.013	- 0.013	286	0.110	0.110	330	0.103	0.087	
266	+ 0.404	+ 0.416	298	+ 0.011	+ 0.011	287	0.024	0.024				
267	- 0.416	- 0.404	299	- 0.013	- 0.013	288	0.086	0.084	30th	Equation.	Latitude.	
268	0.416	0.404	300	+ 0.032	+ 0.032	289	0.000	0.033	I	eft-hand I	Branch	
269	+ 0.400	+ 0.412	301	- 0.010	- 0.010	$\mathbf{R}_{\mathbf{i}}$	ght-hand	Branch	263	- 0.326	+ 0.113	
270	0.396	0.420	302	+ 0.032	+ 0.022	303	+ 0.099	- 0.108	264	0.373	0.230	
271	- 0.420	- 0.396				304	0.164	0.113	265	0.125	0.176	
272	0.212	0.200	29 <i>th</i>	Equation	. Linear.	305	0.144	0.303	266	0.392	0.713	
278	+ 0.600	+ 0.918	L	eft-hand E	Branch	306	0.383	0.120	267	0.222	0.193	
274	- 0.412	- 0.400	263	- 0.195	+ 0.098	307	0.190	0.008	268	0.356	0.380	
275	+ 0.200	+ 0.212	264	0.362	0.312	308	0.193	0.172	269	0.456	0.312	
276	– 0·361	- 0.350	265	0.152	0.176	309	0.324	0.297	270	0.252	0.360	
277	+ 0.300	+ 0.306	266	0.432	0.720	310	0.389	0.302	271	0.408	0.276	
278	- 0.412	- 0.400	267	0.300	0.304	311	0.312	0.333	272	0.192	0.312	
279	+ 0.400	+ 0.412	268	0.420	0.300	312	0.402	0.321	273	0.204	0.414	
280	- 0.212	- 0.500	269	0.636	0.408	313	0.176	0.176	274	0.319	0.319	
281	+ 0.400	+ 0.413	270 [.]	0.372	0.495	314	0.118	0.130	275	0.390	0.322	
282	- 0.210	- 0.495	271	0.696	0.456	815	0.183	0.306	276	0.168	0.189	

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	. OC	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	
30 <i>th</i>	30th Equation—(Continued). 30th Equation—(Continue				-(Continued).	31 <i>st</i>	Equation-	-(Continued).	31st Equation—(Continued).			
277	- 0.103	+ 0.096	821	- 0.013	- 0.066	282	+ 0.090	+ 0.000	826	- 0.009	+ 0.018	
278	0.180	0.180	822	+ 0.084	+ 0.031	283	- 0.055	- 0.025	827	0.029	0.031	
279	0.164	0.184	328	0.029	0.004	284	+ 0.013	+ 0.013	328	0.000	0.018	
280	0.330	0.302	824	0.033	0.003	285	- 0.004	- 0.001	329	0.008	0.004	
281	0.133	0.198	825	- 0.006	- 0.012	286	+ 0.010	+ 0.010	330	+ 0.002	0.002	
282	0.142	0.122	826	+ 0.018	0.003	287	- 0.008	- 0.001	Ì			
283	0.022	0.023	827	- 0.004	0.012	288	+ 0.002	+ 0.002	32nd	Equation.	Azimuth.	
284	0.030	0.018	328	+ 0.011	0.002	289	- 0.003	0.003	I	eft-hand I	Branch	
285	0.003	0.004	329	- 0.002	0.002	\mathbf{R}_{i}	ight-hand	Branch	263	+ 0.133	+ 0.133	
286	0.030	0.050	830	+ 0.010	0.002	808	- 0.092	- 0.029	264	- 0.133	- 0.133	
287	0.003	0.008				304	+ 0.02	+ 0.094	265	+ 0.133	+ 0.133	
288	0.002	0.002	31 <i>st</i> 3	Equation	Longitude.	805	- 0.131	- 0.031	266	- 0.408	- 0.408	
289	0.000	0.001	L	eft-hand I	Branch	806	+ 0.038	+ 0.119	267	+ 0.408	+ 0.408	
Ri	ght-hand	Branch	263	+ 0.101	+ 0.101	307	- 0.103	- 0.029	268	0.408	0.408	
803	+ 0.068	- 0.109	264	- 0.114	- 0.075	808	+ 0.014	+ 0.094	269	- 0.408	- 0.408	
304	0.141	0.081	265	+ 0.088	+ 0.088	809	- 0.313	- 0.024	270	0.404	0.404	
805	0.083	0.148	266	- 0.304	- 0.184	810	+ 0.022	+ 0.303	271	+ 0.404	+ 0.404	
306	0.193	0.078	267	+ 0.344	+ 0.330	311	- 0.301	- 0.003	272	0.202	0.202	
807	0.077	0.083	268	0.256	0.308	812	0.003	+ 0.186	278	- 0.606	- 0.606	
308	0.139	0.081	269	- 0.196	- 0.308	313	0.092	0.008	274	+ 0.404	+ 0.404	
809	0.139	0.313	270	0.308	0.184	814	0.000	0.024	275	- 0.505	- 0.505	
310	0.256	0.113	271	+ 0.313	+ 0.140	815	0.008	0.022	276	+ 0.354	+ 0.354	
311	0.108	0.319	272	0.322	0.180	3 16	0.012	0.077	277	- 0.303	- 0.303	
312	0.333	0.130	278	- 0.240	- 0.333	317	0.118	0.044	278	+ 0.404	+ 0.404	
313	0.046	0.093	274	+ 0.164	+ 0.138	818	0.012	0.008	279	- 0.404	- 0.404	
314	0.026	0.032	275	- o·185	- 0.122	319	0.112	0.020	280	+ 0.202	+ 0.505	
315	0.032	0.098	276	+ 0.136	+ 0.092	320	0.033	0.084	281	- 0.404	- 0.404	
816	0.084	0.048	277	- 0.070	- 0.02	821	0.070	0.020	282	+ 0.202	+ 0.505	
317	0.044	0.118	278	+ 0.108	+ 0.108	822	0.063	0.092	283	- 0.255	- 0.348	
818	0.082	0.030	279	- 0.134	- 0.076	823	0.014	0.049	284	+ 0.090	+ 0.090	
819	0.002	0.100	280	+ 0.112	+ 0.112	324	0.012	0.036	285	- 0.030	- 0.020	
820	0.000	+ 0.000	281	- 0.113	- 0.052	325	0.033	0.018	286	+ 0.110	+ 0.110	

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	
32nd	Equation-	-(Continued).	33rd Equation. Linear. Left-hand Branch			33rd Equation—(Continued).			34th Equation—(Continued).			
287	- 0.060	- 0.060	803	- 0.099	+ 0.108	841	+ 0.288	- 0.322	.811	- 0.13	+ 0.138	
288	+ 0.000	+ 0.000	304	0.164	0.113	342	0.312	0.252	812	0.120	0.138	
289	- 0.060	0.030	305	0.144	0.303	84 8	0.393	0.322	313	0.063	0.067	
Ri	Right-hand Branch		806	0.383	0.120	344	0.333	0.342	314	0.038	0.041	
808	- 0.103	- 0.100	307	0.190	0.008	345	0.333	0.312	815	0.056	0.069	
3 04	+ 0.140	+ 0.144	808	0.193	0.172	34 6	. 0.846	0.774	8 16	0.042	0.02	
305	- 0.162	- 0.160	809	0.324	0.397	847	0.720	0.846	817	0.046	0.026	
306	+ 0.303	+ 0.303	8 10	0.389	0.302	348	0.462	0.420	818	0.032	0.048	
307	- 0.134	- 0.130	811	0.312	0.333	849	0.096	0.098	819	0.033	0.020	
308	+ 0.140	+ 0.144	812	0.402	0.321	350	c·084	0.089	820	0.022	0.022	
3 09	- 0.309	- 0.300	313	0.176	0.176	851	0.089	0.001	821	0.016	0.032	
810	+ 0.354	+ 0.354	814	0.118	0.130	852	0.001	0.083	822	0.022	0.038	
811	- 0.303	- 0.303	815	0.183	0.306	353	0.083	0.001	323	0.003	0.014	
812	+ 0.303	+ 0.303	316	0.192	0.103	854	0.022	0.074	${f R}$	ight-hand	Branch	
818	- 0.141	- 0.141	817	0.323	0.370	855	0.093	0.082	331	+ 0.351	- 0.459	
814	+ 0.079	+ 0.083	318	0.333	0.318	356	0.070	0.074	882	0.192	0.338	
815	- 0.163	- 0.128	319	0.340	0.300	857	0.091	0.083	888	0.339	0.489	
816	+ 0.139	+ 0.143	820	0.312	0.108	858	0.113	0.112	834	0.331	0.364	
817	- 0.304	- 0.108	821	0.126	0.340	859	0.119	0.113	335	0.390	0.322	
818	+ 0.348	+ 0.255	822	0.368	0.331	36 0	0.096	0.113	3 36	0.318	0.120	
819	- 0.255	- 0.248	828	0.004	0.310	861	0.187	0.144	337	0.258	0.140	
820	+ 0.397	+ 0.306	R	ight-hand	Branch				3 38	0.132	0.188	
821	- 0.304	- 0.108	881	+ 0.361	- 0.441	34 <i>th</i>	Equation.	Latitude.	839	0.144	0.343	
822	+ 0.350	+ 0.350	882	0.361	0.111	I	eft-hand I	Branch	34 0	0.304	0.093	
323	0.139	0.143	833	0.414	0.450	803	- 0.079	+ 0.089	841	0.192	0.043	
324	0.079	0.083	334	0.324	0.351	304	0.109	0.093	842	0.060	0.174	
825	- 0.083	- 0.079	835	0.435	0.375	305	0.098	0.142	843	0.062	0.123	
826	+ 0.080	+ 0.080	336	0.252	0.285	306	0.146	0.100	844	0.174	0.021	
327	- 0.140	- 0.140	887	0.333	0.382	307	0.090	0.022	845	0.042	0.183	
328	+ 0.110	+ 0.110	888	0.338	0.222	308	0.094	0.001	346	0.366	0.084	
829	- 0.100	- 0.100	339	0.369	0.306	309	0.129	0.126	347	0.030	0.366	
880	+ 0.100	+ 0.100	840	0.312	0.333	810	0.162	0·140	848	0.179	0.011	

No. of Circuit Triangle	- 36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
34th	Equation-	-(Continued).	35 <i>th</i>	Equation-	-(Continued).	35 <i>th</i>	Equation-	—(Continued).	36 <i>th</i>	Equation-	—(Continued).
349	+ 0.038	- 0.002	319	+ 0.030	+ 0.030	357	- 0.010	+ 0.016	333	- 0.309	- o·3∞
850	- 0.006	0.032	320	- 0.048	- 0.013	358	0.018	0.014	334	+ 0.306	+ 0.306
851	+ 0.029	0.000	321	+ 0.016	+ 0.019	359	0.003	0.011	335	- o·258	- 0.250
352	- o.oog	0.022	322	- 0.039	- 0.007	360	0.004	0.001	336	+ 0.250	+ 0.258
853	+ 0.023	+ 0.003	823	0.014	+ 0.007	361	+ 0.003	0.011	337	0.250	0.258
854	<u>-</u> 0.010	- 0.017	\mathbf{R}^{i}	ght-hand	Branch				838	- 0.258	- 0.250
355	+ 0.022	+ 0.001	331	+ 0.129	+ 0.348	36 <i>th</i>	Equation.	Azimuth.	339	0.309	0.300
356	- 0.006	- 0.014	332	- 0.391	- 0.138	L	eft-hand 1	Branch	340	+ 0.303	+ 0.303
357	+ 0.016	+ 0.002	833	0.342	0.039	303	+ 0.103	+ 0.103	341	0.303	0.303
3 58	- 0.006	- 0.017	334	+ 0.103	+ 0.255	304	÷ 0·144	- 0.140	342	- 0.303	- 0.303
859	+ 0.012	0.003	335	- 0.310	0.013	305	+ 0.163	+ 0.163	343	0.323	0.253
860	- 0.006	0.000	336	+ 0.038	0.308	306	- 0.303	- 0.303	344	+ 0.397	+ 0.306
361	+ 0.016	0.008	337	0.010	0.302	307	+ 0.131	+ 0.131	345	- 0.306	- 0.397
			338	- 0.322	0.000	308	- 0.141	- 0.141	346	+ 0.594	+ 0.612
35th 1	Equation	$oldsymbol{Longitude}.$	839	0.258	0.013	309	+ 0.303	+ 0.303	347	- 0.613	- 0·594
L	eft-hand I	Branch	340	0.012	0.310	310	- 0.354	- 0.354	348	+ 0.347	+ 0.357
303	+ 0.024	+ 0.057	841	+ 0.000	0.198	311	+ 0.303	+ 0.303	349	0.079	0.083
304	- 0.092	- 0.055	842	- 0.310	0.034	312	- 0.303	- 0.303	350	- 0.082	- 0.079
805	+ 0.077	+ 0.077	343	0.100	0.038	818	+ 0.141	+ 0.141	351	+ 0.079	+ 0.083
306	- 0.114	– 0·060	844	0.043	0.183	314	- 0.081	- 0.081	852	- 0.082	- 0.079
307	+ 0.021	+ 0.021	345	0.301	0.060	315	+ 0.163	+ 0.163	353	+ 0.079	+ 0.082
808	- 0.063	– о·оз8	346	0.108	0.396	316	- 0.141	- 0.141	354	- 0.080	- 0.080
809	+ 0.099	+ 0.099	347	0.433	0.270	817	+ 0.303	+ 0.303	355	+ 0.099	+ 0.103
810	- 0.136	- 0.095	348	0.136	0.331	318	- 0.255	- 0.348	356	- o.o8o	- 0.080
311	+ 0.000	+ 0.000	349	0.036	0.021	319	+ 0.250	+ 0.320	357	+ 0.080	+ 0.080
812	- 0.103	- 0.066	350	0.042	0.027	320	- 0.300	- 0.300	858	- 0.120	- 0.130
318	+ 0.036	+ 0.036	351	0.010	0.038	321	+ 0.300	+ 0.300	859	+ 0.110	+ 0.110
314	- 0.030	- 0.012	352	0.039	0.023	322	- o·350	- 0.350	360	- 0.110	- 0.110
815	+ 0.042	+ 0.031	358	0.014	0.034	828	0.380	+ 0.140	361	+ 0.160	+ 0.160
816	- 0.034	- 0.031	354	0.031	0.030	R	ight-hand	Branch			
317	+ 0.030	+ 0.030	355	0.010	0.026	831	+ 0.303	+ 0.312			
818	- 0.042	- 0.033	856	0.014	0.013	332	- 0.306	- o·306			_

No. of Circuit Triangle	36	OC	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
1	Equation eft-hand I		37 <i>th</i>	Equation-	-(Continued).	38 <i>th</i>	Equation-	-(Continued).	38 <i>th</i>	Equation-	–(Continued).
331	- 0.361	+ 0.441	419	+ 0.072	- 0.086	364	+ 0.531	- 0.462	396	+ 0.236	+ 0.020
332	0.361	0.171	420	0.139	0.079	365	0.772	0.368	397	- 0.020	- 0.272
333	0.414	0.450	421	0.084	0.099	366	0.28	c·408	398	+ 0.310	+ 0.040
334	0.324	0.321	422	0.083	0.077	367	0.292	0.785	399	- 0.095	- 0.290
335	0.432	0.372	423	0.089	0.001	3 68	1.030	0.222	400	+ 0.236	+ 0.056
336	0.322	0.282				369	0.384	0.912	401	- 0.092	- 0.390
337	0.353	0.285	38th	Equation.	Latitude.	370	0.635	0.382	402	+ 0.316	+ 0.072
338	0.338	0.222	L	eft-hand I	Branch	37 1	0.695	0.862	403	- 0.110	- 0.275
339	0.369	0.306	331	- 0.261	+ 0.468	372	0.204	0.432	404	+ 0.230	+ 0.122
340	0.312	0.333	332	0.333	0.147	373	0.485	0.802	405	- 0.175	- 0.330
341	0.388	0.222	333	0.357	0.390	374	0.736	0.368	406	+ 0.126	+ 0.120
342	0.312	0.323	334	0.333	0.383	375	0.333	0.632	407	0.013	0.008
343	0.293	0.322	335	0.303	0.275	376	0.840	0.382	408	- 0.010	- 0.010
344	0.333	0.342	336	0.140	0.198	377	0.190	0.632	409	+ 0.010	+ 0.007
345	0.333	0.312	837	0.180	0.162	378	0.930	0.210	410	- 0.030	- 0.023
346	o·846	0.774	338	0.148	0.112	379	0.235	0.785	411	+ 0.031	+ 0.031
347	0.720	0.846	339	0.123	0.144	380	0.112	0.230	412	- 0.024	- 0.017
34 8	0.462	0.420	340	0.112	0.136	381	0.340	0.660	413	+ 0.012	+ 0.013
349	0.096	0.098	341	0.108	0.081	382	0.662	0.310	414	- 0.016	- 0.010
35 0	0.084	0.089	342	0.081	0.081	383	0.184	0.392	415	+ 0.030	+ 0.014
3 51	0.003	0.001	343	0.083	0.072	384	0.240	0.252	416	- 0.001	- 0.004
Ri	ght-hand	Branch	344	0.081	0.081	885	o·300	. 0.735	417	+ 0.006	+ 0.006
409	+ 0.041	- 0.064	345	0.021	0.072	38 6	0.465	0.162	418	- 0.010	- 0.005
410	0.063	0.084	346	0.120	0.103	387	0.310	0.222	419	+ 0.000	+ 0.000
411	0.101	0.058	347	0.060	0.126	388	0.304	0.140	420	- 0.017	- 0.007
412	0.062	0.079	348	0.040	0.046	389	0.240	0.456	421	+ 0.006	+ 0.006
413	0.026	0.028	349	0.013	0.010	390	0.372	0.168	422	- 0.007	0.000
414	0.067	0.098	350	0.001	0.006	391	0.113	0.320	423	+ 0.007	0.000
415	0.103	0.100	351	0.006	0.000	392	0.420	0.126		•	
416	0.040	0.036	Ri	ght-hand	Branch	393	0.032	0.460	39 <i>th</i> .	Equation.	Longitude.
417	0.047	0.020	362	+ 0.720	- 0·468	394	0.272	0.02		eft-hand]	_
418	0.064	0.068	363	0.428	0.604	395	- 0.008	0.390	331	- 0.333	- 0.192

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
39th	Equation-	-(Continued).	39 <i>th</i>	Equation-	-(Continued).	39 <i>th</i>	Equation-	—(Continued).	4 0 <i>th</i>	Equation-	—(Continued).
832	+ 0.177	+ 0.177	873	- 0.805	+ 0.002	405	- 0.315	+ 0.285	341	- 0.303	- 0.303
333	0.177	0.177	374	0.080	0.919	406	0.330	0.300	342	+ 0.303	+ 0.303
334	- 0.301	- 0.103	375	0.564	0.048	407	0.022	0.034	343	0.253	0.523
335	+ 0.138	+ 0.100	376	0.102	0.660	408	0.029	0.031	344	- 0.303	- 0.303
336	- 0.100	- 0.085	377	0.200	0.076	4 09	0.033	0.033	345	+ 0.306	+ 0.397
337	0.100	0.093	378	0.312	0.820	410	0.027	0.046	346	- 0.600	- o·600
338	+ 0.093	+ 0.063	379	0.650	0.145	411	0.049	c·028	347	+ 0.600	+ 0.600
339	0.111	0.072	380	0.072	0.600	412	0.036	0.038	348	- 0.350	- 0.350
340	- o·o84	- 0.066	381	0.630	0.000	413	0.023	0.022	349	0.080	0.080
341	0.084	0.066	382	a.080	0.640	414	0.031	0.036	350	+ 0.080	+ 0.080
842	+ 0.072	+ 0°045	383	0.204	0.000	415	0.034	0.036	351	- 0.160	0.080
343	0.070	0.033	384	0.100	0.213	416	0.013	0.013	\mathbf{R}	ight-hand	Branch
344	- 0.045	- 0.042	385	0.660	0.240	417	0.011	0.014	362	+ 0.404	+ 0.416
345	+ 0.084	+ 0.013	386	0.002	0.490	418	0.013	0.014	363	- 0.416	- 0.404
346	- 0.042	- 0.114	387	0.282	0.132	419	0.010	0.019	364	0.313	0.303
347	+ 0.138	0.024	388	+ 0.028	0.400	42 0	0.017	0.014	365	+ 0.404	+ 0.416
348	- 0.011	0.042	389	- 0.540	0.144	421	0.000	0.014	366	0.404	0.416
349	.0.003	0.010	390	0.104	0.460	422	0.003	0.002	367	- 0.520	- 0.505
850	+ 0.006	0.001	391	0.484	0.068	423	0.003	0.002	368	+ 0.492	+ 0.525
851	- o.oog	0.001	392	0.330	0.200				369	- 0.420	- 0.396
Ri	ght-hand	Branch	393	0.490	0.260	4 0 <i>th</i>	Equation.	Azimuth.	370	+ 0.202	+ 0.520
862	+ 0.100	+ 0.604	394	0.092	0.400	I	eft-hand I	Branch	371	- 0.530	- 0.500
363	- o·628	- 0.172	395	0.376	0.080	331	— o·306	- 0.306	372	+ 0.404	+ 0.416
364	0.435	0.150	396	0.072	0.324	332	+ 0.306	+ 0.306	373	- 0.525	- 0.495
365	+ 0.064	+ 0.292	397	0.392	0.148	333	0.306	0.306	374	+ 0.396	+ 0.420
366	0.176	0.608	398	0.172	0.380	334	- 0.309	- 0.300	375	- 0.420	- 0.396
367	- o·830	- 0.125	399	0.380	0.175	335	+ 0.258	+ 0.250	376	+ 0.500	+ 0.212
868	0.000	+ 0.765	400	0.188	0.304	336	- 0.253	- 0.253	377	- 0.412	- 0.400
369	0.616	0.080	401	0.410	0.250	337	0.523	0.253	378	+ 0.495	+ 0.225
370	+ 0.180	0.675	402	0.188	0.304	33 8	+ 0.253	+ 0.323	379	- 0.212	- 0.500
371	- o·890	- 0.002	403	0.402	0.285	339	0.303	0.303	380	+ 0.200	+ 0.212
372	+ 0.088	+ 0.919	404	0.270	0.372	340	- 0.303	- 0.303	3 81	- 0.515	- 0.500
				- 4/5	- 313		J-J		<u> </u>		<u> </u>

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
40th	Equation—	-(Continued).	4 0 <i>th</i>	Equation–	-(Continued).	41 <i>st</i>	Equation-	-(Continued).	42nd	Equation-	–(Continued).
382	+ 0.200	+ 0.212	414	- 0.060	- 0.060	382	+ 0.600	- 0.615	424	- 0.030	+ 0.035
3 83	- 0.420	- 0.396	415	+ 0.090	+ 0.090	383	0.444	0.312	425	0.122	0.119
384	+ 0.400	+ 0.412	416	- 0.035	- 0.035	384	0.22	0.528	426	0.133	0.076
385	- 0.520	- 0.490	417	+ 0.040	+ 0.041	385	0.690	0.795	427	0.128	0.110
3 86	+ 0.200	+ 0.212	418	- 0.060	- 0.060	386	0.432	0.465	428	0.122	0.163
387	- 0.212	- 0.200	419	+ 0.080	+ 0.080	387	0.282	0.282	429	0.100	0.109
388	+ 0.400	+ 0.412	420	- 0.110	- 0.110	388	0.388	0.432	430	0.122	0.103
389	- 0.425	- 0.396	421	+ 0.070	+ 0.070	389	0.636	0.216	431	0.138	0.141
3 9Q	+ 0.400	+ 0.412	422	- o.o8o	- 0.080	390	0.432	0.240	432	0.130	0.123
891	- 0.412	- 0.400	423	+ 0.080	+ 0.080	391	0.528	0.336	433	0.084	0.102
392	+ 0.393	+ 0.416				892	0.600	0.624	434	0.099	0.090
393	- 0.210	- 0.495	41 <i>st</i>	Equation.	Linear.	393	0.210	0.612	435	0.068	0.059
394	+ 0.400	+ 0.412	362	+ 0.432	- 0.432	394	0.348	0.480	436	0.062	0.041
39 5	- 0.412	- 0.400	363	0.420	0.336	395	0.408	0.276	437	0.020	0.024
396	+ 0.396	+ 0.408	364	0.252	0.361	396	0.276	. 0.372	43 8	0.000	0.048
397	- 0.416	- o·392	365	0.480	0.384	897	0.456	0.372	439	0.076	0.092
3 98	+ 0.492	+ 0.210	3 6 6	0.300	0.420	398	0.462	0.480	440	0.062	o·063
399	- 0.210	- 0.495	367	0.612	0.465	399	0.420	0.390	441	0.028	0.067
400	+ 0.396	+ 0.408	368	0.690	0.570	400	0.408	0.384	442	0.077	0.090
401	- 0.210	- 0.495	369	0.444	0.636	401	0.210	0.480	443	0.039	0.047
402	+ 0.396	+ 0.408	37 0	0.390	0.462	402	0.396	0.432	R	ight-hand	Branch
403	- 0.210	- 0.495	371	0.765	0.282	403	0.240	0.492	362	0.000	- 0.432
404	+ 0.492	+ 0.210	372	0.324	0.204	404	0.210	0.270	444	+ 0.023	0.030
405	- 0.212	- o·485	373	0.615	0.222	405	0.435	0.465	445	0.023	0.034
406	+ 0.388	+ 0.412	374	0.576	0.204	406	0.384	0.336	446	0.030	0.033
407	0.029	0.031	375	0.396	0.468	407	0.044	0.040	447	0.033	0.033
408	- 0.031	- 0.030	876	0.675	0.492	408	0.052	0.032	448	0.060	0.048
409	+ 0.039	+ 0.031	377	0.336	0.492				449	0.056	0.048
410	0.001	- o.o88	378	0.810	0.765	42 nc	l Equation	. Linear.	450	0.041	0.046
411	+ 0.078	+ 0.081	879	0.480	0.645	I	eft-hand 1	Branch	451	0.043	0.043
412	- 0.081	- 0.078	380	0.630	0.492	407	+ 0.038	- 0.011	452	0.022	0.039
413	+ 0.029	+ 0.061	3 81	0.240	0.585	408	0.052	0.032	453	0.958	0.039

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	(e e
42nd	Equation-	-(Continued).	42nd	Equation-	–(Continued).	43rd	Equation-	-(Continued).	43rd	Equation-	(Conti	inued).
454	+ 0.012	– 0.016	486	+ 0.090	- 0.099	375	- 0.492	+ 0.300	407	+ 0.023	-	0.014
455	0.036	0.037	487	0.108	0.099	376	0.410	0.910	424	- 0.008	,	0.012
456	0.033	0.022	488	0.067	0.063	877	0.416	0.393	425	0.028		0.021
457	0.033	0.028	489	0.062	0.076	378	0.485	0.802	426	+ 0.022	+	0.022
458	0.033	0.023	490	0.072	0.068	379	0.242	0.340	427	- 0.031	_	0.042
459	0.043	0.049	491	0.068	0.067	380	0.300	0.270	428	+ 0.042	+	0.014
4 60	0.041	0.032	492	0.054	0.086	381	0.262	0.245	429	0.044		0.031
461	0.024	0.033	498	0.043	0.010	382	0.330	0.620	430	- 0.019	_	0.039
462	0.033	0.022	494	0.029	0.032	383	0.436	0.056	431	0.016		0.032
463	0.020	0.030	495	0.028	0.001	384	0.192	0.492	432	+ 0.036	+	0.009
464	0.048	0.042	496	0.023	0.001	385	0.602	0.280	433	0.030		0.015
465	0.043	0.02	497	0.063	0.063	386	0.040	0.485	434	- 0.012	_	0.034
466	0.046	0.044	498	0.020	0.059	387	0.210	0.130	435	0.001		0.013
467	0.042	0.041	499	0.102	0.093	3 88	+ 0.032	0.392	436	+ 0.013	+	0.003
468	0.042	0.049	500	0.069	0.093	389	- 0.460	0.093	437	0.011		0.002
469	0.046	0.043	501	- 0.029	0.030	390	0.030	0.400	43 8	- 0.002	_	0.008
470	0.063	0.028				391	0.325	- 0.016	439	0.006		0.010
471	0.029	0.024	43rd	Equation.	Latitude.	392	0.068	+ 0.388	440	+ 0.008	+	ი∙∞ვ
472	0.047	0.020	L	eft-hand I	Branch	393	0.320	0.022	441	0.006		0.004
473	0.043	0.048	362	- 0.672	+ 0.300	894	+ 0.056	0.308	442	- 0.004	_	0.003
474	0.021	0.043	363	0.664	0.360	395	- 0.248	- o.068	443	0.004		0.003
475	0.044	0.044	364	0.420	0.301	396	+ 0.096	+ 0.240	·R	ight-hand	Bran	ch
476	0.029	0.032	365	0.400	0.296	897	- 0.333	- 0.064	414	+ 0.038	-	0.018
477	0.033	0.029	866	0.300	0.652	398	+ 0.102	+ 0.385	445	0.023		0.037
478	0.012	0.030	867	0.870	0.342	399	- 0.230	- 0.132	446	0.018	l	0.034
479	0.010	0.030	368	0.240	0.825	400	+ 0.113	+ 0.196	447	0.036	ľ	0.033
480	0.032	0.038	869	0.624	0.240	401	- 0.312	- 0.140	448	0.029		0.075
481	0.037	0.033	370	0.202	0.680	402	+ 0.140	+ 0.176	449	0.080		0.021
482	0.027	0.033	371	0.950	0.412	403	- 0.182	- 0.170	450	0.040		0.066
483	0.039	0.034	372	0.164	0.652	404	+ 0.192	+ 0.192	451	0.064		0.044
484	0.114	0.093	373	0.770	0.370	405	- 0.150	- 0.195	452	0.024		0.041
485	0.114	0.114	374	0.388	0.608	406	+ 0.184	+ 0.136	453	0.040		0.038

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
43rd	Equation-	-(Continued).	43rd	Equation-	-(Continued).	44 <i>th</i>	Equation-	–(Continued).	44 <i>th</i>	Equation-	–(Continued).
454	+ 0.012	- 0.033	4 86	+ 0.021	- 0.048	875	+ 0.030	+ 0.524	407	+ 0.001	+ 0.016
455	0.024	0.041	487	0.042	0.024	376	- 0.725	0.010	424	- 0.031	0.030
456	0.034	0.033	488	0.028	€.032	377	+ 0.040	0.220	425	0.086	0.066
457	0.044	0.031	489	0.029	0.038	378	- 0.800	0.302	426	0.028	0.057
458	0.026	0.039	490	0.034	0.027	379	0.030	0.652	427	0.099	0.059
459	0.026	0.029	491	0.033	0.029	380	0.680	0.070	428	0.028	0.097
460	0.046	0.043	492	0.014	0.034	381	0.082	0.602	429	0.048	0.067
461	0.028	0.029	493	0.014	0.011	382	0.660	0.192	43 0	0.062	0.041
462	0.027	0.029	494	0.010	0.001	383	0.104	0.376	431	0.071	0.061
463	0.022	0.033	495	0.010	0.030	384	o·568	0.300	432	0.043	0.022
464	0.023	0.020	496	0.013	0.013	385	0.265	0.740	433	0.038	0.020
465	0.047	0.022	497	0.014	0.013	386	0.22	0.120	434	0.040	0.029
466	0.020	0.042	498	0.006	0.009	387	0.222	0.585	435	0.022	0.019
467	0.041	0.044	499	0.013	0.013	388	0.360	0.192	436	0.019	0.013
468	0.044	0.025	500	0.002	0.001	389	0.312	0.492	437	0.014	0.030
469	0.046	0.041	501	0.002	0.003	390	0.428	0.380	438	0.019	0.010
470	0.062	0.024		•		391	0.333	0.332	439	0.018	0.030
471	0.023	0.021	44 th .	Equation	Longitude.	392	0.20	0.332	440	0.008	0.011
472	0.043	0.042	I	eft-hand I	Branch	393	0.202	0.200	441	0.008	0.013
473	0.037	0.040	362	+ 0.044	- 0.664	394	0.324	0.32	442	0.007	0.009
474	0.042	0.036	363	0.023	+ 0.268	395	0.192	0.222	443	0.002	0.006
475	0.034	0.037	364	0.081	0.432	396	0.360	0.196	\mathbf{R}	ight-hand	Branch
476	0.033	0.032	365	- 0 .660	- o·o48	397	0.338	0.388	444	- 0.003	- 0.031
477	0.034	0.031	366	0.20	0.040	3 98	0.375	0.270	445	+ 0.031	+ 0.003
478	0.014	0.033	367	0.010	+ 0.695	399	0.310	0.285	446	0.039	0.002
479	0.013	0.012	368	0.850	o· o o5	400	0.313	0.338	447	- 0.006	- 0.030
480	0.033	0.033	369	+ 0.004	0.712	401	0.390	0:325	448	+ 0.072	+ 0.017
481	0.022	0.030	370	- o·635	- 0.035	402	0.284	0.380	449	- 0.002	- 0.024
482	0.010	0.030	871	0.132	+ 0.720	403	0.330	0.312	450	+ 0.02	+ 0.013
483	0.012	0.033	372	0.484	0.068	404	0.320	0.400	451	- 0.017	- 0.023
484	0.000	o.060	878	0.042	0.675	405	0.285	0.370	452	+ 0.031	+ 0.000
485	0.063	0.022	374	0.630	0.064	406	0.244	0.248	453	- 0.013	- 0.031

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
44th	Equation-	-(Continued).	44th Equation	-(Continued).	45th	Equation-	-(Continued).	4 5 <i>th</i>	Equation-	-(Continued).
454	+ 0.017	+ 0.007	486 - 0.031	- 0.043	375	+ 0.396	+ 0.420	407	- 0.060	+ 0.031
455	- 0.012	- 0.037	487 + 0.043	+ 0.033	376	- 0.525	- 0.495	424	+ 0.029	0.031
456	+ 0.033	+ 0.010	488 0.026	0.013	377	+ 0.396	+ 0.420	425	0.108	0.111
457	- 0.019	- 0.032	489 - 0.011	- 0.024	378	- o·525	- 0.495	426	- 0.113	- 0.100
458	+ 0.032	+ 0.017	490 0.012	0.033	379	+ 0.200	+ 0.212	427	+ 0.108	+ 0.111
459	- 0.023	- 0.038	491 + 0.023	+ 0.001	380	- 0.212	- 0.500	428	- 0.111	- 0.108
460	+ 0.029	+ 0.031	492 0.021	0.002	381	+ 0.200	+ 0.212	429	0.111	0.108
461	0.010	0.014	493 - 0.009	- 0.014	382	- 0.212	- o·500	430	+ 0.108	+ 0.111
462	– 0.016	- 0.014	494 0.008	0.014	883	+ 0.392	+ 0.416	431	0.097	0.103
463	+ 0.014	+ 0.014	495 + 0.017	+ 0.003	384	- 0.412	- 0.400	432	- 0.101	- 0.098
464	0.036	0.028	496 - 0.007	- 0.013	385	+ 0.200	+ 0.212	433	0.101	-0.098
465	- 0.028	- 0.032	497 0.004	0.011	386	- 0.212	- o·500	434	+ 0.100	+ 0.100
466	0.038	0.032	498 + 0.005	+ 0.004	387	+ 0.490	+ 0.520	435	0.049	0.021
467	+ 0.033	+ 0.022	499 0.009	0.000	388	- 0.408	- 0.396	436	- 0.050	- 0.050
468	0.036	0.028	500 - 0.004	- 0.001	389	+ 0.392	+ 0.416	437	0.020	0.020
469	- 0.029	- 0.032	501 0.004	0.003	390	- 0.408	- 0.396	438	+ 0.050	+ 0.050
470	0.022	0.033			391	+ 0.396	+ 0.408	439	o.060	0.000
471	+ 0.033	+ 0.036	45th Equation.	Azimuth.	392	- 0.416	- 0.392	440	- 0.060	– о.обо
472	0.022	0.019	Left-hand 1	Branch	393	+ 0.490	+ 0.520	441	0.060	0.000
473	- o.o18	- 0.023	362 + 0.404	- 0.820	394	- 0.408	- 0.396	442	+ 0.060	+ 0.000
474	0.018	0.023	363 0.404	+ 0.416	395	+ 0.396	+ 0.408	443	0.020	0.020
475	+ 0.033	+ 0.019	364 0.303	0.312	396	- 0.408	- 0.396	${f R}$ i	ight-hand	Branch
476	0.019	0.013	365 - 0.416	- 0.404	397	+ 0.396	+ 0.408	444	- 0.030	- 0.031
477	- 0.013	- c·o15	366 0.420	0.396	398	- o·510	- 0.495	445	+ 0.031	+ 0.030
478	0.013	0.014	367 + 0.495	+ 0.222	399	+ 0.495	+ 0.210	446	0.031	0.030
479	+ 0.014	+ 0.010	368 - 0.520	- 0.202	400	- o·408	- 0.396	447	- 0.030	- 0.031
480	0.031	0.013	369. + 0.404	+ 0.416	401	+ 0.492	+ 0.210	448	+ 0.023	+ 0.021
481	- 0.014	- 0.017	370 - 0.212	- o·500	402	- 0.413	- 0.388	449	- 0.032	- 0.036
482	0.013	0.018	871 + 0.500	+ 0.212	403	+ 0.485	+ 0.212	450	+ 0.042	+ 0.040
483	+ 0.014	+ 0.011	372 - 0.412	- 0.400	404	- o·515	- 0.485	451	- 0.040	- 0.042
484	0.02	0.031	373 + 0.500	+ 0.212	405	+ 0.492	+ 0.210	452	+ 0.026	+ 0.025
485	- 0.027	- 0.045	374 - 0.420	- 0.396	406	- 0.413	- o·388	453	- 0.025	- 0.026

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	o c	No. of Circuit Triangle	36	Œ
4 5 <i>th</i>	Equation-	-(Continued).	45th	Equation-	–(Continued).	4 6 <i>th</i>	Equation-	—(Continued).	46 <i>th</i>	Equation	—(Continued).
454	+ 0.016	+ 0.012	486	- 0.101	- 0.101	474	– 0.021	+ 0.043	506	- 0.041	+ 0.060
455	- 0.030	- 0.031	487	+ 0.101	+ 0.101	475	0.044	0.044	507	0.077	0.036
456	+ 0.031	+ 0.030	488	0.001	0.001	476	0.029	0.033	508	0.083	0.072
457	- 0.030	- 0.031	489	- 0.061	- 0.001	477	0.033	0.029	509	0.048	0.083
458	+ 0.026	+ 0.022	490	0.061	. 0.061	478	0.012	0.030	510	0.033	0.049
45 9	- 0.032	- 0.036	491	+ 0.061	+ 0.001	479	0.010	0.030	511	0.067	0.041
4 60	+ 0.031	+ 0.030	492	0.001	0.001	480	0.032	0.038	512	0.011	0.047
461	0.030	0.030	493	- o.oqı	- 0.061	481	0.032	0.033	513	0.063	0.081
462	- 0.030	- 0.030	494	0.061	0.001	482	0.022	0.033	514	0.022	0.021
463	+ 0.030	+ 0.030	495	+ 0.061	+ 0.059	483	0.039	0.034	515	0.063	0.072
464	0.041	0.041	496	- 0.059	- o.091	484	0.114	0.093	516	0.012	0.038
465	- 0.041	- 0.041	497	0.020	0.021	485	0.111	0.114	517	0.140	0.093
466	0.041	0.041	498	+ 0.020	+ 0.050	486	0.090	0.099	\mathbf{R}	ight-hand	Branch
467	+ 0.041	+ 0.041	499	0.020	0.020	487	0.108	. 0.099	518	+ 0.031	- 0.024
468	0.046	0.046	500	– 0.050	- 0.050	488	0.067	0.063	519	0.033	0.031
469	- o·o46	- 0.046	501	0.100	+ 0.050	489	0.062	0.076	520	0.034	0.036
47 0	0.046	0.046				490	0.072	0.068	521	0.033	0.039
471	+ 0.046	+ 0.046	4 6 <i>th</i>	Equation	. Linear.	491	0.068	0.067	522	0.033	0.036
472	0.036	0.036	${f L}$	eft-hand H	Branch	492	0.024	0.086	523	0.011	0.010
473	- o·o36	- 0.036	461	- o·o23	+ 0.003	493	0.043	0.049	524	0.033	0.033
474	0.036	0.036	462	0.033	0.022	494	0.059	0.033	525	0.029	0.030
475	+ 0.036	+ 0.036	463	0.030	0.030	495	0.028	0.001	526	0.041	0.042
476	0.036	0.026	464	0.048	0.042	496	0.023	0.061	527	0.023	0.047
477	- 0.022	- 0.026	465	0.043	0.025	497	0.063	0.063	528	0.001	0.028
478	0.036	0.026	466	0.046	0.044	498	0.050	0.029	529	0.062	0.062
479	+ 0.022	+ 0.022	467	0.043	0.041	499	0.102	0.093	5 30	0.168	0.163
480	0.036	0.032	468	0.042	0.049	500	0.069	0.093	531	0.020	0.052
481	- 0.035	- 0.035	469	0.046	0.043	501	0.099	0.042	532	0.043	0.039
482	0.032	0.032	470	0.063	0.058	502	0.062	0.089	533	0.027	0.039
483	+ 0.032	+ 0.035	471	0.059	0.024	503	0.026	0.063	534	0.028	0.033
484	0.101	0.101	472	0.042	0.050	504	0.084	0.083	535	0.012	0.033
485	- 0.101	- 0.101	473	0.043	0.048	505	0.110	0.130	536	0.031	0.013

No. of Circuit Triangle	. 36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
46 th	Equation	-(Continued).	4 6 <i>th</i>	Equation-	-(Continued).	47 <i>th</i>	Equation_	-(Continued).	47 <i>th</i>	Equation-	-(Continued).
587	+ 0.033	- 0.028	569	+ 0.056	- o.o8o	485	- 0.097	+ 0.014	517	- 0.003	- 0.003
538	0.036	0.033	570	0.104	0.059	486	0.088	0.008	\mathbf{R}^{i}	ight-hand	Branch
539	o·089	0.084	571	0.044	0.069	487	0.003	0.087	518	+ 0.017	- 0.037
540	0.033	0.041	572	0.072	0.062	488	0.003	0.022	519	0.032	0.018
541	0.032	0.032	573	0.022	0.021	489	. 0.050	0.004	520	0.019	0.040
542	0.038	0.022				490	0.023	0.001	521	0.023	0.032
543	0.021	0.040	47th	Equation.	Latitude.	491	+ 0.002	0.048	522	0.017	0.038
5 44	0.043	0.049	L	eft-hand I	Branch	492	0.010	0.022	523	0.014	0.009
545	0.022	0.041	461	- o·o36	+ 0.019	493	- 0.037	- 0.011	524	0.031	0.046
546	0.031	0.026	462	0.034	0.030	494	0.039	0.012	525	0.046	0.029
547	0.068	0.036	463	0.013	0.030	495	+ 0.012	+ 0.040	526	0.032	0.066
548	0.068	0.000	464	0.036	0.063	496	- 0.034	- 0.013	527	0.077	0.042
549	0.044	0.038	465	0.001	0.039	497	0.033	0.000	528	0.029	0.081
550	0.033	0.042	466	. 0.064	0.030	498	+ 0.016	+ 0.025	529	0.093	0.068
551	0.032	0.026	467	0.034	0.022	499	0.010	0.028	530	0.168	0.551
552	0.049	0.037	468	0.034	0.067	500	- 0.031	- 0.016	531	o·069	0.061
553	0.034	0.049	469	0.001	0.023	501	0.031	0.017	532	0.046	0.021
554	0.022	0.040	470	0.077	0.036	502	+ 0.031	+ 0.012	533	0.036	0.033
555	0.069	0.069	471	0.032	0.068	503	- 0.016	- 0.017	534	0.031	0.029
556	0.078	0.074	472	0.027	0.028	504	0.032	0.027	535	0.023	0.022
557	0.126	0.069	473	0.020	0.026	505	+ 0.034	+ 0.010	536	0.024	0.016
558	0.080	0.097	474	0.056	0.031	506	- 0.018	- 0.033	537	0.026	0.034
559	0.038	0.020	475	0.030	0.049	507	0.011	0.013	538	0.030	0.026
560	0.122	0.061	476	0.011	0.032	508	+ 0.018	+ 0.002	539	0.098	0.093
561	0.088	0.101	477	0.033	0.011	509	- 0.000	- 0.013	540	0.034	0.046
562	0.088	0.126	478	0.023	0.011	510	0.011	0.013	541	0.036	0.036
563	0.023	0.060	479	0.001	0.034	511	+ 0.013	+ 0.004	542	0.030	0.036
564	0.077	0.024	480	0.007	0.034	512	0.013	0.003	543	0.049	0.041
565	0.033	0.044	481	0.037	0.006	513	- 0.003	- 0.008	544	0.041	0.047
566	0.027	0.020	482	0.031	0.002	514	+ 0.010	0.001	545	0.033	0.040
567	0.060	0.032	483	0.001	0.034	515	- 0.001	0.006	546	0.010	0.033
568	0.072	0.069	484	0.017	0.094	516	+ 0.003	0.003	547	0.001	0.033

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	33	. C
47 th	Equation	-(Continued).	4 8 <i>th</i>	Equation-	-(Continued).	4 8 <i>th</i>	Equation-	—(Continued).	4 8 <i>th</i>	Equation	—(Continued).
548	+ 0.057	- 0.075	465	0.000	+ c.062	497	- 0.039	+ 0.021	528	+ 0.040	+ 0.027
549	0.032	0.034	466	- 0.003	0.000	498	0.037	0.038	529	- 0.029	- 0.072
550	0.014	0.036	467	0.058	0.003	499	0.077	0.061	530	+ 0.181	+ 0.080
551	0.027	0.014	468	0.063	0.004	500	0.044	0.060	531	- 0.024	- 0.053
552	c·037	0.022	469	0.004	0.060	501	0.062	0.029	532	+ 0.038	+ 0.010
553	0.030	0.038	470	0.012	0.070	502	0.041	0.029	533	- 0.016	- 0.027
554	0.018	0.034	471	0.011	0.013	503	0.033	0.034	534	+ 0.024	+ 0.014
555	0.036	0.053	472	0.056	0.012	504	0.050	0.046	535	- 0.011	- 0.017
556	. 01048	0.034	473	0.010	0.024	505	0.020	0.062	536	+ 0.012	+ 0.013
557	0.074	0.031	474	0.019	0.020	506	0.019	0.024	537	0.013	0.001
558	0.031	0.022	475	0.021	0.013	507	0.034	0.013	538	~ 0.011	- 0.011
559	0.011	0.033	476	0.032	0.011	508	0.029	0.033	539	+ 0.029	+ 0.022
560	0.056	0.030	477	0.010	0.033	509	0.018	0.022	540	0.024	0.031
561	.01044	0.040	478	0.000	0.033	510	0.014	0.012	541	- 0.031	- 0.031
562	0.038	0.02	479	0.032	0.003	511	0.013	0.013	542	0.022	0.022
563	0.012	0.026	480	0.043	0.002	512	0.014	0.014	543	+ 0.029	+ 0.030
564	0.032	0.012	481	0.011	0.037	513	0.014	0.012	5 44	- 0.033	- 0.022
565	0.013	0.013	482	0.002	0.038	514	0.004	0.011	545	+ 0.036	+ 0.014
566	0.003	0.014	483	0.032	0.013	515	0.008	0.006	546	- 0.030	- 0.033
567	0.010	0.011	484	0.134	0.032	516	+ 0.004	0.002	547	0.023	0.036
568	0.012	0.013	485	0.046	0.119	517	- 0.008	0.006	548	+ 0.033	+ 0.033
569	0.002	0.014	486	. 0.033	0.106	\mathbf{R}	ight-hand	Branch	549	- 0.036	- 0.030
570	0.013	0.008	487	0.113	0.044	518	+ 0.031	- 0.001	550	0.022	0.033
571	0.001	0.002	488	0.069	0.030	519	- 0.003	0.031	551	+ 0.030	+ 0.024
572	0.002	0.006	489	0.031	0.011	520	+ 0.032	+ 0.001	552	c.016	0.033
ĺ	,		490	0.038	0.067	521	- 0.005	- 0.043	553	- 0.034	- 0.013
48th 1	Equation.	Longitude.	491	0.067	0.039	522	+ 0.032	+ 0.006	554	+ 0.012	+ 0.031
L	eft-hand H	Branch	492	0.056	0.024	523	- 0.003	- 0.012	555	- 0.042	- 0.018
4 61	- 0.001	- 0.031	493	0.030	0.044	524	+ 0.041	+ 0.000	556	+ 0.012	+ 0.036
462	+ 0.001	+ 0.033	494	0.034	0.032	525	- 0.016	- 0.043	557	0.007	0.036
463	- o·o3o	0.000	495	0.024	0.040	526	+ 0.022	+ 0.031	558	- 0.039	- 0.005
464	0.066	0.001	496	0.029	0.020	527	- 0.022	- 0.061	559	0.030	0.013
					30				L		

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
4 8 <i>th</i>	Equation-	-(Continued).	49 th	Equation-	-(Continued).	4 9th	Equation-	-(Continued).	49 <i>th</i>	Equation-	-(Continued).
560	+ 0.002	+ 0.028	478	+ 0.022	+ 0.036	511	- 0.060	- o.oeo	543	+ 0.036	+ 0.036
561	0.009	0.033	479	- 0.036	- 0.025	5 12	0.020	0.020	544	- 0.036	- 0.036
562	- 0.027	- 0.003	480	0.036	0.032	513	+ 0.020	+ 0.020	545	+ 0.036	+ 0.036
563	0.019	0.006	481	+ 0.034	+ 0.036	514	- 0.050	- 0.050	546	- 0.036	- 0.036
564	+ 0.001	+ 0.013	482	0.032	0.036	515	+ 0.020	+ 0.020	547	0.041	0.041
565	0.000	0.013	483	- 0.036	- 0.034	516	- 0.050	- 0.050	548	+ 0.041	+ 0.041
566	- 0.010	- 0.004	484	0.103	0.100	517	+ 0.060	+ 0.060	549	- 0.041	- 0.041
567	0.014	0.002	485	+ 0.008	+ 0.104	\mathbf{R}^{i}	ight-hand	Branch	550	0.046	0.046
568	+ 0.004	+ 0.010	486	0.008	0.104	518	+ 0.031	+ 0.030	551	+ 0.042	+ 0.042
569	- 0.011	0.003	487	- 0.104	- 0.098	519	- 0.030	- 0.021	552	0.040	0.040
570	+ 0.001	0.004	488	0.063	0.029	520	+ 0.036	+ 0.022	553	- 0.040	- 0.040
571	- 0.004	0.001	489	+ 0.059	+ 0.063	521	- 0.030	- 0.031	554	+ 0.040	+ 0.040
572	+ 0.002	0.000	490	0.020	0.062	522	+ 0.036	+ 0.025	555	- 0.072	- 0.070
			491	- 0.062	- 0.059	523	- 0.011	- 0.011	556	+ 0.011	+ 0.071
49 th	Equation.	Azimuth.	492	0.062	0.058	524	+ 0.031	+ 0.030	557	0.011	0.071
I	eft-hand I	Branch	493	+ 0.029	+ 0.061	525	- 0.032	- 0.036	558	- 0.071	- 0.011
461	+ 0.020	- 0.041	494	0.059	0.001	526	+ 0.052	+ 0.021	559	0.011	0.011
462	0.030	+ 0.031	495	- 0.061	- 0.059	527	- 0.021	- 0.052	560	+ 0.071	+ 0.071
463	- 0.031	- 0.030	496	+ 0.059	+ 0.061	528	+ 0.062	+ 0.061	561	0.011	0.071
464	0.042	0.040	497	0.020	0.021	529	- 0.061	- 0.062	562	- 0.071	- 0.069
465	+ 0.040	+ 0.042	498	- 0.052	- 0.049	530	+ 0.166	+ 0.163	563	0.021	0.021
466	0.040	0.043	499	0.053	0.048	531	- 0.045	- 0.047	564	+ 0.021	+ 0.021
467	- 0.042	- 0.040	500	+ 0.049	+ 0.02	532	+ 0.036	+ 0.032	565	0.021	0.021
468	0.047	0.042	501	0.048	0.021	533	- 0.025	- 0.026	566	- 0.021	- 0.050
469	+ 0.042	+ 0.046	502	- 0.052	- 0.049	534	+ 0.036	+ 0.026	567	0.021	0.020
470	0.042	0.047	503	+ 0.049	+ 0.02	535	- 0.016	- 0.017	568	+ 0.020	+ 0.050
471	- 0.047	- 0.045	504	0.048	0.083	536	+ 0.016	+ 0.016	569	- 0.050	- 0.050
472	0.034	0.032	505	- 0.081	- 0.078	537	0.013	0.013	570	+ 0.020	+ 0.050
473	+ 0.032	+ 0.037	506	+ 0.080	+ 0.080	538	- 0.014	- 0.014	571	- 0.050	- 0.050
474	0.034	0.036	507	0.049	0.021	539	+ 0.036	+ 0.036	572	+ 0.020	+ 0.050
475	- 0.036	- 0.035	508	- 0.052	- 0.049	540	0.031	0.031	573	- 0.050	- 0.050
476	0.036	0.022	509	+ 0.050	+ 0.021	541	- 0.031	- 0.031			_
477	+ 0.025	+ 0.026	510	0.060	0.060	542	0.036	0.036			
					<u> </u>					<u> </u>	<u> </u>

15.

The Equations between the Indeterminate Factors, and their Solution.

In the equations between the Indeterminate Factors, the coefficients of the factors are summations of terms of the form $(\mathfrak{bB} + \mathfrak{cC})$, such as are exhibited in equations (68) on page 60. But as in the present reduction equalizing factors have been applied to the primary equations, the numerical values of the coefficients will correspond to $(\mathfrak{b'B'} + \mathfrak{c'C'})$, $\mathfrak{b'}$ being $= f\mathfrak{b}$, and $\mathfrak{B'} = f\mathfrak{B}$, . . . and f being the equalizing factor. The values of $\mathfrak{B'}$ and $\mathfrak{C'}$ are given in the tables in the last section; those of \mathfrak{b} and \mathfrak{c} are given in the table in Section 12, with the values of the equalizing factors shewn at the head of each column. This much being premised we may again drop the accents, as in Section 14.*

The following table gives the numerical values of the coefficients of the Indeterminate Factors and the values of the Absolute Terms, in each of the 49 Equations which were presented for simultaneous solution; the Absolute Terms are the products of those of the primary equations of condition by their respective equalizing factors, as shown in the table at the end of Section 10. The solution of the equations was effected with the aid of the 5-place Logarithm Tables—comprised in three 'openings'—in the Auxiliary Tables to facilitate the Calculations of the Survey Department of India.

It will be seen that in these equations the identity of the coefficients that are symmetrically situated on opposite sides of the diagonal, which is so valuable an aid in solving the equations, is preserved.

Now it may be readily found that

$$\lambda'_a = \frac{\lambda_a}{f_a}$$
, \dots $\lambda'_n = \frac{\lambda_n}{f_a}$.

Now whatever advantages may be derived from the employment of equalizing factors are restricted, almost solely, to the solution of the equations between the Indeterminate Factors, and those advantages may obviously be obtained by introducing the equalizing factors, as above, into the equations between the Indeterminate Factors; after solving the equations we may proceed to find the values of the Indeterminate Factors which correspond to the primary equations of condition, and then employ those values in the subsequent calculations, corresponding to equations (20).

^{*} It appears desirable to point out here that equalizing factors may be introduced into the equations between the Indeterminate Factors, without going through the labour of actually multiplying the coefficients of the unknown quantities in each of the primary equations of condition by an equalizing factor, as has been done in the present instance. If we multiply equations (18) page 28 in succession by the equalizing factors f_a , f_b f_a and put λ'_a , λ'_b λ'_n for the Indeterminate Factors corresponding to the equalized equations, we eventually obtain the following groups of equations between the Indeterminate Factors:—

The Equations between the Indeterminate

TO OUT TO OUT		T	нь Со		ENTS (OF TH	E INDE	TERMI	NATE	FACTO	ORS BEI	FORE T	HE SO	LUTIO	N.		ABSOLUTE Terms
70 007	,A		2Δ	₃ A	4	Δ	5 ¹	6Δ	7	A	84	₉ ^	101	11	Λ	121	The AI
1	+ 26.	44 +	45.32	- 11:44	- 0	.40 -	- 25.87	- 30.3	2 -	1.37	- o.18						+ 8.6
2	+ 45		90.30	- 2.87	+ 14	. 15 -	- 45'10	- 60.3	2 - 1	13.61	- 14.21						+ 14.0
3	- 11.	44 -	2.87	+ 99.28	+ 70	5.77 -	11.37	+ 15.9	ı	64.25	- 75.21						+14.0
4	- o.	40 +	14.12	+ 76.77	+ 6	7.79	h 0.40	+ 2.9	8 - !	50.53	- 65.87						+11.2
5	- 25.	87 -	45.10	+ 11.27	+ 0	o·40 -	+ 50.31	+ 57.9	4 -	7.03	+ 3.03	- 24.13	- 21	. 23 -	1.67	- 3.53	- o.s
6	- 30.	22 -	60.33	+ 15.91	+ :	- 86.5	F 57 [.] 94	+ 81.3	9 -	1.76	+ 9194	- 27.67		.39 -	8.09	- 12.68	- 5.3
7	- 1.	37 -	13.61	- 64.25	- 50	0.33	- 7.03	- 1.7			+ 88.89	+ 8.35	+ 9	.07 -	,	- 38.90	- 16.3
8	- o.	18 -	14.21	- 75.21	- 6	5.87	4 3.03	+ 9.9	4 + 8	38.89	+ 114.40	- 2.90	0	.11	32.18	- 48·36	- 14.3
					,	Coi	EFFICIE	nts &	c.—((Contin	ued).	 	· .				
	5^1	6 Λ	7^A	81	9⁴	10Д	111	12 A	13^1	14^1	15^1	16^	,,A	18 Λ	19^1	20^1	
9	- 24 · 12	-27.67	+ 8.35	- 2.90	+ 35.89	+ 33.07	- 2.85	+ 1.21	- 11.69	- 9.63	+ 1.10	+ 1.26					+ 14.4
.0	-21.53	- 28 · 39	+ 9.07	- 0.11	+ 33.07	+ 37 · 88	- 2.21	+ 1.43	- 11.83	- 11.92	- 0.39	- 1'47					+13.8
1	- 1.67	- 8.09	-29.97	-32.18	- 2.85	- 2.21	+ 38 · 92	+ 47 · 91	+ 4.20	+ 3.93	- 10. 38	-15.74					- 2:
2	- 3.33	- 12.68	- 38.90	-48.36	+ 1.21	+ 1.73	+47.91	+ 71 · 71	+ 1.69	+ 1.72	-12.10	- 23 · 25					- 6.
3					- 11.69	-11.83	+ 4.20	+ 1.69	+ 23.80	+ 19.26	- 6.92	- 3.03	- 11·87	- 9.01	+ 0.01	+ 1.32	-19.
4	i				- 9.63	-11.92	+ 3.93	+ 1.72		İ		+ 2.36	- 9.91	- 9.06	- 1.88	- 3.93	- 18.
5					+ 1.10	- o.39	- 10.58	-13.10		- 2.98	1 .	+ 27 · 26			- 9.46	-15.07	- 0.
6					+ 1.26	- 1.47	-15.4	- 23.52	- 3.02	+ 3.36	+ 27 · 26	+ 48 · 48	+ 1.48	+ 1.45	- 12.97	-24.70	+ 10.
					1	Coi	EFFICIE	ents &	c.—(Contin	ued).	•	T	<u> </u>	1		
	13^1	14^^	15^^	16^	17^^	181	19^1	201	211	22^1	23^^	24^^	25^^	26^1	27^1	28^	
7	- 11.87	- 9.91	+ 5.77	+ 1.48	+ 18 · 46	+ 14.08	- 3.12	- o·62	- 6.58	- 4:40	+ 0.13	- o·84					+ 5
8	- 9.01	- 9.06	+ 4.26	+ 1.45	+ 14.08	+ 14.13	- 1.02	+ 2.61	- 5.02	- 4:44	- 1.59	- 3.93					+ 5.
9	+ 0.01	- 1.88	- 9.46	- 12.97	- 3.12	- 1.05	+ 12.83	+ 19.17	+ 2.18	+ 1.30	- 3.49	- 6.13					+ 3.
0	+ 1.35	- 3.93	-15.04	-24.40	- 0.62	+ 2.61	+ 19.17	+ 38 · 81	- 0.40	- 1.30	- 5.63	-13.42					- 0
1	1				1	l	1	1	1		- 9.00	1	1	1	1	1	+ 2
12					1	l		l	i .	1	- 0.95		i	1	!	1	+ 3
28					1			1		1	+ 13.00	1	ŀ	1	1 .	ı	+ 1
24	ı	1	i	1	- 0.84	- 2:02	- 6.13	- 12:42	- 1:20	مه مداد	14.8.48	148.04	14 0:00	14 0.81	1- 0.80	-33.72	+ 4

Factors expressed in Natural Numbers.

quation						Co	EFFICE	ENTS &	&c.—(Conti	inued).					-	ABSOLUTE PERMS
No. of Equation	211	22	23^1	24^^	25 ^A	26Λ	27^^	281	29^1	30^Λ	3111	321	33^1	34 ^A	35 ^A	36 ^A	THE ABSOI TERMS
25 26 27 28 29 30 31	+ 0.46		+ 8·79 + 4·06 - 4·56 - 12·61	+ 2.05 + 0.81 - 9.80 -33.72	+13.22 - 4.20 - 2.23 - 7.65 - 4.49 + 0.17	+ 10·39 - 0·89 + 3·21 - 5·75 - 3·82 - 1·35	- 0.89 + 10.33 + 18.65 + 3.67 + 2.32 - 3.68	+ 3.21 + 18.65 + 51.31 + 0.55 + 0.57 - 6.23	- 5.7 + 3.6 + 0.5 + 11.8 + 6.1	5 - 3.8 7 + 2.3 5 + 0.5 8 + 6.1 0 + 4.1	49 + 0·11 32 - 1·33 32 - 3·66 57 - 6·23 10 - 1·66 13 - 0·19 + 3·81 + 8·58	5 - 3.83 - 8.70 3 - 16.82 - 16.82 - 1.12 + 8.58	- 3·58 - 1·55 + 0·76	- 0·67 + 0·26	- 0·44 - 0·72	- 1·53	- 3.987 - 5.355 - 0.450 - 5.739 + 5.901 + 4.545 - 0.405 + 4.441
						Coi	efficii	ents &	≿c.—(Conti	nued).						
	29^1	30Л	3111	32 ^A	33^^	34 ^A	35 ^A	36A	37^^	38 ^A	39^^	40A 41	Λ 42Λ	43^^	44^^	45^^	
33 34 35 36 37	- 1·24	- 1.55 - 0.67 - 0.44 - 1.53	+ 0·26 - 0·72	- 0·15 - 2·14 - 8·65	+ 4.28 - 2.22 + 0.47	+ 3.08 - 0.35 + 3.08	- 0·35 + 3·66 + 6·73	+ 2·51 + 6·73 +23·15	- 2·96 + 2·39 + 0·51	+ 1.06 + 0.31	+ 0·39 + - 0·42 - - 1·80 - - 3·49 - - 0·63 -	2·16 4·43					- 8.538 - 4.710 + 0.540 - 2.279 + 5.727
38 39 40			·		+ 0.39	}	- 1·80	- 3.49	- o·63	- 1·05	- 1.05 + +21.45 + +24.39 +	24.39 - 10	o·93 – o·	53 + 13.9	1 - 4.3	20.30	- 1.695
						Сов	FFICIE	ents &	tc.—(Conti	nued).						
	381	3	₉ Δ	₄₀ Λ	41	Δ.	42 ^{Λ}	43^	4	Δ	45^^	461	47^	- 48	34	49A	
41 42 43 44 45 46 47 48 49	+ 12·8 + 0·0 - 5·5 - 13·8 - 14·1	8 - 7 + 1 2 -	0·53 - 3·91 - 4·37 -	- 0.98 - 0.43 + 14.80 - 16.28 - 40.71	+ 17 + 0 - 11 - 10 + 0	· 23 + · 31 + · 83 +	0°23 3°92 1°45 1°34 0°41 1°64 0°85	- 0.6 - 0.6 - 10.7 + 10.8 + 1.7 - 11.1	45 + 86 + 32 + 15 + 95 - 75 +	10·83 1·34 1·32 19·23 18·91 0·15 0·55	+ 0.74 + 0.41 - 16.15 + 18.91 + 49.27 + 0.02 + 1.59 - 1.46	- 1.6 0.9! + 0.02 + 5.23 + 2.58 + 1.76 + 0.35	3 + 3· 3 + 3· 4 + 1· 5 + 0·	75	0.86 1.46 1.76	- 1·56 - 3·97	+ 3.060

The Equations between the Indeterminate

1	Тне	Coeffic	IENTS OF	THE IND	ETERMIN.	ATE FAC	fors, af	TER THE	Success	SIVE ELI	MINATIO	ns.	Absolute Frms
TO: OF THE COLUMN	,A	₂ A	₃ Å	4 A	₅ A	6Λ	71	₈ A	₉ A	тоД	,, A	₁₂ Λ	THE ABSOI TERMS
1	+ 26.44	+ 45.32	- 11'44	- 0.40	- 25.87	- 30.53	- 1.37	- o.18					+ 8.61
2		+ 12.22	+ 16.4	+ 14.84	- o·76	- 8:42	- 11.36	- 14.30					- o·67
8			+ 72.25	+ 56.76	+ 1.10	+ 14.09	- 49.78	- 56.30					+ 18.64
4				+ 5.60	+ 0.02	+ 1.43	+ 2.31	- 4.81					- 2.11
5					+ 24.93	+ 27.64	- 8.31	+ 2.88	- 24.12	- 21.53	- 1.67	- 3.53	+ 7.90
6						+ 7.42	+ 7.46	+ 9.20	- 0.93	- 4.85	- 6.34	- 6.10	- 7.74
7							+ 30.11	+ 30.93	+ 1.35	+ 6.87	- 24.26	- 30.83	+ 7.59
8								+ 6.78	- 0.34	+ 1.59	+ 0.67	- 5.04	- 1.41
		1	 	Тня	COEFFIC	<u> </u>	<u> </u>	ntinued)		ı	1		
	₉ ^	10A	111	12/1	13^^	14^^	15^1	16 ^A	17^^	187	191	20^1	
9	+ 12.37	+ 11.68	- 4.55	- 1.66	- 11.69	- 9.63	+ 1.10	+ 1.26					+ 20.77
0		+ 3.78	+ 1.38	+ 2.29	- 0.79	- 2.83	- 1.43	- 2.94				ļ	- 5.24
1			+ 12.00	+ 14.18	+ 0.80	+ 1.67	- 9.38	- 14.14					+ 6.63
2				+ 6.06	- 0.39	+ 0.40	+ 0.11	- 4.32					- 9.81
3					+ 12.22	+ 9.78	- 5.24	- 1.43	- 11.87	- 6.01	+ 0.01	+ 1.52	- 1.60
4						+ 3.24	+ 3.44	+ 4.65	- o.64	- 2.02	- 2.59	- 4.91	- 5.0
5				}			+ 9.00	+ 11.30	+ 0.96	+ 1.96	- 7.27	- 11.14	+ 3.3
3						<u> </u>		+ 6.04	- 0.33	+ 0.63	- 0.42	- 4.52	+ 6.4
				Тне	Coeffic	CIENTS &	c.—(<i>Ca</i>	entinued)).				
	17 ^A	181	Ι ₁₉ Λ	20 ^A	Λ	221	23^1	24Λ	25 ^A	26 Λ	27^^		
	-	<u> </u>				!		<u> </u>					
7	+ 6.98	+ 4.98	- 3.00	+ 0.41	- 6.38	- 4.40	+ 0.13	- 0.84					+ 2.4
8		+ 2.45	+ 1.12	+ 3.07	- 0.57	- 1.30	- 1.38	- 3.33					- 1.2
9			+ 3.84	+ 4.92	+ 0.65	+ 0.26	- 2.80	- 4.48					+ 4.4
0				+ 4.88	- 0.18	+ 0.19	- 0.33	- 3.04					- 3.1
1					+ 16.66	+ 8.17	- 8.75	- 2.03	- 15.85	- 7:40	+ 0.46	+ 1.68	+ 3.4
2						+ 4.53	+ 3.11	+ 9.45	- 0.33	- 1.33	- 2.75	- 9.23	+ 1.6
8							+ 3.27	+ 4.90	+ 0.41	+ 1.07	- 3.30	- 4.72	+ 4.3
4								+ 7.07	- 0.53	+ 1.06	- 0.12	- 5.16	- 3.0

Factors expressed in Natural Numbers.

of Equation				T 1	не Сое	FFICIEN	rs &c.—	(Contin	nued).					ABSOLUTE	t M S
No. of F	25 ₺	26∆	27	281	29	30	Δ 31	Δ .	321	33	34^1	35^1	₃₆ ∆	Тне Ав	Terms
25	+ 8.29	+ 5.89	- 3.47	- 0.20	- 7	-65 -	4.49 +	0.17 +	0.37			1		-	1.603
26		+ 2.10	+ 1.66	+ 3.84	t	.20 -	0.4 -	1.47 -	4.08					-	3.180
27			+ 4.35	+ 5.86	i	1	1	2.20 -	5.46						5.580
28				+ 4.5	i		- 1	0.19 -	3.13					l	0.130
29 80					+ 4	- 1		0.65 +	0.82	- 3.28	- 1'24	- o·28	- 0.01		2.244
81						+ '	- 1	1.14 +	1.02	+ o.38	+ 0.18	- o·62	- 1.89 - 1.30	l .	0.389
82							1	+	2.12	- 0.30	+ 0.08	- o·34	- 2·89	ł	2.703
									3 -3			- 34			- /- 9
				${f T}$	нь Сов	EFFICIEN	тя &с.—	-(Conti	nued).						
	33^1	₃₄ Λ	35^1	36A	₃₇ Λ	₃₈ A	39A	40^1	41Λ	42 ^Δ	43^1	₄₄ ^	45^1		
	33		35	3-	31	3-	39	•	**	<u> </u>	43	ļ ¹¹	1 43		
83	+ 7.13	+ 3.19	- 2.38	- o·20	- 5.73	- 2:43	+ 0.39	+ 0.5	3					- `	6.582
84		+ 1.33	+ 0.63	1	- 0.40	- o.66	- 0.29	- 2.5	i					-	1.158
85			+ 1.08		+ 0.69	+ 0.29	- 1.37	- 3.10	5					-	0.118
86				+ 5.33	- 0.12	+ 0.31	+ 0.11	- 2.5					٠.	+	3.888
87 38					+ 1.63	+ 17.81	- o.84	+ 0.1	i	81 + 0.	08 - 5.57	-13.82	-14.13	+	6.267
89						7 17 01	+ 20.12	+ 14.5				i	-20.97		2.337
40						•		+ 9.8			- 1		- 6.47	+	7.897
41									+ 2.	l l		1	- 0.03	1	4.627
			<u> </u>	!_		<u> </u>	l	J		!	!		1	-	l
				T	не Сов	e ff icien	тѕ &с.—	-(<i>Conti</i>	nued).						
	₄₂ Δ		43^{\Delta}	44^		45 ^A		_{\$6} Λ	4	,Δ	48Δ		49 ^A		
42	+ 3.6)1	+ 1.80	+ 1.	14	- o.o3	_	1.64	_	0.85	- 1.1	9 -	0.11		6.826
43			+ 2.91	- 0.	53	- 3.35	_	0.30	_	0.36	- 0.0	7 +	0.30	\{ + \	5.725 1.330 0.824
44	·			+ 2	47	+ 2.38	+	0.50	+	0.43	- 0.2	2 -	1'49		0.117
45						+ 5.88	-	0.20	+	0.47	- 1.0	5 -	2.30		1.606
46	•						+	4.46	+	2.12	+ 1.3	3 +	0.38	15+	0·405 0·867
47									+	1.61	- o·5	9 -	1.60	15+	0·918 1·007
48											+ 2.3	• +	2.23	11 -	10·91 <u>4</u> 10·804 0·168
49												+	4.79	{ -	0.142

The manner of the formation of the coefficients of the Indeterminate Factors has already been indicated in Section 11 of Chapter II. Here it is only necessary to repeat that the coefficient of the mth Λ in the lth equation is equal to that of the lth Λ in the mth equation in each term of the summation, and these coefficients may be expressed either as

$$\frac{t}{1} \left[\mathbf{m} b_p \, \mathbf{i} \mathbf{B}_p + \mathbf{m} c_p \, \mathbf{i} \mathbf{C}_p \right], \quad \text{or as} \quad \frac{t}{1} \left[\mathbf{i} b_p \, \mathbf{m} \mathbf{B}_p + \mathbf{i} c_p \, \mathbf{m} \mathbf{C}_p \right]$$

in which expressions the summations are for all values of p from 1 to t, corresponding to the numbers of the triangles whose angular errors enter into the mth and the lth equation. The identity of the coefficients was taken advantage of in the former reductions as a means of checking their accuracy. In the present instance the coefficients were only computed once, and a check was obtained by equating the sum of all the coefficients of any, the mth, equation to

$$\frac{t}{1} \left[m b_p \, \frac{\pi}{1} \left[q \mathcal{B}_p \right] + m c_p \, \frac{\pi}{1} \left[q \mathcal{C}_p \right] \right]$$

between the limits p = 1 and p = t, the numbers of the triangles involved, and q = 1 and q = n the numbers of those As of which the coefficients enter the equation.

When the solution was first undertaken an erroneous value had been assigned to the absolute term of Equation 42, as already stated in the note to page 125. This was not discovered until the equations had been solved and values of the unknown quantities, x, y and z, had been obtained and applied to the calculations, when a large closing linear error in Circuit XI made it manifest. The true absolute term was then introduced, and the solution of the equations between the indeterminate factors was corrected onwards from the point where Equation 42 first became operative; then the values of the factors were re-computed backwards as far as $_{29}\Lambda$. This last was done not so much with any definite purpose of employing the corrected values of the earlier factors, as to ascertain how far back the effect of the error had extended. It was then decided to employ only the corrected factors $_{38}\Lambda$ to $_{49}\Lambda$, disregarding the re-computed factors back to $_{29}\Lambda$, and not attempting to ascertain the errors of the anterior factors.

The differences $\delta\Lambda$, between the true and the erroneous values of the factors $_{38}\Lambda$... $_{49}\Lambda$, were employed in the computation of differential corrections δx , δy , δz to the values of the error x, y, z of the angles in Circuits XI and XII and in the Base-line equation, No. 41, which had been obtained with the erroneous factors; these angles appertain to triangles 362 onwards to the end, excluding triangles 409 to 423.

No further corrections were applied, as it was evident that they would not be large, and probable that the employment of the values of the errors of the angles in the first ten circuits as already determined, would not lead to the occurrence of larger closing errors than those of which the limits had been primarily assigned—see page 67.

Recently, by General Walker's direction, the second or revisionary solution was completed and the values of all the factors were found. The whole of these with the corresponding values of $\delta\Lambda$ are hereafter shewn, those quantities which were not made use of being in different type.

The table following the Equations between the Indeterminate Factors, gives the first of each group of equations between certain of the Indeterminate Factors which remained after the other factors had been eliminated. These are the equations which were used in obtaining the numerical values of the factors by successive substitution backwards from the last to the first.

The double solution of the equations between the Indeterminate Factors has necessitated double numbers in the column of Absolute Terms. Where these occur, the first numbers are those which belong to the first solution and the second to the second solution.

The following table gives the values of the Indeterminate Factors to 3 places of decimals, as deduced from the solution of the equations. Those quantities shewn in large type were employed in the calculations; those in small type were subsequently obtained as previously stated.

The V	alues o	f the	Indeterminate	Factors.
-------	---------	-------	---------------	----------

, .	Numerical v	alue by		ı	Numerical	value by		į.	Numerica	l value by	
Factor	1st Solution	2nd Solution	δΛ	Factor	1st Solution	2nd Solution	δΛ	Factor	let Solution	2nd Solution	δΛ
1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 11 A 12 A 13 A 14 A	+9.290 +0.054 +3.538 -2.048 +8.005 -0.379 +3.111 -0.545 +6.492 -0.356 +3.568 -0.378 +4.241 -0.505	+9.286 +0.081 +3.549 -2.065 +8.012 -0.352 +3.122 -0.551 +6.500 -0.328 +3.580 -0.377 +4.252 -0.477	-0.004 + .027 + .011017 + .007 + .027 + .011006 + .008 + .028 + .012 + .011 + .028	17A 18A 19A 20A 21A 22A 23A 24A 25A 26A 27A 28A 29A 30A	+3.405 +0.373 +4.022 +0.006 +3.036 -0.883 +3.702 +0.438 +1.630 -2.306 +2.560 +0.579 -0.264 -1.028	+3'414 +0'400 +4'047 +0'013 +3'044 -0'860 +3'741 +0'446 +1'621 -2'286 +2'607 +0'594 -0'279 -1'026	+ 0.009 + .027 + .025 + .007 + .008 + .023 + .039 + .009 + .009 + .020 + .047 + .015 015 + .002	33A 34A 35A 36A 37A 38A 40A 41A 42A 43A 44A 45A	-0.582 -2.925 -1.061 +1.212 +0.157 -2.325 -0.858 +0.718 +0.920 -2.420 -0.120 -0.532 -0.309 +1.961	-0.590 -3.002 -1.039 +1.258 +0.155 -2.476 -0.962 +0.800 +0.712 -1.919 -0.346 -0.700 -0.341 +2.020	-0.008 -0.008 -0.077 +0.022 +0.046 -0.02 -0.151 -0.104 +0.82 -0.208 +0.501 -0.226 -0.168 -0.32 +0.59
15Λ 16Λ	+1.379	+1.449	+ '017	31 A 32 A	+1.123	+1.181	+ '049	47 ^Λ 48 ^Λ 49 ^Λ	-4.784	-0.031 -0.031	+ ·034 + ·120 - ·066

16.

The Final Values of the Angular Errors x, y and z.

The values of the Λ s having been obtained, the next step was the deduction of the errors x, y and z. The formulæ which have usually been employed for this purpose are the following, as indicated in Section 11 of Chapter II.

$$y_p = {}_{1}\mathfrak{B}_{p} {}_{1}\Lambda + {}_{2}\mathfrak{B}_{p} {}_{2}\Lambda + \dots + {}_{n}\mathfrak{B}_{p} {}_{n}\Lambda,$$
 $z_p = {}_{1}\mathfrak{C}_{p} {}_{1}\Lambda + {}_{2}\mathfrak{C}_{p} {}_{2}\Lambda + \dots + {}_{n}\mathfrak{C}_{p} {}_{n}\Lambda,$
 $x_p = -\{y_p + z_p\}.$

In the present instance equalizing factors were applied to the primary equations of condition. Thus the numerical values of the coefficients 36 and 40, and of the Indeterminate Factors 4 for the two first of the above equations, which are given in Sections 14 and 15, are the values obtained after the said equalization; and these values would have been employed if the angular errors y and z had been calculated by those equations.

But the course which was actually adopted in the present instance, was to revert to the primary equations and employ the factorially equalized coefficients in combination with the corresponding Indeterminate Factors. The values of the angular errors may then be obtained from the following equations in which $_1f$, $_2f$, . . . are the equalizing factors for the primary equations, $_1\Lambda$, $_2\Lambda$, . . . the corresponding Indeterminate Factors of which the numerical values are given in Section 15, while b and c are the coefficients in the primary equations of which the numerical values are given in Section 12.

$$y_{p} = + \frac{u_{p}}{3} \left\{ (2 \, _{1}f_{1}b_{p} - _{1}f_{1}c_{p}) \, _{1}\Lambda + (2 \, _{2}f_{2}b_{p} - _{2}f_{2}c_{p}) \, _{2}\Lambda + \cdot \cdot \cdot + (2 \, _{n}f_{n}b_{p} - _{n}f_{n}c_{p}) \, _{n}\Lambda \right\}$$

$$z_{p} = + \frac{u_{p}}{3} \left\{ (2 \, _{1}f_{1}c_{p} - _{1}f_{1}b_{p}) \, _{1}\Lambda + (2 \, _{2}f_{2}c_{p} - _{2}f_{2}b_{p}) \, _{2}\Lambda + \cdot \cdot \cdot + (2 \, _{n}f_{n}c_{p} - _{n}f_{n}b_{p}) \, _{n}\Lambda \right\}$$

$$x_{p} = - \frac{u_{p}}{3} \left\{ (1 \, _{1}f_{1}b_{p} + _{1}f_{1}c_{p}) \, _{1}\Lambda + (1 \, _{2}f_{2}b_{p} + _{2}f_{2}c_{p}) \, _{2}\Lambda + \cdot \cdot \cdot \cdot + (1 \, _{n}f_{n}b_{p} + _{n}f_{n}c_{p}) \, _{n}\Lambda \right\}$$

These equations may be put in the following form, in which they were actually employed in computing the values of the angular errors;—

$$y_p = + \frac{u_p}{3} \left\{ 2 \left[f b_p \Lambda \right] - \left[f c_p \Lambda \right] \right\}$$

$$z_p = + \frac{u_p}{3} \left\{ 2 \left[f c_p \Lambda \right] - \left[f b_p \Lambda \right] \right\}$$

$$x_p = - \frac{u_p}{3} \left\{ \left[f b_p \Lambda \right] + \left[f c_p \Lambda \right] \right\}$$

The following is an example of the calculation of the angular errors of a single triangle, the 25th.

Example.

Equation		Triangl	e No. 25.	$\frac{3}{u} = 0.6$										
Equ	fħ	Λ	f¢	$f\mathfrak{b}_{\Lambda}$	$f\mathfrak{e}_{\Lambda}$									
1 2	+0.12	+9·290 +0·054	-0·42 -0·77	+3.623 +0.009	-3·902 -0·042									
3 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
5 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
7 8	+1.01	-0.242	+1.01	+ 1·307	-0.220 +1.313									
	,		Sums	-0.131	-0.044									
	$z = + \circ$	6{2 (-0·121) — (—0.13	s1)} = + 0.0	020									
	$x = -\circ$	6{ (-0.131	:) + (-0.04	14)} = + 0.0	99									

The numerical values of the angular errors were computed to 3 places of decimals. They were contracted to 2 places for the angles appertaining to the first ten circuits, with the exception of those of Fig. 15 of the Chendwar Series, for which the 3 places were retained; 3 places were also retained in the remaining angles of Circuit XI and all the angles of Circuit XII.

The Lengths and Azimuths of the sides, and the Latitudes and Longitudes of the stations, were recomputed with the values of the corrected angles. The arithmetical error in the absolute term of Equation 42 then became apparent. It was disposed of in the first instance by recomputing the values of such of the Indeterminate Factors as were believed to be principally affected, leaving the others unaltered, as has already been described in the last section.

The next step taken was to apply corrections to those values of angular error which would be affected by the corrected Indeterminate Factors. The same formulæ which had been employed for finding x, y and z were now used for deducing corrections to these values for all angles entering Equations 41 to 49, by substituting δx , δy and δz in place of x, y and z, and $\delta \Lambda$ for Λ .

Corresponding corrections having been next made to the linear and geodetic calculations, the discrepancies which are exhibited in the following table of residual errors were met with at the close of the several circuits.

	RESIDUAL	ERRORS OF CO.	RRECTED CIRCUI	T S
Circuit	Linear	Latitude	Longitude	Asimuth
	7th place of logs.	W	"	. , .
I	0.0	+ 0.014	- 0.031	+ 0.080
II	-6·5	008	+ '021	+ '272
III	-o.8	+ '020	- '021	- '182
IV	+2.0	- '024	+ .000	- '040
$\boldsymbol{\mathcal{V}}$	-2.0	007	001	+ '023
VI	-o·2	001	- '005	065
VII	+2.4	003	+ .002	- '012
VIII	-1.1	+ .003	- '004	053
IX	+0.4	006	+ .001	- '002
X	{-2·4	011	•000	+ '286
XI	-1.4	001	.000	+ .019
XII	-0.3	+ .003	+ '004	089

Here it may be remarked that, with a single exception, the residual errors are well within the limits which had been previously prescribed, as stated on page 67.

These errors were to have been dispersed, circuit by circuit, over the angles appertaining to the triangles nearest the junctions of the circuits, selecting for that purpose triangles of the North-East Longitudinal Series which only enter single circuits. It had been expected that the requisite degree of harmony might be produced without either violating the integrity of the angles subjected to treatment by applying corrections of unduly large magnitude, or extending the calculations to triangles entering some other circuit, which would disturb the consistency of that circuit. But it was found that the first condition could not always be maintained without violating the second; for unfortunately all the triangles near the closing points of the circuits were situated in the plains, and they had such short sides that small changes in the closing linear and geodetic elements largely affected the angles. Consequently the adjustment was extended beyond one circuit into the next,

and in three cases was wholly thrown on portions of the meridional chains. The correction of the triangles common to two circuits for the adjustment of the circuit first treated, necessarily disturbed the consistency of the second. Thus the residual errors of many circuits became changed.

The actual errors for dispersion are shewn in the following table, which also indicates the triangles subjected to adjustment, and the maximum and average changes of their angles*.

		R	ESIDUAL ERR	ORS FOR DIS	PERSION			
Circuit	Linear	Latitude	Longitude	Azimuth	Triangles involved and the number	9	Comput rection Maxi- mum	
	7th place of logs.	"	"	"			12	"
I	0.0	+0.014	-0'031	+0.080	31 to 44	14	0.8	0.1
II	+12.6	001	+ '012	- . '582	79 ,, 92	14	.9	.I
III	— 3.4	+ '020	- '022	- '323	117 " 126	10	1.1	·4
IV .	- 1.4	.000	- '014	- '371	163 " 170	8	.9	.3
$\boldsymbol{\mathcal{V}}$	- 3.4	.000	- '017	- ·386	199 " 206	8	.8	.3
VI	— 3.5	+ .003	- '020	- '424	243 ,, 262	20	.7	٠.
VII	+17.9	+ .008	- 008	- '407	295 ,, 302	8	·4	•2
VIII	- 1.1	+ .003	- '004	053	330	1	.07	.05
IX	+ 0.4	006	+ .001	- '002	352, 353, 360 & 361	4	·3	•2
X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	011	003	+ .586	409 to 411, 420 to 423	7	.3	.3
XI	+ 0.8	001	.000	+ .016	443	1	.037	.025
XII .	- 0'2	+ .003	+ '004	— ·o86	517	I	.086	.057

The errors in latitude and longitude of Circuits VIII, XI and XII being already small, no attempt was made to reduce them, and the linear and azimuthal errors were disposed of by inspection in a terminal triangle in each instance.

After the necessary calculations had been made, sundry slight discrepancies remained which were adjusted arbitrarily by inspection.

^{*} With regard to the magnitude of the angular errors admissible, General Walker, on being applied to, prior to their calculation, to assign the limits, while refraining from laying down any hard and fast rule, expressed it as his opinion that the residual errors should be dispersed over a sufficient number of triangles to give residual angular corrections not exceeding half the probable errors of the angles.

Thus the finally determined values of the angular errors rest

- 1. On the original calculations.
- 2. On the calculations for correcting the effect of the error of the absolute term of the 42nd equation on the original calculations.
- 3. On the calculations for dispersing the residual errors at the close of the circuits.
- 4. On the arbitrary corrections for dispersing the ultimate small residual errors at the close of the circuits.

The principal details of the calculations for determining the corrections to the angles corresponding to the residual errors of the circuits, will be given in Section 17.

The whole of the components of the finally adopted values of the angular errors are given in the following table. In a large majority of instances the primary value could be adopted without alteration of any kind, and these values are printed in ordinary type without remark. In the instances in which the final value is derived from more than one component, the several components are entered in small type, with a distinguishing number attached, either (1), (2), (3) or (4), corresponding to the preceding numeration of the order of their determination; their sum is entered below in the larger type.

The Angular Errors.

No. of Triangle	\boldsymbol{x}	y	æ	No. of Triangle	\boldsymbol{x}	y	z	No. of Triangle	x	y	z	No. of Triangle	\boldsymbol{x}	y	z
1 2 3 4 5 6	- '09 +1'10 - '95 + '94 +1'75 - '30	+ '08 + '44 + 1'59 - '07 - '27 + '31	+ '01 -1'54 - '64 - '87 -1'48 - '01	14 15 16 17 18 19 20	+ '71 - '84 + '49 - '38 + '16 - '17	- '21 + '69 - '23 + '25 - '09 + '07	" - '50 + '15 - '26 + '13 - '07 + '10	27 28 29 30 (1) (3)	+ '02 - '01 + '01 + '03 - '08 - '58 - '58 + '09	+ '01 + '01 - '11 - '11 - '21 + '81 + '60	- '03 - '00 - '10 - '08 - '29 - '31 - '02 - '10	(1) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	+ .65 12 + .53 + .18 06 + .12 45 + .17 28 + .13	+ '71 + '02 + '73 + '29 + '02 + '31 + '99 - '15 + '84 + '50	- 1·36 + ·10 - 1·26 - ·47 + ·04 - ·43 - ·54 - ·56 - ·63
8 9 10 11 12 13	- '24 + '40 - '34 + '86 - '72 + '54 - '61	+ '24 - '10 + '37 '00 + '74 + '08 + '63	- ·00 - ·30 - ·03 - ·86 - ·02 - ·62 - ·02	21 22 23 24 25 26	+ ·17 - ·13 + ·09 + ·05 - ·11 + ·10 - ·03	- ·13 + ·02 - ·08 - ·06 + ·02 - ·12 + ·03	- '04 + '11 - '01 + '01 + '02 '00	(1) (3) (3) (3) (3) (4) (1) (3) (3) (3)	+ '27 + '36 - '02 - '08 - '10 - '83 - '02 - '85 - '15 + '07 - '08	- ·16 - ·35 - ·28 + ·46 + ·18 + ·69 + ·69 + ·75 - ·75 - ·75	- '11 - '01 + '30 - '38 - '08 + '14 + '02 + '16 - '60 - '67	(1) (3) 40. (1) (3) 41 (1) (3) 42	- '09 + '04 - '17 + '14 - '03 + '06 + '06 + '12 - '04 - '03 - '07	- '05 + '45 + '37 - '12 + '25 + '26 - '09 + '17 + '29 - '07 + '22	+ '14 - '49 - '20 - '01 - '22 - '32 + '03 - '29 - '25 + '10 - '15

NOTE.—(1) Original Error; (3) Residual Error.

No. of Triangle	$oldsymbol{x}$	y	z	No. of Triangle	\boldsymbol{x}	y	z	No. of Triangle	x	y	z	No. of Triangle	x	y	z
	~	"	"		~	"	"		<i>N</i>	"	"		"	"	"
(1) (3)	+ '14	+ .16	- ·30 + ·12	74	+ .05	03	03	95	+ '75	+ '43	-1.18	- (1) (3)	+ '78	+ '21	- ·99 + ·31
43	+ '04	+ '14	18	75	07	+ '02	+ .02	96	– .60	+ .77	- 17	123	+ .77	30	+ ·68
(1) (3)	- ·o7	+ '20	13	76	+ '15	06	09	97	31	+ .95	- ·6 ₄	(1) (3)	- ·70 + ·55	+ '71	+ .00 01
44	- '01 + '02	+ .00	11. +	77	10	+ .02	+ .05	98	09	+ .85	76	124	13	+ .07	+ .08
45	- '20	+ '11'	+ '09	78	+ '15	07	08	99	+ '29	+ '23	52	(1) (3)	+ '70	+ '17	- ·87 + ·54
46	+ '27	08	- '19	(1)	- 12	+ '15	03	100	+ '40	+1.12	-1.27	(4) 125	+ .00	- ·38	+ .93
47		- '20		79 ⁽³⁾	- ·o ₅	+ '01	+ '16	101	01	+ .21	20	(1)	76	+ .87	11
48	+ ·35		-5	(1) (3)	- ·o2	+ .26	- '24	102	+ .01	+ .60	67	(3) (4)	+ '40	- ·95 - ·03	+ '55
ı		+ '12		80	- ·17 - ·19	+ .02	+ '38	103	30	+ .21	31	126	36	11	+ '47
49	+ .31	01	30	(1) (3)	+ .01	+ '12	- :13	104	- '37	+ .72	35	127	– . 47	+ .21	04
50	33	+ '39	06	81	+ .01	.00	01 + .13	105	06			128	+ '77	+ .09	86
51	- '44	+ .33	+ .11	(1) (3)	03	+ '13	+ .10 10	105			- '12	129	04	+ .03	+ .01
52	+ .35	11	- '24	82 ⁽¹⁾	00 03	+ .06	.00			+ .12	- '21	130	01	+ .02	06
53	- '27	+ .35	08	(1) (3)	*00 + *02	+ .06	- ·o6 + ·o3	107	- '15	+ .39	— '24	131	01	+ .02	- '04
54	+ .10	03	01	83	+ '02	+ .01	03	108	+ .19	+ .18	- '34	132	+ .01	+ .00	- ·o ₇
55	13	+ .00	+ .04	(1) (3)	02	+ .10	+ .00	109	18	+ .53	04	133	01	+ '04	03
56	+ .18	09	00	84	02	+ .09	01	110	+ .00	+ '24	30	134	01	+ .08	07
57	07	+ .02	+ '02	(1) (3)	+ '01	+ '08	- '09 + '04	111	08	+ .18	10	135	01	+ .02	- '04
58	03	+ '02	+ .01	85`	01	+ .06	05	112	- '12	+ .35	- '20	136	+ '01	+ '04	05
59	+ .01	+ .19	- '17	(1) (3)	+ .01 02	+ .11	- ·12 + ·05	113	+ .58	+ .21	- '79	137	03	+ .07	05
60	+ '13	10	03	86	- '04	+ .11	07	114	31	+ .60	39	138	+ .05	+ .10	12
61	•00	03	+ .02	(1) (3)	- ·03 - ·07	+ '12	- ·09 + ·04	115	+ '44	+ .31	- '75	139	89	+ '11	+ '78
62	+ '04	01	03	87	10	+ .12	02	116	- '20	+ '37	- '17	140	+ .62	- ·60	02
63	07	+ .10	03	(1) (3) 88	10. +	+ .16	08	(1) (8)	+ ·43 + ·69	+ '32 + '46	- :75 -1:15	141	+ '47	69	+ '22
64	+ .07	03	05	88	+ .01	+ .53	- '24	117	+1.13	+ .78	-1.90	142	 76	+ .02	+ '74
65	10	+ '02	+ .08	(1) (3) 89	03	+ '15	- ·12 - ·04	(1) (3) 118	- ·27 - ·12	+ '41 + '50	- ·14 - ·38	143	+ '71	- '71	. ,,,
66	+ '13	- '02	11		Ī	+ '24	- '16			+ .91	25	144	27	- '21	+ '48
67	- '20	+ .10	+ .10	(1) (3) 90	+ '01	+ '10	- 114	(1) (3)	+ '48 + '43	+ '23 + '08	- '71 - '51	145	+ '29	52	
68	+ 19	- '10	00		+ .04	+ '21	- ·6 ₁	119	+ .91	+ .31	-1.33	146		.0.	+ '23
69	38	+ '12	+ .19	(1) (3) (4)	+ '11 - '31 + '02	+ .20	- '19 - '02	(1) (3)	- '72 - '02	+ '97	- ·25 - ·28	1	1	1	+ 1.24
70	+ '23	09	- '14	91	18	+1.00	82	120	— . 74	+1.27	23	147	+ .30	81	+ .21
71	1	+ '10		(1) (3) (4)	+ '30 + '54 - '03	+ '53 + '39 + '06	- ·83 - ·93	(1) (3)	+ .31	+ '46	-1 '44 - '08	148	- '27	- '28	+ .55
72	'		! !	92 (4)	+ .81	+ .98	- · · · · · · · · · · · · · · · · · · ·	121	+1.59	+ '23	-1.23	149	03	28	+ .61
	+ .10	03	07	93	81	+1.03	33	(1)	+ .37	+ .78	- '11	150	+ .01	18	+ .11
78	09	+ .06	+ .03	94	+ .38	+ '24	1	122	- '40	+ .69	59	151	- ·04	– . 02	+ '11
				3-3	T 20	T 24	- '52			1					

Norm.—(1) Original Error; (3) Residual Error; and (4) Arbitrary apportionment of Error.

No. of Triangle	\boldsymbol{x}	y	z	No. of Triangle	x	y	z	No. of Triangle	\boldsymbol{x}	y	z	No. of Triangle	\boldsymbol{x}	y	z
152 153 154	" + '04 - '14 + '22	- '29	"	178 179	" - '03 + '04 - '04	+ ·10 + ·10	13 10	(1) (3) 205 (1) (3)	53	" - '14 - '10 '24 - '27	" + '15 + '32 + '47 + '27	236 237 238	+ ·76 - ·21 + ·33	- ·17	- '55 + '02 - '16
155 156 157	- ·13 + ·34	- ·03 - ·32 - ·02	+ ·16 - ·02 + ·12	180 (4) 181 182 183	- ·08 - ·14 + ·06	+ '02 + '12 + '42 + '05	+ ·02 - ·28 - ·11	206 ⁽⁴⁾ 207 208	+ '73 + '73 '00 + '03	- ·07 - ·07 - ·14	+ ·o ₄ + ·o ₂ + ·33 + ·o ₇ + ·11	239 240 241	- ·19 + ·24 - ·09	+ ·13 - ·14 + ·03	+ .00
158 159 160 161	+ '27 - '15 + '20 - '34	- '21 + '02 - '13 + '12	+ '13	184 185 186	+ '08 - '12 - '05 + '12	+ '03 + '10 + '06 - '02	+ ·02 - ·01 - ·10	209 210 211 212	.00 80. – 10. – + .01	- ·o ₃ - ·o ₅ + ·o ₇	+ ·02 + ·04 + ·03 - ·07	(1) (3) 243 (1) (3)	+ '23 - '06 + '66 + '60 + '04 - '17	- '42 - '12 - '10 - '22 - '43 + '48	+ ·19 + ·18 - ·56 - ·38 + ·39 - ·31
162 (1) (3) 163 (1) (8)	+ '14 - '26 + '67 + '41 + '19 - '26	- '06 + '12 - '14 - '02 - '08' + '38	+ ·14 - ·53 - ·39	187 188 189 190	- ·05 + ·06 - ·07 + ·04	+ '07 - '03 + '07 + '01	- ·02 - ·03 - ·05	213 214 215 216	- ·00 - ·02 - ·01	+ '10 + '19 + '09 + '08	- ·10 - ·16 - ·07	(1) (3) 245 (1) (3)	- '13 '00 + '21 + '21 - '01 + '09	+ '05 - '33 - '09 - '42 - '32 + '10	+ '08 + '33 - '12 + '21 + '33 - '19
164 (1) (3) 165 (1) (3)	- ·07 - ·16 + ·17 + ·01 + ·31	+ ·30 + ·07 - ·08 - ·01 - ·13 + ·16	- ·23 + ·09 - ·09	191 192 193	- ·04 + ·08 - ·02 + ·04	+ '04 - '02 + '02 - '05	.00 00 00	217 218 219	+ .oı oı oı	+ ·02 + ·13 + ·16	- ·01 - ·12 - ·17	246 (1) (3) 247 (1) (3)	+ ·08 + ·15 - ·02 + ·13 - ·13 + ·55	- '22 - '31 - '19 - '50 - '39 - '42	+ '14 + '16 + '21 + '37 + '52 - '13
166 (3) (1) (3) 167 (1) (3)	- '05 + '26 - '74 + '16 - '58 +1 '04	+ '03 + '39 - '07 + '32 - '41	- ·29 + ·35 - ·09 + ·26 - ·63	195 196 197	- ·02 + ·03 + ·04	- ·04 - ·09 - ·10	+ '06 + '06	220 221 222	- ·03 + ·02 - ·01 - ·21 - ·07	+ '19 + '18 + '20 + '11	- '16 - '01 - '17 + '01	(1) (249 (1) (3) (3)	+ '42 - '06 - '06 - '06	- ·81 + ·03 - ·01 + ·02 + ·02	+ ·39 + ·01 + ·04 - ·01 + ·01
168 (1) (3) (4) 169	+1.44 -1.49 08 -00 -1.57	- '27 + '68 - '86 + '02 - '16	-1·17 + ·81 + ·94 - ·02 +1·73	(1) (3) 199	+ '01 '00 + '67 + '67 - '02 - '20	- '10 - '18 + '12 - '06 - '12 + '40	+ ·09 + ·18 - ·79 - ·61 + ·14 - ·20	223 224 225 226	+ ·o5 - ·o3 + ·25 - ·39	+ '12 + '09 + '20 + '48	- ·17 - ·06 - ·45 - ·09	250 (1) (3) 251 (1) (3)	- ·02 + ·01 + ·01 + ·02 - ·04 - ·01	+ '02 + '01 - '01 '00 + '07 - '02	·00 - ·02 ·00 - ·02 - ·03 + ·03
170 171 172	+ '66 + '44 - '01 + 1'09 - '28 - '10	- '29 - '56 + '03 - '82 + '20 + '16	- ·02 - ·27	200 (1) (3) 201 (1) (3)	- '22 + '08 + '48 + '56 - '04 - '04	+ '28 - '18 - '04 - '22 - '12	- ·06 + ·10 - ·44 - ·34 + ·16	227 228 229	- ·24 + ·25 - ·20	+ ·28 - ·04 + ·23	- ·04 - ·21 - ·03	252 ⁽¹⁾ (3) 253 (1) (3) (3)	- ·05 + ·01 - ·03	+ .01	- ·02 + ·01 - ·01
173 174 175	+ ·10 - ·12 + ·05	+ '04 + '10	- '14 09 - '15	202 (1) (3) 203 (1) (3)	- ·08 + ·02 + ·21 + ·23 + ·10 + ·30	+ ·27 + ·15 - ·16 - ·20 - ·36 - ·24 - ·19	- '23 - '07 + '14 - '01 + '13 + '14 - '11	230 231 232 233	+ ·22 - ·14 + ·09 - ·31	+ .01 + .01 + .01	- ·29 - ·05 - ·10 - ·20	254 (1) (3) 255 (1) (3)	- ·03 + ·02 + ·01 + ·03 - ·08	- ·03 + ·04 - ·04 - ·00 + ·22 - ·11	+ · · · · · · · · · · · · · · · · · · ·
177	+ .02	+ .02	- '07	204`	+ '40	- '43	+ .03	234 235	+ ·50 - ·50	+ .23	- ·53 - ·02	256	- :08	+ .11	03

Note .- (1) Original Error; (3) Residual Error; and (4) Arbitrary apportionment of Error.

No. of Triangle		x		y		z	No. of Triangle	x	y	z	No. of Triangle	x	y	z	No. of Triangle	\boldsymbol{x}	y	z
		"		"		,,		"	"	"		"	"	W		"	"	"
(1) (3)	+	.04	+	.08	-	·12	285	+ '02	01	01	312	19	+ '43	- '24	345	11	56	+ '37
257	+	.04	+	·07	_	.02	286	- '14	+ .10	+ .04	313	+ .07	+ .11	18	3 4 6	+ '24	81	+ '57
(1) (3)	-	13	+	·29	-+	·16	287	+ .08	- '02	06	314	03	+ .10	08	347	33	- '45	+ '78
258	_	.08	+	.11	<u> </u>	.03	288	- '13	+ .08	+ .02	315	+ .07	+ .09	19	348	+ '17	39	+ '22
(1) (3)	+	.07 .01	+	·16	-+	·26	289	+ .01	05	+ '04	316	01	+ '12	11	349	+ .03	00	+ .00
259	+	.06	+	.03	-	.09	290	03	+ 02	+ .01	317	+ '04	+ .08	- '12	350	03	02	+ .08
(1) (3)	-	.00	+	·06	+	.02 .04	291	+ .03	- '01	- '02	318	+ .01	+ '11	- '12	351	02	13	+ '17
260	_	.01	+	.03	-	.01	292	05	+ '04	+ .01	319	+ .02	+ .08	13	(1) (3)	+ '09	00	+ '28
(1)	+	·02	+	·07	+	.06	293	+ '04	+ '01	05	320	•00	+ .10	10	352	25	03	+ .58
261	+	.03	+	.01	-	.03	294	03	+ .03	.00	321	+ .03	+ .06	08	(1) (3)	+ '16	- '17	+ .11
(1) (3) (4)	+	.02 .00	+	·09 ·05 ·07	+ -	·07 ·05 ·08	(1)	+ '02	+ '01	03	322	+ .02	+ .09	- '14	353`´	+ .02	17	+ '12
262	·	.01	+	.11	-	.10	295 (3)	+ '32	+ '06	- '38 - '41	323	10. —	22	+ .23	354	+ .11	08	03
263 ·	+	.328	_	·352	+	.024	(1) (3)	02	+ '06	- '01 - '22	324	- 16	+ .03	+ .13	355	12	+ .01	+ '14
264	_	140	-	•145	+	•285	296	02	+ .58	- '23	325	+ '17	13	- '04	356	+ .13	10	03
265	+	.119	_	.551	+	102	(1) (3)	+ '01	+ .01	- ·02 - ·20	326	18	+ .05	+ '13	357	13	+ .01	+ '12
266	-	.64	_	.06	+	.70	297`′	+ '21	10. +	55	327	+ .31	- '22	00	358	+ '22	12	02
267	+	.29	_	·37	+	.08	(1) (8)	+ .00	+ '02	01	328	- '25	+ '07	+ .18	359	55	+ '02	+ '20
268	+	.31	_	.20	+	.19	298	+ .08	+ .09	- '17	329	+ '21	- '14	07	(1)	+ '23	- '17	- '06
269	_	.03	_	·32	+	·35	(1)	+ '01	+ '01	03	(1)	23	+ .08	+ '15	360	+ '47	- '24	53
270	-	•26	_	.19	+	. 42	299	+ .08	+ .08	- '11	3 30 (4)	- ·18 + ·05	+ '01	+ '02	(3)		+ '04	+ '29
271	+	.12	_	. 45	+	.30	(1) (3) 300	- ·o ₅ + ·33 + ·28	+ '08 - '10 - '02	- ·03 - ·26	331	10	- '44	+ '54	361	– . '59	+ .53	+ '36
272	_	.08		.30	+	·28	(1)		+ '01	- '02	332	02	- '24	+ '29	362	+ 07	- 1 .19	+ 2 :09
273	+	.07	_	•27	+	.30	301 301	18	+ .05	+ '14	333	19	- '41	+ .60	l	83	-1.34	+ 2.07
274	-	.08	-	14	+	.53		1	+ .02	03	334	+ .10	- '45	+ .35	363	- ·os - ·os	+ '01	- ·02 + ·47
275	+	.10	-	.22	+	12	302 ⁽¹⁾	+ ·39 + ·37	- ·15	- '19	335	07	38	+ '45			- ·43 - ·24	+ '37
276	-	.17	_	.02	+	.22	303	+ '16	+ .00	25	336	+ .08	33	+ '24	364 364	+ '02	- '24	+ '35
277	+	.11	_	.11		.00	304	- '22	+ '34	- '12	337	+ '15	38	+ .53	(1)	1	59	+ '37
278	_	.22		.00	+	.33	305	+ '28	+ .10	38	338	.00	- '27	+ '27	365 ⁽²⁾	+ '20	+ .03	+ .36
279	+	.22	_	.11	_	.11	306	30	+ '45	- '15	339	06	- '32	+ .38	(1)	- :03	38	+ '41
280	_	.40	+	.17	+	.23	307	+ '04	+ '13	- 17	340	+ .11	32	+ '21	366	- '04	36	+ '40
281	+	.34	_	·14	_	.20	308	- 12	+ '27	- 15	341	+ '18	31	+ .13	(1) (2)	- ·os	- ·52 + ·01	+ :57
282	_	.49	+	.21	+	•28	309	+ '20	+ '23	- '43	342	08	31	+ '29	367	03	21	+ '54
283	+	.23	_	.09		14	310	- '27	+ '47	- '20	343	06	20	+ .26	(1) (2)	+ '23	- ·70 + ·03	+ '47
284		.11	+	.02	+	•06	311	+ '21	+ .19	37	344	+ '13	- '34	+ '21	368`	+ '21	67	+ .46
							711	- 41	1	1 3/			<u> </u>]	L			l

Noze.—(1) Original Error; (2) Error by change of Absolute term of 42nd Equation; (8) Residual Error; and (4) Arbitrary apportionment of Error.

No. of Triangle	x	y	z	No. of Triangle	\boldsymbol{x}	y	z	No. of Triangle	\boldsymbol{x}	y	z	No. of Triangle	x	y	z
(1) 369	- '30 + '02 - '28	- '30 - '31 + '01 "	+ ·61 - ·03 + ·58	(1) (2) 387	" '00 - '01 - '01	# '21 '00 + '21	" - '21 + '01 - '20	(1) (2) 405	" + '06 - '03 + '03	" + '73 - '01 + '72	" - '79 + '04 - '75	(1) (2) 426	" - '172 + '035 - '137	+ '355 - '061 + '294	- ·183 + ·026 - ·157
370 ⁽¹⁾	+ '03 - '01 + '02	- ·39 + ·02 - ·37	+ ·36 - ·01 + ·35	388 (1) 388	+ '01 + '01 + '02	+ .13	12 00 12	(1) (2) 406	- ·20 + ·03 - ·17	+ ·69 - ·04 + ·65	- '49 + '01 - '48	427 ⁽¹⁾	- :057 + :004 - :053	+ '405 - '061 + '344	- :348 + :057 - :291
371 (1)	- ·03 + ·01 - ·02	- '50 + '01 - '49	+ '53 - '02 + '51	(1) (2) 389	- ·07 - ·08	+ ·29 ·00 + ·29	- '22 + '01 - '21	407 ⁽¹⁾	+ 'e7 - 'o1 + 'o6	- '01 - '01	02 02 02	(1) (2) 428	+ .048 005 + .043	+ ·363 - ·660 + ·363	- '411 + '065 - '346
372 ⁽¹⁾	00 00	- ·26 + ·01 - ·25	+ '32 + '31	390 ⁽¹⁾	+ '01 + '01 + '02	+ ·27 - ·01 + ·26	- ·28 - ·00 - ·28	(1) (2) (4) 408	000,	- ·o ₅ + ·o ₂ - ·o ₇	+ '04 - '01 + '07 + '10	(1) 429	- :039 + :011	+ ·318 - ·053 + ·265	- '268 + '042 - '226
373 ⁽¹⁾	- ·13 + ·02 - ·13	- ·29 - ·29	+ '44 - '02 + '42	391	18 00 18	+ .38	- '21 + '01 - '20	(1) (3) 409	+ '01 + '34 + '35	+ '02 - '15 - '13	- '03 - '19 - '22	(1) 430	004 + .001 004	+ ·307 - ·051 + ·256	- :299 + :050 - :249
374 374	+ '14 - '01 + '13	- ·3 ² + ·0 ² - ·3 ⁰	+ ·18 - ·01 + ·17	(1) (2) 392	+ .01	+ '46 - '02 + '44	- '45 - '45	(1) (3) 410	+ .03	+ .04 + .16 + .20	- ·o ₇ + ·o ₇ •o ₀	431 (1)	+ ·057 - ·008 + ·049	+ '344 - '057 + '287	- :401 + :065 - :336
375 (1)	- '20 + '01 - '19	- ·07 - ·07	+ ·27 - ·01 + ·26	393 (1) 393 (2)	+ .02	+ :44 :00 + :44	- '51 + '02 - '49	(1) (3) 411	- '05 + '18 + '13	+ '07 - '07 '00	- '02 - '11 - '13	432 ⁽¹⁾	- ·041 + ·005 - ·036	+ '340 - '058 + '282	- ·299 + ·053 - ·246
376 (1)	+ ·21 - ·02 + ·19	- ·29 + ·02 - ·27	+ .08	(1) (2) 394	+ .02	+ '35 + '33	- '42 '00 - '42	412 413	+ .03	+ .03	- ·o6	(1) (2) 433	+ .007 004 + .005	+ '246 - '041 + '205	- ·252 + ·045 - ·207
377 ⁽¹⁾	- ·20 + ·01 - ·19	- ·02 - ·02	+ '22 - '01 + '21	(1) (2) 395	- ·17 - ·02 - ·19	+ '43	- ·26 + ·02 - ·24	414 415	+ .03	+ .02	- ·o ₅	(1) (2) 434	+ .029	+ ·232 - ·042 + ·190	- ·261 + ·042 - ·219
378 ⁽¹⁾	+ '13 - '01 + '12	- ·23 + ·02 - ·2I	+ .00	396 ⁽¹⁾	+ '08 + '02 + '10	+ ·31 - ·02 + ·29	39 30	416	+ .02	+ .01	03	(1) (2) 435	+ ·004 + ·003 + ·007	+ '162 - '030 + '132	- ·166 + ·027 - ·139
379 ⁽¹⁾	- '21 + '01 - '20	+ .01 .00 10. +	+ '19	397 ⁽¹⁾	- '14 - '01 - '15	+ ·53 - ·61 + ·52	- ·39 + ·02 - ·37	417 418	+ ·o6	.00	00 01	(1) (2) 436	- '001 - '012	+ '179 - '031 + '148	- ·168 + ·032 - ·136
380 ⁽¹⁾	+ '12	00 + .01 10	- ·02 - ·01 - ·03	(1) (2) 398	01	+ ·56 - ·03 + ·53	- ·5 ² - ·5 ²	419 (1) (8)	- ·07 + ·10 + ·26	+ ·06	- ·01 - ·09	437 (1)	019 001 012	+ '141 - '023 + '118	- ·126 + ·024 - ·102
381 (1)	- '12 '00 - '12	+ .07	+ .05	399 ⁽¹⁾	- '03 - '10	+ .56	- '49 + '03 - '46	(1) (3)	+ '36	+ ·06 + ·12	+ 'oi + '13	(1) (2) 438	- ·003 + ·005 + ·002	+ '139 - '028 + '111	- ·136 + ·023 - ·113
382 ⁽¹⁾	+ .01	- ·03	02 02	(1) (2) 400	- · · · · · · · · · · · · · · · · · · ·	+ ·55 - ·03 + ·52	- :47 - :47	(1) (3)	- ·32 + ·10 + ·26	03 03 + .18	+ '14 - '07 - '13	(1) (2) 439	+ '075 - '008 + '067	+ '175 - '035 + '140	- ·250 + ·043 - ·207
383 (1)	10 .00 10	+ .10	.00 .00	401 (1)	- ·o ₅	+ ·69	- ·65 + ·04 - ·61	(1) (3)	+ '36 - '10 - '25	+ ·06 + ·12	+ ·04 + ·13	(1) (2) 440	- '042 + '001 - '041	+ '183 - '032 + '151	- '141 + '031 - '110
384 384	10, +	+ .08	00 00 00	(1) (2) 402	+ '01 + '02 + '03	+ ·57 - ·03 + ·54	- ·58 + ·oi - ·57	423 (1) (1) (2)	- ·o ₂ - · ₀₂ + · ₀₂	+ .08	10 + .18 + .01	(1) (2) 441	019 002 011	+ '161 - '027 + '134	- ·150 + ·032 - ·118
(1) (2) 385	- ·o ₂ - ·o ₁ - ·o ₃	+ .10	- ·17 + ·01 - ·16	(1) (2) 403	- ·o6 - ·o3 - ·o9	+ ·78 - ·01 + ·77	- ·72 + ·04 - ·68	424	- '01 + '01 + '032	+ ·07 + ·311	+ ·o ₂ - ·o ₈ - · ₃₄₃	(1) 442 442	+ '064	+ ·173 - ·038 + ·135	- :241 + :042 - :199
386 ⁽¹⁾	- ·05 + ·01 - ·04	+ '13	00 01 08	(1) (2) 404	+ ·02 + ·03 + ·05	+ ·84 - ·04 + ·80	- ·86 + ·oi - ·85	(1) (2) 425	- '010 + '022	044	+ '054	(1) (2) (4) 443	+ '049 - '001 - '016 + '032		- '131 + '021 + '037 - '073

NOTE .- (1) Original Error; (2) Error by change of Absolute term of 42nd Equation; (3) Residual Error; and (4) Arbitrary apportionment of Error.

No. of Triangle		\boldsymbol{x}	1	y		z	No. of Triangle		x		y		z	No. of Triangle		\boldsymbol{x}		y		z	No. of Triangle		\boldsymbol{x}		y		z
(1) (2) 444	_	" '019 '004	+	" '054 '004 '050		" .073 .000	(2)		.008	+	" •049 •005	+	" .054 .003	480 ⁽¹⁾	+	" '075 '004 '071		" 031 003 034	-	" •044 •007 •037	(2)	-	" .021 .001	- + -	" 079 018 061	-	" '028 '017
(1) (2) 445	+	.026 .004 .030	+	.080 .001 .80.	-	.050 .020	(2)	+	.090 .000	_	·054 ·002 ·052	_	•042 •004 •038		+	·067 ·005 ·002	+	•049 •009 •040	-	·018 ·004 ·022	(1) (2) 499	-	·072 ·008 ·064	+	·133 ·036 ·097	-	·061 ·028 ·033
(1) (2) 446	+	.024 .005 .029		·072 ·000 ·072	-	·048 ·005 ·043	(1) (2) 464	+	·194 ·013 ·181	_	·110 ·005 ·105	-	·084 ·008 ·076	(1) (2) 482	+ -+	·065 ·004 •061	+	·044 ·007 ·037	-	·021 ·003 ·024	(1) (2) 500	+	·105 ·013 ·092	+	.030 .030	-	·157 ·035 ·122
(1) (2) 447	-	·029 ·005 ·034	+	·050 ·005 ·045	1	·079 ·000 ·079	(1) (2) 465	-	· 182 · 012 · 170	+	·091 ·009 ·082	+	.003 .003	(1) (2) 483	+	·056 ·004 ·052	+	·019 ·004 ·023	-	·037 ·008 ·029	501	+	·233 ·037 ·196	-	·227 ·029 ·198	-	.006 .008
(2)	+	·107 ·010 ·117	+	· 208 · 206	_	·101 ·012 ·089	(1) (2) 466	+ - +	·180 ·013 ·167	+	·088 ·010 ·078	- + -	.003 .003	(1) (2) 484	+	·146 ·006 ·140	+	·043 ·059		·103 ·022 ·081		+-+	·086 ·011 ·075	-	.041 .002 .036	+	·127 ·016 ·111
	-	.032 .010	+	.119 .013 .110	 –	.191 .003		+	·164 ·011 ·153	_	.086 .002 .084	_	•078 •009 •069	(1) (2) 485	-	.111 .008 .110	+	·113 ·027 ·086	- - -	·006 ·019 ·025	503		·048 ·007 ·041	-	.066 .011 .022	+	.018 .004 .014
(2)	+	.045 .010 .022	+	·144 ·001 ·143	-	.088	(1) (2) 468	+	·186 ·013 ·173	_	.088 .003	i —	.095 .010 .082	486 486	1 -	·114 ·007 ·107	+	·095 ·023 ·072	- - -	.016 .018	(1) (2) 504		·084 ·013 ·071	+ -++	.108 .017 .001	+	.024 .004 .020
451 (1)	-	.060 .010	+	.080 .011 .001	-	.121 .001	(2)	l –	· 173 · 013 · 160	+	·088 ·011 ·077	+	.085 .003	487 (2)) +	·087 ·003 ·084	+	.003 .021 .024	+ - +	.084 .024 .060		-	·119 ·015 ·104	-	.018 .006 .024	- + -	.080 .031
452 ⁽¹⁾	+	·024 ·007 ·031		·087 ·001 ·086	-	·063 ·008 ·055	(2)	-	·174 ·013 ·161		.080 .080		.081 .000 .80.	488 488) - -	.050 .003 .048	+++++	.004 .013	+ - +	.046 .018 .031	(1) (2) 506	+	.010	-	.035 .010 .025	١.	.031 .000
453 (1)		·033 ·007 ·040	+	.058 .008	+ -+	.000 .001	(2)	+	·158 ·011 ·147		.046 .080	-	·079 ·013 ·067	489)	.030 .000	+	·053 ·017 ·036	-	.023 .017 .006	50 7 (2) - -	.050 .013 .038	-	.025 .013	1	.025 .000 .025
(1) (2) 454) +	.019 .004 .023	+	.052 .001 .021	 	·033 ·005 ·028		+	·124 ·009 ·115	++++	.061 .001	-	.063 .010) - +	1004	+	.050 .018 .032	-	.014 .003	508 (1) - +	.021 .008 .021	-	.048 .004 .022	+	.011 .013
(1) (2) 455) —	.040 .009	+	.083 .011	+ -+	123 1002	473 ⁽¹⁾) —	·112 ·007 ·105	+	1000	1 —	·047 ·002 ·049	[(2)	.000	+	.003 .019	 -	.029 .016 .013	1 (2) +	.053 .005 .048	1 -	.004 .009	+	.049 .004 .023
) +	.013 .006	l +	·075 ·001 ·074	+ -+	·052 ·007 ·045	(1) (2) 474	+ - +	.0103	+	·068 ·011 ·057	I -	.045 .001	(2) +	.024 .008	1+	.014 .013	-	.038 .021 .01 <i>7</i>	(2) +	. 050 . 008 . 042	1 -	800. 810.	+ +	.032 .000
457	(I	.036 .009	+	·062 ·010 ·052	+ -+	·098 ·001 ·097	(2)) +	·101 ·007 ·094	+++	.044 .002 .046	1-	·057 ·009 ·048) +	'017 '002 '015	+	.013 .013	-	.043 .014 .029	(2) -	· 079 · 007	-	.001 .000 .000	++++	.008 .008
(1) 458	+	·042 ·007 ·049	+	.080 .001	1 -	.031 .008	476) +	·072 ·066	++++	.033 .001	+ - +	.039 .007	(1 494	} - +	· 008 · 007 · 001	+	.016	-	.024 .009 .015	512	+++++++++++++++++++++++++++++++++++++++	· • • • • • • • • • • • • • • • • • • •	- - -	.003	- 1	.021 .008 .029
459) –	.073 .010	+	·085 ·014 ·071	I —	158 1004 154	477	+ - +	·065 ·060	 - + -	.042 .007	-	.023 .002	(1 495) - +	*029 *001	3 -	.016	1-	.013 .015	513	2) +	· • • • • • • • • • • • • • • • • • • •	-	.084 .003		.097 .003 .100
(2) +	.068	+	·129 ·004 ·125	<u>+</u>	.069	(1)	+ +	·060 ·002 ·058	- + -	.038 .002		.022 .003	496	;) +	.046 .004 .004	+	'027 '015 '012	+ - +	.010	514	3) -	· • • • • • • • • • • • • • • • • • • •	- !	105 1000	+	·047 ·008 ·055
(1 461) +	.095 .010	=	.078	<u>+</u>	173	1	3 -	.054 .004	+	'021 '001 '022	+	.033	(1) +	.031 .001	+	.018 .018	-	·067 ·019 ·048	515	13 -	· · • • • • • • • • • • • • • • • • • •	-	.008	+	121 123

Norm.—(1) Original Error; and (2) Error by change of Absolute term of 42nd Equation.

No. of Triangle		x		y		z	No. of Triangle		x		y		z	No. of Triangle		x		y		z	No. of Triangle		x		y		z
		<i>W</i>		N		"			"		"		"			"		"		"			"		"		~
516 ⁽¹⁾		.000 .000	+	.051 .021	+++	.051 .006 .027	(2)	+	·346 ·004 ·342	++++	134 139	+ - +	·212 ·009 ·203		+	.192 .001 .199	++++	·115 ·002 ·117	+ -++	·081 ·003 ·078	(1) (2) 561		·222 ·005 ·227	++++	.081 .003 .084	=	.311 .008 .303
(1) (2) (4) 517) 	.076 .011 .086	-	·231 ·013 ·016 ·260	++-+	·155 ·002 ·070 ·087	532 ⁽¹⁾	-	·255 ·002 ·253	+	·148 ·006 ·142	<u>-</u>	·107 ·004 ·111	(1) (2) 5 47		· 261 · 002 · 263	++++	·173 ·006 ·179	+ -+	·088 ·004 ·084	(1) (2) 562		.089 .003 .005	+ + +	·269 ·008 ·277	=	·185
518 (1)	+	·124 ·000 ·124	+	125 004 121	+	.001 .004		+	·193 ·193	++++	.086 .003	+ -+	·108 ·004 ·104	l	++	·235 ·002 ·237	+	.041 .006 .032	<u>-</u>	·194 ·008 ·202	(1) (2) 563	-	·111 ·003 ·114	++++	.142 .002 .180	=	·064 ·002 ·066
519 ⁽¹⁾	 - -	·136 ·000	+	.011 .004 .012	-	125 1004	(2)	-	·185 ·002 ·183		.096 .004 .092	-	.001 .003	(1) (2) 54 9	-	·224 ·000 ·224	++++	·168 ·003 ·171	+ - +	.023 .023	(2)		·054 ·003 ·057	++++	.096 .003	=	·147 ·006 ·153
(1) 520	+	·164 ·001 ·163	-	142 005	-	.022 .004 .026	(1) (2) 535	+	· 124 · 001 · 123	+ +	.02 .001	+ - +	·065 ·003 ·062	550 (2)	+	·216 ·001 ·215	+	·151 ·002 ·153	+ - +	·065 ·062	(2)		·120 ·005 ·125	+	.000 .013	=	·132 ·005 ·137
521		· 205 · 001 · 204		·029 ·005 ·034	-	·176 ·006 ·170	(2)	-	·119 ·002 ·117	+	·057 ·003 ·054		.003 .001		+	.000	+	·055 ·002 ·053	-	·144 ·002 ·146	(2)	-	.003 .003 .031	+ + +	:094 :004 :098	=	·066 ·001 ·067
(1) 522		·164 ·000 ·164	- + -	·128 ·004 ·124	-	.036 .004 .040	537		·091 ·000	+	·041 ·003 ·038	111	.050 .003	552 (1)	ŀ	.169 .000	+	.018	-	·148 ·003 ·151	56 7		·134 ·006 ·140	+++	·169 ·006 ·175	_	.032 .000
(1) (2) 523	+	·080 ·001 ·079	+	1001	_	·062 ·062	(1) (2) 538	+	·108 ·001 ·107		·069 ·002 ·071		.036 .039	(1) (2) 553	+	·164 ·001 ·163	+	·158 ·002 ·160	+ + +	.003 .003	568 ⁽¹⁾		.050 .002	+++	·115 ·002 ·117	=	·165 ·007 ·172
(1) (2) 524	-	·215 ·002 ·213	+	·165 ·006 ·159	-	·050 ·004 ·054	(1) (2) 539	-	·248 ·002 ·246	+	.074 .010 .024		174 1008 182		++	.192 .003	+	.041 .001 .040		·149 ·003 ·152	(1) (2) 569		*004 *004 *000	+	·158	=	·156 ·002 ·158
(1) (2) 525	+	·261 ·002 ·259	+	·081	-	180 1006	(1) (2) 540	+	·227 ·000 ·227		.096 .003	1	·128 ·003 ·131	(2)	=	·313 ·002	+	.307 .005 .312	+ - +	.003 .003	(2)	+	·049 ·003 ·046	+	·172 ·004 ·176	Ē	·123 ·007 ·130
(1) 526	+	·342	-	·231	_	·111 ·006 ·117	541	+	.200	+	.131 .003			556	+		+	.026 .003 .029	_	·277 ·006 ·283	571 (1)	-	.033 .004 .029	+	.100 .002	=	·134 ·001 ·135
~~~	<del>-</del>	· 364 · 002	+	.116	-	·248 ·008 ·240	(1) (2) 542	+	.001	+	.003	_	.003	(2)	_	'141 '001 '140	+	.006	_	·272 ·005 ·277	(2)	+	.004 .002	+	·122 ·002 ·124	-	.118 .007 .122
(2)	+	·429	+	·282 ·010 ·272	-	·147 ·007 ·154	(1) (2) 543	-	·218 ·002 ·216	<del>+</del>	- 1	-	·127 ·004 ·131	(1) (2) 558	-	198 200	+	.309 .909	-	·105 ·004 ·109	(2)	_	·008 ·007 ·OI 5	+	·110 ·007 ·117	_	102 100 102
(1)	-	·450 ·003	+	·157 ·007 ·164	+	·293	(2)	+	·212 ·001 ·211	+	·138 ·004 ·142	-	·074 ·005 ·069	559 ⁽²⁾	- 1		+	· 203 · 004 · 207	_	100. 100.							
(1)	+ 1	1.167	<del>-</del>	·723	_	'444 '018	(2)	+	·211 ·001 ·212	+	.093 .003	_	·115 ·004 ·119			·074 ·001 ·075	+	154 159	-	·228 ·006 ·234							

Note.—(1) Original Error; (2) Error by change of Absolute term of 42nd Equation; and (4) Arbitrary apportionment of Error.

# 17

The Dispersion of the Residual Errors remaining after the Simultaneous Reduction.

The residual errors that remained after the completion of the Simultaneous Reduction have already been exhibited on page 244. The method adopted for their dispersion has now to be described. Certain triangles having been chosen in which the residual errors were to be dispersed, new equations, both linear and geodetic, had to be constructed in a similar manner to the original equations, but restricted to contain only those of the angles of continuation over which the discrepancies were to be dispersed. This was readily done by taking the original equations furnished by each circuit in side, latitude, longitude and azimuth, substituting the residual errors for the absolute terms, and equating to zero all the angular errors, except those of the selected triangles. As the coefficients already employed stood multiplied by the equalizing factors given on page 59, the absolute terms had also to be multiplied by the same factors.

The equations being thus given, their solution was effected in two different ways. First, in Circuits I to VI, the previous calculations up to the products f  $\mathfrak{B}$ , f  $\mathfrak{C}$ , were made use of, the coefficients of the Indeterminate Factors being the sums of these quantities which appertained to the triangles retained; thus the real calculation began with the solution of the Equations between the Indeterminate Factors. The factors being found, the errors y and z of the angles of continuation were obtained by the usual formulæ. This method necessarily employed the same weights that were used in the original calculations.

In the second method, which was applied to Circuits VII, IX and X, the angles were all assumed to be of equal weight (= 1) and the triangular equation

$$x + y + z = 0$$

was neglected. Thus the circuit equations which are represented by equations (66), page 59, had to be solved subject to the minimum

$$U=\lceil y^2+z^2\rceil.$$

The coefficients of the As therefore took the form

$$[mf_mb_if_ib_i+mf_mc_if_ic]$$

in place of those given in equations (68), page 60; and this involved fresh calculations.

The values of the angular errors were then given by the formulæ

After they were obtained

$$x$$
 was put  $= -(y + z)$ .

 $y = [f_b \Lambda], z = [f_c \Lambda].$ 

In dispersing the residual errors of one circuit those of the next in several instances became changed. The actual errors dispersed in each case are given on page 245.

Very considerable trouble was occasioned in selecting a sufficient number of triangles to make the residual angular errors small enough to be admissible; in some cases several trials had to be made before the resulting angular errors were deemed acceptable; in other cases modifications were introduced which need not be described here as they are exhibited in the details of the calculations on the following pages.

## CIRCUIT I.

Triangles employed Nos. 31 to 44.

Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 1 to 4; Absolute Terms from Residuals page 245).

			44								Factors
Page	154,	Side.	$\int_{1} \left[ f \mathfrak{h} y + f \mathfrak{c} z \right]_{31}^{44}$	=	$_{1}E_{Z}$	=	0.0	×·	03 =	= 0.000,	$_{1}\Lambda_{Z}$
"	"	Latitude.	$\int_{2} \left[ f \mathfrak{h} y + f \mathfrak{c} z \right]_{31}^{43}$	=	$_2E_R$	=	+0.014	×	15 =	= +0.310,	$_2\Lambda_{_{I\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
"	154 & 155,	Longitude.	$\int_{3} \left[ f \mathfrak{b} y + f \mathfrak{c} z \right]_{31}^{43}$	=	$_3E_R$	=	-0.031	×	15 =	= -0.465,	$_3\Lambda_{_{I\!\!R}}$
,,	155,	Azimuth.	$\int_{4} \left[ f \mathfrak{b} y + f \mathfrak{c} z \right]_{31}^{44}$	=	4 ^E B	=	+0.080	×	I =	= +0.080,	$_{4}\Lambda_{_{I\!\!\!\!E}}$

(Form	ed with the	Equations aid of the prev	S and cC)	77.1 C.11 . 77 . 4		
No. of $E_{R}$	Values of $E_{\scriptscriptstyle R}$	$_{1}\Lambda_{E}$	Coeffic	ients of	4 ^Λ _E .	Values of the Factors
1 2 3 4	· 000 + · 210 - · 465 + · 080	+2.06	+1.17	-0·84 +0·02 +1·51	-0.03 +1.16 +2.31 +4.92	$_{1}\Lambda_{R} = -3.042$ $_{2}\Lambda_{R} = +1.438$ $_{3}\Lambda_{R} = -5.347$ $_{4}\Lambda_{R} = +2.174$

	Triangl	e <b>x</b>	y	z	Triangle x	y	z	Triangle x	y	z
	31	498	+ .809	311	36 - 113	+.012	+.098	41 + .057	085	+ .058
	32	+ . 271	191	110	37 057	+.012	+ .042	<b>42</b> - · o ₃₇	065	+ '102
	33	074	+ .455	381	38 + 171	152	019	43 - 102	020	+ • 122
	34	019	004	+ .053	39 091	- :045	+ • 136	44 + .099	109	+ .007
	35	+ .073	003	- 070	40 + 130	115	012			
1										

^{*} In the tables of the equations between the factors the coefficients of the terms below the diagonal are omitted for convenience, the coefficient of the pth term in the qth line being always the same as the coefficient of the qth term in the pth line.

### CIRCUIT II.

#### Triangles employed Nos. 79 to 92.

#### Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 5 to 8; Absolute Terms from Residuals page 245).

Factors

# Equations between Factors

(Formed with the aid of the previously computed values of \$35 and c C)

Values of the Factors

						Values of the Factors
No. of	Values of		Coeffic	ients of		
$E_{R}$	$E_{R}$	5 ¹ Æ .	$_{6}\Lambda_{_{I\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$_{7}\Lambda_{R}$	$_8\Lambda_{_{I\!\!\!\!\!R}}$	
5	+ .378	+0.363	4.0.046	-0.040	+0.003	$_{5}\Lambda_{R}=+8.628$
6	012		+ '021	001	+ .059	$_{6}\Lambda_{R}=-6.662$
7	+.180		*	+ .020	+ .067	$_{7}\Lambda_{R} = +39.209$
8	582				+ .725	$_{8}\Lambda_{_{\mathbf{Z}}}=-\ 3.899$

Triangle 
$$x$$
  $y$   $z$  Triangle  $x$   $y$   $z$  Triangle  $x$   $y$   $z$  Triangle  $x$   $y$   $z$   $79 - 0.051 - 0.135 + 0.186 - 0.046 - 0.013 + 0.059 - 0.055 + 0.090 - 0.035 - 0.017 - 0.024 + 0.041 - 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.090 + 0.0$ 

# CIRCUIT III.

#### Triangles employed Nos. 117 to 126.

#### Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 9 to 12; Absolute Terms from Residuals page 245).

			_ 100				Factors
Page	158,	Side.	$\int_{9} \left[ f \mathfrak{b} y + f \mathfrak{c} z \right]_{117}^{220} =$	$_9E_{_{I\!\!R}}$	= -3.4	$x \cdot 03 = -0.102$	$_{9}\Lambda_{_{I\!\!R}}$
"	158 & 159,	Latitude.	$\int_{10} \left[ f \mathfrak{b} y + f \mathfrak{c} z \right]_{117}^{196} =$	$_{10}E_{R}$	= +0.030	x 15 = +0.300,	$_{10}\Lambda_{R}$
"	159 & 160,	Longitude.	$\int_{11} \left[ f \mathfrak{d} y + f \mathfrak{c} x \right]_{117}^{196} =$	11E _R	= -0.033	x 15 = -0.330,	,, A _R
"	160,	Azimuth.	$\int_{12} \left[ f \mathfrak{b} y + f \mathfrak{c} z \right]_{117}^{196} =$	12E _R	= -0.333	$\times$ 1 = -0.323,	$_{12}\Lambda_{R}$

(Form	ed with the	Equations aid of the prev	<b>B</b> and c <b>C</b> )			
No. of $E_R$	Values of $E_R$	₉ Λ ₂	Coeffice $_{10}\Lambda_{E}$	eients of	12 ^Λ R	Values of the Factors
9	- · 102	+3.127	+1.633	-0.479	+0.040	$_{9}\Lambda_{R}=-7.571$
10	+ · 300		+1.022	- '041	+1.034	$_{10}\Lambda_{R}=+11.630$
11	330		*	+1.207	+2.683	$_{11}\Lambda_{R}=-5.854$
12	-:323				+7.482	$_{12}\Lambda_{\mathbb{Z}}=+\text{ o.489}$

Triangle
 
$$x$$
 $y$ 
 $z$ 
 Triangle
  $x$ 
 $y$ 
 $z$ 

 117
  $+ \cdot 689$ 
 $+ \cdot 458$ 
 $-1 \cdot 147$ 
 $122$ 
 $+ \cdot 269$ 
 $- \cdot 089$ 
 $- \cdot 180$ 

 118
  $- \cdot 123$ 
 $+ \cdot 503$ 
 $- \cdot 380$ 
 $128$ 
 $- \cdot 013$ 
 $- \cdot 298$ 
 $+ \cdot 311$ 

 119
  $+ \cdot 432$ 
 $+ \cdot 082$ 
 $- \cdot 514$ 
 $124$ 
 $+ \cdot 550$ 
 $- \cdot 642$ 
 $+ \cdot 092$ 

 120
  $- \cdot 014$ 
 $+ \cdot 298$ 
 $- \cdot 284$ 
 $125$ 
 $- \cdot 015$ 
 $- \cdot 524$ 
 $+ \cdot 539$ 

 121
  $+ \cdot 317$ 
 $- \cdot 234$ 
 $- \cdot 083$ 
 $126$ 
 $+ \cdot 398$ 
 $- \cdot 948$ 
 $+ \cdot 550$ 

#### CIRCUIT IV.

Triangles employed Nos. 163 to 170.

Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 13 to 16; Absolute Terms from Residuals, page 245).

,, 162 & 163, Azimuth.  $[fby + fcz]_{163}^{170} = {}_{16}E_{R} = -0.371 \times 1 = -0.371, \quad {}_{16}\Lambda_{R}$ 

#### Equations between Factors (Formed with the aid of the previously computed values of \$13 and co) Values of the Factors No. of Values of Coefficients of $\boldsymbol{E}_{\scriptscriptstyle R}$ $\boldsymbol{E}_{\scriptscriptstyle R}$ $14^{\Lambda}_{R}$ $_{13}\Lambda_R$ . $_{15}\Lambda_{R}$ 16AR +2.299 +0.689 -0.906 +0.270 $^{13}V^{B}=-0.105$ - 042 13 + .416 $_{14}\Lambda_{R} = + 9.982$ +1.007 14 .000 $_{15}\Lambda_{R} = -15.282$ + '515 +0.691 15 - . 210 $_{16}\Lambda_{R} = + \circ .588$ 16 -:371 +4.411

### Residual Angular Errors.

Triangle x y z Triangle x y z 163 + .662 - .137 - .525 167 + .163 - .669 - .694 164 - .255 + .379 - .124 168 + .395 + .144 - .539 165 + .168 - .081 - .087 169 - .084 - .855 + .939 166 - .042 + .156 - .114 170 + .440 - .558 + .118

# CIRCUIT V.

# Triangles employed Nos. 199 to 206.

# Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 17 to 20; Absolute Terms from Residuals, page 245).

							Factors
Pages	163 & 164,	Side.	$\int_{17} \left[ f \mathfrak{b} y + f \mathfrak{c} z \right]_{199}^{206} =$	17ER	= -3.4	$\times \cdot \circ 3 = - \circ \cdot 1 \circ 2,$	$_{17}\Lambda_{I\!\!\!/}$
"	164,	Latitude.	$\int_{18} \left[ f  \mathfrak{b}  y + f  \mathfrak{c}  z  \right]_{199}^{206}  = $	18E _R	= 0.000	x 15 = 0.000,	18A ₂₂
"	164 & 165,	Longitude.	$\int_{19} \left[ f \mathfrak{b} y + f \mathfrak{c} z \right]_{199}^{206} =$	19ER	= -0.014	$\times$ 15 = $-0.255$ ,	19 A B
,,	165,	Azimuth.	$\int_{20} \left[ f \mathfrak{h}  y + f \mathfrak{c}  z \right]_{199}^{206} =$	$_{20}E_{R}$	= -0.386	$\times$ 1 = -0.386,	$_{20}\Lambda_{R}$

(Form	ad with the a	•	s between Fac		282 and a 481	
No. of	Values of	and of the pre	viously comput	eients of	and tell	Values of the Factors
$E_{R}$	$E_{_{I\!\!R}}$	17 <b>A</b> 2	$_{18}\Lambda_{R}$	19 ¹ 2	$_{20}\Lambda_{ extbf{\textit{R}}}$	
17	102	+1.632	+0.672	- 0.586	+0.132	$_{17}\Lambda_{R} = -9.677$
18	•000		+ .548	+ .046	+1.100	$_{18}\Lambda_{R} = + 9.969$
19	-··255		*	+ '547	+1.140	$_{19}\Lambda_{R}=-14.93$
20	386				+4.366	$_{20}\Lambda_{R} = + 1.577$

Triangle	$\boldsymbol{x}$	$oldsymbol{y}$	z	Triangle	<b>x</b>	y	z
199	+ "672	+,118	-"790	203	+ "207	-"198	-"009
200	- • 208	+ • 403	195	204	+ · 299	192	107
201	+ • 483	041	442	205	- : 220	103	+ . 323
202	- • • • • • • • • • • • • • • • • • • •	+ · 273	- · 226	206	+ . 737	774	+ .032

#### CIRCUIT VI.

#### Triangles employed Nos. 243 to 262.

#### Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 21 to 24; Absolute Terms from Residuals, page 245).

Pages 165 & 166, Side. 
$$\left[ f b y + f c z \right]_{243}^{262} = {}_{21} E_{R} = -3.5 \times .03 = -0.105, \qquad {}_{21} \Lambda_{R}$$

,, 167, Longitude. 
$$\int_{22}^{2} \left[ f b y + f c z \right]_{243}^{262} = \int_{23}^{2} E_R = -0.020 \times 15 = -0.300$$
,  $\int_{23}^{2} \Lambda_R dz$ 

,, 167 & 168, Azimuth. 
$$[fhy + fcz]_{243}^{262} = {}_{24}E_{R} = -0.424 \times 1 = -0.424, \qquad {}_{24}\Lambda_{R}$$

## Equations between Factors

(Formed with the aid of the previously computed values of bB and cC)

					Values of the Factors
Values of	Coefficients of				
$E_{R}$	$_{21}\Lambda_{R}$	$_{22}\Lambda_{R}$	$_{23}\Lambda_{_{I\!\!R}}$	$_{24}\Lambda_{I\!\!\!\!/}$	
102	+5.811	+1.376	-2.939	- 0.552	$_{21}\Lambda_{R}=-2\cdot 252$
+ .042		+1.599	-0.115	+ 3.531	$_{22}\Lambda_{R}=+2.699$
300		*	+1.953	+ 2.452	$_{23}\Lambda_{R}=-3\cdot 113$
- • 424				+12.248	$^{24}\Lambda_{R} = -0.550$
	E _R - · 105 + · 045 - · 300	$E_R$ $_{21}\Lambda_R$ $- \cdot 105 + 5 \cdot 811 + \cdot 045 - \cdot 300$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Triangle 
$$x$$
  $y$   $z$  Triangle  $x$   $y$   $z$  Triangle  $x$   $y$   $z$  243  $+$  664  $-$  104  $-$  560  $250$   $-$  606  $-$  602  $+$  608  $257$   $-$  606  $-$  605  $+$  671  $244$   $-$  176  $+$  482  $-$  306  $251$   $+$  605  $-$  607  $+$  602  $258$   $+$  604  $-$  617  $+$  618  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $+$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$  619  $-$ 

### CIRCUIT VII.

Triangles employed Nos. 295 to 302.

### Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 25 to 28; Absolute Terms from Residuals, page 245).

				Factors
Page	168,	Side.	${}_{25}\Big[f\mathfrak{b}y+f\mathfrak{c}z\Big]_{295}^{302}={}_{25}E_{R}=+17\cdot9\qquad\times\cdot\circ3=+\circ\cdot537,$	$_{25}\Lambda_{R}$
,,	168 & 169,	Latitude.	${}_{26}\Big[f\mathfrak{h}y+f\mathfrak{c}z\Big]_{295}^{302}={}_{26}E_{R}=+\circ\cdot\circ\circ8\times15=+\circ\cdot12\circ,$	$_{26}\Lambda_{_{I\!\!R}}$
,,	169 & 170,	Longitude.	$\int_{27} \left[ f b y + f c z \right]_{295}^{302} = \int_{27} E_R = -0.008 \times 15 = -0.120,$	$_{27}\Lambda_{R}$
,,	170,	Azimuth.	${}_{28}\Big[f\mathfrak{b}y+f\mathfrak{c}z\Big]_{295}^{302}={}_{28}E_{R}=-0.407\times I=-0.407,$	$_{28}\Lambda_{I\!\!\!\!/}$

	(Forn					
No. of $E_R$	Values of $E_R$		Coeffice $_{26}\Lambda_{_{I\!\!R}}$	eients of ${}_{27}\Lambda_{I\!\!R}$	₂₈ Λ _B	Values of the Factors
25	+ · 537	+2.409	+0.128	-0.452	- 0.81	$_{25}\Lambda_R = -0.275$
26 27	+·120		+ '154	+ .061	+ 1.16	${}_{26}\Lambda_{R} = +3.406$ ${}_{27}\Lambda_{R} = -1.036$
27 28	- 407			7 1/5	+16	$^{27}\Lambda_{R} = -0.532$

### Residual Angular Errors.

Triangle
 
$$x$$
 $y$ 
 $z$ 
 Triangle
  $x$ 
 $y$ 
 $z$ 

 295
  $+$  "318
  $+$  "062
  $-$  "380
 299
  $+$  "065
  $+$  "021
  $-$  "086

 296
  $\cdot$  000
  $+$  '217
  $-$  '217
 800
  $+$  '328
  $-$  '103
  $-$  '225

 297
  $+$  '198
  $+$  '003
  $-$  '201
 801
  $-$  '194
  $+$  '051
  $+$  '143

 298
  $+$  '095
  $+$  '068
  $-$  '163
 802
  $+$  '386
  $-$  '200
  $-$  '186



### CIRCUIT IX.

Triangles employed Nos. 352, 353 & 361.

Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 33 to 36; Absolute Terms from Residuals, page 245).

Factors

	(Forn	Walnes of the Fortune					
No. of $E_R$	$egin{array}{c}  ext{Values of} \  extbf{\emph{E}}_{_{Z\!\!\!\!Z}} \end{array}$	33 ¹ Λ _R	Coeffic	ients of $_{35}\Lambda_{_{I\!\!\!\!/}}$	$_{36}\Lambda_{_{I\!\!\!\!Z}}$	Values of the Factors	
33	+ '012	+0.807	+0.130	-0.190 +0.023	+0.03	$_{33}\Lambda_{R} = + \circ \cdot 47$	
34 35	+.012		*	+0.101	+0.49	$_{34}\Lambda_{R} = -2.51$ $_{35}\Lambda_{R} = +1.38$	
36	003				+6	$^{36}\Lambda_{\mathbb{R}} = +0.194$	

Residual Angular Errors.

Triangle 
$$x$$
  $y$   $z$  Triangle  $x$   $y$   $z$  352  $-\frac{3}{3}46 + \frac{3}{3}63 + \frac{3}{2}83$  861  $-\frac{3}{4}499 + \frac{3}{3}35 + \frac{3}{1}64$  853  $+\frac{1}{5}6 - \frac{1}{1}67 + \frac{1}{1}61$ 

The Angular Errors of triangle 361 being large were arbitrarily divided between triangles 360 and 361 as below

Triangle 
$$x$$
  $y$   $z$   
 $360 + 239 - 666 - 173$   
 $361 - 259 + 188 + 071$ 

### CIRCUIT X.

1st Solution. Triangles employed Nos. 409 to 411, 422 and 423.

### Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 37 to 40; Absolute Terms from Residuals, page 245).

	(Form	Values of the Factor				
No. of $oldsymbol{E_R}$	Values of $E_R$	$_{37}\Lambda_{R}$	Coeffic 38 $\Lambda_{I\!\!R}$	ients of	$_{ extsf{40}}\Lambda_{R}$	
37	.oco	+2.002	+0.003	-0.798	- 0.06	$\int_{37} \Lambda_{\mathbb{Z}} = -0.188$
38	- · 165		+ '470	031	+ 1.84	$_{38}\Lambda_{R} = -1.66$
39	045		*	+ '407	- 0.08	$_{39}\Lambda_R = -0.501$
40	+ · 286				+10	$_{40}\Lambda_{R} = +0.329$

Equations between Factors

### Residual Angular Errors.

Triangle 
$$x$$
  $y$   $z$ 

$$409 + \frac{3}{3}43 - \frac{153}{153} - \frac{190}{190}$$

$$410 - \frac{228}{11} + \frac{156}{178} - \frac{107}{107}$$

$$411 + \frac{178}{178} - \frac{107}{107} - \frac{107}{107}$$

$$422 + \frac{535}{107} - \frac{297}{107} - \frac{238}{107}$$

$$423 - \frac{498}{107} + \frac{161}{107} + \frac{337}{107}$$

The Angular Errors of triangles 422 and 423 were too large to be admissible; they were accordingly rejected and after correcting triangles 409 to 411 fresh residuals were obtained, which were dispersed by a second solution as shewn on the next page.

### CIRCUIT X.

### 2nd Solution. Triangles employed Nos. 420 to 423.

As these triangles were situated at the extremity of the right-hand branch of Circuit X, any small angular changes could have no perceptible effect on the latitude and longitude of the station of junction; hence the equations in these elements were omitted.

### Equations to be satisfied.

(Left-hand Members taken from Circuit Equations 37 and 40) Factors

$$\int_{37} \left[ f \mathfrak{b} y + f \mathfrak{c} z \right]_{420}^{423} = {}_{37} E'_{R} = 3.6 \times .03 = -0.108, \qquad {}_{37} \Lambda'_{R}$$

$$\int_{40} \left[ f \mathfrak{b} y + f \mathfrak{c} z \right]_{420}^{423} = {}_{40} E'_{R} = 1.033 \times 1 = +1.033, \qquad {}_{40} \Lambda'_{R}$$

# Equations between Factors (Formed with the aid of values of bb and cc)

Values of the Factors

No. of	Values of	Coeffic	ients of	values of the ractors
$E'_{R}$	$E'_{R}$	37 A' R	$_{ extsf{40}}\Lambda'{}_{R}$	
37	-0.108	+1.503	-0.75	$_{37}\Lambda'_{R} = - \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \circ$
40	+1.033	*	+8	$_{40}\Lambda'_{R} = + \circ 128$

### Residual Angular Errors.

Triangle 
$$x$$
  $y$   $z$ 

$$420 + \frac{7}{2}61 - \frac{7}{134} - \frac{7}{127}$$

$$421 - \frac{2}{2}58 + \frac{1}{124} + \frac{1}{134}$$

$$422 + \frac{2}{2}57 - \frac{1}{132} - \frac{1}{125}$$

$$423 - \frac{2}{2}56 + \frac{1}{124} + \frac{1}{132}$$

### 18.

### The Final Results of the Simultaneous Reduction.

After the total values of the angular errors, tabulated in Section 16, had been applied with changed sign to the linear and geodetic calculations, trifling residual errors still remained in the 8th place of decimals of log.side and the 3rd place of decimals of seconds in latitude, longitude and azimuth, which are shewn in the following table. These errors are of no greater magnitude than those which remained at the close of the reductions of the North-West and South-East Quadrilaterals, and, as in those cases, no attempt was made to disperse them; for the Logarithm Tables employed in the calculations gave only 7 places of decimals, an 8th place being obtained by interpolation, while the first terms of the expressions for  $\Delta\lambda$ ,  $\Delta L$  and  $\Delta A$  given on pages 30 and 31 often contained 4 integral figures, making their determination with accuracy to the 3rd place of decimals doubtful: thus such small inconsistencies were almost unavoidable and quite immaterial, especially as it was not intended to give the final geodetic results to more than two places of decimals of seconds in the details of each series.

	Final Residual Errors									
Circuit	Linear	Latitude	Longitude	Asimuth						
	7th place of logs.	"	"	"						
I	<b>—</b> 0'2	+ 0.003	- 0.001	— o.ooq						
II	0.0	- '002	+ '002	+ '004						
III	0.0	+ .001	+ '002	+ .008						
IV	+ 0.1	001	+ '002	- '002						
V	— o.1	+ .001	- '002	007						
VI	+ 0.1	- '002	.000	- '004						
VII	<b>–</b> o.3	100. +	.000	+ '007						
VIII	0.0	+ .003	- '004	003						
IX	+ 0.5	+ .001	+ .001	<b>-</b> '002						
X	{-0.1 -0.1	001	.000	<b>–</b> .004						
ΧI	+ 0.5	100.	.000	.000						
XII	— oʻ2	+ .003	+ '004	.000						

Contrasting the primary values given at the ends of the several branches of the uncorrected circuits, with those now furnished by the corrected circuits we have the following results, from which it will be seen that in 25 instances the final value is intermediate between, and in 19 it is outside of both, the two primary values given by the respective branches of the circuits.

Linear and Geodetic Values at the Sides and Stations of the Circuit-Junctions.

	Logarithmic Length.	Azimuth.	Latitude.	Longitude.				
CIRCUIT I.	Side Ghand	iál-Chándípahár.	Station Gh	andiál.				
Final values from Gre	at Arc)	0 / 1/	o , "	0 / 1/				
	80°,—}5·121,2764,1	34 47 42.606	30 13 25.321	78 27 54.613				
Right branch	3051,2	54.204	26.260	55 [.] 547				
Final	2764,1	42.61	25.32	54.61				
CIRCUIT II.	Side Bah	eri-Atária.	Station ]	Baheri.				
Left branch	4.920,3283,9	2 13 47.514	28 51 53.521	79 38 19:407				
Right ,,	276,6	33.197	53.169	18.317				
Final	1 55,7	35.30	53.07	18.26				
CIRCUIT III.	Side Rámnaga	r-Dahlelnagar.	Station Rámnagar.					
Left branch	4.873,8558,5	1 49 14:081	28 16 36.772	80 41 35.764				
Right "	9040,8	7 · 283	37.697	35.281				
Final	8518 <b>,3</b>	15.36	36.69	35.94				
CIRCUIT IV.	· Side B	Bela-Mási.	Station	n Bela.				
Left branch	4.781,0546,6	333 3 26.623	27 47 19:324	81 20 31.847				
Right ,,	0,9905,6	36.800	18.112	31.787				
Final	1,0038,8	34.45	18.45	31 · 86				
CIRCUIT V.	Side Lohápár	nia-Bansídíla.	Station L	ohápánia.				
Left branch	4.757,8074,3	350 0 57:104	27 33 21.350	82 17 27 265				
Right "	243,7	56.313	21.733	27.502				
Final	241,6	55.28	21.68	27.47				
CIRCUIT VI.	Side Ghaus	s-Púrena.	Station	Ghaus.				
Left branch	4.824,8956,0	334 36 22.005	27 21 5.123	83 8 6.020				
Right "	9038,1	26.848	5.334	6.124				
Final	8978,6	21.34	5.08	5.99				

Linear and Geodetic Values at the Sides and Stations of the Circuit-Junctions.—(Continued).

	Logarithmic Length.	Azimuth.	Latitude.	Longitude.			
CIRCUIT VII.	Side Rámnag	ar-Naunangarhi.	Station R	ámnagar.			
		0 / 4	0 / #	0 / W			
Left branch	4.807,0313,3	339 14 22.948	27 9 4:227	84 22 2.908			
Right "	180,4	17.209	3.870	2.878			
Final	266,3	17.93	4.09	2.74			
CIRCUIT VIII.	Side Bulákípu	ır-Madanpur.	Station Bul	lákípur.			
Left branch	4.775,2677,3	0 52 19:082	26 40 55.553	85 28 58-230			
Right "	874,0	23.23	55.856	58.203			
Final	788,4	19.84	55.73	58.16			
CIRCUIT IX.	Side Narhar-Bh	eria Bisanpur.	Station ]	Narhar.			
Left branch	4.748,6907,1	345 21 4.100	26 31 45.722	86 8 37 923			
Right "	622,5	1.821	45.408	37.959			
Final	814,0	2.08	45.64	37 · 86			
CIRCUIT X.	Side Diwár	nganj-Chúni.	Station D	iwáng <b>a</b> nj.			
Left branch	4.764,5514,2	306 47 42.253	26 16 49.805	86 56 48.709			
Right "	705,1	42.901	49.591	48.596			
Final	694,8	42.46	49.97	48.73			
CIRCUIT XI.	Side Dhub	ri-Alangjáni.	Station Dhubri.				
Left branch	4.894,5757,7	81 23 23.624	26 1 3·538	90 2 18:504			
Right "	564,0	26.029	3.667	18.361			
Final	653,1	25.28	3.82	18.44			
CIRCUIT XII.	Side Tepkilaba	ma-Harogaon.	Station Tep	kilabama.			
Left branch	4.675,7146,6	89 58 51.007	<b>25</b> 56 <b>22</b> · 036	91 36 52.782			
Right "	248,6	37.867	22.209	52.155			
Final	244,6	51 · 20	22.18	52.96			

The amount of error which has devolved on each entire chain, or on each part of a chain, that enters into the several circuits (see page 74) is shewn in the following table, in which the number of triangles between the extreme sides is given for each *linear* and each azimuthal apportionment of error. The arc-length of each chain, in latitude and longitude, as measured between the adopted terminal and junction stations, is also given.

Apportionments of Error.

•eli		Linear	Δ	simuthal	<b>∆</b> rc-lei	ngth in	Erro	rs in
Chain of Triangles	No. of included Triangles	Errors in millionth parts of side-length	No. of Circuit Triangles	Error	Latitude	Longitude	Latitude	Longitude
				"	0 / 1/	0 , "	"	"
1,	11	+ 36.6	11	- 0.716	1 21 32.26	1 10 23.94	+ 0.484	+ 0.082
Ιg	14	+ 18.6	14	- 0.728	0 35 16.38	1 3 17.39	+ 0.031	- 0.062
I,	10	+ 3.4	10	- 0.255	0 29 18.24	0 38 55.92	+ 0.130	- o·351
I,	10	+ 7.9	10	+ 0.828	0 13 56.76	0 56 55.61	+ 0.003	+ 0.127
I ₆	10	+ 5.7	10	+ 0.076	0 12 16.60	0 50 38.53	+ 0.000	+ 0.011
I ₆	14	+ 2.9	14	+ 0.485	0 12 1.00	1 13 56.75	+ 0.113	- 0.033
1,	14	+ 5.8	14	+ 0.030	0 28 8.36	1 6 55.44	- 0.044	+ 0.089
I,	8	- 1.7	8	+ 1.673	0 9 10.09	0 39 39.68	+ 0.040	- 0.037
I,	11	- 2.2	11	+ 1.943	0 14 55.67	0 48 10.87	- 0.063	+ 0.118
I ₁₀	15	+ 2.4	18	+ 0.934	0 0 49 02	1 34 50.36	- o.oee	<b>–</b> 0.058
к	34	+ 29.5	34	+12.314	4 51 32.70	0 9 52.13	+ 0.455	+ 0.852
L	35	+ 9.3	35	- 1.279	4 13 46.77	0 8 15.73	+ 0.084	- o·178
м	37	+ 117.0	37	- 7.830	3 42 19.12	0 28 30.60	+ 0.878	- 0.013
N	33	- 38.5	33	+ 1.521	3 14 33.71	0 13 38.22	- 0.333	- 0.301
0	31	- 5.3	31	+ 0.661	3 22 40.92	0 39 34.02	+ 0.040	+ 0.027
Р	29	+ 10.8	29	+ 5.023	3 6 58.10	0 2 15.01	+ 0.141	+ 0.164
Q	22	- 25.6	27	- o·753	2 43 41.98	0 0 21 . 72	- 0.143	+ 0.042
R	2,1	+ 21.5	. 21	+ 2.018	1 28 11.10	0 2 9 10	+ 0.084	+ 0.059
s	21	- 41.6	21	- 2.303	2 22 20.95	0 11 20.31	- 0.162	- 0.024
T	47	+ 8.2	47	- 2.484	3 23 5.08	0 5 0.58	- 0.313	- o·o79
ט,	19	- 17.2	19	- 2.168	0 16 33.99	1 28 8.35	+ 0.027	- 0.074
U,	22	- 3.2	21	- 5.536	0 0 25.10	1 41 11.79	+ 0.134	- 0.127
v	41	- 3.4	41	+ 2.919	2 51 33.96	0 7 31.58	- 0.180	- 0.007
w	35	+ 21.6	35	- 5.630	2 47 17.42	0 0 54.32	- 0.138	- 0.911
X ₁	22	+ 24.1	19	+ 0.227	0 14 57.13	1 30 39.35	+ 0.029	+ 0.141
X ₂	17	- 2·I	17	- 0.642	0 4 41 · 64	1 34 34.52	+ 0.006	- 0.100

The following table gives the number of determinations of the several angular corrections, ranged in order of magnitude, and classed in the order in which they were determined, namely—

- (1). Corrections, as primarily computed, simultaneously;
- (2). Corrections for the error of the absolute term of one of the primary equations;
- (3). Corrections for residual errors within authorised limits, arising from contraction of the number of figures employed in the calculations;
- (4). Arbitrary corrections for ultimate petty residual errors;

as already set forth at page 246. The last line of the table gives the number of the aggregate corrections—the algebraical sum of the respective partial corrections—ranged in order of magnitude.

Table of the Number and Magnitudes of the Several Corrections.

						Ма	G N	İΤ	J D E	S	I N	S E	со	N D	s						per
Corrections		o to .1	7. to .z	.2 to .3	.3 to .4	.4 to .5	9. ot 5.	2. ot 9.	8. of 4.	6. ot 8.	o.1 ot 6.	1.0 to 1.1	1.1 to 1.2	1.2 to 1.3	1.3 to 1.4	1.4 to 1.5	1.5 to 1.6	1.7 to 1.8	1.9 to 2.0	2.0 to 2.1	Total No. computed
	Number						Total														
Partial	(1)	791	412	207	106	54	40	29	37	18	8	2	5		1	3	4	1		1	1719
,,	(2)	591				,															591
"	(3)	119	72	29	20	11	14	5	3	2	3		I								279
,,	(4)	48											,					,			48
	Total	1549	484	236	126	65	54	34	40	20	11	2	6		I	3	4	I		1	2637
Agg	regate	780	390	229	106	58	43	32	27	20	6	4	6	5		2	6	3	I	1	1719

### 19.

### Review of the General Reduction.

It has been shown in Section 1 of the present chapter that when the question of the general treatment of the mass of triangulation which is contained within the North-East Quadrilateral was under consideration, the Simultaneous Reduction of the whole appeared at first sight to be so much more formidable than either of the two corresponding Simultaneous Reductions previously completed—viz., those of the Sections of the great triangulation known as the North-West and the South-East Quadrilaterals, both which had been found to be excessively laborious—that the propriety of omitting certain of the interior chains of triangles, with a view to diminishing the labour of the reduction, was discussed, but was eventually abandoned as unjustifiable. Thus the Computing Office was confronted by the task of first constructing 41 geometrical equations of condition involving 1269 unknown quantities, and then solving the equations; and this appeared to be a very formidable undertaking, as in each of the two preceding reductions the number of equations of condition was materially less and yet the labour involved had been very great.

The office was then under the charge of Major Herschel, as a temporary measure during the absence in Europe of Messrs. Hennessey and Cole. The two previous Simultaneous Reductions had been effected under their supervision, and with remarkable precision, every condition of the triangulation having been fulfilled with almost perfect accuracy. But in order to secure this degree of accuracy, the calculations had been carried to a large number of decimal places, sufficient to prevent any sensible accumulations of arithmetical error at the close of the very lengthy computations (see page 67); and this had been found very laborious. Thus when the third section of the triangulation—which appeared to be very much more arduous and difficult to treat than either of its predecessors, because of the larger number of geometrical conditions it presented for simultaneous satisfaction—came to be taken in hand, the measure of arithmetical accuracy to be aimed at was purposely lowered, by contracting the number of decimal places employed in different stages of the calculations, as a set off against the additional labour involved by the increased number of geometrical conditions to be satisfied.

For these reasons the present reduction is not so strictly simultaneous as either of its predecessors; for though the simultaneous calculations still form by far the greater portion of the reduction, and satisfy broadly all the geometrical conditions involved, they had to be supplemented by further calculations, in order to disperse the 'residual errors' which were caused by the intentional neglect of arithmetical nicety.

In supervising the reduction of this great mass of triangulation, Major Herschel availed himself of the opportunity afforded him to re-investigate de novo all the formulæ which had been elaborated for the two first reductions, and to examine the methods of their practical application. He made whatever changes he believed to be improvements. Thus in reviewing the present Reduction it is necessary first to notice these changes, and then to indicate the results which followed from aiming at a lower degree of arithmetical refinement.

### Changes in Previous Methods of Treatment.

Of these the most important are:—(1). The arrangement of the geometrical or primary equations of condition in the most appropriate order for the formation of the equations between the Indeterminate Factors. (2). The introduction of the 'zig-zag' instead of the 'direct' line of traverse, in forming the several geodetic equations of condition. (3). The introduction of a table of constants to assist in the construction of the coefficients in the geodetic equations of condition. (4). The introduction of 'equalizing factors', for application to the primary equations, with a view to facilitate the solution of the equations of condition. (5). An alteration of the usual procedure in solving the equations between the Indeterminate Factors.

(1). In the reduction of the two first sections of the triangulation, the arrangement of the primary equations of condition had been as follows:—the whole of the linear (or side-length) equations—whether formed between the base-lines of verification or round the circuits of triangles—were collected together in a group by themselves, which was followed by the several geodetic equations in groups of three—for latitude, longitude and azimuth one group for each circuit in succession. In the present reduction, the linear and the three geodetic equations for each circuit are grouped together, and the single base-line equation is introduced in such a manner as to avoid any general entanglement of the equations. This arrangement is the most advantageous for the formation of equations between the Indeterminate Factors of which the solution will entail the minimum amount of labour, as has already been shown at pages 68 and 69; thus it is also the most suitable arrangement for the primary equations, because in such very complicated and laborious calculations as these, any changes in the grouping of the unknown quantities under determination are liable to cause serious mistakes and are therefore to be greatly deprecated; thus the primary equations must of necessity be arranged and numbered from the very outset in the order which is best suited for the solution of the equations between the Indeterminate Factors.

In the present instance the conditions to be fulfilled were happily such that the system adopted for the arrangement of the equations permitted of the introduction of four additional chains of triangles, in extension of the triangulation as originally limited, for treatment simultaneously with the chains which had at first been selected for disposal, without causing a disproportionate increase of labour. Usually additional equations cause more or less entanglement among the first equations, and then the labour of calculation may be very greatly increased; but in the present instance all entanglement could be and was avoided. Consequently a much larger extent of triangulation has been treated simultaneously than was at first contemplated; it comprises 1719 angles connected by 49 equations, instead of 1269 angles connected by 41 equations, as had originally been intended. The additional calculations entailed little more labour than would have been required for the separate treatment of the four chains of triangles forming the 'Extension'. Thus the arrangement has been most advantageous and is to be much commended.

The diagram at page 70 indicates the significant terms in the equations between the Indeterminate Factors, and is interesting as an illustration of the simplest possible arrange-

ment of the primary equations of condition of any triangulation. Of course such an arrangement is only possible in exceptional instances as the present; but the more closely the principle underlying it is followed, the greater will be the saving of labour in the calculations. Even in the present instance a re-arrangement of the equations on a different principle, separating, instead of grouping together, the equations containing the same unknown quantities—as for instance adopting the symmetrical order 1, 9, 17, 25 ..., 2, 10, 18, 26 ..., and so on—would have increased the labour of calculation enormously and prevented any extension of the area of triangulation embraced in the first programme of operation.

- (2). The methods of procedure entailed by the adoption of the two lines of traverse known respectively as the 'direct' and the 'zig-zag', one or other of which has to be followed in forming the geodetic equations of condition, are described at pages 52 to 57. The relative merits of these two methods are a matter of opinion, as their respective advantages and disadvantages appear to be pretty fairly balanced. The zig-zag system has not commended itself to the Computing Office, which continues to employ the direct method, as applied in the reduction of the South-East Quadrilateral.
- (3). The introduction of a table of constants,—formed as at page 130, on the analytical expressions in page 51—in constructing the coefficients in the geodetic equations of condition, has not commended itself to the Computing Office, which continues as formerly to employ the data furnished in the primary calculations of latitude, longitude and azimuth.
- (4). The introduction of 'equalizing factors' to facilitate the solution of the equations between the Indeterminate Factors is a matter of which no one will question the propriety when the factors are powers of 10, the application of which merely necessitates a general shifting of decimal places. But when other factors than these are employed, opinions may well differ as to their propriety. And there can be no doubt that the application of any such factors—whether powers of 10, or other numbers—to the primary equations of condition, as has been done in the present instance, causes a very needless amount of labour; for by the method of treatment which is exemplified in the footnote to page 235, and is due to Mr. Cole, the equalizing factors may be applied to the equations between the Indeterminate Factors, without disturbing the desirable identity in each pair of coefficients symmetrically situated on opposite sides of the diagonal, which is of such value in diminishing the labour of the solution.
- (5). The usual procedure in solving the equations between the Indeterminate Factors is, first to eliminate one unknown quantity from the whole of the given equations, say, n in number, leaving (n-1) equations between as many unknown quantities for treatment, and then to continue the process until a single equation containing a single unknown quantity is arrived at. The adopted procedure was as follows:—

Given equations

- 2 Combine 1 and 2 to eliminate  $\lambda_1$  and call the combination  $2_2$ .
- 3 Combine 1,  $2_2$  and 3 to elimnate  $\lambda_1$  and  $\lambda_2$  simultaneously, and call the combination  $3_3$ .
- 4 Combine 1,  $2_2$ ,  $3_3$  and 4 to eliminate  $\lambda_1$  to  $\lambda_3$  simultaneously, and call the combination  $4_4$ .
- 5 and so on.

The number of products to be performed is the same by both processes; but the number of coefficients to be written down is less in the proportion of (n + 7) to 2(n + 1) when all the coefficients are significant; the saving of labour has been roughly estimated to be about one-sixth.

In very elaborate and complicated calculations, such as those which are needed for the reduction of the great Sections of the Triangulation of India, any modifications of the governing formulæ which may be introduced from time to time with a view to reducing the

Table of Equivalents.

		Adopted Equivalent of Symbol in Reductions										
Symbol	N. W. Quadrilateral	S. E. Quadrilateral	N. E. Quadrilateral									
a	cot X	t.d. log sin X	107 t.d. log sin X*									
β	cot Y	t.d. log sin Y	10 ⁷ t.d. log sin Y*									
γ	$\operatorname{cot} oldsymbol{Z}$	t.d. $\log \sin Z$	10 7 t.d. $\log \sin Z$ *									
$_{\lambda}\mu$	[Δ λ"] sin 1"	$\left[\frac{t}{t.d. \log \Delta \lambda''}\right]$	$\left[\frac{1}{M}\Delta\lambda''\frac{1}{10^7}\right]^{\frac{1}{7}}$									
$_{\lambda}\phi$	$- \left[ \Delta \lambda'' \tan A \right] \sin i''$	$\left[\frac{\text{t.d. log cos } \mathcal{A}}{\text{t.d. log } \Delta \lambda''}\right]$	$-\left[{}_{\scriptscriptstyle{\lambda}}g\DeltaL''\frac{{}^{\scriptscriptstyle{1}}}{{}^{\scriptscriptstyle{1}}{}^{\scriptscriptstyle{0}}}\right]^{\dagger}$									
$_{z}^{oldsymbol{\mu}}$	$[\Delta L''] \sin i''$	$\left[\frac{1}{\text{t.d. log }\Delta L''}\right]$	$\left[\frac{1}{\mathbf{M}} \Delta L'' \frac{1}{10^7}\right]^{\frac{1}{7}}$									
$_{z}\!\phi$	$[\Delta L'' \cot A] \sin i''$	$\left[\frac{\text{t.d. log sin } \mathcal{A}}{\text{t.d. log } \Delta L''}\right]$	$\left[ _{z}g \triangle \lambda'' \frac{1}{10^{6}} \right]^{+}$									
$_{\mathtt{A}}^{\mu}$	[\( \Delta A'' \)] sin 1"	$\left[\frac{1}{\text{t.d. log }\Delta A''}\right]$	$\left[\frac{1}{M} \Delta A'' \frac{1}{10^7}\right]$									
φ	$1 + [\Delta A'' \cot A] \sin 1''$	$r + \left[\frac{\text{t.d. } \log \sin A}{\text{t.d. } \log \Delta A''}\right]$	$I + \left[ _{4}g \triangle \lambda'' \frac{1}{10^{6}} \right]$									
<b>,</b> 9			$\frac{\nu}{\rho}\cos\lambda\sin i''\cdot 10^6\dagger$									
$_{\mathbf{r}}g$			$\frac{\nu}{\rho} \sec \lambda \sin i'' \cdot 10^6 +$									
_a g			$\frac{\nu}{\rho} \tan \lambda \sin i'' \cdot 10^6$									

^{*} These quantities were all multiplied by the equalizing factor o o3 in constructing the linear equations. † The coefficients in the latitude and longitude equations, formed by combinations of these quantities, were all multiplied by the equalizing factor 15.

labour of calculation, without impairing the accuracy of the results or tending to increase the risk of error, are obviously not only legitimate, but highly desirable. Thus various forms of procedure were introduced from time to time; these are given in the table on the preceding page, those in the last column being due to Major Herschel.

It will be seen from the table that important modifications in the forms of the coefficients of the unknown quantities in the geometrical equations of condition were introduced when the second section was about to be reduced; the tabular differences of the logarithms of the sines were substituted for the cotangents of the angles in the linear (or side) equations, and this well-known system of substituting tabular logarithmic differences for numbers was extended to the far more complex coefficients in the geodetic equations, by an ingenious re-arrangement of previous formulæ which was devised by Babu Cally Mohun Ghose of the Computing Office, with a view to more fully utilizing the data to hand in the primary calculations of the latitudes, longitudes and azimuths.

### Results of Aiming at a Lower Degree of Arithmetical Refinement.

The following table shows the maximum number of significant figures retained at each stage of the numerical calculations in the course of the reductions of the North-West, the South-East, and the North-East Quadrilaterals.

Maximum	Number	of	Significant	Numerals.
<b></b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	21 000000	ų,	Nog roof vo area	ZI WINCH WOO

Quantities.		N. W. Q.	S. E. Q.	N. E. Q.
$\mu$ in latitude, longitude and Azimuth	•••	5	5	3
φ " "		6	6	4
n and c in side		6	3	2
" in latitude and longitude		5	5	3
" in azimuth	•••	6	6	4
16 and C in side		. 7	4	4
" in latitude and longitude		6	6	4
,, in azimuth	•••	7	7	4
Coefficients of Indeterminate Factors		. 8	7	4
Indeterminate Factors		8	7	4
Angular Errors, $x$ , $y$ , and $z$ seconds of	•••	5 decimals	5 decimals	3 decimals

We may assume that the average number of significant figures in each column is a fair indication of the relative amount of labour of computation, provided that the conditions to be fulfilled had been otherwise alike in the three instances; on this assumption the amount of labour involved would be as 7 for the N. W. Quadrilateral is to 6 for the S. E. Quadrilateral and to 4 for the N. E. Quadrilateral. In reality however there was much dissimilarity of circumstance, as has already been abundantly indicated; every change that ingenuity could devise was made in the course of the 3rd reduction; moreover while the 1st was effected with the aid of tables of common logarithms and sum-and-difference logarithms, both to 7 places, the 2nd was effected with the aid of arithmometers, and the 3rd with common logarithms to 5 places and Crelle's multiplication tables. Thus the hypothetical labour-ratios indicate rather the possible savings of labour which might have been obtained by the contraction of significant figures in the calculations, all other things remaining constant, than the savings which actually were obtained. In the 3rd reduction the saving happened eventually to be much less than had originally been anticipated.

It has already been shown by the table at page 244 that, with a single exception, the residual errors are well within the limits of "o".5 in azimuth, o".05 in latitude and longitude, and 5 in the 7th place of decimals of the logarithm of a side" which had originally been prescribed. And this happens notwithstanding that other errors occurred in the calculations, the influence of which may possibly exceed that of the errors arising from the neglect of arithmetical refinement. The mistake in the absolute term of the 42nd equation was purposely rectified to a limited extent only, in calculating the finally adopted values of the Indeterminate Factors; 12 of the Factors were corrected while 37 were left uncorrected, and it will be seen on reference to page 241 that several of the latter contain errors exceeding 2 per cent of their magnitudes. Assuming then the limits for the residuals to have been correctly fixed, it appears that even a lower degree of arithmetical refinement would have sufficed to satisfy the required conditions.

But the application of final corrections for the dispersion of the residual errors was found to be a much more laborious matter than had originally been contemplated, necessitating the extension of the dispersion over larger groups of triangles than those primarily treated—with of course corresponding recomputations of those groups—in order to diminish the magnitudes of the corrections to be finally applied to the angles. And even then it occasionally became necessary to apply larger angular corrections than, strictly speaking, are permissible. It happened unfortunately that all the triangles in the vicinity of the points which had been adopted for the circuit closings were small triangles, lying in the plains on the north flank of the Quadrilateral; thus the dispersion of residual errors in latitude and longitude which were materially less than the prescribed limit of o".o5, required angular corrections which were occasionally of a magnitude exceeding the mean probable errors of the angles; they were much larger than would have been needed had the circuits been arranged to close at the large triangles in the hills on the south flank, which however was undesirable for other reasons. Full details of the final dispersions are given in Sec. 17 of this Chapter. The number and magnitudes of the angular corrections are given in the 3rd line of the table at page 268; it will be seen that in all 279 angles out of 1719 were

adjusted for the dispersion, and that in 28 instances the alterations exceeded o".5.

Thus for a time it seemed that the limits assigned to the residual errors had been too large, and that the degree of arithmetical refinement aimed at had been too low. But subsequent examination by Mr. Cole showed that this was merely the result of the procedure which had been adopted in dispersing the residual errors, and that the required consistency in the final results might have been obtained with very much less labour and by the application of far smaller corrections. If the numerical values of the coefficients of the angular errors in the geometrical equations of condition—viz., the hs and cs of Section 12 of this chapter—are examined with a view to ascertaining whether their magnitudes are influenced by the place, in the general reduction, of the triangle to which they appertain—as shown in the Reduction Chart—it will be found that the coefficients in the latitude and longitude equations are materially greater for the triangles at the commencement than for those at the close of each chain; on the other hand the magnitudes of the coefficients are not at all influenced in the linear equations, and only very slightly in the azimuth equations, by the position of the triangle. Thus when residual errors in latitude and longitude have to be dispersed arbitrarily, it is obviously desirable to apply the requisite corrections to the angles of triangles situated near the commencement of a chain, because minute corrections applied there may be made to produce as much influence as large corrections applied to the angles of triangles situated near the end of the chain.

In the present instance this simple method of final adjustment was overlooked, and the whole of the final corrections were applied to the angles nearest the sides of circuit junction, and therefore near the ends of the several chains. By so doing there was less of seeming arbitrariness in the dispersion; for the values of the corrections were determined in each instance by applications of the rigorous theoretical method, the coefficients in the equations expressing the second series of angular errors were the same as those which had already been employed in evaluating the first series, and much of the numerical work was common to both calculations, as has already been set forth in page 253. But, strictly speaking, it is quite as arbitrary to adjust the angles at the end as those at the commencement, or in any other part, of a chain of triangles; and as it is imperatively necessary to apply the smallest corrections which will produce the required result, in order that the values of the angles may not be unduly disturbed, the selection of the angles for treatment should obviously be made with this object in view.

In Appendix No. 4 to the present volume Mr. Cole has shown how residual terminal errors may be dispersed with the smallest possible expenditure of labour and disturbance of the values of the angles, far less than was actually incurred in the present instance.

Thus it appears that the magnitudes of the limits of residual error which were prescribed before the reduction of the North-East Quadrilateral was commenced were not too large, and that the degree of arithmetical refinement aimed at was not too low. If the labour of calculation had actually been reduced in the proportion of 6:4—that of the number of significant figures employed in the preceding and in this Simultaneous Reduction—and the residual errors had been dispersed by Mr. Cole's method, the gain would have far outweighed

any practical loss arising from the relaxation of numerical accuracy. As matters stand the final adjustments have occasionally been of objectionable magnitude; but this happens to be of no practical importance, as the triangulation is mostly of a second rate order of accuracy, and its value is moreover much impaired by the deflections of the tower stations of the North-East Longitudinal Series, as has been fully set forth in Section 1 of the present chapter.

It may be here repeated of this Section of the Principal Triangulation—most of which was completed before the chains of triangles in the two adjoining Sections had been commenced—that its general inferiority, as compared with those Sections, was the reason why its reduction was postponed until their reductions were completed; see pages 32 and 426 of Vol. II, and page 4 of the present volume.

# APPENDICES.

### REDUCTION CHART

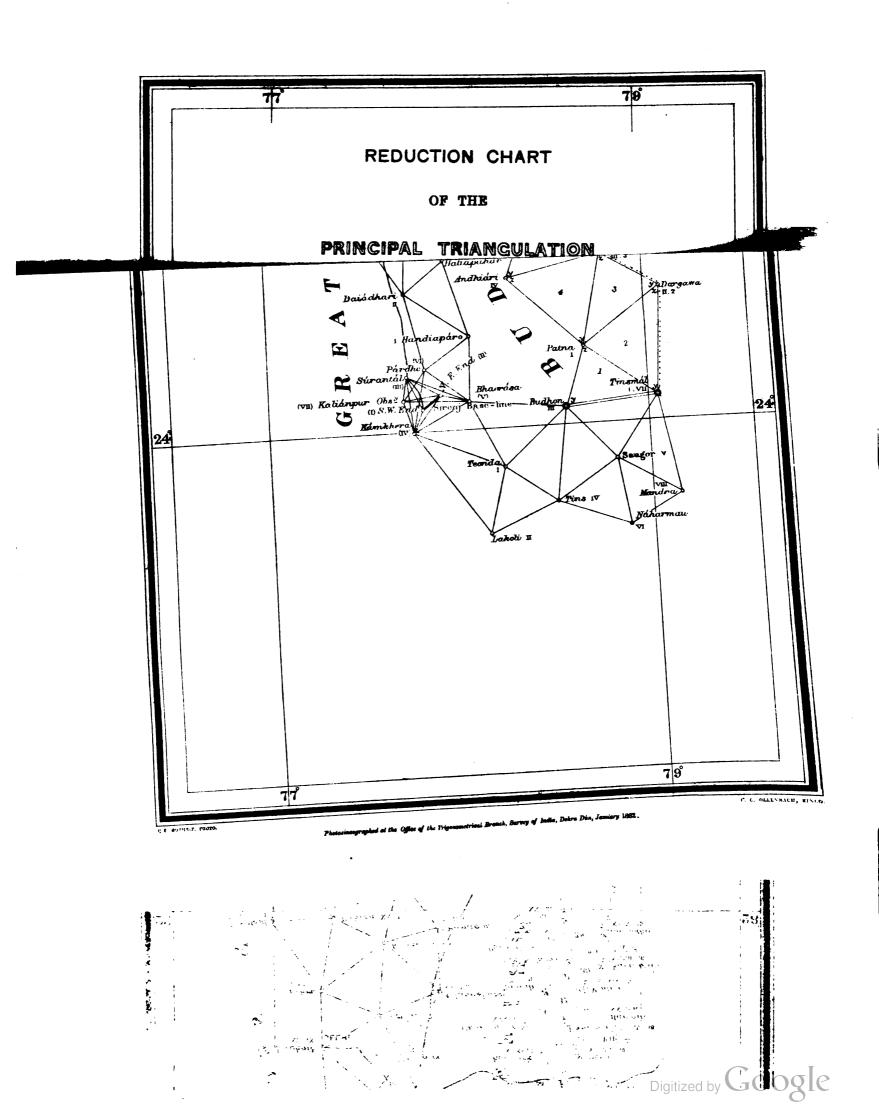
OF THE

HOTTALUSHAIRT IARISHIRT

BUT 30

### BUDHON MERIDIONAL SERIES

ONF OF THE SERIES OF


# THE NORTH-EAST-QUADRILATERAL

CI THE

VEVAUS UNCHTALICHONET TAIMS

OF

INDIA.



### APPENDIX.

### No. 1.

## THE DETAILS OF THE SEPARATE REDUCTION OF THE BUDHON MERIDIONAL SERIES, OR SERIES J OF THE NORTH-EAST QUADRILATERAL.

### 1. Introductory Remarks.

The Budhon Series, which is the westernmost meridional chain of the North-East Quadrilateral, was omitted from the Simultaneous Reduction of that Quadrilateral for reasons which have already been stated on page 63. Its severance was effected by treating the triangle, now numbered 57, as a non-circuit triangle, and the Series was thus made to close, as it had originated, at a side which had been fixed in length and position by former reductions. Its adjustment then involved the solution of a group of four Circuit Equations, viz., one each in side, latitude, longitude and azimuth, and it was commenced accordingly; but when nearly complete the position of Ráepur Station was brought under further control by special measurements connecting it with the station of the same name of the Great Arc Meridional Series, situated only a few feet distant from it but on the other side of a temple*. This connection necessitated the introduction of two supplemental equations, one in latitude, and the other in longitude, whereby additional calculations, practically constituting a Second Reduction, had to be made at many stages of the reduction as originally effected; this will be shewn hereafter in Section 4.

### 2. Preliminary Calculations preceding the Simultaneous Reduction of the Series.

The Budhon Series embraces 171 angles, which are grouped in the following figures:—1 quadrilateral, 5 simple polygons and 25 single triangles. Three of the single triangles connect the two sides Sheopuri-Mahesari and Mahesari-Mahegarh, and form a portion of what was once a large compound figure uniting the extremities of the Great Arc, North-East Longitudinal and Budhon Series. Partly for convenience, and partly owing to the different character of the triangulation, the portions of this figure which appertained to the several series were reduced separately, each portion in succession furnishing fixed data which had to be maintained in the next. The order of reduction was:—first the portion appertaining to the Great Arc, next that falling within the North-East Longitudinal Series, and lastly the three triangles in question. It thus happened that the figural errors of these triangles had to be obtained simultaneously, subject to the conditions that the ratio between two sides, which had already resulted from the previous calculations, should be maintained, and that the angle contained by these sides should not alter.

^{*} See the details of the Budhon Meridional Series pages 73___ and 74___ in Part II of this Volume.

4

The figural errors were in all cases deduced by the method of Least Squares, as usually applied in this Survey, with the aid of the formulæ given in Section 3 of Chapter II, the weights employed being the reciprocals of the squares of the 'probabilities of error' obtained by the formula given on page 21. The conditions and reductions—excluding those of the single triangles—are given, as usual, in the details of the Series immediately after the Abstracts of the Observed Angles; a diagram of each figure will also be found in the plate at the end of the Series.

### 3. The Reduction Chart.

The whole of the principal triangulation of the Budhon Meridional Series is exhibited on the Reduction Chart at the commencement of this Appendix. This Chart also includes the Great Arc Series—Section 24° to 30°—and sufficient portions of the Calcutta Longitudinal and North-East Longitudinal Series, to shew the connection with the Budhon Series. The description given of the Reduction Chart of the North-East Quadrilateral in Section 3 of Chapter III is generally applicable to this Chart.

Prior to the special determination of the position of Ráepur, the Budhon Series formed but one circuit, of which only the right-hand branch was susceptible of correction. But afterwards it formed two circuits which were so arranged that while each originated from the side Budhon-Tinsmál of the Calcutta Longitudinal Series, one closed on the side Sheopuri-Mahesari of the Great Arc for its linear and azimuthal elements, and on the station Mahesari for its elements in latitude and longitude, while the other closed on the station Ráepur. As J is the serial letter for the chain, the section to the south of Ráepur is denoted by  $J_1$  and to the north of that station by  $J_2$ . The Circuits are symbolically indicated for the First Simultaneous Reduction thus:—

Circuit I by 
$$J_1 + J_2$$

and for the Second Simultaneous Reduction due to the determination of Ráepur thus:-

Circuit 
$$I$$
 by  $J_1 + J_2$   
Circuit  $II$  by  $J_1$ 

The Direct Traverse, see page 53, was employed for this Series; it is indicated on the Chart as usual by a dotted line parallel to the sides of the triangles in the right flank of the chain, looking north; all the stations in this line have traverse as well as serial numbers. The traverse numbers commence from Tinsmál, one of the initial stations of the Series, which is numbered 1, and end at Harpálsid, 23.

The Circuit Triangles are numbered from 1 to 44, commencing from the initial side Budhon-Tinsmal and ending at the closing side Sheopuri-Mahesari. The errors of the 'angles of continuation' are, as usual, denoted by the symbols y and z, the flank angle, of which the symbolical error is x, being left blank. The triangle numbers are employed as subscripts to distinguish the errors. The numbering of the 'Non-circuit Triangles' commences with 45 and terminates with 57, smaller numerals being used on the Chart in order to distinguish these triangles from the Circuit Triangles.

The Polygonal Figures are numbered from 1 to 7, and these numbers are also employed in the Diagrams and Figural Reductions.

### 4. The Equations of Condition.

First Simultaneous Reduction.

The several polygonal figures having been made consistent, linear calculations were commenced at the

Digitized by Google

side Budhon-Tinsmál and carried through the selected circuit triangles to the side Sheopuri-Mahesari. The calculations of latitude, longitude and azimuth were then made from Tinsmál along the course of the traverse to Mahesari. These calculations furnished the errors of Circuit I,  $J_1 + J_2$ , which are the differences between the final linear and geodetic values at the side and station of junction, as given by the Great Arc Series and the values as obtained by calculation through the Budhon Series.

Employing now the symbols  $J_1$  and  $J_2$  with the addition of the customary distinguishing subscripts, to indicate the sums of the terms on the right-hand side of the linear Equation (35) page 47, and of the geodetic Equations (57) page 54, we have the following circuit equations

Circuit I.

$$cJ_1 + cJ_2 = {}_{1}E ... I$$
 $\lambda J_1 + \lambda J_2 = {}_{2}E ... 2$ 
 $LJ_1 + LJ_2 = {}_{3}E ... 3$ 
 $LJ_1 + LJ_2 = {}_{4}E ... 4$ 

The solution of these equations was the problem first presented to be solved. After this had been done, and the resulting angular errors had been applied to the calculations, the connection at Ráepur was effected, furnishing the two new equations, in latitude and longitude, which have been already referred to and thus necessitating further calculations.

### Second Simultaneous Reduction.

The First Simultaneons Reduction being so far complete, was allowed to stand; but in order to maintain its effect while solving the new equations, it was necessary to include the former equations in the subsequent calculations with new absolute terms, see Section 8 of Appendix No. 8, Vol. II. Had the former equations been completely satisfied, these absolute terms would each have been =0; but as a matter of fact small residual errors remained after the First Reduction; they were denoted respectively by  $\delta_1 E$ ,  $\delta_2 E$ ,  $\delta_3 E$  and  $\delta_4 E$ . Thus for the Second Reduction the following equations, in which the left-hand members of the first four stood unaltered from what they were in the First Reduction, were presented for solution:—

Circuit I.

$$cJ_{1} + cJ_{2} = \delta_{1}E . . . . I$$

$$\lambda J_{1} + \lambda J_{2} = \delta_{2}E . . . . 2$$

$$LJ_{1} + LJ_{2} = \delta_{3}E . . . . 3$$

$$LJ_{1} + LJ_{2} = \delta_{4}E . . . . 4$$
Circuit II.
$$\lambda J_{1} = \delta_{5}E . . . . . 5$$

$$LJ_{1} = \delta_{6}E . . . . . 6$$

It is to be observed that  $_{\lambda}J_{1}$  and  $_{L}J_{1}$  in equations 5 and 6 do not represent the same coefficients as the same symbols in equations 2 and 3 although they include the same angular errors.



### SEPARATE REDUCTION OF THE

# 5. Formation of the Coefficients of the Unknown Quantities in the Primary Equations of Condition.

These coefficients are given by the formulæ (71), (72) and (73) on page 79, with the following exceptions.

In Equations 2 and 3

$$\mathbf{b}_{43} = -\mu_{23} a_{43} + \phi_{23},$$
 $\mathbf{c}_{43} = -\mu_{23} (a_{43} + \gamma_{42}),$ 
 $\mathbf{b}_{44} = 0,$ 
 $\mathbf{c}_{44} = 0.$ 

In Equation 4

$$\mathfrak{b}_{43} = -\mu_{23} a_{43} + \phi_{23},$$
  $\mathfrak{c}_{43} = 1 - \mu_{23} (a_{43} + \gamma_{43}),$   $\mathfrak{b}_{44} = -1,$   $\mathfrak{c}_{44} = -1.$ 

In Equations 5 and 6

$$\mathbf{b}_{13} = \mu_7 \, \beta_{12} - \phi_7,$$

$$\mathbf{c}_{12} = -\mu_7 \, \gamma_{12} - \phi_7.$$

6. Synoptical Exhibition of the Several Equations of Condition.

Making use of the symbols in Section 6 of Chapter III, the Equations are as follows:-

First Simultaneous Reduction.

Circuit I.

1. Linear. 
$${}_{1}k {}_{1}^{44} = {}_{1}E$$
. 3. Longitude.  ${}_{3}k {}_{1}^{43} = {}_{3}E$ .

2. Latitude.  ${}_{2}k {}_{1}^{43} = {}_{2}E$ . 4. Azimuth.  ${}_{4}k {}_{1}^{4} = {}_{4}E$ .

Second Simultaneous Reduction.

Circuit I.

1. Linear. 
$$_{1}k_{1}^{44}=\delta_{1}E$$
. 3. Longitude.  $_{3}k_{1}^{43}=\delta_{3}E$ .

2. Latitude.  $_{2}k_{1}^{43}=\delta_{2}E$ . 4. Azimuth.  $_{4}k_{1}^{44}=\delta_{4}E$ .

Circuit II.

5. Latitude. 
$${}_{5}k = {}_{5}E$$
. 6. Longitude.  ${}_{6}k = {}_{6}E$ .

# 7. The Numerical Values of the Fixed Data on which the Simultaneous Reduction of the Budhon Meridional Series is based.

The fixed data are the length and position of the side Budhon-Tinsmál of the Calcutta Longitudinal Series—the side of origin of the Budhon Series—and the length and position of the side Sheopuri-Mahesari of the Great Arc Series—the closing side of the Budhon Series. These data will be found in Volumes VI and IV respectively; but for the geodetic elements a third place of decimals of seconds has been obtained by reference to the manuscript calculations of the North-West and South-East Quadrilaterals. Further we have the position of Ráepur Station fixed.

The numerical values of the data are as follows:—

### Vol. VI, page 156-B

Station of origin Tinsmál or VII; side of origin Tinsmál or VII to Budhon or III.

7.5	At T	insmál		
Latitude North	•••	•••	•••	24° 7′ 12″ 965
Longitude East of Greenwich	•••	•••	•••	79 2 12 451
Azimuth of Budhon	•••		•••	85 34 7 .811
Distance " Log. feet	•••	•••	•••	5.2020309,0

### Vol. IV, page 29--a

Closing station Mahesari or LII; closing side Sheopuri or XLVIII to Mahesari or LII.

### At Mahesari

Latitude North	•••	•••	•••	29° 30′ 18″·206
Longitude East of Greenwich	•••		•••	78 11 18 .883
Azimuth of Sheopuri	•••	`	•••	35 52 46 .318
Distance ,, Log. feet		•••		4.9274737,0

Page 74-J of the Details of the Budhon Series given in Part II of this Volume.

### At Ráepur or XIII

Latitude North		•••	•••	•••	26°	8′	14" · 29	
Longitude East of Gi	reenwich	•••	•••		78	7	16 .12	

### 8. The Sides and Angles of the Circuit Triangles.

The following table gives the Figurally Corrected Plane Angles and the logarithms of the Side-lengths in feet of all the Circuit Triangles of the Series. It has been prepared on the same principle as that given in Section 8 of Chapter III.

Sides and Angles of the Circuit Triangles for the First Simultaneous Reduction.

mper	tror	Station Number	rs		seex;	Logarithm of	Number	Error	Station Number	r		Кхова	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Nu	Symbolic 1	Serial	Тъвтегве	Corrected Plane Angle	Spherical H	side-length in Feet
1	y x z	AII AIII B _* III	1	65 18 10·20 36 17 41·56 78 24 8·24	1,10	5·1693282,0 4·9832680,2 5·2020309,0	12	y x z	XIII XIV X X	7	0 / " 76 21 32 21 49 31 1 81 54 7 25 98	•83	5 ⁻¹ 103887,0 5 ⁻⁰⁰³⁹⁷ 19,5 5 ^{-0314536,6}
2	,,	J I J I B* VII	1 2	61 1 28.67 69 29 22.96 49 29 8.37	1.86	5·2302982,3 5·2599340,0 5·1693282,0	13	,,	XIV XIII XVI	7	100 21 44.04 28 30 10.80 51 1 59.10	•79	5·2125415,1 4·8998042,8 5·1103887,0
8	"	III I	3	69 43 34'25 40 43 36'18 69 32 49'57	1.48	5·2308020,7 5·0731257,2 5·2302982,3	14	,,	XIII XVI XV	8	40 42 28.45 38 15 27.06 101 2 4.49	•86	5·0350287,9 5·0124748,7 5·2125415,1
4	"	I III IV	3	56 48 44.99 65 2 7.54 58 9 7.47	2.04	5·2243285,5 5·2590643,0 5·2308020,7	15	"	XV XVI XVII	8	53 2 59.36 70 45 8:38 56 11 52.26	•84	5.0180797,7 5.0904659,3 5.0350287,9
5	,,	IV III V	3	56 13 32.61 68 20 26.37 55 26 1.02	2.08	5.2768813,2	16	,,	XVI XVII XVIII	8	47 50 57:32 76 29 11:88 55 39 50:80	7.5	4·9712756,6 5·0890408,9 5·0180797,7
6	"	V VI	3	60 23 40.86 62 40 7.28 56 56 11.86	2.08	5.2537174,8	17	   	XVIII XVII XIX	9	62 47 5.76 57 45 4.43 59 27 49.81	.00	4·9851633,3 4·9633533,9 4·9712756,6
7	,,	VI V VII	4 5	57 0 34 11 38 27 18 81 84 32 7 08	1.52	5·1699859,3 5·0400704,7 5·2443695,0	18	"	XVII XIX XX	10	65 42 21.88 62 56 23.79 51 21 14.33	.76	5.0522330,5 5.0421503,4 4.9851633,3
8	,,	V VII VIII	5	54 35 51.63 50 59 24.35 74 24 44.02	1.13	5.0974735,7 5.0767022,2 5.1699859,3	19	"	XIX XX XXI	10 11	61 29 7.58 42 54 27.05 75 36 25.37	. 63	5'0099209,7 4'8991127,5 5'0522330,5
9	,,	VII VIII IX	5 6	65 3 16°23 43 38 35°98 71 18 7°79	.81	5·0784897,5 4·9599757,8 5·0974735,7	20	,,	XX XXI XXII	11	58 26 41.38 58 0 18.36 63 33 0.26	.66	4·9884499,7 4·9863854,5 5·0099209,7
10	"	VIII IX X	6	66 16 16.70 67 2 11.50 46 41 31.80	1.31	5·1781898,8 5·1806935,0 5·0784897,5	21	,,	XXI XXII XXIII	11 12	71 28 6.05 50 32 31.85 57 59 22.10	.64	5 [.] 0369555,8 4 [.] 9477487,7 4 [.] 9884499,7
11	"	IX X XIV	6 7	40 58 5.19 72 13 31.06 66 48 23.75	1.53	5.0314536,6 5.1935464,4 5.1781898,8	22	,,	XXII XXIII XXIV	12	66 30 21.87 59 47 20.09 53 42 18.04	.92	5.0930491,0 5.0672342,3 5.0369555,8

^{*} B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.



Sides and Angles of the Circuit Triangles for the First Simultaneous Reduction -- (Continued).

mber	rror	Station Numbe	rs		xcess	Logarithm of	Number	Grror	Station Numbe	rs		Excess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Nu	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical E	side-length in Feet
23	y x z	A XXIII	12	62 54 58 01 53 57 33 32 63 7 28 67	.97	5:0922444,7 5:0504212,4 5:0930491,0	34	y x z	J XXXVIII XXXV XXXVI	18	63 27 2.38 54 44 9.01 61 48 48.61	34	4·8642497,8 4·8246008,8 4·8578255,9
24	,,	XXIV XXV XXVI	13	57 55 48·42 58 53 16·38 63 10 55·20	.98	5.0697525,0 5.0742173,1 5.0922444,7	35	,,	XXXV XXXVIII XXXIX	18	59 27 32.75 52 33 3.88 67 59 23.37	.31	4·8322526,8 4·7968785,8 4·8642497,8
25	"	XXV XXVI XXVII	13	54 56 14.72 10 20 8.14 75 43 27.14	·70 ·69 ·70	4·9964016,0 4·9633476,7 5·0697525,0	36	<b>,,</b> ,	XXXVIII XXXIX XL	19	63 45 26.41 64 26 6.36 51 48 27.23	. 38	4·8896223,4 4·8921173.5 4·8322526,8
26	"	XXVI XXVII XXVIII	14	80 27 37 62 48 49 5 44 50 43 16 94	<b>¥74</b>	5·1015702,5 4·9841957,9 4·9964016,0	37	,,	XXXIX XL XLII	19 20	46 52 27.00 65 30 20.44 67 37 12.56	.34	4·7868669,4 4·8826733,8 4·8896223,4
27	,,	XXVII XXVIII XXIX	14 15	35 36 24.50 60 2 30.98 84 21 4.52	·64 ·64	4·8687711,5 5·0413983,3 5·1015702,5	38	"	XLII XL XLIV	20 21	63 44 48.73 65 23 48.81 50 51 22.46	.31	4·8499681,9 4·8559149,7 4·7868669,4
28	,,	XXVIII XXIX XXX	15	67 27 52.43 50 59 11.99 61 32 55.58	·36 ·35 ·35	4·8901761,0 4·8150927,9 4·8687711,5	39	,,	XL XLIV XLIII	21	58 19 37.45 60 33 37.77 61 6 44.78	34	4 [.] 8376374.2 4 [.] 8476334,8 4 [.] 8499681,9
29	,,	XXIX XXX XXXII	15 16	57 42 23.30 44 12 14.89 78 5 21.81	•28	4·8266505,7 4·7429961,5 4·8901761,0		,,	XLIV XLIII XLV	2 1 2 2	65 1 6.20 60 14 12.30 54 44 41.31		4 [.] 8829749.9 4 [.] 8641955,4 4 [.] 8376374,2
30	,,	XXXII XXX XXXIV	16 17	59 50 44.43 50 32 9.12 69 37 6.45	. 25	4·7915814,7 4·7423583,1 4·8266505,7		,,	XLIII XLV XLVI	22	62 57 43'99 65 7 44'81 51 54 31'20	• 48	4·9367195,4 4·9447153,6 4·8829749,9
31	,,	XXX XXXIV XXXIII	17	67 2 52.70 62 14 35.69 50 42 31.61	.32	4·8670559,6 4·8497859,9 4·7915814,7	42	"	XLV XLVI XLVIII	2 2 2 3	88 23 43.93 60 33 27.47 31 2 48.60	1.00	5·2241196,3 5·1642336,0 4·9367195,4
.32	"	XXXIV XXXIII XXXV	1 <b>7</b>	59 54 4.04 63 6 6.66 56 59 49.30	.40	4·8805762,2 4·8937525,3 4·8670559,6	43	,,	XLVIII XLVI A* LII	23	32 54 28.48 57 57 4.72 89 8 26.80	1.03	5.1523580,9
33	"	XXXIII XXXV XXXVI	18	55 37 36.85 63 56 28.64 60 25 54.51	.39	4·8578255,9 4·8946151,5 4·8805762,2	44	,,	J XLVI A* LII XLVIII		56 0 35.00 60 52 34.33 63 6 50.67	• 53	4·9275039,6 4·9501778,6 4·9592004,3

^{*} A is the Serial letter for the Great Arc Series-Section 24° to 30°-which appertains to the North-West Quadrilateral.

After the completion of the First Reduction the angles obtained corrections which, having been applied, gave the following values of the sides and angles for the Second Reduction

Sides and Angles of the Circuit Triangles for the Second Simultaneous Reduction.

umber	rror	Station Number	rs		Excess	Logarithm of	ımber	rror	Station Numbe	rs		xcess	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical E	side-length in Feet	Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet
1	y x z	1 I AII 8,III	1	65 18 10.00 36 17 41.44 78 24 8.56	1.10	5·1693278,8 4·9832675,6 5·2020309,0	12	y x z	ZIII XIV XX	7	0 / 7 76 21 32 01 49 31 1 50 54 7 26 49	.83	5.1103693,5 5.0039521,4 5.0314351,8
2	,,	J II B*VII	1 2	61 1 27·10 69 29 23·17 49 29 9·73	1.86	5·2302935,9 5·2599314,1 5·1693278,8	13	,,	XIV XIII XVI	7	100 21 43'94 28 36 16'79 51 1 59'27	.79	5 ² 125219,1 4 ⁸ 997843,7 5 ¹ 103693,5
8	"	III I	2	69 43 33.83 40 43 36.35 69 32 49.82	1.48	5·2307968,9 5·0731213,1 5·2302935,9	14	,,	XIII XVI XV	8	40 42 28.22 38 15 27.12 101 2 4.66	•86	5.0350087,0 5.0124554,8 5.2125219,1
4	,,	I III IV	3		2.04	5 ² 243211,5 5 ² 590575,1 5 ² 307968,9	15	,,	XV XVI XVII	8	53 2 58·80 70 45 8·11 56 11 53·09	•84	5.0180576,5 5.0904444,6 5.0350087,0
5	,,	IV III V	3	56 13 31.87 68 20 26.06 55 26 2.07	2.08	5.2768721,0	16	,,	XVI XVII XVIII	8	47 50 56.73 76 29 12.11 55 39 51.16	.75	4 [.] 9712519,0 5 [.] 0890183,7 5 [.] 0180576,5
6	,,	V VI	3	60 23 40.03 62 40 7.49 56 56 12.48	2.08	5.2537068,9	17	,,	XVIII XVII XIX	9	62 47 5.40 57 45 4.58 59 27 50.02	•60	4·9851389,1 4·9633295,8 4·9712519,0
7	"	VI V VII	4 5	57 0 33.56 38 27 19.18 84 32 7.26	1.22	5·1699733,2 5·0400596,1 5·2443576,9	18	,,	XVII XIX XX	10	65 42 21.67 62 56 23.49 51 21 14.84	. 76	5.0522075,5 5.0421247,2 4.9851389,1
8	,,	V VII VIII	5	54 35 51·34 50 59 24·28 74 24 44·38	1.13	5 [.] 0974603,4 5 [.] 0766893,1 5 [.] 1699733,2	19	,,	XIX XX XXI	10	61 29 7'24 42 54 27'27 75 36 25'49	•62	5.0098950,2 4.8990876,8 5.0522075,5
9	"	VII VIII IX	5	65 3 15.41 43 38 36.36 71 18 8.23	.81	5.0784753,9 4.9599630,7 5.0974603,4	20	,,	XX XXI XXII	11	58 26 41.50 58 0 18.12 63 33 0.63	.66	4·9884233,9 4·9863588,5 5·0098950,2
10	,,	VIII IX X	6	66 16 16·31 67 2 11·14 46 41 32·55	1.31	5.1806773,2	21	,,	XXI XXII XXIII	11	50 32 31.92	•64	5.0369287,5 4.9477221,9 4.9884233,9
11	,,	IX X XIV	6 7	40 58 4'41 72 13 31'40 66 48 24'19	1.53	5.1935300,8	22	,,	XXII XXIII XXIV	12	66 30 21.72 59 47 19.77 53 42 18.51	.92	5.0930213,8 5.0672062,5 5.0369287,5

^{*} B is the Serial letter for the West Calcutta Longitudinal Scries which appertains to the South-East Quadrilateral.



Sides and Angles of the Circuit Triangles for the Second Simultaneous Reduction—(Continued).

ımber	Grror	Station Number	rs		Cxcess	Logarithm of	umber	Error	Station Numbe	rs		Ехсезв	Logarithm of
Triangle Number	Symbolic Error	Serial	Traverse	Corrected Plane Angle	Spherical Excess	side-length in Feet	Triangle Number	Symbolio F	Serial	Traverse	Corrected Plane Angle	Spherical E	side-length in Feet
23	y x z	J XXIII XXIV XXV	12	62 54 57.66 53 57 33.53 63 7 28.81	<b>.</b> 97	5.0922162,2 5.0503936,9 5.0930213,8	34	y x z	XXXAIII XXXA 1 XXXAI	18	63 27 2:41 54 44 8:87 61 48 48:72	*34	4·8642187,3 4·8245695,9 4·8577946,4
24	,,	XXIV XXV XXVI	13	57 55 48·30 58 53 16·12 63 10 55·58	. 98	5.0697236,7 5.0741883,2 5.0922162,2	35	,,	XXXV XXXVIII XXXIX	18	59 27 32.67 52 33 4.00 67 59 23.33	.31	4·8322215,7 4·7968477,7 4·8642187,3
25	"	XXV XXVI XXVII	13 14	54 56 14.53 49 20 8.30 75 43 37.17	•69	4 ⁹ 963724,7 4 ^{9633191,1} 5 ^{9697236,7}	36	,,	XXXVIII XXXIX XL	19	63 45 26.47 64 26 6.15 51 48 27.38	.38	4·8895910,4 4·8920857,7 4·8 <b>3222</b> 15,7
26	"	XXVI XXVII XXVIII	14	80 27 37.62 48 49 5.22 50 43 17.16	.74	5·1015407,3 4·9841658,8 4·9963724,7	37	,,	XXXIX XL XLII	19 20	46 52 26.90 65 30 20.63 67 37 12.47	.34	4·7868355,2 4·8826423,5 4·8895910,4
27	,,	XXVII XXVIII XXIX	14 15	35 36 24.24 60 2 31.31 84 21 4.55	.64	4·8687408,4 5·0413690,7 5·1015407,3	38	,,	XLII XL XLIV	2 0 2 1	63 44 48·63 65 23 49·00 50 51 22·37	.31	4·8499368,2 4·8558838,9 4·7868355,2
28	,,	XXVIII XXIX XXX	1 5	67 27 52.43 50 59 11.91 61 32 55.66	.35	4 [.] 8901457,0 4 [.] 8150622,6 4 [.] 8687408,4	39	,,	XL XLIV XLIII	2 1	58 19 37.58 60 33 37.56 61 6 44.86	*34	4 [.] 8376061,2 4 [.] 8476017,9 4 [.] 8499368,2
29	,,	XXIX XXX XXXII	15 16	57 42 23.23 44 12 14.97 78 5 21.80	• 28	4·8266200,8 4·7429659,2 4·8901457,0	<b>4</b> 0	,,	XLIV XLIII XLV	2 1 2 2	65 1 6 53 60 14 12 36 54 44 41 11	•36	4·8829437,8 4·8641645,8 4·8376061,2
30	"	XXXII XXX XXXIV	16 17	59 50 44·36 50 32 9·19 69 37 6·45	.25	4 [.] 7915508,9 4 [.] 7423279,4 4 [.] 8266200,8	41	,,	XLIII XLV XLVI	2 2	62 57 44'12 65 7 44'65 51 54 31'23	•48	4·9366884,1 4·9446839,4 4·8829437,8
31	,,	XXX XXXIV XXXIII	17	67 2 52.71 62 14 35.61 50 42 31.68	.32	4·8670252,7 4·8497552,0 4·7915508,9		"	XLV XLVI XLVIII	2 2 2 3	88 23 43.91 60 33 27.65 31 2 48.44	1,00	5 ² 240890,6 5 ¹⁶⁴²⁰ 32,5 4 ⁹ 366884,1
32	,,	XXXIV XXXIII XXXV	17 18	59 54 3.92 63 6 6.77 56 59 49.31	.40	4 ⁸⁸⁰⁵⁴⁵³ ,7 4 ⁸⁹³⁷²¹⁹ ,4 4 ⁸⁶⁷⁰²⁵² ,7	43	,,	XLVIII XLVI A* LII	2 3	32 54 28·50 57 57 4·81 89 8 26·69	1,03	4·9591699,4 5·1523276,4 5·2240890,6
33	,,	XXXIII XXXV XXXVI	18	55 37 36.87 63 56 28.51 60 25 54.62	.39	4·8577946,4 4·8945840,4 4·8805453,7	44	,,	J XLVI A* LII XLVIII		56 0 35'14 60 52 34'21 63 6 50'65	•53	4·9274736,9 4·9501472,4 4·9591699,4

^{*} A is the Serial letter for the Great Arc Series-Section 24° to 30°--which appertains to the North-West Quadrilateral.

### 9. Preliminary Latitudes, Longitudes and Azimuths of the Stations on the Line of Traverse.

The Geodetic Latitudes, Longitudes and Azimuths given in the next table have been calculated from the elements at Tinsmál on page 7 by employing the side lengths and spherical angles obtained from the triangles recorded in the first table of Section 8. For further explanation see the preamble to Section 8 of Chapter III.

Geodetic Elements of the Flank Stations employed in the First Simultaneous Reduction.

	Fixed Station A		I	Deduced Station B	
No. in Traverse	Azimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A
	0 1 "		0 1 "	0 1 "	0 1 "
1	182 53 20.991	2	24 37 13.235	79 3 51.841	2 54 2.003
2	122 6 47.963	3	24 47 35.369	78 45 44.030	301 59 13.585
3	205 18 25.315	4	25 14 21.003	78 59 39.118	25 24 18.455
4	139 21 7.775	5	25 28 4.678	78 46 39.549	319 15 33.960
5	159 50 24.850	6	25 42 12.588	78 40 55.895	339 47 5 ⁶ ·439
6	159 6 24.259	7	26 6 17.263	78 30 44 939	339 1 57.351
7	195 43 9.801	8	26 18 54.218	78 34 41.360	15 44 54.519
8	223 38 29.309	9	26 33 33.248	78 50 14.456	43 45 24.740
9	162 12 22.660	10	26 47 59.891	78 45 4.463	342 10 3.473
10	166 3 26.633	11	27 041.810	78 41 33.256	346 1 51:057
11	191 6 42.767	12	27 15 3.412	78 44 42.613	11 8 9.150
12	191 49 51.870	13	27 33 11.962	78 48 58 475	11 51 49.627
13	188 48 52.057	14	27 48 11.330	78 51 35.319	8 50 4.912
14	168 59 14.062	15	28 6 0.502	78 47 40.656	348 57 24.069
15	182 0 5.149	16	28 15 8.099	78 48 2.268	2 0 15.354
16	139 56 22.134	17	28 22 6.682	78 41 24 151	319 53 13.328
17	151 39 0.468	18	28 33 28.811	78 34 27 161	331 35 41.732
18	206 43 42.862	19	28 42 42.700	78 39 43.615	26 46 14.515
19	206 4 12.275	20	28 54 1.389	78 46 1.040	26 7 14.137
20	157 29 16:087	21	29 4 57.693	78 40 51.321	337 26 45 972
2 1	153 52 53.802	2 2	29 15 47.811	78 34 47 722	333 49 56·566
2 2	182 6 8.356	23	29 39 51.880	78 35 48.419	2 6 38.515
23	66 3 57:302	LII*	29 30 19.208	78 11 19.190	245 51 51.922
LII•	35 52 54.602	XLVIII			

^{*} These stations appertain to the Great Arc Meridional Series—Section 24° to 30°—of the North-West Quadrilateral.



After the completion of the First Reduction of the Series, and the application of the Angular Errors therein determined to the linear and geodetic calculations, the value of the sides and angles given in the second table of Section 8 were obtained, and the values of Latitude, Longitude and Azimuth in the line of traverse were corrected. The corrected values are now given as they were employed in the Second Reduction.

Geodetic Elements of the Flank Stations as employed in the Second Simultaneous Reduction.

	Fixed Station A		3	Deduced Station B	
No. in Traverse	Azimuth of B	No. in Traverse	Latitude North	Longitude East of Greenwich	Azimuth of A
	0 , "		0 / "	o , ,	0 / "
1	183 23 10.301	2	24 37 13.225	79 351.824	2 54 0 306
2	122 6 47.206	3	24 47 35 349	78 45 44.021	301 59 12.231
3	205 18 23.381	4	25 14 20.950	78 59 39.072	25 24 16.506
4	139 21 5.896	5	25 28 4.599	78 46 39.515	319 15 32.086
5	159 50 22.266	6	25 42 12.480	78 40 55.860	339 47 53 ^{.8} 54
6	159 6 20.974	7	26 6 17:092	78 30 44.901	339 1 54.065
7	•••••	XIII	26 8 14.39	78 7 16.13	
7	195 43 6·545	8	26 18 54.016	78 34 41.298	15 44 50.953
8	223 38 25.413	9	26 33 33.016	78 50 14.328	43 45 20.814
9	162 12 18·734	10	26 47 59.606	78 45 4.334	342 9 59.546
10	166 3 22.276	11	27 041'477	78 41 33.122	346 1 46·697
11	191 6 38·167	12	27 15 3.030	78 44 42 446	11 8 4.202
12	191 49 46 [.] 685	13	27 33 11.217	78 48 58·261	11 51 44.420
13	188 48 46 [.] 540	14	27 48 10 830	78 51 35.068	8 49 59:378
14	168 59 8.078	15	28 5 59.925	78 47 40:386	348 57 18.076
15	181 59 59:036	16	28 15 7.484	78 48 1.978	2 0 9.533
16	139 56 15.932	17	28 22 6.027	78 41 23.875	319 53 7.132
17	151 38 54.072	18	28 33 28:096	78 34 26.890	331 35 35.339
18	206 43 36.129	19	28 42 41.954	78 39 43.301	26 46 7.762
19	206 4 5.172	20	28 54 0.606	78 46 0.673	26 7 7.008
20	157 29 8.768	21	29 4 56.853	78 40 50.950	337 26 38.651
21	153 52 46.121	2 2	29 15 46 [.] 913	7 ⁸ 34 47 [.] 349	333 49 48 [.] 884
22	182 6 0.394	23	<b>2</b> 9 39 50 [.] 883	78 35 47 978	2 6 30.516
23	66 3 49.166	LII•	29 30 18.200	78 11 18·878	245 51 43.850
rii•	35 52 46.300	xLviii			

[•] These stations appertain to the Great Arc Meridional Series-Section 24° to 30°-of the North-West Quadrilateral.

# 10. Numerical Values of the Absolute Terms in the Equations of Condition, and of their Products by the Equalizing Factors.

The numerical values of the Absolute Terms were obtained as described in Section 10 of Chapter III: after which they were multiplied by the Equalizing Factors—see page 59.

### For the First Reduction we have

### Circuit I. Equations 1 to 4.

Equations 2 to 4, Geodetic. Terminal Station, Mahesari; Terminal side, Mahesari-Sheopuri.

Branch of Circuit.	$oldsymbol{L}$ atitude.	Longitude.	Azimuth.
	o , "	0 / //	0 / 1/
Right-hand	29 30 19:208	78 11 19.190	35 52 54.602
Final values from Great Arc Series— Section 24° to 30°—see page 7	29 30 18.206	78 11 18.883	35 52 46.318
Errors	2E = + 1.003	$_3E = + \circ 3\circ 7$	$_{4}E = + 8.284$
Errors	2E - T 1 002	36 = + 0 307	4E = + 0

After the completion of the First Reduction the Absolute Terms became as follows for the Second Reduction, due to the previous fixing of Ráepur by the Great Arc:—

### Circuit I. Equations 1 to 4.

Equation 1, Linear. Between the sides Tinsmal-Budhon and Mahesari-Sheopuri.

Equations 2 to 4, Geodetic. Terminal Station, Mahesari; Terminal Side, Mahesari-Sheopuri.

Branch of Circuit.	$oldsymbol{L}$ atitude.	Longitude.	Azimuth.
	0 / //	0 / //	o ' "
Right-hand	29 30 18.200	78 11 18 878	35 52 46.300
Final values from Great Arc Series— Section 24° to 30°—as above	29 30 18:206	78 11 18.883	35 52 46.318
Errors	$\delta_2 E = -0.006$	$\delta_3 E = -0.005$	$\delta_4 E = - \text{ o.o.} 8$
	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		

Circuit II. Equations 5 and 6.

### Terminal Station, Ráepur.

Branch of Circuit.	Latitude.	Longitude.	
·	0 / //	o , w	
Right-hand	26 8 14.39	78 7 16.13	
Final values from Budhon Meridional Series—page 7	26 8 14.29	78 7 16.15	
Errors	$_5E = + \circ 10$	6E = -0.03	

The products of the Absolute Terms by the Equalizing Factors are as follows:—

For the First Simultaneous Reduction.

Equation	Absolute Term	Equalizing Factor	Product
1. Linear	$_{1}E=+302\cdot6$	.03	+ 9.078
2. Latitude	$_{2}E=+$ 1.002	15	+15.030
3. Longitude	$_3E = + \circ 307$	15	+ 4.605
4. Azimuth	$_4E = + 8.284$	I	+ 8.284

For the Second Simultaneous Reduction.

Equation	Absolute Term	Equalizing Factor	Product	
1. Linear	$\delta_{1}E = - \text{ o. t}$	.03	- 0.003	
2. Latitude	$\delta_2 E = - \circ \cdot \circ \circ \delta$	15	- 0.000	
3. Longitude	$\delta_3 E = -0.005$	15	- o·o ₇₅	
4. Azimuth	$\delta_4 E = - \text{ o.o.} 8$	1	- 0.018	
5. Latitude	${}^{2}E = + \circ \cdot 10$	15	+ 1.20	
6. Longitude	$_6E = - \circ \cdot \circ _2$	15	- 0.30	

### 11. Numerical Values of the $\mu s$ and $\phi s$ .

The values of the  $\mu$ s and  $\phi$ s were obtained in the form employed in the reduction of the South-East Quadrilateral, and described in Section 13 of Chapter I, Volume VI; from which section the following table of substitutions for  $\mu$  and  $\phi$  in Equation (57), page 54 of this volume, has been extracted.

Table of Substitutions for  $\mu$  and  $\phi$ .

	Latitude Longitude		Azimuth	
For E	$d\lambda_{n+1}$	$dL_{n+1}$	$dB_n$	
,, μ	$_{\lambda}^{oldsymbol{\mu}}$	$_{L}^{\mu}$	$A^{\mu}$	
" <b>ф</b>	_λ φ	$_L\!\phi$	$_{A}\phi$	
" µ ₁	$+ \prod_{1}^{n} \left[ \frac{1}{\operatorname{t.d.log} \Delta \lambda} \right]$	$+ \prod_{1}^{n} \left[ \frac{1}{\operatorname{t.d.log} \Delta L} \right]$	$+ \prod_{1}^{n} \left[ \frac{1}{\operatorname{t.d.log} \Delta A} \right]$	
,, µ ₂	$+ \frac{n}{2} \left[ \frac{1}{\text{t.d.log } \Delta \lambda} \right]$	$+ {n \over 2} \left[ {1 \over {\rm t.d.log}  \Delta L} \right]$	$+ {" \brack { m t.d.log} \Delta A}$	
		· • • • • • • •	• • • • • • •	
,, μ _n	$+\frac{1}{\operatorname{t.d.log}\Delta\lambda_n}$	$+\frac{\mathrm{I}}{\mathrm{t.d.log}\Delta L_{n}}$	$+ \frac{1}{\operatorname{t.d.log} \Delta A_n}$	
" φ _ι	+	+	$1 + {n \brack \frac{\text{t.d.} \log \sin A}{\text{t.d.} \log \Delta A}}$	
,, φ ₂	$+ {\textstyle {n \over 2}} \left[ \frac{\mathrm{t.d.log} \cos A}{\mathrm{t.d.log}  \Delta \lambda} \right]$	$+ \frac{n}{2} \left[ \frac{\text{t.d.log sin } A}{\text{t.d.log } \Delta L} \right]$	$1 + \frac{n}{2} \left[ \frac{\text{t.d.} \log \sin A}{\text{t.d.} \log \Delta A} \right]$	
" ф _»	$+ \frac{\operatorname{t.d.log} \cos A_{\pi}}{\operatorname{t.d.log} \Delta \lambda_{\pi}}$	$+ \frac{\text{t.d.log sin } A_n}{\text{t.d.log } \Delta L_n}$	$1 + \frac{\text{t.d.log sin } A_n}{\text{t.d.log } \Delta A_n}$	

In applying these formulæ the tabular log differences of the first terms of  $\Delta\lambda$ ,  $\Delta L$  and  $\Delta A$  in the expression (25), (26) and (27), pages 30 and 31, were employed for t.d.  $\log \Delta\lambda$ , t.d.  $\log \Delta L$  and t.d.  $\log \Delta A$ .

The values of m are not recorded for the reason already assigned on page 131, viz. that  $m_l = \mu_l - \mu_{l+1}$  and can therefore be obtained by inspection.

In the following table will be found the  $\mu$ s and  $\phi$ s for both circuits. It is obvious that those for Circuit I will be the same in the Second Reduction as in the First.

Numerical Values of the ps and \$\phi_s\$.

ation rse	u Latitude		Longitude		Azimutḥ	
No. of Station in Traverse	$_{\lambda}\mu$	$_{_{\lambda}}\phi$	$_L{}^\mu$	$_{L}\phi$	$_{A}^{\mu}$	$_{m{arphi}}^{'}$
	CIRCUIT I.					
1	+ 44661	+ '01314	<b>-</b> 7038	+ '10448	<b>-</b> 3264	+1.04687
2	40512	1355	7265	9500	3357	1.04301
3	39063	863	4765	9175	2315	1.04162
4	35359	1233	6688	8310	3121	1.03803
5	33472	893	4902	7881	2358	1.03619
6	31511	736	4115	7432	2019	1.03426
7	28189	471	2726	6668	1413	1.03093
8	26435	576	3269	6261	1652	1.02913
9	24435	976	5397	5793	2604	1.02704
10	22435	836	4683	5328	2286	1.02497
11	20681	731	4198	4921	2069	1.02314
12	18681	811	4633	4455	2265	1.02104
13	16175	936	5221	3867	2535	1.01832
14	14092	1019	5581	3382	2702	1.01910
15	11629	921	` 5040	2798	2451	1.01338
16	10379	933	5090	. 2498	2474	1.01197
17	9417	760	4173	2278	2041	1.01093
18	7 ⁸ 54	588	3211	1893	1586	1.00912
19	6588	727	3936	1596	1933	1.00769
. 20	5025	884	4798	1225	2350	1.00290
2 1	3510	7 ⁶ 3	4089	856	2006	1.00411
2 2	2017	598	3249	503	1599	1.00241
23	- 1316	632	3390	- 305	1667	0.99820

Numerical Values of the µs and \$\phi\$	bs—(Continued).
-----------------------------------------	-----------------

ation erse	Lati	tude	Long	zitude
No. of Station in Traverse	$_{\lambda}^{oldsymbol{\mu}}$	$_{\lambda}\phi$	$_L\mu$	$_{_L}\phi$
		Circuit II.		
1	+ 16743	+ .01449	<b>–</b> 7559	+ .03844
2	12594	1491	7786	2897
3	11145	998	5286	2572
4	7441	1368	7209	1706
5	555 <del>4</del>	1029	5423	1278
6	3593	872	4636	829
7	271	606	3247	65

# 12. Numerical Values of the Coefficients b and c of the Unknown Quantities, y and z, in the Primary Equations.

The next table contains the numerical values of the coefficients b and t for both circuits; those for Circuit I necessarily remain the same both for the First and for the Second Reduction. The following example will illustrate the deduction of values appertaining to the geodetic equations: those for the linear equation have already been illustrated in Section 12 of Chapter III.

### Example.

To find the values of  $\mathfrak{h}_{80}$  and  $\mathfrak{c}_{80}$  in Equation 3.

The equation is in longitude, and the forms of the coefficients are normal.

$$\mathbf{a}_{30} = -L m_{16} a_{30} + L \mu_{17} \beta_{30} + L \phi_{16}$$

$$= -917 \text{ t. d. log sin } 50^{\circ} 32' 9'' - 4173 \text{ t. d. log sin } 59^{\circ} 50' 44'' + .02498 = + .02112$$

$$\mathbf{a}_{30} = -L m_{16} a_{30} - L \mu_{16} \gamma_{30} + L \phi_{17}$$

$$-917 \text{ t. d. log sin } 50^{\circ} 32' 9'' - 5090 \text{ t. d. log sin } 69^{\circ} 37' 6'' + .02278 = + .02841$$

Numerical Values of the Coefficients.

Circuit ngle	Coefficient	s of y and z	Circuit dgle	Coefficient	s of $y$ and $z$	Circuit ngle	C	Coefficient	s of y	and z
No. of Circuit Triangle	ħ	¢	No. of Circuit Triadgle	ħ	¢	No. of Circuit Triangle		ъ		c
	Equation.	Linear.		Equation—(	Continued).		Equ	alion	(Conti	ued).
Equ	alizing Fac	tor = .03.	Equ	ializing Fac	tor = .03.	Eqt	ualizi	ing Fac	tor =	= 15.
1	+ 9.5	- 4.5	27	+ 30	- 2	6	+	0.047	-	0.044
2	12	- 18	28	9	11	7		.054		.003
8	8	8	29	13	4.2	8		.041		.027
4	13.5	13	30	13	8	9		.036		.030
5	14	14.5	31	9	17	10		.021		.070
6	12	13.2	32	12	13	11		.073		.026
7	14	2	33	14.5	12	12		.009		.048
8	15	5.2	34	11	12	13	-	.013		•049
9	10	7	35	12	8	14	+	.058	+	.005
10	9	20	36	11	17	15		.034	-	.043
11	24	9	37	19.5	9	16		.051		.030
12	5	15.2	38	10	17	17		.032		.025
13	- 4	17	39	1,3	11.5	18		.013		.047
14	+ 24	+ 4	40	10	15	19		.027		.010
15	15	<b>-</b> 14	41	10.2	16.2	20		.030		.030
16	19	14.2	42	1	35	21		.017		.022
17	11	12.5	43	· 33	0.2	22		.009		.037
18	9.2	17	44	14	10	23		.033		.012
19	11	6				24		.012		.026
20	13	11	2nd	Equation.	Latitude.	25		.027		.002
21	7	13	Eq	ualizing Fac	tor = 15.	26	-	.005		.032
22	9	15.2	1	+ 0.029	- 0.033	27	+	.042	+	.003
23	11	11	2	.028	.070	28		.001	-	.023
24	13	10.2	8	.041	.027	29		.020	+	.001
25	15	5.2	4	.044	.059	30		.020	-	.002
26	4	17.5	5	•046	.065	31		.001		.024

Numerical Values of the Coefficients .-- (Continued).

Circuit ngle	Coefficient	s of $y$ and $z$	Circuit ngle	Coefficient	s of $y$ and $z$	Circuit	Coefficient	s of $y$ and $z$	
No. of Circu Triangle	ħ	¢	No. of Circuit Triangle	, <b>b</b>	¢	No. of Circui Triangle	ħ	t	
	Equation—	(Continued).		Equation—(	Continued).		3rd Equation—(Continued).		
Equ	ualizing Fac	tor = 15.	Equ	ualizing Fac	tor = 15.	$Eq^{\gamma}$	ualizing Fact	tor = 15.	
32	+ 0.015	- 0.008	12	- o.oe8	- 0.062	38	+ 0.009	+ 0.017	
33	•006	.015	13	+ .066	+ .065	39	014	004	
34	.003	.015	14	070	064	40	+ 006	+ .012	
35	.013	.001	15	•068	.058	41	008	.000	
36	•000	.018	16	+ .021	+ .062	42	+ .002	•008	
37	.016	+ .001	17	.≎24	.061	43	.001	•005	
38	.011	003	18	058	045	1			
39	003	.012	19	+ .020	+ .053	4th	Equation.	Azimuth.	
40	+ .008	.001	20	055	045	Eq	ualizing Fac	tor = 1.	
41	004	.009	21	+ .045	+049	1	- 1.050	- 1.045	
42	+ .003	.005	22	010	037	2	+ 1.043	+ 1.049	
43	.008	+ .003	23	+ .038	+ .043	3	1.044	1.047	
			24	042	033	4	- 1.045	- 1.039	
3rd	Equation.	Longitude.	25	+ .030	+ .036	5	1.042	1.038	
Equ	ualizing Fac	tor = 15.	26	036	054	6	+ 1.037	+ 1.040	
1	- 0.111	- 0.101	27	+ .019	+ .030	7	1.037	1.039	
2	+ .096	+ .102	28	033	033	8	- 1.040	- 1.035	
3	.097	. 104	29	+ .031	+ .027	9	+ 1.032	+ 1.037	
4	008	089	30	.031	.028	10	- 1.036	- 1.030	
5	.098	.085	31	027	019	11	+ 1.031	+ 1.033	
6	+ .082	+ .087	32	+ .020	+ .022	12	- 1.035	- 1.029	
7	.081	.085	33	024	012	13	+ 1.031	+ 1.031	
8	086	076	34	033	012	14	- 1.033	- 1.030	
9	+ .076	+ .079	35	+ .013	+ .012	15	1.035	1.022	
10	078	066	36	030	000	16	+ 1.054	+ 1.029	
11	+ .069	+ .071	37	+ .000	+ .012	17	1.022	1.029	

Numerical Values of the Coefficients—(Continued).

Circuit ıngle	Coefficient	s of $y$ and $z$	Circuit ngle	Coefficient	s of y and z	Circuit ngle	Coefficient	s of $y$ and $s$
No. of Circui Triangle	ħ	¢	No. of Circuit Triangle	ъ	c	No. of Circuit Triangle	ħ	¢
1	Equation—(	Continued).	4th	Equation—	(Continued).	1	Equation—	(Continued).
Eq	ualizing Fac	tor = 1.	Eq	ualizing Fac	ctor = 1.	Equ	alizing Fact	or = 15.
18	- 1.027	- 1.031	37	+ 1.003	+ 1.007	9	+ 0.010	+ 0.001
19	+ 1.023	+ 1.025	38	1.004	1.008	10	002	019
20	- 1.026	- 1.031	39	- 1.007	- 1.003	11	+ .007	+ .001
21	+ 1.031	+ 1.023	40	+ 1.003	+ 1.000	12	006	006
22	- 1.023	- 1.018	41	- 1.004	- 1.000			
23	+ 1.018	+ 1.020	42	+ 1.002	+ 1.004	1	•	Longitude.
24	- 1.033	- 1.019	43	1.001	1.002	Equ	ualizing Fact	tor = 15.
25	+ 1.014	+ 1.014	44	- 1.000	- 1.000	1	- 0.046	- 0.032
26	- 1.017	- 1.011				2	+ .029	+ .042
27	+ 1.000	+ 1.014		Equation.	Latitude.	8	.031	.038
28	- 1.016	- 1.011	Eqv	calizing Fact	tor = 15.	4	033	019
29	+ 1.010	+ 1.013	1	+ 0.001	- 0.022	5	.033	.018
30	1.010	1.014	2	.026	.019	6	+ .012	+ .022
31	- 1.013	<b>– 1.00</b> 7	3	.030	.004	7	.014	.019
32	+ 1.009	+ 1.013	4	.002	.024	8	031	010
33	- 1.011	- 1.007	5	•006	.026	9	+ .010	+ .014
34	1.011	1.007	6	.*015	.002	10	013	.001
35	+ 1.006	+ 1.008	7	.019	+ .004	11	+ .001	•006
36	- 1.010	- 1.004	8	003	013	12	003	.004

### 13. The Weights of the Angles.

The principles on which the weights of the unknown quantities have been calculated, are the same as have been already described in Section 2 of Chapter II and Section 13 of Chapter III, and no further explanation is here required.

The first table on the following page gives the data from which the values of  $e_1$ ,  $e_2$  and  $e_3$  were determined for each group of figures; also the approximate values of  $e_3$  which are given by each figure. The second table gives a synopsis of the values of  $\rho^2$ , with the evidence for their determination; the data adopted for their calculation are indicated in continuation, at the commencement of page 23.

# Data for the Calculation of $\rho$ .

			Data	for $e_1$	Data	for e ₉		Data :	for e ₈		Approxi-
Group	Figure or Triangle	Hills or Plains	Number of Angles	Sum of Preliminary Weights [w]	Number of Triangles	Sum of Squares of Triangular Errors	Number of Geometrical Equations		$[wx^2]$	$egin{array}{c} [wx^2] \ w_o \end{array}$	mate Single Values of e ₃
I	Triangles 1 to 9	н	27	28.69	9	257 · 25	. 1				
	Fig. 1	,,	18	15.89	6	79.36	8	o.88	17.53	19.92	Ŧ1.28
	" 2	,,	8	10.18	3	3.44	4	1.32	3.18	2.20	.79
	Triangles 15 to 17	P	9	8.95	3	16.40					Ì
	T	otals	62	63.41	21	356.45	12			22.42	
II	Triangles 18 to 27 Fig. 3	P	30 18	35·5 ² 44·5 ²	10	49.50	8	2.47	41.32	16.43	±1:45
		otals	48	80.04	16	107.27	8			16.73	
III	Fig. 4	P	18	19.14	6	184.94	8	1.06	41.38	39.04	士2.51
	,, 5	,,	18	13.09	6	175.79	8	0.73	35.97	49.28	2.48
Ì	" 6	,,	15	11.53	5	22.78	7	0.75	9.68	12.90	1.36
	,, 7	,,	9	5.37	3	12.29	5	0.60	3.76	6.27	1.13
	T	otals	60	48.83	20	396.10	28			107.49	

# Synopsis of the Values of $\rho^2$ , and the Evidence for their Determination.

Group	Hills or Plains	Number of Angles	Instrument	Arc between Circle Readings	Number of Measures on each Zero	Minimum number of Messures	$e_1$	$e_2$	$e_3$	$ ho^2$
I	н,Р	62	Harris and Barrow's 15-inch	*10 0 10 0 12 0 10 0 5 0	1 1 2 2 2	10 12 20 24 48	±0.987	土2:379	±1·367	•25
II	P	48	Troughton and Simms' 18-inch No. 2	10 0	2	24	0.114	1.492	1.446	• 26
III	,,	60	Cary's 15-inch	10 0	2	24	1.108	2.269	1.959	.31

^{*} Only one angle was so measured, and one pair of zeros was omitted thus giving 10 measures instead of 12.

The triangulation was executed with Harris and Barrow's 15-inch, Troughton and Simms' 18-inch No. 2, and Cary's 15-inch theodolites.

For Groups I and III, which were executed with the two 15-inch theodolites, the mean values of  $e_2$  and  $e_3$  from both groups was employed for the denominator of  $\rho$ .

For Group II a mean value of  $e_2$  and  $e_3$  for the group was used.

The Absolute Weights of the Figurally Corrected Angles with the Data for their Determination.

All Angles in Triangles	Figure	$w_o$	$ ho^2$	$\frac{t}{t-n}$	$\left \begin{array}{c} w_c = \\ w_o \cdot \frac{\rho^2 t}{t-n} \end{array}\right $	All Angles in Triangles	Figure	$w_o$	$ ho^2$	$\frac{t}{t-n}$	$w_c = \frac{\rho^2 t}{w_o \cdot \frac{\rho^2 t}{t - n}}$
1		1.9	ρ ² 1, 0.5	3 ÷ 2, 1 · 5	0.43	19		1.0	ρ ² 2, 0.36	3 ÷ 2, 1 · 5	0.30
2		0.6	,,	3 2, 1.5	0.53	20		1.1	, ,,	3 2, 1 5	0.43
8		1.4	,,	3 2, 1.5	0.23	21		1.8	,,	3 2, 1.5	0.40
4		0.0	,,	3 2, 1.5	0.34	22		0.9	"	3 2, 1.5	0.32
5		0.0	. ,,	3 2, 1 5	0.34	23		0.9	,,	3 2, 1.5	0.32
6		0.0	,,	3 2, 1.5	0.34	24		0.9	,,	3 2, 1.5	0.32
7		1.1	"	3 2, 1.5	0.42	25		1.4	"	3 2, 1.5	0.22
8		1'4	"	3 2, 1.5	0.23	26		1.6	,,	3 2, 1.5	0.63
9		0.6	"	3 2, 1.5	0.53	27		1.3	,,	3 2, 1.5	0.21
10—12	1	0.0	"	18 10, 1.8	0.41	28—31	3	2.2	,,	18 10, 1.8	1.18
13,14	2	1.3	,,	8 4, 2.0	0.62	32—35	4	I.I	$\rho_{3}^{3}$ , 0.31	18 10, 1.8	0.62
15		0.4	,,	3 2, 1.5	9.27	36—39	5	0.4	,,	18 10, 1.8	0.39
16		1.1	,,	3 2, 1.5	0.42	40-42	6	0.4	"	15 8, 1.9	0.41
17		I ' 2	,,	3 2, 1.5	0.46	43,44	7	0.6	"	9 4, 2.3	0.43
18		1.0	ρ2, 0.36	3 2, 1.5	0.39						

# 14. The Coefficients of the Indeterminate Factors in the Values of the Unknown Quantities y and z.

The analytical expressions for the values of the unknown quantities y and z in terms of the Indeterminate Factors are given by equations (69) page 61, and are repeated in Section 14 of Chapter III. The numerical values of the coefficients of the Indeterminate Factors in these expressions will now be given. For the First Reduction only four Indeterminate Factors were employed, for the Second six were wanted: but as the coefficients of the first four Indeterminate Factors of the Second Reduction are the same as those of the corresponding factors in the First, it will be sufficient to give them only once for both reductions.

The Values of the 36s and 05s.

No. of Circuit Triangle	36	89	No. of Circuit Triangle	366	Œ.	No. of Circuit Triangle	36	<b>e</b> c
	t Equation.	Linear.		Equation—(	Continued).		Equation—	(Continued).
1	+ 0.360	- 0.285	28	+ 0.361	- 0.279	9	+ 1.946	- 1.624
2	1.764	2.019	29	0.276	0.301	10	1.360	1.952
8	0.433	0.433	<b>3</b> 0	0.306	0.261	11	2.056	1.496
4	1.310	1.190	31	0.312	0.387	12	0.808	1.380
5	1.280	1.300	32	0.666	0.684	13	0.172	0.632
6	1.130	1.180	33	0.744	0.696	14	0.835	0.362
7	0.720	0.432	34	0.613	0.630	15	1.992	2.148
8	0.642	0.474	85	0.276	0.204	16	1.284	1.320
9	1.134	1.008	36	0.992	1.148	17	0.912	0.847
10	0.913	1.176	37	1.533	0.961	18	0.018	1.352
11	1.368	1.008	38	0.944	1.122	19	0.825	0.604
12	0.919	0.872	39	0.961	0.927	20	0.824	0.952
13	0.132	0.450	40	0.840	0.960	21	0.412	0.455
14	0.660	0.340	41	0.913	1.026	22	0.820	1.250
15	1.284	1.548	42	o·888	1.704	23	0.880	0.770
16	1.264	1.190	43	1.600	0.824	24	0.760	0.080
17	0.728	0.763	44	0.912	0.819	25	0.204	0.388
18	0.927	1.114			-	26	0.338	0.282
19	0.414	0.282	2nd	Equation.	Latitude.	27	0.787	0.342
20	0.888	0.840	1	+ 0.690	- 0.720	28	0.111	0.304
21	0.402	0.495	2	3.934	4.172	29	0.174	0.078
22	1.010	1.310	8	0.990	0.864	<b>3</b> 0	0.192	0.114
23	0.990	0.990	4	2.310	2.440	31	0.111	0.313
24	1.100	1.030	5	2.360	2.650	32	0.348	0.383
25	0.642	0.474	6	2.070	2.040	83	0.534	0.324
26	0.462	0.708	7	1.336	0.728	34	0.186	0.300
27	1.300	0.663	8	0.990	0.864	35	0.558	0.133

The Values of the Bs and Cs.—(Continued).

No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
	Equation—	(Continued).	3rd	Equation—	(Continued).		Equation.	Azimuth.
36	+ 0.238	- 0.476	18	- 0.901	- 0.417	1	- 0.525	- 0.525
37	0.374	0.162	19	+ 0.292	+ 0.723	2	+ 1.442	+ 1.484
38	0.306	0.304	20	- 0.776	- 0.416	3	0.918	0.636
39	o•o68.	0.264	21	+ 0.310	+ 0.400	4	- 1.040	- 1.040
40	0.308	0.138	22	- 0.900	- 0.390	5	1.040	1.040
41	0.019	0.176	23	+ 0.200	+ 0.110	6	+ 1.040	+ 1.040
42	0.104	0.136	24	- o·860	- 0.320	7	0.832	0.833
43	0.168	0.048	25	+ 0.304	+ 0.384	8	<b>-</b> 0.630	- 0.612
			26	- 0.432	- 0.108	9	+ 1.428	+ 1.470
3rd	Equation.	Longitude.	27	+ 0.082	+ 0.397	10	- 0.840	- 0.819
1	- 0.910	<b>- 0.68</b> 5	28	- 0.192	- 0.057	11	+ 0.824	+ 0.824
2	+ 1.750	+ 2.506	29	+ 0.069	+ 0.120	12	- 0.824	- o·824
8	0.816	0.996	<b>3</b> 0	0.063	0.165	13	+ 0.212	+ 0.212
4	- 1.660	- 1.090	31	<b>–</b> 0.198	- 0.034	14	- 0.515	- 0.212
5	1.690	1.060	32	+ 0.133	+ .0.276	15	1.236	1.236
6	+ 1.130	+ 1.400	<b>3</b> 3	- 0.383	- o.oee	16	+ 0.808	+ 0.832
7	0.920	1.064	34	0.270	0.072	17	0.707	0.728
8	- o·864	<b>-</b> 0.594	35	+ 0.084	+ 0.192	18	- 0.884	- o·859
9	+ 1.224	+ 1.722	36	- 0.391	+ 0.017	19	+ 0.859	+ 0.884
10	- 1.080	<b>-</b> 0.648	37	0.034	0.298	20	- o·832	- o·8o8
11	+ 0.792	+ 0.888	<b>3</b> 8	0.000	0.333	21	+ 0.210	+ 0.210
12	<b>– o</b> ⋅880	<b>-</b> 0.688	<b>3</b> 9	0.306	0.077	22	<b>— 1.030</b>	- 1.020
13	+ 0.200	+ 0.485	<b>4</b> 0	0.000	0.319	23	+ 1.030	+ 1.020
14	- o·580	- 0.430	41	0.308	0.104	24	- 1.030	<b>– 1.020</b>
15	1.380	0.876	42	+ 0.016	0.136	25	+ 0.600	+ 0.618
16	+ 0.496	+ 0.856	43	- 0.024	0.096	26	- o.q18	<b>–</b> 0.600
17	0.490	0.721				27	+ 0.657	+ 0.657

The Values of the Bs and Cs-(Continued).

No. of Circuit Triangle	36	<b>©</b> _	No. of Circuit Triangle	36	Œ	No. of Circuit Triangle	36	Œ
4 <i>th</i>	Equation—	(Continued).	4th	Equation—	(Continued).	5th	Equation—(	Continued).
28	- 0.309	- 0.300	43	+ 0.800	+ 0.800	12	- 0.064	- o·o88
29	+ 0.303	+ 0.303	44	- o.800	- 0.800			_
80	0.303	0.303		•		6th.	Equation.	Longitude.
81	- 0.303	- 0.303	5th	Equation.	Latitude.	1	- 0.415	- 0.100
32	+ 0.606	+ 0.606	1	+ 0.182	- 0.340	2	+ 0.308	+ 1.190
33	- 0.606	- 0.606	2	1.484	1.330	3	0.310	0.408
84	0.606	0.606	8	0.390	0.340	4	- 0.700	- 0.070
85	+ 0.606	+`0.606	4	0.230	0.830	5	0.730	0.040
86	<b>-</b> 0·867	- 0.842	5	0.220	0.860	6	+ 0.110	+ 0.440
37	+ 0.842	+ 0.867	6	0.20	0.380	7	0.113	0.380
38	0.842	0.867	7	0.352	0.104	8	- 0.282	0.000
39	- 0.867	- 0.842	8	0.084	0.333	9	+ 0.126	0.378
40	+ 0.792	+ 0.816	9	0.378	0.198	10	- 0.312	0.198
41	- 0.800	- 0.800	10	0.064	0.330	11	0.040	0.138
42	+ 0.800	+ 0.800	11	0.168	0.073	12	0.104	0.136

### 15. The Equations between the Indeterminate Factors and their Solution.

In the present Section Table I gives the numerical values of the coefficients of the Indeterminate Factors, denoted by  $\Lambda'$ , and the values of the Absolute Terms of each of the four equations, which were presented for simultaneous solution by the First Reduction of the Series. Table II is an abstract containing the first of each group of equations, which remained after the successive elimination of the Factors; these are the equations which were used in obtaining the numerical values of the factors given at the end of this section. Table III exhibits the six equations between the Indeterminate Factors denoted by  $\Lambda''$ , furnished by the Second Reduction; and Table IV gives the first of each group of equations remaining after the successive elimination of the Factors; these are the equations which were used in obtaining the numerical values of the factors given at the end of this section.

The formation of the coefficients of the Factors has been sufficiently explained in Section 15 of Chapter III. It will be observed that for the first four factors in the group of equations for the Second Reduction, the coefficients are the same as for the First Reduction. A similar identity must also hold in Tables II and IV from which the numerical values of the factors are derived.

The Absolute Terms for the First Reduction are the products of those of the primary equations of condition by their respective equalizing factors, as shewn at the end of Section 10 of this Appendix. For the Second Reduction they are the residual errors remaining after the final completion of the First Reduction, also multiplied by the equalizing factors. These too will be found at the end of Section 10.

The solution was performed with the aid of the 5-place Logarithm Tables—comprised in three openings'—in the Auxiliary Tables to facilitate the Calculations of the Survey Department of India.

ustion	THE INDETERMIN	BEFORE SOLUTION	THE ABSOLUTE		
No of Equation	ıΛ'	2Λ′	3 ^A ′	<b>⁴</b> ∆′	TERMS
1	+30.649	+ 29 · 168	- 3.848	+ 1.212	+ 9.078
2	+29.168	+42.462	- 0.164	+ 6.763	+15.030
3	- 3.848	- 0.164	+50.286	+49.562	+ 4.603
4	+ 1.212	+ 6.763	+49.562	+69.479	+ 8.284

TABLE I .- First Simultaneous Reduction.

TARLE	TT	Tiret.	Simultaneous	Reduction

quation	THE INDETERM		D THEIR COEFFICIEN	TS AFTER THE	THE ABSOLUTE
No. of Equation	₁ A′	2Λ'	. ₃ A'	₄ Λ′	Terms
1	+ 30.649	+29.168	- 3.848	+ 1.212	+ 9.078
2		+14.703	+ 3.498	+ 5.324	+ 6.390
3			+48.971	+48.485	+ 4.224
4				+19.472	+ 1.343

# SEPARATE REDUCTION OF THE

TABLE III.—Second Simultaneous Reduction.

Equation	THE IND	eterminate Fa	ACTORS, AND TH	HEIR COEFFICIE	ents before	Solution	THE ABSOLUTE
No. of E	₁ A"	2∆″	3 ^A *	4 ^{A*}	5 ^{A"}	6 ^{A*}	TERMS
1	+30.649	+29.168	<b>- 3.848</b>	+ 1.212	. +3.754	<b>— 1 · 829</b>	-0.003
2	+29.168	+42.462	<b>–</b> 0.164	+ 6.763	+7.529	-2.819	-0.090
3	- 3.848	- 0.164	+50.286	+49.562	+2.229	+8.958	-0.072
4	+ 1.212	+ 6.763	+49.562	+69.479	+2.364	+6.453	-0.018
5	+ 3.754	+ 7.529	+ 2.339	+ 2.364	+2.342	-0.147	+1.20
6	- 1.829	- 2.819	+ 8.958	+ 6.453	-0.147	+2.886	-0.30

TABLE IV .- Second Simultaneous Reduction.

of Equation	THE INDET	ERMINATE FACT	ors, and thei Elimin	R COEFFICIENTS	s, AFTER THE S	Successive	THE ABSOLUTE TERMS
No. of	₁ A"	₂ ^"	3 [^] / ₃	4 ^{A"}	5 ^{A*}	6 ^A "	TERMS
1 2 3 4 5	+30.649	+29.168	- 3·848 + 3·498 +48·971	+ 1.512 + 5.324 +48.485 +19.472	+3.754 +3.956 +1.759 -0.995 +0.704	-1.829 -1.078 +8.984 -1.962 -0.056	-0.003 -0.087 -0.054 +0.067 +1.528
6					70 704	+0.848	-0.167

The Values of the Factors to 3 places of decimals, as deduced from the equations in Tables II and IV are now given.

The Values of the Indeterminate Factors.

First Simultaneous Reduction.

$$_{1}\Lambda' = -0.091; _{2}\Lambda' = +0.406; _{3}\Lambda' = +0.018; _{4}\Lambda' = +0.069.$$

Second Simultaneous Reduction.

$$_{1}\Lambda'' = + \circ \cdot 275;$$
  $_{2}\Lambda'' = - \circ \cdot 602;$   $_{3}\Lambda'' = - \circ \cdot 135;$   $_{4}\Lambda'' = + \cdot \circ 94;$   $_{5}\Lambda'' = + 2 \cdot 155;$   $_{6}\Lambda'' = - \cdot 197.$ 

### 16. The Final Values of the Angular Errors x, y and z.

The same formulæ which were employed for calculating the angular errors of the North-East Quadrilateral, and which are given in Section 16 of Chapter III, were employed here also.

Making use of the  $\Lambda$ 's furnished by the First Reduction the first portions of x, y and z were obtained. Afterwards, the second portions were derived with the  $\Lambda$ "s furnished by the Second Reduction. Thus—see page 242—denoting the two portions of  $y_p$ , obtained by the First and Second Reductions, by  $y_p$  (1) and  $y_p$  (2) we have

$$y_{p} (1) = + \frac{u_{p}}{3} \left\{ z_{i}^{n} [fb_{p} \Lambda'] - \frac{n}{i} [fc_{p} \Lambda'] \right\}$$

and

$$y_{p} (2) = + \frac{u_{p}}{3} \left\{ 2 \prod_{i} [f b_{p} \Lambda''] - \prod_{i} [f c_{p} \Lambda''] \right\}$$

The several components of the angular errors are given in the following table, being distinguished by the numbers (1), (2) and (3).

- (1). The values given by the First Simultaneous Reduction.
- (2). The values given by the Second Simultaneous Reduction; and
- (3). The Arbitrary Adjustments.

Final Values of the Angular Errors.

No. of	Triangle	,	x		y		z	No. of	Triangle		x.		y		z	No. of	Triangle		x		y		z
			"		"		"				"		"		"				"		"		"
1	(1) (2)	+ + +	.18 .09	.+	·20 ·23 ·43	-	·32 ·61	16	(1) (2)	+	· 23 · 16 · 07	+ -	·59 ·60 ·01	- + +	·36 ·44 ·08	31	(1) (2)	<del>+</del> +	·08 ·01	- + +	.01 .03	=	·07 ·01 ·08
2	(1) (2)	+	·19 ·02	+ 1	1.2 1.12 1.72		1 · 36 1 · 34 2 · 70	17	(1) (2)	- + -	·15 ·08 ·07	+ - +	35 01	- + <b>+</b>	·21 ·27 ·06	32	(1) (2)	=	·11 ·03 ·14	+++	·12 ·02 ·14	+	.00 .01 .01
3	(1) (2)	<u>-</u>	·17 ·00 ·17	++++	·42 ·27 ·69	1 1 1	·25 ·27 ·52	18	(1) (2)	+ -	·30 ·22 ·08	+ -	·21 ·26 ·05	+	·51 ·48 ·03	33	(1) (2)	+	·13	- + +	.03 .03	=	·11 ·05 ·16
4	(1) (2)	++++	·29 ·15 ·44	+ + + 1	·69 ·41	- -	·98 ·56 ·54	19	(1) (2)	+	.53	+ - +	·34 ·30 ·04	- + +	·12 ·19 ·07	34	(1) (2)	+	'14 '00 '14	++	.03 .04 .01	=	·11 ·04 ·15
5	(1) (2)	+ + +	·31 ·17 ·48	+ + + 1	.74 .39 .13	_	·56 ·56	20	(1) (2)	<del>-</del> +	.10	+	·18 ·22 ·04	-+ -	.37 .32 .05	35	(1) (2)	<u>-</u>	·12 ·04 ·16	+++++	.08 .07 .12	+ -+	.04 .03 .01
6	(1) (2)	<u>-</u>	·21 ·01 ·22	+ + +	·83 ·11	-	·62 ·10 ·72	21	(1) (2)	<u>-</u>	.07 .00 .07	+ -+	·17 ·13 ·04	- + +	·13 ·03	36	(1) (2)	+ + +	·21 ·01 ·22	- + +	.06 .10	-   -   -	·15 ·11 ·26
7	(1) (2)	<u>-</u>	·37 ·06 ·43	++++	·55 ·64		·18 ·03 ·21	22	(1) (2)	+ + +	·32 ·18 ·14	+ -	·15 ·19 ·04	1+1	.47 .37 .10	37	(1) (2)	=	·19 ·06 ·25	+ + +	·10 ·19 ·29	+ -	.09 .13
8	(1) (2)	+ + +	·07 ·20 ·27	+ - +	·13 ·16	-	·36 ·07 ·43	23	(1) (2)	- + -	· 21 · 04 · 17	+ -+	.35 .23 .12	- + <del>+</del>	·14 ·19 ·05	38	(1) (2)	_	.10 .00	+ + +	·10 ·15 ·25	+ -	·09 ·15
9	(1) (2)	<u>-</u>	· 38 · 02 · 40	+ + +	·82 ·15 ·67	+	·44 ·17 ·27	24	(1) (2)	+ - +	· 26 · 12 · 14	+-	·12 ·13 ·01	+	·38 ·25 ·13	39	(1) (2)	+ + +	·21 ·01 ·20	- + +	·13 ·19	  -  -	·08 ·18 ·26
10	(1) (2)	+++++	·36 ·16 ·52	+ - +	.30 .30	+	·75 ·14 ·61	25	(1) (2)	- + -	·16	+ - +	.10	- + +	.03 .05	40	(1) (2)	<u>-</u>	· 16 · 04 · 20	+ + +	·06 ·19 ·25	+ -	·10 ·15 ·05
11	(1) (2)	+	34 12 22	+ - +	·78 ·52 ·26	- + -	·44 ·40 ·04	26	(1) (2)	+ + +	·22 ·11 ·11	_	.01 .01 .00	- + -	·22 ·12 ·10	41	(1) (2)	+ + +	· 16 · 08 · 24	- + +	·13 ·19	=	·03 ·27 ·30
12	(1) (2)	+ + +	·31 ·06 ·37	+ - -	·20 ·39 ·19	+ -	·51 ·33 ·18	27	(1) (2)	+	·23 ·06 ·17	+ - +	·26 ·09 ·17	<del>-</del>	·03 ·03	42	(1) (2)	- + -	. 10 .08 .18	+ + +	· 02 · 25 · 27	  - 	·16 ·33 ·17
13	(1) (2)	+ - -	·07 ·16 ·09	+ - +	·10 ·08 ·O2	- + +	·17 ·24 ·07	28	(1) (2)	+ - +	.08 .03 .02		.00	- + -	·08 ·03 ·05	43	(1) (2)	<u>-</u>	·09 ·29 ·38	- + +	·02 ·42 ·40	+ - -	11 13 02
14	(1) (2)	- + +	·06 ·13 ·07	+ - -	·23 ·29	+	·17 ·16 ·01	29	(1) (2)	- + -	·08 ·01 ·07	+ - +	.01 .01	+	10°.	44	(1) (2) (3)	+ + - +	·12 ·12 ·03	-+++	·14 ·18 ·09 ·13	+	·02 ·30 ·06
15	(1) (2)	+++	· 27 · 16 · I I	+ -	·56 ·70 ·14	++	.89 .89	30	(1) (2)	+	·07 ·00 ·07	+ -++	·07 ·01 ·06	+++	.01 .00 .00			•	<b>-4-2</b>	•	-3		7

The values of the Angular Errors are the results of the general solution of the problem that was presented by the Budhon Meridional Series. The first components of the errors were severally applied with changed signs, to the values of the figurally corrected angles given in the first table of Section 8 before the second components were obtained. The corrected sides and angles are shewn in the second table in Section 8; and with these the new values of latitude, longitude and azimuth in the second table of Section 9 were obtained. The second components of the errors were in turn applied to the corrected angles in the second table of Section 8 and the resulting changes in angles and sides applied to finally correcting the values of latitude, longitude and azimuth in the second table of Section 9. After these final corrections, the closing values in latitude and longitude at Ráepur Station agreed exactly but there were small residuals at Mahesari Station in latitude, longitude and azimuth and in the closing value of the side Mahesari-Sheopuri, viz.,

Latitude + 0.005

Longitude - 0.004

Azimuth - 0.027

Log side + 1.8 in the 7th place of decimals.

The discrepancies in latitude and longitude being so small were allowed to stand, but those in azimuth and side were reduced by the arbitrary corrections in triangle No. 44, shewn on the preceding page, the former to +0".003 and the latter to zero.

January, 1882.

W. H. COLE.

### APPENDIX.

# No. 2.

### REDUCTION OF THE NORTH-EAST QUADRILATERAL.

### THE NON-CIRCUIT TRIANGLES AND THEIR FINAL FIGURAL ADJUSTMENTS.

The primary chains of triangles being composed of various compound trigonometrical figures, as well as single triangles, and only as many triangles of those figures having been introduced into the Simultaneous Reduction as were necessary for the construction of the circuits—for reasons already explained at page 45—it remained, on the completion of the said reduction, to bring the excluded or non-circuit triangles of each figure into adjustment with the circuit triangles. This had to be done by the calculation of certain corrections to be applied to the excluded angles only, so as to produce consistency without disturbing the included angles, the values of which by the Simultaneous Reduction must necessarily be regarded as final.

The details of the corrections to the Non-circuit angles form the subject of this Appendix. They present themselves in groups which are referred to by the numbers of the figures to which they respectively appertain.

In explanation it is only necessary to say that, since the values of the angles entering the Circuit triangles might not alter, each group of *Non*-circuit triangles had to be adjusted so as to satisfy the following conditions, viz.,

- 1. That at any station falling within the circuit at which angles had been measured completely round the horizon, the sum of the Non-circuit angles + the sum of the Circuit angles should be equal to 360°.
- 2. That the ratios of sides common both to Circuit and Non-circuit triangles, must be the same by the latter as by the former.
- 3. That the algebraical sum of the corrections to the angles of each Non-circuit triangle should = 0.

These three conditions alone sufficed, in every case save one, to furnish the necessary equations of condition for reducing the angles.*

The number of equations in each group ranges from 2 to 16. When only two presented themselves



^{*} The exception is Figure No. 35 which falls within the Eastern Frontier Series—Section 23° to 26°. In this figure there are ten triangles numbered 677 to 686. The first six of these connect sides of Circuit triangles and are therefore governed by the same conditions, Nos. 1 to 3, as other Non-circuit triangles; but the last four do not connect sides of Circuit triangles; they, however, with Nos. 681 and 682 form a polygon round Mama Bhagna Tîla (Station xxvi), and thus furnish, in addition to the triangular equations given by the 3rd condition, one central equation and one side equation of the forms described on page 26, Chapter II.

the case was that of a triangle of which two sides and the included angle had been fixed by the Simultaneous Reduction, and the unknown quantities were the errors of the other two angles. Conditions Nos. 2 and 3 furnished the necessary equations; and being equal in number to the unknown quantities they have been solved algebraically as ordinary simultaneous equations.

In all other cases the unknown quantities are greater in number than the equations connecting them; the latter had therefore to be solved by the method of minimum squares, the weights of the angles in each group being considered equal.

The following table exhibits the number of groups of Non-circuit triangles in each Series, classed according to the number of equations of condition which each furnishes.

Series			Equ	ation	s of (	Condi	tion				or each
501100	2	3	4	5	7	8	10	12	16	Groups	Triangles
			N	Tumbe	r of	Grou	p <b>s</b>				
North-East Longitudinal	7		2	i					۱.	9	11
Budhon Meridional	2		4	1						7	13
Rangir Meridional	ı					,				1	
Karára "	2						İ		1	3	10
Gora "	1		1							2	3
Hurîláong "	1		1	!				1		3	9
Chendwar "	1		2							3	5
North Malúncha Moridional		ļ	1	2						3	8
East Calcutta Longitudinal	1		1							2	3
Brahmaputra			10							10	20
Eastern Frontier, Sec. 23° to 26°	2	1	5			1	1	1		11	30
Assam Longitudinal	2	1	5		1	ı	İ			10	21
Totals,	20	2	32	3	. 1	2	1	2	1	64	134

The 64 groups involve 402 angles, or more than one-sixth of the whole of the angles contained in the Quadrilateral; the magnitudes of the final corrections and the number of corrections of each magnitude are as follows:—

```
88 errors between o".1 and o".2
161 errors between o"·o and o"·1
                  0 '3 ,, 0 '4
                                   23
                                                                                        0.8 % 0.0
                  0.6 ,, 0.7
                                               ,,
            ,,
                                    1 error between 1 .0
                                                              1 . I
                                                                                        I'I " I'2
                                                              1 .6
                                                                       1 error between 1 .6
                                                     1 .2
  1 error between 1 '2 ,,
                           1 .3
                                               ,,
                                               ,,
```

In the pages of tabular matter which follow, are given, separately for each Series, the data of the Non-circuit triangles similar to those of the Circuit triangles shewn on pages 92 to 112, and in the same terms

with them; these are followed by the "Final Figural Adjustments" of the groups. In connection with the sides and angles are shewn first the Figure to which each Non-circuit triangle belongs, secondly, the number of the triangle, and thirdly the Figural numbers of the angles employed in the Preliminary Reductions and again made use of here, as shewn on the Plates at the end of the numerical details of each Series. In the column giving the serial number of the station, those stations of which the positions stand fixed by the Simultaneous Reduction are printed in Roman type, the rest in Italic type.

In the abstracts of the final adjustments, each group of triangles is designated by the figure to which it appertains and by the numbers of triangles it includes. The constants furnished by the Simultaneous Reduction are given, with a reference to the page from which they are taken; these are followed by the equations of condition which have to be satisfied, and where the method of minimum squares has been employed, by the equations between the Indeterminate Factors, and the values of these factors. Lastly are shewn the adopted angular errors. They are so designated because they differ occasionally, but only in the last place of decimals, from those which actually resulted from the calculations; slight arbitrary corrections having been applied in order to make the logarithmic values of common sides agree where the number of places of decimals employed in the calculations had not sufficed to do so.

Two examples of the process of reduction will now be given.

Example 1.—Figure 14, a hexagon (see the Reduction Chart and the Plate at the end of the details of the Huríláong Meridional Series) of which the four Triangles 225 to 228 were fixed by the Circuit chains; Triangles 601 and 602 have now to be adjusted. The constants known are, sides V to VII and VII to X and the angle contained between them; hence the equations to be satisfied are, two triangular, one central and one side. Stated symbolically they are:—

the 7th place of logs being taken as unity.

The errors e₁, e₂, e₃ and e₄ are found as follows:—

$$e_{1} \text{ and } e_{2} \text{ (the errors of Triangles 601 and 602) are each} = 0$$

$$e_{3} = \begin{cases} 109^{\circ} \ 19' \ 6'' \cdot 71 \\ -109 \ 19 \ 5 \cdot 59 \end{cases} . . \text{ Angles } 16 + 13 \text{ of Triangles 601 and 602, p. 52.}$$

$$= + 1'' \cdot 12$$

$$e_{4} = 10,000,000 \begin{cases} \left\{ \log \left[ \text{VII to X} \right] - \log \left[ \text{V to VII} \right] \right\} \right\} . . . . \text{ Triangles 602 and 601, p. 52.}$$

$$= 10,000,000 \begin{cases} \left\{ (4.7911420.8 - 5.2081686.0) - (4.7911364.4 - 5.2081660.2) \right\}$$

$$= + 30.6$$

^{*} See the foot-note on page 27, Chapter II.

= -2.4

Example 2.—Figure 39 is a double polygon (see Reduction Chart, and Plate 2 of the Eastern Frontier Series—Section 23° to 26°). Triangles 542 to 546 were fixed by the Circuit chains; Triangles 668 to 671 have now to be adjusted. The constants known and the symbolical expressions of the equations are given in full on page 77, and need not be repeated here. Stated generally, the equations to be satisfied are, four triangular, two central, and two side. The absolute terms are found as follows, the variables in all cases being taken from this Appendix and the constants from the final results of the Simultaneous Reduction.

Triangular . . . e₁, e₂, e₃ and e₄ (the errors of Triangles 668 to 671) are each = 0

Central
$$e_{6} = \begin{cases}
184^{\circ} \ 34' \ 33'' \ 359 \\
-184 \ 34 \ 33'' \ 359 \\
-184 \ 34 \ 33'' \ 359 \\
0. 360^{\circ} - \text{Angles } 13 + 16 + 1 \text{ of Triangles } 544 \text{ to } 546, \text{ page } 85 - \text{w.}
\end{cases}$$

$$= -0'' \cdot 398$$

$$e_{6} = \begin{cases}
159^{\circ} \ 34' \ 51'' \cdot 912 \\
-159 \ 34 \ 52' \cdot 365 \\
0. 360^{\circ} - \text{Angles } 12 + 19 \text{ of Triangles } 669 \text{ and } 668, \text{ page } 70.
\end{cases}$$

$$= -0'' \cdot 453$$
Side
$$e_{7} = 10,000,000 \begin{cases} \{ \log [\text{XL to XLIV}] - \log [\text{XXXVIII to XLI}] \} \\
-\{ \log [\text{XL to XLIV}] - \log [\text{XXXVIII to XLI}] \} \end{cases} \text{. Triangles } 669 \& 671, \text{ page } 70.
\end{cases}$$

$$= 10,000,000 \begin{cases} (4 \cdot 8075974, 2 - 4 \cdot 7434846, 9) - (4 \cdot 8076063, 5 - 4 \cdot 7434937, 1) \end{cases}$$

$$= + \circ \cdot 9$$

$$e_{8} = 10,000,000 \begin{cases} \{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \\
-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \end{cases} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \end{cases} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \end{cases} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \end{cases} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \end{cases} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \end{cases} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \end{cases} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

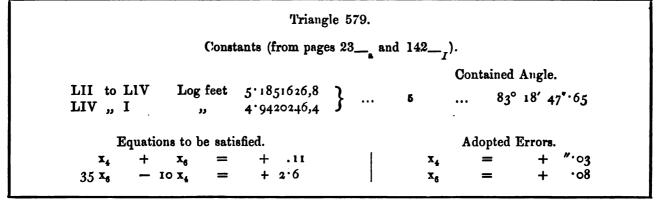
$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLIV to XLV}] - \log [\text{XL to XLIV}] \} \} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLV to XLV}] - \log [\text{XL to XLIV}] \} \text{. Triangles } 668 \& 669, \text{ page } 70.$$

$$-\{ \log [\text{XLV to XLV}] - \log [\text{XL to XLIV}] \} \text{. Triangles } 668 \& 669, \text{ page }$$


Thus the whole of the principal triangulation of the North-East Quadrilateral has been made consistent, *inter se*, so that if the co-ordinates of any one station are computed from the given co-ordinates of any other station, or the length and azimuth of any side from the corresponding values of any other side, the results will always be the same by whatever possible route they are calculated.

The values of the final angles corrected for Figural and Circuit or Non-circuit error—as the case may be—are given for each Series among the details of the calculations of the principal triangles at pages 142____, 45____, 31____, 27____, 39____ of Part II of this Volume, and pages 27_____, 46____, 43____, 41_____, 27_____, 37____, 49____, 56_____, 71_____, 81_____, and 66_____ of Volume VIII.

### Sides and Angles of the Non-Circuit Triangles.

1 579 4 II	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
1	1	579	4	II	83 18 46 · 49 65 23 37 · 77	1.02	5.1821011'5	6	618	16	CII	57 39 18·87 61 34 22·36	. 20	4.7223584,2 4.7397798,0 4.7364381,2
2 577 3+2 V 144 4 3 06 50 5 2 940 845,1	,,	578	7	χI	69 12 51 . 38	1.76	5.2480171,0	,,	617	13	CII	57 27 29 08	.19	4.7216345,3
3       576       3+2       VII       84       4 25 10       2 47 5 3818945,7       7       620       16       CXXII       55 34       0 48       24 47605         4       575       13       IX       115       4 47 50       71 5 2689242,6       ,,       619       13       CXXII       84 41 2 62       20 4 8391         4       575       13       IX       115 4 47 50       71 5 2689242,6       ,,       619       13       CXXIII       38 25 54 02       19 4 6344         4       593       10       LVIII       57 15 58 89       22 4 7499001,1       CXXIV       56 53 3 36       20 4 7640	2	577	3+2	v	144 4 3'06	. 50	5.2940845,1	,,	616	25	CVI	60 52 35 20	. 21	4.7267416,4 4.7516226,0 4.7622736,4
4 575 13 1X 115 4 47 50 71 5 2689242,6 7 619 13 14 CXXIV 38 25 54 02 19 4 6344    11 LVIII 57 15 58 89 22 4 7499001,1 67 42 29 75 23 4 7912701,3    12 LVIII 67 42 29 75 23 4 7912701,3    13 CXXII 38 25 54 02 19 4 6344    CXXIV 56 53 3 36 20 4 7640	3	576	3+2	VII	84 4 25 10	2.47	5.3818945,7	7	620	16	CXXII	55 34 0.48	.24	4·7640166,7 4·7605288,0 4·8119221,5
5 593 10 LV 67 42 29 75 23 4 79 12 70 1,3	4	575	13	IX	115 4 47 50	.71	5.2689242,6	"	619	13	CXXII	38 25 54 02	.19	4·8391242,2 4·6344938,5 4·7640166,7
12 LIX 55 1 31 · 36 · 22 4 · 7385033,9	5	593	10		67 42 29 75	.23	4.7912701,3				£			

Figure 1.



^{*} A is the serial letter for the Great Arc Series which appertains to the North-West Quadrilateral.

Figure 1—(Continued).

Triangle 578.

Constants (from page 
$$142_{I}$$
).

Contained Angle.

LII to I Log feet  $5.2235428,I$  \ ... 7 ...  $69^{\circ}$   $12'$   $52'' \cdot 94$ 

Equations to be satisfied.

 $x_8 + x_9 = -20$  \  $x_8 = -''.33$ 
 $18 x_8 - 12 x_9 = -7.8$  \  $x_9 = + 13$ 

### Figure 2.

Figure 3.

### Figure 4.

### Figure 5.

Figure 6.

```
Triangles 618 and 617.
                                   Constants (from page 151____).
                                                                              Contained Angle.
                     Log feet 4.7364566,8
4.7528678,7
C to CII
                                                                               ... 119° 1′ 51″·76
                                                                    16 + 18
CII " CV
                                     Equations to be satisfied.
                                                                                                         Factor
     X<sub>16</sub>
                      X<sub>17</sub>
                                        X18
                                                                                           .00,
                                                                                                            \lambda_1
     \mathbf{x}_{13}
                                                                                           .00,
     X<sub>16</sub>
                                                                                          .07,
 14 X<sub>18</sub>
                                +10x_{16}
                                                  - 13 X14
```

Figure 6—(Continued).

	Equ	ations be	tween the	Factors			
No. of	Value of		Co-effi	cients of		Values of the Factors	Adopted Errors
е	е	λ	λ	λ ₈	λ,		
1 2 8 4	·00 ·00 + ·07 -2·1	+3	 +3 *	+ I + I + 2	+2 -3  +609	$\lambda_1 = - \cdot 015$ $\lambda_2 = - \cdot 021$ $\lambda_3 = + \cdot 053$ $\lambda_4 = - \cdot 004$	$x_{13} = +" \cdot \circ_3  x_{16} = +" \cdot \circ_4$ $x_{14} = + \cdot \circ_2  x_{17} = + \cdot \circ_3$ $x_{16} = - \cdot \circ_5  x_{18} = - \cdot \circ_7$

Figure 6—(Continued).

Figure 7.

				Tria	ngles 620 and 619.	•				
			C	Constan	ts from (page 153_	_ _I ).				
						_	Co	ntair	ed Angle.	
CXX to C	CXXI	I Lo V	og feet	4.839	9176,3	16+1	8	•••	93° 59′	54".82
				Equation	ons to be satisfied.					Factor
<b>x</b> ₁₆	+	<b>x</b> ₁₇	+	<b>x</b> 18	•••	=	e ₁	=	·co,	$\lambda_1$
<b>x</b> ₁₈	+	X ₁₄	+	x ₁₅	•••	=	e ₂	= ,	٠٥٥,	$\lambda_{\mathbf{g}}$
<b>x</b> ₁₆					•••	=	e ₈	=	·00, + ·11,	$\lambda_8$
14 x ₁₈	_	8 x ₁₇	+	2 X ₁₅	- 13 x ₁₄				-4.0,	<b>λ</b> լ <b>λ₃</b> <b>λ₃</b> <b>λ₄</b>

^{*} In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth term in the qth line being always the same as the co-efficient of the qth term in the pth line.

Figure 7 +—(Continued).

	Equa	tions be	tween the	Factors			
No. of	Value of		Co-effi	cients of		Values of the Factors	Adopted Errors
е	е	λ	λ	λ ₈	λ		
1	.00	+3	•••	+ 1	+6	$\lambda_1 = - \cdot 010$	
2	.00		+3	+1	-11	$\lambda_3 = - \cdot 072$	$x_{18} = +" \cdot \circ 2  x_{16} = +" \cdot \circ \circ$
8	+ .11		*	+2	•••	$\lambda_8 = .+ \cdot 096$	$x_{14} = + .08  x_{17} = + .07$
4	-4.0				+433	$\lambda_4 = - \cdot \text{oli}$	$\mathbf{x}^{12} =10  \mathbf{x}^{18} =10$

[†] For figure 8 of this sequence see page 47, Rangír Series.

### Budhon Meridional Series .- Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
1	45	18 16 17	X XI X X X X X X X X X X X X X X X X X	61 8 20.84	1.50	5·1568045,7 5·1767760,2 5·1806935,0	4	52	8 7 9	J XXXVII XXXV XXXIX	0 ' " 48 55 49 93 70 3 27 57 61 0 42 50	*34	4·7968785,8 4·8927016,7 4·8614258,6
,,	46	15 13 14	XI X XII	30 52 39 61 43 41 56 42 105 25 23 97	.60	4.8830256,5 5.0121294,7 5.1568045,7	5	53	18 16 17	XXXVIII XL XLI	58 50 3.46 54 31 11.82 66 38 44.72	*36	4·8615492,3 4·8400346,6 4·8921173,5
,,	47	12 10 11	XIII X XIII	73 33 51 · 66 59 53 1 · 68 46 33 6 · 66	.53	5.0039719,9 4.9591117,5 4.8830256,5		54	15 13 14	XLI XL XLIII	56 19 22 · 16 64 26 32 · 17 59 14 5 · 67	.37	4·8476334,5 4·8826980,0 4·8615492,3
2	48	3 4+5 6	XIV XIII XV	46 7 14 12 69 18 45 98 64 33 59 90	.98	5.0124748,4 5.1257142,8 5.1103887,0	6	55	5 4 6	XLIV XLV XLVII	56 29 1.37 70 2 47.63 53 28 11.00	.42	4·8802115,6 4·9323008,4 4·8641955,4
3	49	18 16 17	XXVIII XXX XXXI	58 56 22.82 66 33 57.71 54 29 39.47	.33	4·8372280,6 4·8670526,2 4·8150927,9	,,	56	8 7 9	XLVII XLV XLVIII	69 13 39 . 70 81 40 59 . 29 29 13 39 . 70	.87	5.1642335,8 5.1888317,1 4.8802115,6
,,	50	15 13 14	XXXI XXX XXXIII	56 7 56·35 70 5 48·10 53 46 15·55	.37	4·8497859,6 4·9037888,1 4·8372280,6	7	57	8 7 9	XLVIII A [†] LII I I	91 57 49 27 30 0 47 67 58 1 23 06	94	5.2235732,6 4.9229722,0 5.1523580,7
4	51	5 4 6	XXXIV XXXV XXXVII	58 29 29 77 54 48 30 60 66 41 59 63	.36	4·8614258,6 4·8430435,6 4·8937525,3							

### Final Figural Adjustments of the Non-Circuit Triangles.

### Figure 1.‡

	•						Tri	angles	45 to 47.				•	
						Cons	tant	s from	(page 46_	_ _J ).				
											Co	ontair	ned Angle.	
VII X		X XI	II	Lo	g feet	2.	1806 0039	5703,8 9476,2	}	16+18	3 + 10	•••	164° 43′	20".55
						Equ	atio	ns to	e satisfied	•				Factor
<b>x</b> ₁₆	• •		+	<b>x</b> ₁₇		•••	+	<b>x</b> 18	•••	=	$\mathbf{e_{1}}$	=	•00,	$\lambda_1$
<b>x</b> ₁₃	•••	,	+	X ₁₄		•••	+	<b>x</b> ₁₅	•••	=	e ₂	=	.00,	$\lambda_{g}$
$\mathbf{x}_{10}$	• • •	,	+	<b>x</b> 11		•••	+	X ₁₃	•••	=	$\mathbf{e_{s}}$	=	.00,	$\lambda_8$
<b>x</b> ₁₆	• • •		+	<b>X</b> 18		•••	+	<b>x</b> ₁₀	•••	=	e,	=	+ 1.02,	$\lambda_{4}$
14 X ₁₈	-11	K ₁₇	+ 36	X ₁₅	+	5 X ₁₄	+	7 × 13	-20 X ₁₁	==	$\mathbf{e_5}$	=	<b>†</b> 12.2,	$\lambda_{5}$

[†] A is the Serial letter for the Great Arc Series—Section 24° to 30°—which appertains to the North-West Quadrilateral.

‡ As the Budhon Series was reduced by itself and not simultaneously with the North-East Quadrilateral, the figure numbers of the former have a sequence of their own.

Figure 1—(Continued).

	Equa	tions l	oetween	the F	actors							
No. of	Value of		Co	o-efficie	ents of		Values of the Factors	Adopted Errors				
е	е	λ	λ	λ ₈	λ,	$\lambda_{\delta}$						
1	•00	+3	•••	•••	+1	+3	$\lambda_1 = - \cdot 205$	$x_{10} = +$ ".44 $x_{16} = +$ ".09				
2	.00		+3	•••	· + I	+41	$\lambda_2 = -370$	$x_{11} =40  x_{16} = + .37$				
3	•00			+3	+1	-13	$\lambda_8 = - \cdot 136$	$x_{13} = - \cdot 04  x_{17} = - \cdot 34$				
4	+ 1.03		*		+3	•••	$\lambda_4 = + \cdot 577$	$x_{18} = + \cdot 21  x_{18} = - \cdot 03$				
5	+12.2					+ 2087	$\lambda_5 = + \cdot 013$	$x_{14} =30$				

### Figure 2.

```
Triangle 48.

Constants (from page 46_{-J}).

XIII to XIV Log feet 5 \cdot 1103651,3 Contained Angle.

XIII ,, XV ,, 5 \cdot 0124512,4 ... 4+5 ... 69^{\circ} 18' 47'' \cdot 11

Equations to be satisfied.

x_3 + x_6 = + \cdot 15
20 x_3 - 10 x_6 = + \cdot 3 x_6 = + \cdot 09
```

### Figure 3.

```
Triangles 49 and 50.
                                         Constants (from page 48___).
                                                                                        Contained Angle.
XXVIII to XXX Log feet 4.8150686,9
                                                                                                   136° 39′ 46″·33
                                           4.8497616,1
\mathbf{X}\mathbf{X}\mathbf{X}
              " XXXIII
                                           Equations to be satisfied.
                                                                                                                 Factor
                           \mathbf{x}_{17}
                                              X18
                                                                                                   .00,
                           X14
                                                                                                   .00,
                                                                                                                    \lambda_{2}
         X<sub>16</sub>
                           X13
                                                                                                  .18,
                                                                                                                    \lambda_8
      I 2 X<sub>18</sub>
                       15 X<sub>17</sub>
                                      + 15 x_{15}
                                                        - 15 X<sub>14</sub>
```

Figure 8—(Continued).

	Equa	tions be	tween the	Factors	,							
No. of	Value of		Co-effi	cients of		Values of the Factors	Adopted Errors					
е	е	λ	λ	λ ₈	λ ₄							
1	•00	+3	•••	+1	-3	$\lambda_1 = - \cdot 041$						
2	•00	•	+3	+1	0	$\lambda_3 = - \cdot 044$	$x_{18} = +".09$ $x_{16} = +".09$					
8	+ .18			+2	•••	$\lambda_8 = + \cdot 133$	$x^{12} = .00  x^{13} = .00$					
4	+2.2		*		+819	$\lambda_4 = + \cdot \infty 3$	$x^{12} = .00  x^{18} = .00$					

Figure 4.

				7	Friangles 51	l and 52.	
				Consta	ants (from	page 48).	
, ;	XXXIV XXXV	to XXX " XXX	V Log	<b>feet 4·8</b> 9 <b>4·7</b> 9	)37283,6 )68539,4	} 4+7	Contained Angle 124° 51′ 59″ · 29
			I	Equations t	to be satisfi	ed.	Factor
	1, 1, 1,3 x,	+ 7 + 4 + 5 -	x ₆ x ₈ x ₇ 9 x ₆	+ x ₆ + x ₉ 	- II	$= e_1 = e_3 = e_3 = e_3 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_4 = e_$	$\lambda_1$ = '00, $\lambda_3$ = - '42, $\lambda_3$ = +4'7, $\lambda_4$
	Equa	stions be	tween the	Factors			
No. of	Value of		Со-е	fficients of		Values of the Factors	Adopted Errors
е	е	λ	λ	λ ₈	λ,		
1	.00	+3	•••	+1	+4	$\lambda_1 = + \cdot 094$	
2	.00		+3	+1	+7	$\lambda_2 = + .089$	$x_4 = -^{w} \cdot 21$ $x_7 = -^{w} \cdot 21$
8	-0·42 +4·7			+2	•••	$\lambda_8 = - \cdot 301$	$x_6 = + .04$ $x_9 = + .03$ $x_6 = + .04$ $x_9 = + .03$
4	+4.7		. #		+695	$\lambda_4 = + \cdot \infty_5$	1 Ag - + '04 Ag = + '03

Figure 5.

	,				riangles 53	3 and 54.		
	XXXVIII XL	to XI					Contained Angle 118° 57′	44" · 08
	x ₁₆ x ₁₈ x ₁₆ 13 x ₁₈	+ + + -	x ₁₇ x ₁₄ x ₁₈	Equations + x ₁₈ + x ₁₅ + 14 x ₁₆			= '00, = '00, = + '64, = +12.7,	
No. of	Equa Value of e	ations be $\lambda_1$		e Factors ficients of	λ ₄	Values of the Factors	Adopted	Errors
1 2 3 4	· · · · · · · · · · · · · · · · · · ·	+3	 +3 *	+ I + I + 2	+3 +2	$\lambda_1 = - \cdot 191$ $\lambda_2 = - \cdot 184$ $\lambda_3 = + \cdot 508$ $\lambda_4 = + \cdot 022$	$x_{14} =46$	

Figure 6.

				Tri	angles 55 and 5	56.					
				Consta	nts (from page 49	9 _J )	).				
XLIV to	XL	V L	og feet	4.86	41688,1 42053,2 }		4 1 7	Co	ntai	ned An	gle.
XLV	XI.	VIII		5.16	42053.2	• '	9 T /	•	••	131	43 40 07
	,	• • • • • • • • • • • • • • • • • • • •		_							-
	•		Equa	tions t	o be satisfied.						Factor
	•		Equa	tions t	o be satisfied.						Factor λ ₁
	•		Equa	tions t	o be satisfied.						Factor
	•		Equa	tions t							Factor

# REDUCTION OF THE NORTH-EAST QUADRILATERAL.

### Final Figural Adjustments of the Non-Circuit Triangles.

Figure 6—(Continued).

	Equa	tions be	tween the	Factors							
No. of	Value of		Co-ef	ficients of	!	Values of the Factors	Adopted Errors				
е	е	$\lambda_1$	$\lambda_{g}$	λ ₈	λ,		,				
1	•00	+3	•••	+ 1	-2	$\lambda_1 = + \cdot 155$					
2	•00		+3	+ 1	-30	$\lambda_2 = + \cdot 267$	$x_4 = -"\cdot 29  x_7 = -"\cdot 17$ $x_5 = + \cdot 33  x_8 = + \cdot 36$				
8	46		*	+ 2	•••	$\lambda_8 = - \cdot 441$	$x_5 = + .33$ $x_8 = + .36$				
4	+15.3				+1960	$\lambda_4 = + \cdot 012$	· · · · · · · · · · · · · · · · · · ·				

### Figure 7.

# Triangle 57. Constants (from pages $50_{-J}$ and $142_{-I}$ ). Contained Angle. XLVIII to LII Log feet 5.1523301.6 \ ... 7 ... $30^{\circ}$ o' $49'' \cdot 02$ Equations to be satisfied. Adopted Errors. $x_8 + x_9 = + .41$ $x_8 = + .2'' \cdot 40$ $x_9 = -1 \cdot 99$

### Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
8	574	9 7 8	K XX XXII XXIII	0 1 " 3 23 29 57 168 22 3 54 8 14 26 89	.04	4·4743755,1 5·0069111,6 4·8587024,3

Final Figural Adjustments of the Non-Circuit Triangles.

Figure 8.†

		Triangl	e 574.		4	
		Constants (fron	n page 33	_K ).		
		•	•	Conta	ained Angle.	
XX to XXI	I Log feet	4·8586873,9 4·4743603,3	}		168° 22′	3″51
Equat	ions to be satis	fied.	•	Ad	lopted Errors.	
x ₈ +	$x_9 = 145 x_8 =$	<del>-</del> ·07		x ₈	= - <i>"</i>	′·05
356 x, —	$145 x_8 =$	+ 1.4	I	x ₉	= -	.03

† NOTE.—In continuation of Figure 7, page 41.

### REDUCTION OF THE NORTH-EAST QUADRILATERAL.

### Karára Meridional Series.—Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
9	580	4+5 3 6	W I  ** XXVI  ** XXIII	0 , " 114 47 12 00 20 2 43 40 45 10 4 60	1.01	4.9178578,5	10	585	25 27 26	M VII	0 , , , , , , , , , , , , , , , , , , ,	.18	4·8762855,2 4·6801031,4 4·6958007,8
10	581	21 19 20	I III IV	48 42 38 33 56 5 49 89 75 11 31 78	.70	4·9601054,6 5·0033121,8 5·0695734,0	,,	586	42 40 41	IX X XI	62 1 43.58 75 18 56.84 42 39 19.58	. 57	4·9913707,3 5·0308979,9 4·8762855,2
"	582	18 16 17	IV III VI	53 221.09 59 434.28 6753 4.63	.49	4·8958663,3 4·9267060,5 4·9601054,6	,,	587	37 39 38	X XI XIII	41 58 6.52 86 59 23.57 51 229.91	.65	4·9258580,8 5·1000130,4 4·9913707,3
"	583	13 15 14	III VI VII	53 50 4 12 80 1 5 08 46 8 50 80	.54	4`9448990,2 5`0312313,5 4`8958663,3	,,	588	54 52 53	XI XIII XIV	50 30 6.48 86 19 8.45 43 10 45.07	.63	4·9780401,4 5·0897259,7 4·9258580,8
"	584	30 28 29	VI VII IX	33 39 38 · 80 66 43 36 · 14 79 36 45 · 06	.31	4·6958007,8 4·9152166,3 4·9448990,2	11	589	12 10 11	XIX XXI	29 36 18·94 118 42 6·19 31 41 34·87	14	4·6410571,2 4·8903759,2 4·6677747,0

### Final Figural Adjustments of the Non-Circuit Triangles.

Figure 9.

Triangle 580.

Constants (from page 39_M).

Contained Angle.

XXIII to XXVI Log feet 5.2336163.3 \ ... 4+5 ...  $114^{\circ}$  47'  $13'' \cdot 59$ Equations to be satisfied.  $x_8 + x_6 = + \cdot 57$  \  $x_8 = + \cdot \cdot 58$   $57 x_8 - 21 x_6 = + 33 \cdot 3$  \  $x_6 = - \cdot 01$ 

^{*} B is the serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

Figure 10.

							η	Prion	മിമ	581 t	0 500	<del></del>						
					Con	stan			-				) _M )	١.		,		
							•				M				hon	Angles.		
		to II		Log	feet		0695				19 -	+ 16 +		••••		-	28"·78	3
l	III	" VI	II		"		0312			•••	14 -	+ 28 +	25	•••		13 48	12 '14	
	VII X	" X	T T T		"		6800				26 -	+ <del>4</del> 0 +	87	•••		57 40	29 .02	
	XIII				)) ))		0999 9780	_		•••	88 -	+ 52		•••		37 21	39 .73	
		,,	• •					-	-	isfied.								Factor
i	<b>x</b> 19 -		X ₉₀	+	X ₂	_						•••		= e	. =		٠٥٥,	$\lambda_1$
	<b>x</b> ₁₆ -		<b>x</b> ₁₇	+	<b>X</b> 18		••	•		•••		•••		= e,			.00,	$\lambda_{\mathbf{g}}$
	x ₁₃ -  x ₂₈ -		X ₁₄ X ₂₉	+ +	x ₁₀ x ₃₀		••	•	•	•••		•••		$= e_i$ $= e_i$	-		.00,	γ ²
	x ₂₅ -∤	٠ :	X 96	+	X ₂₇		••	•		•••		•••		$= e_i$			·00,	$\lambda_{s}$ $\lambda_{s}$
i	<b>≖</b> 40 -∤	_	X ₄₁	+	X45	-	••			•••		•••		= e ₆	; =		٠٥٥,	$\lambda_6$
	x ₈₇ -  x ₅₂ -		X ₈₈ X ₆₃	+ +	X ₃₅		••	•		•••		•••		$= e_t$ $= e_t$			·00,	$\lambda_{7}$
	x ₁₉ +			+	X ₁₅		••	•		•••		•••		= e,			•	አ _ያ
	x ₁₄ +			+	X ₂₅		••	• .		•••		•••		$= e_1$	. =	+	• 53,	$\lambda_{10}$
	x ₂₆ -  x ₈₈ -		X ₄₀ X ₅₂	+		7	••	•		•••		•••			ı =		·39,	$\lambda_{11}$
	19 x ₂₁ -	- 63		+ :	16 x ₁₈		· 9	X ₁₇	+	 3 ≖ ₁₅	_	20	K ₁₄		s = s =		·09, ·8,	հ _{լդ} Նլ ₃
	16 x ₁₈ -	•	K ₁₅	+ :	31 X ₃₀	_	4	X ₂₉		26 x ₂₇		25		$= e_1$	4 =	+36	٠6,	λ ₁₄
_	4 X ₂₅ - 23 X ₃₇ -	- 26 z - z			II X ₄₉ I7 X ₅₄		•		+			17 2	K ₃₈	$= e_1$				$\lambda_{15}$
			-		/ -04				1 /			···		= e ₁	6 —	+ 29	<del></del>	λ ₁₆
	1						quat	1018	Detv	reen t								
	Value of									Co-	efficie	ents	of					
е	е	λ	λ	λ ₃	λ,	λ ₅	$\lambda_6$	λη	λ	λ	λ ₁₀	λ ₁₁	λ ₁₃	λ	18	λ ₁₄	λ ₁₅	λ ₁₆
1	.00	+3	•••	•••	•••	•••	•••	•••		1+				+	13		•••	
2 3	.00	-	+3		•••	•••	•••	•••	•••	+1	•••	•••	•••	+	7	•••	•••	
4	.00	`		+ 3	+3	•••	•••	•••	•••	+1	+1	•••	•••	_	17	+ 13		•••
5	•00					+3		•••	•••	•••	+1	1+	•••	•	•	+ 27 + 1	— 3c	
6 7	.00						+3	•••	•••	•••	•••	+ 1	•••	• •	•	•••	<b>—</b> 12	
8	.00							+3	 +3	•••	•••	+1	+1	••	•	•••	<b>–</b> 16	
9	+ 1.54								7 3	+3	•••	•••	+ ı	••	•	+ 16	•••	- 6
10	+ .53						<u>u</u>			•	+3	•••	•••	_	20	•••	<b>-</b> · 4	• •••
11 12	- ·39 - ·09						*					+3	 4 o	••	• ′	<del>-</del> 25		+ 23
13	+34.8												+ 2	+ 1		- 9	<b>–</b> 17	
14	+36.6													• •		+ 2543	<b>-</b> 676	
15 16	+75.3																+ 1632	- 1
10	T49 0																	+ 1348

### Figure 10—(Continued).

Values of the Factors	Adopted Errors
$\lambda_{1} = - \cdot 348 \qquad \lambda_{9} = + \cdot 511$ $\lambda_{2} = - \cdot 266 \qquad \lambda_{10} = + \cdot 495$ $\lambda_{3} = - \cdot 260 \qquad \lambda_{11} = - \cdot 674$ $\lambda_{4} = - \cdot 492 \qquad \lambda_{18} = + \cdot 716$ $\lambda_{5} = + 1 \cdot 005 \qquad \lambda_{18} = + \cdot 041$ $\lambda_{6} = + \cdot 607 \qquad \lambda_{14} = + \cdot 036$ $\lambda_{7} = + \cdot 295 \qquad \lambda_{15} = + \cdot 096$ $\lambda_{8} = - \cdot 184 \qquad \lambda_{16} = + \cdot 028$	$x_{13} = +$ "·83 $x_{21} = +$ "·44 $x_{38} = -$ "·62 $x_{14} = -$ ·59 $x_{25} = +1$ ·12 $x_{39} = +$ ·36 $x_{15} = -$ ·24 $x_{26} = -$ ·58 $x_{40} = -$ ·07 $x_{16} = +$ ·25 $x_{27} = -$ ·54 $x_{41} = -1$ ·59 $x_{17} = -$ ·66 $x_{28} =$ ·00 $x_{42} = +1$ ·66 $x_{18} = +$ ·41 $x_{29} = -$ ·65 $x_{52} = +$ ·53 $x_{19} = +$ ·16 $x_{30} = +$ ·65 $x_{53} = -$ ·81 $x_{20} = -$ ·60 $x_{37} = +$ ·26 $x_{54} = +$ ·28

Figure 11.

### Triangle 589. Constants (from page 41____). Contained Angle. Log feet 4.6677467,0 ,, 4.6410274,0 XIX to XXI XXI "XXII 118° 42′ 6″·53 10 Equations to be satisfied. Adopted Errors. **x**13 $\mathbf{x}_{11}$ $+38 x_{19}$ - 35 x₁₁ + 17.2 X₁₃ .33

# Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
12	590	23 21 22	O II III IV	50 52 20 79 49 51 56 93 79 15 42 28	.78	5.0065598,1 5.0002404,4 5.1091694,8	12	592	10 11+12 13	O III	57 50 48 43 86 53 51 55 35 15 20 02	.96	5'1249098,2 5'1965802,2 4'9585619,2
,,	591	20 18 19	IV III VII	57 51 2 15 74 59 2 80 47 9 55 05	.01	5.0689782,1 5.1261788,9 5.0065598,1		-					

Figure 12.

1				Ti	riangles 59	0 and 591.			
			C	onstants (	from pages	46_o and 47_o)	•		
	<b>.</b>						Contained Angle	<b>).</b>	
	II to	VII Log fee		5.1091678,7		21 + 18	124° 51′	1".12	
			Factor						
	x ₂₁	+	X ₂₂	+ x ₂₃		$=$ $e_1$	= .00,	$\lambda_1$	
İ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•••	= e ₉	= .00,	$\lambda_{3}$	
	17 X ₂₃	<del>+</del>	X ₁₈ 4 X ₂₉	+ 13 x ₂₀	— 20	$\mathbf{x}_{19} = \mathbf{e}_{3}$ $= \mathbf{e}_{4}$	= + ·30, = +7·1,	$\lambda_3$ $\lambda_4$	
	Equa	tions be	tween the	Factors					
No. of	Value of	Co-efficients of				Values of the Factors	Adopted Errors		
е	е	λ	λ	λ ₈	λ,				
1	.00	+3	•••	+1	+ 13	$\lambda_1 = - \cdot 121$	,,,		
2	.00					$\lambda_9 =058$	$x^{18} = + 18$		
3	+ .30			+ 2	•••	$\lambda_3 = + \cdot 239$	$x_{19} = - \cdot 25$		
4	+ 7.1		*			$\lambda_4 = + .010$	$x_{20} = + \cdot 07$	$x_{93} = + \cdot 03$	

Figure 12—(Continued).

# Triangle 592. Constants (from pages $46_{-0}$ and $47_{-0}$ ). Contained Angle. III to VI Log feet 4.9585600,5 \\ VI ,, VIII ,, 5.1249077,5 \\ Equations to be satisfied. $x_{10} + x_{18} = -.19$ \\ $x_{13} x_{10} - 29 x_{18} = +.2.0$ \\ Triangle 592. Contained Angle. Adopted Errors. $x_{10} = -...08$ $x_{10} = -...08$

### Huríláong Meridional Series.—Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
13	594	a+8 12 1	B XXXVIII	0 / " 101 46 14 16 47 52 22 48 30 21 23 36	1.12	5.2899073,6 5.1693411,3 5.0027539,2	13	599	25 20+21 30	P III IV VI	-85 40 4.27	.68	4°9779804,6 5°1008106,1 4°9561272,9
,,	595	4 16 9	p I II	42 58 43 19 76 33 49 75 60 27 27 06	.60	4.8933349,0 5.0476724,4 4.9992395,3	,,	600	21 30+31 27	IV VI V	60 2 54 73 84 51 31 53 35 5 33 74	1.07	5°1561301,9 5°2166365,5 4°9779804,6
,,	596	10 15 17	II I IV	42 21 45 62	. 52	5.0932402,4 4.9272727,2 4.8933349,0	14	601	18 16 17	V VII VIII	45 57 52 35 39 51 5 47 94 11 2 18	'94	5'0160502,2
,,	597	14 18+19 26	I IV III	45 4 6:31 58 49 8:52 76 6 45:17	.75	4.9561272,9 5.0383628,2 5.0932402,4	"	602	15 13 14	VIII VII X	69 27 59 77	. 53	4.7911420,8 5.0453987,8 5.0660019,4
,,	598	19 22+26 6	B XT III IL	28 49 7 21 129 6 19 59 22 4 33 20	.64	5.0642131,7 5.2709850,5 4.9561272,9							1

[‡] B is the Serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

Note.—The symbol a here denotes an angle of the West Calcutta Longitudinal Series, already fixed by the Simultaneous Reduction of the South-East Quadrilateral.

### Figure 13.

Figure 13—(Continued).

```
Triangles 595 to 600.
                                            Constants (from page 43_____).
                                                                                      Contained Angles.
         XLII to I
                             Log feet 4.9992404,5
                                                                                                 163° 59′ 43″.67
                                                                 ... 16+15+14
                 "III
                                          5.0383618,3
                                                                                                   52 59 34 34
                 "III
         XL
                                          5.0642121,0
                                                                                                 177 49 33 .87
         III
                 "VI
                                          5.1008087,8
                                                                                                   39 14 49 .08
                 "VI
                                          5.1561284,2
                                        Equations to be satisfied.
                                                                                                                         Factor
                                                                                                                   .00,
                                                                                                                           \lambda_{l}
                             + x<sub>17</sub>
                 x_{15}
                                                                                                                   .00,
                             + x<sub>19</sub>
                                                                                                                   .00,
                 \mathbf{x}_{18}
                                X<sub>25</sub>
                                                                                                                   .00,
                 X19
                                    X26
                                                                                                                   .04,
                                                                                                                           \lambda_6
                                    X30
                                                                                                                   .06,
                 X27
                                                                                                                           λ<sub>7</sub>
                                                                                                                   · I 2,
                 x_{15}
                                                                                                                   ٠10,
                                                - 26 x_{17} + 13 (x_{18} + x_{19}) -
                                  3 x<sub>10</sub>
21 x_{14} - 13 (x_{18} + x_{19}) +
                                   (x_{20} + x_{21}) - 21 x_{30}
52 x<sub>6</sub> - 39 x<sub>19</sub>
                            +
                                   (x_{20} + x_{21}) - 21 x_{80}
                                                                                                                  7.6,
18 x<sub>25</sub> -
                (x_{20} + x_{21}) + 13 x_{21}
                                                - 30 x<sub>27</sub>
```

# Figure 13—(Continued).

				E	quatio	ns bet	ween 1	he Fa	ctors				
No. of	Value of						(	Co-effi	cients	of			
е	е	λ	$\lambda_2$	λ ₈	λ,	$\lambda_{\delta}$	λ	λη	λ ₈	λ	λ ₁₀	λ11	λ ₁₉
1	•00	+3		•••	•••	•••		+ 1	•••	+ 11			•••
2	•00		+3		•••		•••	+ 1	•••	- 29	•••	•••	•••
3	•00			+4	•••	+ 2	•••	+1	+ 1	+ 20	- 5	- 39	•••
4	•00	į			+4	•••	+ 2	•••	+1	•••	- 19	- 19	+ 29
5	+ •04	1				+3	•••	•••	+ 1	+ 7	- 13	+ 13	•••
6	+ .06	İ					+3			•••	<del>-</del> 20	_ 20	<b>—</b> 18
7	- '12							+3	•••	•••	+ 21	•••	•••
8	10		•						+2	- 6	•••	•••	+ 18
9	+19.1					*				+ 1732	<b>-</b> 338	- 507	•••
10	+ 8.4										+1222	+ 950	+ 11
11	+ 7.6	İ										+4668	+ 11
12	<b>-</b> ·6												+ 1369
	Values of th	e Fact	ors						Ad	lopted Er	rors		
$\lambda_1 =$	+ .018	λ ₇ =	:	•269		x4 +	- "-4	3	3	x ₁₆ — ".	28	x ₉₅ +	<b>"</b> ·04
λ ₂ =	+ .279	λ ₈ =	: <b>-</b>	.045	1	x ₆ -	- 1	ī	7	x ₁₇ - ·	22	x ₉₆ —	14
λ ₈ =	<b></b> 056	λ, =	- +	.020		x ₉ -	20	)	3	t ₁₈ — ·	10	x ₂₇ +	.11
λ, =	+ .023	$\lambda_{10} =$	- +	.031		x ₁₀ +	- • 2	3	2	r ¹⁹ +	07	<b>x</b> ₃₀ —	. 21
λ _δ =	+ .114	λ ₁₁ =	-	.001	1	X ₁₄ +	- •1	7.	3	c ⁸⁰ +	01		
λ ₆ =	+ .121	λ ₁₉ =	<b>+</b>	.001	1	<b>x</b> ₁₅ -	0	I	3	k ³¹ + ·	16		

Figure 14.

					gles 601 and 6 s (from page 4		-	•	
V to VII "	VII X	Log f	eet		60,2 } 4,4 }		18	Contained Angle. 109° 19'	5" · 59  Factor
x ₁₆ x ₁₃ x ₁₆ 20 x ₁₈	+	x ₁₇ x ₁₄ x ₁₃ 2 x ₁₇	+	<b>x</b> ₁₈	  - 4 x ₁₄	=	e ₂ e ₃	= '00, = '00, = + 1.12, = +30.6,	ኢ ₁ ኢ ₃ ኢ ₄

Figure 14—(Continued).

	Equa	tions bet	ween the	Factors			
No. of	Value of		Co-effic	cients of		Values of the Factors	Adopted Errors
e 	e	λ	λ	λ ₃	λ ₄		
1	.00	+3	•••	+ 1	+ 22	$\lambda_1 = - \cdot 873$	T - 1".40 T - 1".60
2	.00		+3	+ 1	+ 30	$y^3 = -1.008$	$x_{18} = + ".49  x_{16} = + ".63$
8	+ 1.12		*	+ 2	•••	$y^3 = +1.200$	$x_{14} = -1.20  x_{17} =77$
4	+30.6				+ 1576	$\lambda_4 = + \cdot 051$	$x_{15} = + .71  x_{18} = + .14$

#### Chendwar Meridional Series.—Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
15	603	15 13 14	B‡ XLIV	0 / " 44 9 18 204 67 13 39 399 68 37 2 397	958	5.1184962,5	17	606	18 16 17	Q V VIII	61 48 8 45 58 34 55 52 59 36 56 03	.81	5.0471679,9 5.0331794,7 5.0378681,3
,,	604	12 10 11	II I IV	64 10 32 776 52 58 2 686 62 51 24 538	.627	4.9495631,5	,,	607	15 13 14	VIII VII X	49 46 55 89 65 28 7 16 64 44 56 95	.76	5.0496985,0
16	605	5 6+7 8	III IV V	27 42 46 · 67 125 0 23 · 88 27 16 49 · 45	. 61	4.9896041,0 5.2354409,0 4.9833046,7							

[‡] B is the serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

Figure 15.

Figure 16.

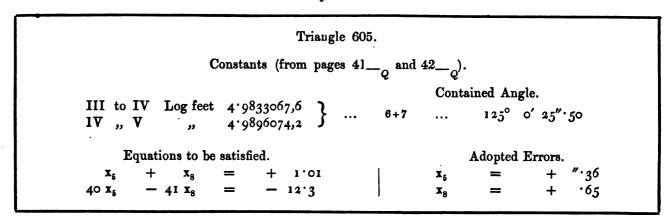



Figure 17.

#### Triangles 606 and 607.

# Constants (from page $42_{-Q}$ ).

Contained Angle.

11 X₁₈

	J	Equation	ons to t	e satisfied.					Facto:
+	<b>x</b> ₁₇	+	<b>x</b> ₁₈	•••	=	$\mathbf{e_1}$	=	.00,	$\lambda_1$
+	X ₁₄	+	X ₁₅	•••	=	eg	=	٠٥٥,	$\lambda_{g}$
+	<b>x</b> 18		•••	•••	=	e _s	=	+ '55,	$\lambda_8$
<b>—</b> :	13 X ₁₇	+-1	18 x ₁₅	- 10 X ₁₄	=	e ₄	=	<b>-31.1</b>	$\lambda_4$

	Equa	tions be	tween the	Factors			
No. of	Value of		Co-effi	cients of		Values of the Factors	Adopted Errors
е	е	λ	λ	$\lambda_3$	λ,		
1	•00	+3	•••	+ 1	- 2	$\lambda_1 = - \cdot 145$	1".01 1".00
2	•00		+3	+1	+ 8	$y^3 = + .005$	$x_{18} = +" \cdot 35$ $x_{16} = +" \cdot 20$
3	+ .55		*	+2	•••	$\lambda_3 = + \cdot 347$	$x_{16} = + .45$ $x_{17} = + .43$ $x_{16} =63$
4	-31.1				+714	$\lambda_4 = - \cdot 044$	$x_{16} = -1.780$ $x_{18} = -1.780$

# North Malúncha Meridional Series.—Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
18	608	5 4 6	S I III	68 15 0.40 41 253.14 70 42 6.46	. 90	5°1184047,3 4°9678396,5 5°1253628,8	19	612	18 16 17	S VIII	43 26 42.55	1.03	5.1255744,9 5.0080899,2 5.1494812,7
"	609	8 7 9	III I VI	81 16 44 50 52 40 30 45 46 2 45 05	1.48	5.1616173,2		613	15 13 14	X VII XI	53 55 1.72	.93	5.0382104,9 5.0498209,3 5.1255744,9
,,	610	11 10 12	VI I V	56 20 21 · 51 47 20 16 · 53 76 19 21 · 96	1.61	5.1350801,6	20	614	18 16 17	XI XIII <i>XIV</i>	43 53 57 21 59 23 55 03 76 42 7 76	'39	4·8077466,9 4·9016346,7 4·9549644,1
19	611	21 19 20	IV VII VIII	50 1 10.50 35 30 51.88 94 27 57.62	1.18	5.0292099,1	,,	615	15 13 14	XIV XIII . XVI	51 51 48 ° 01 71 42 30 ° 24 56 25 41 ° 75	.29	4·7827213,3 4·8644824,8 4·8077466,9

Figure 18.

					Triangles	608 to 61	.0.				
					Constants from	a (page 3	7_ _s ).				
					•			Co	ntain	ed Angle.	
1	LXIV		I V	Log feet	5·1253642,4 5·1888798,9	}	4+7+	- 10	•••	141° 3′ 4	3″•96
					Equations to	be satisfie	ed.				Factor
X4	+	X ₅	+	x ₆	•••	•••	=	eı	=	•00,	$\lambda_1$
$\mathbf{x}_7$	+	X8	+	X ₉	•••	•••	=	eg	=	.00,	$\lambda_{\mathbf{g}}$
<b>x</b> ₁₀				<b>x</b> 19		•••	=	$\mathbf{e_{s}}$	=	.00,	$\lambda_{g}$ $\lambda_{g}$ $\lambda_{4}$
X4				<b>x</b> ₁₀		•••	=	e ₄	=	+ '15,	$\lambda_4$
8 x s	_	8 x ₆	+	3 x ₈ -2	20 x ₉ + 14 x ₁₁	- 5 x		e _s	=	-24.2,	$\lambda_{5}$

^{\$} B is the serial letter for the West Calcutta Longitudinal Series which appertains to the South-East Quadrilateral.

Figure 18—(Continued).

	Ęqua	tions b	etween	the Fa	ctors			
No. of	Value of		Co	-efficie	nts of		Values of the Factors	Adopted Errors
е	е	λ	λ	λ	λ4	$\lambda_{5}$		
1	•00	+3	•••	•••	+ 1	0	$\lambda_1 = - \cdot 042$	$x_4 = +".08   x_9 = +".51$
2	•00		+3	•••	+ 1	- 17	$\lambda_2 = - \cdot 262$	$x^2 =32$ $x^{10} = +.50$
3	•00			+3	+ 1	+ 9	$\lambda_8 = + \cdot 074$	$x_6 = + \cdot 27$ $x_{11} = - \cdot 47$
4	+ .12		*		+3	•••	$\lambda_4 = + \cdot 127$	$x_7 = - \cdot 13$ $x_{13} = + \cdot 27$
5	-24.3					+758	$\lambda_6 = - \cdot 039$	$x_8 = - \cdot 38$

Figure 19.

						Tr	iangles 61	1 to 613.				
		•				Consta	nts (from	page 38)	•			
	-				<b>-</b> .		•	-	(	Containe	l Angle.	
			VII XI		Log feet	5·03	37872,0 7 82180,5 J	19+16	+18	1	32° 52′ 3	9″·69
					Equ	ations 1	to be satis	fied.				Factor
	<b>x</b> ₁₉ <b>x</b> ₁₆	+	<b>x</b> ₁₇	+	x ₉₁ x ₁₈	•••	•••	•••	=	e ₁ = e ₂ =	•00	•
	X ₁₈ X ₁₉				X ₁₅	•••	···	•••	=	e ₈ = e ₄ =	- ·4	ο, λ ₃ Ι, λ ₄
	18 x ₂₁							- 6 x ₁₄		_	-25.1	_
	E	qua	tions be	etwe	en the Fa	ctors						
No. of	Value	of			Co-efficie	nts of		Values of Factors			Adopted	Errors
е	е		λ	λ	λ ₈	λ4	$\lambda_{g}$					· · · · · · · · · · · · · · · · · · ·
1		00	+3	•••	•••	+ 1	+ 20	$\lambda_1 = +$				$\mathbf{x}_{18} = -\text{"}\cdot 27$
2		20		+3	3 [.]	+ 1	+ 4	$\lambda_3 = +$	235	x ₁₄ = -	+ •65	$x^{10} = + .01$
3		00			+3	+ 1	+ 11					x ⁸⁰ = + .40
4		41		*		+3	•••	$\lambda_4 = -$	501	x ₁₆ = -	- •27	$\mathbf{x}_{91} = - \cdot 4\mathbf{I}$
5	-25						+789	$\lambda_{5} = -$	051	x ₁₇ = -	+ •54	

#### Figure 20.

				Tr	iangles 614	and 615.	
			C	onstants (	from pages	38_s and 39_s	).
	XI to	XIII	Log	feet 4.9	9549729,2 7827317,8	} 16+18	Contained Angle 131° 6′ 26″ 41
				Equations	to be satis	fied.	Factor
	x ₁₆ x ₁₃ x ₁₆ 22 x ₁₈	+	$\mathbf{x}_{13}$	+ x ₁₈	•••	$= e_{9}$ $= e_{8}$	= '00, $\lambda_1$ = '00, $\lambda_2$ = - '46, $\lambda_3$ = -19'4, $\lambda_4$
	Equa	tions bet	ween the	Factors			
No. of	Value of		Co-eff	icients of	,	Values of the Factors	Adopted Errors
е	е	λ	λ	λ3	λ4		
1	.00	+3	•••	+ 1	+ 17	$\lambda_1 = + \cdot 310$	$x_{18} = -"\cdot 29  x_{16} = -"\cdot 17$
2 3	46		+3 *	+1	+ 4	$\lambda_2 = + .196$	$x_{14} = + .54 x_{17} = + .44$
4	-19.4			Т4	 + 967	$\lambda_4 = - \cdot 026$	$x_{18} = -"\cdot 29  x_{16} = -"\cdot 17$ $x_{14} = + \cdot 54  x_{17} = + \cdot 44$ $x_{16} = - \cdot 25  x_{18} = - \cdot 27$

#### East Calcutta Longitudinal Series.—Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
21	632	18- 16 17	T I U I III	59 29 50 356 57 59 11 837 62 30 57 807	231	4.7561696,8	22	634	12 10 11	XXIII XIX XXI	68 18 53 171 57 56 55 781 54 44 11 048	.212	4.7409924,5
,,	633	15 13 14	I	66 30 40 970 56 7 8 257 57 22 10 773	.239	4.7569038,8							-

Figure 21.

•				T	riangles	632 s	ınd 633.		
				Cons	tants (fro	om p	age 56 <u> </u>		
	I‡ to I "	I V	Log fee	et 4.775 4.800	8084,5 1621,6	}	16+18	Contained Angle 114° 6′	e. 20″·651
				Equation	s to be s	atisfi	ed.		Factor
	<b>x</b> ₁₈	+ + + -	x ₁₇ x ₁₄ x ₁₈ II x ₁₇	+ x ₁₈ + x ₁₅  + 9 x ₁₅		  13 <b>x</b> ₁ ,	$= e_1$ $= e_3$ $= e_4$	= ·ooo, = ·ooo, = - ·o87, = -5·o,	$egin{array}{c} \lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4 \end{array}$
	Equa	•	etween the			<u> </u>			
No. of	Value of		Co-effi	cients of			Values of the Factors	Adopte	ed Errors
e 	е	λ	λ	$\lambda_3$	λ ₄				
1	•000	+3	•••	+1	+ 1		$\lambda_1 = + \cdot \circ 23$		ų
2	.000		+3	+ 1	- 4	:	$\lambda_3 = + \cdot 006$		$x_{16} = -".035$
3	087		*	+2	•••		$\lambda_3 = - \cdot 058$		$x_{17} = + \cdot 129$
4	-5.0	,			+515	:	$y^* =010$	$ x^{12} =080$	$x_{18} =094$

Figure 22.

		Trian	gle (	634.					
		Constants (fro	m p	age 58_	_ _U ).				
XIX to XXI XIX "XXIII	Log feet	4·7193211,5 4·7809446,5	}	•••	10	Cont	tained Ar	ngle. 5′56″•444	
Equation	s to be sat	isfied.				A	dopted E	rrors.	
8 x ₁₁ + - 15	x ₁₉ = 5 x ₁₁ =	+ '451 - 2'3				x ₁₁ x ₁₂	<del></del>	+ ".252	

‡ Of the Calcutta Meridional Series.

#### Assam Longitudinal Series.—Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
23	621	18 16 17	X I III	0 / " 41 35 28 451 65 25 0 220 72 59 31 329	. 261	4.8376219,2	28	655	15 13 14	X XXVII XXVIII XXIX	39 11 43 799 76 28 56 750 64 19 19 451	.328	4.9253349,8
,,	622	15 13 14	III I V	54 45 45 995 77 2 20 913 48 11 53 092	. 213	4.8173038,7	,,	656	12 10 11	XXIX XXVIII XXXI	59 24 50 254 66 33 9 598 54 2 0 148	231	4.7926607,0
,,	623	10 12 11	V	63 939.868 57 57 35.854 58 52 44.278	-2 I I	4.7363290,5	29	657	15 13 14	XXXI XXXII XXXIII	74 2 52 745 47 20 8 313 58 36 58 942	353	4.8016964,1
,,	624	30 28 29	. IV VIII	55 21 56.519 57 55 8.186 66 42 55.295	197	4.7235311,6	,,	658	12 10 11	XXXIII XXXII XXXV	51 46 30 085 61 18 41 505 66 54 48 410	405	4.8975289,7
24	625	18 16 17	VIII IX XI	48 21 13 288 63 1 16 528 68 37 30 184	. 201	4.7570842,0	30	659	$ \begin{array}{c c} 4 \\ 2+3 \\ 1 \end{array} $	XXXV XXXIV XXXVI	41 37 1.758 89 28 59.605 48 53 58.637	475	5'0402482,1
,,	626	15 13 14	IX XIII	59 18 11 · 822 67 33 20 · 481 53 8 27 · 697	. 180	4.7432314,8	31	660	5 4 6	XXXVI XXXVIII XXXIX	45 17 3.052 89 41 59.028 45 0 57.920	332	4.9612306,4
25	627	18 16 17	XIV	60 1 28.499 54 20 32.899 65 37 58.602	.190	4.7078539,1		661	7 8 9	XXXVIII XXXIX XLI	65 55 45 944 58 45 45 752 55 18 28 304	.316	4.8298556,7
,,	628	15 13 14	XVI XIV XVIII	56 2 20.911 64 50 44.976 59 6 54.113	205	4.7588008,0		662	17 16 18	XXXIX XLI XLII	34 12 38 · 268 78 47 38 · 076 66 59 43 · 656	. 246	4.8859960,7
26	629	18 16 17	XVIII XIX XXI	48 52 19 928 64 32 39 077 66 35 0 995	. 236	4.7959608,6	32	663	$   \begin{array}{c c}     3 \\     4 + 5 \\     6   \end{array} $	XLII XLIII XLV	40 26 39 130 74 42 18 486 64 51 2 384	417	4.9692812,1
,,	630	15 13 14	XXI XIX XXIII	69 13 28 995 72 58 37 168 37 47 53 837	.313	4'9104139,1	,,	664	6+7 5 8	XLV XLIII XLIV	92 22 48 053 43 53 8 086 43 44 3 861	.310	4.7981857,0
27	631	15 13 14	XXIII XXIV XXIII	68 53 34 334 67 3 35 189 44 2 50 477	.368	4.0108301,3							

Figure 23.

	•			,	<b>Triangles</b>	621 to	624.	•	
			Con	stants (	from pag	es 66_	_x and 67x)	•	
		•					Co	ontained Angles.	
	CXXIV I	to I	Log feet	4.85	94604,6	}	. 16+13+10	205° 37′	1".604
	IV	" VIII	. ,,	4.71	07796,2	}	. 11+28	205° 37′ 116 47	52 .841
			E	quation	s to be sa	tisfied.	•		Factor
	x ₁₆ +	x ₁₇ -	- x ₁₈	•••	•••	•••	= e ₁	=000,	
			- x ₁₅					= .000,	_
			- x ₁₂				$= e_8$	• • • • • • • • • • • • • • • • • • • •	λ
İ			- x ₃₀				= e ₄	. = .000,	$\lambda_4$
	x ₁₆ +	x ₁₃ -	- x ₁₀	•••	•••	•••	= e ₅	; = + .082	$\lambda_{s}$
l								= + .031,	
1								$_{7} = + 10.1,$	
	11 x ₁₀ —	13 x ₁₂ +	-14 x ₃₀ —	9 x ₂₉	•••	•••	. = e ₈	$_{3} = + 23.5,$	$\lambda_8$
	E	quations b	etween the	Factor	*8				
No. of	Value of		Co-eff	ficients	of		Values of the Factors	Adopt	ed Errors
е	е	$\lambda_1$ $\lambda_2$	$\lambda_3$ $\lambda_4$	$\lambda_{\delta}$ $\lambda_{\delta}$	λη	$\lambda_8$			
1	.000	+3	+	٠ r+	+ 17	•	$\lambda_1 = - \cdot \circ i \circ$	0	
2	.000	+3	+	٠ تا	- 4	•••	$\lambda_2 = + \cdot 086$	$\int x_{10} = + ".410$	$x_{16} = -".212$
3	•000		+3 +	+1	. •	<b>–</b> 2	$\lambda_8 = + \cdot \circ_{53}$	$ x_{11}  = + \cdot 020$	$x_{17} =105$
4	.000		+3 .	+1	•••	+ 5	$\lambda_4 = - \cdot 133$	$ x_{19}  =430$	$x_{18} = + .317$
5	+ .082		4	3	•••	+ 11	$\lambda_{\delta} = - \cdot 202$	$x_{18} = -116$	x ⁵⁸ = + .011
6	+ .031		*	+ 2	- 13	•••	$\lambda_6 = + \cdot 144$	$x_{14} =173$	$\mathbf{x}_{29} =588$
7	+10.1				+ 1549	<b>–</b> 169	$\lambda_7 = + \cdot 012$	$x_{15} = + 289$	$\mathbf{x}_{so} = + .577$
8	+23.2					+ 567	$\lambda_8 = + \cdot 051$	1	

#### Figure 24.

				7	Triangles 625	and 626.		
				Cons	stants (from	page 67 <u> </u>		
	VIII t	to IX "XIII			7761622,6 7118692,5 }	16+13	ontained Angle.	37" · 210 Factor
	x ₁₆ x ₁₃ x ₁₆ 19 x ₁₈	+ x + x - 9x	17 + 14 +	x ₁₈ x ₁₅		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·000, ·000, + ·180, + 18·6,	
No of	Equa Value of			e Factors efficients o	of	Values of the	Adopte	d Errors
е	e	$\lambda_1$	λ	λ ₈	λ ₄	Factors	_	
1	•000	+3	•••	+1	+ 10	$\lambda_1 = - \cdot 141$	$x_{18} = +" \cdot 143$	$x_{16} = +$ *·037
2 3	+ .180		+3 *	+1+2	- 3 	$\lambda_1 = - \cdot 141$ $\lambda_2 = - \cdot 035$ $\lambda_3 = + \cdot 178$ $\lambda_4 = + \cdot 025$	$x_{14} =399$	$x_{17} = -359$
4	+18.6				+811	$\lambda_4 = + \cdot 025$	$x_{15} = + .256$	$x_{18} = + \cdot 322$

Figure 25.

				Tria	ngles 627 and 62	28.				
			Consta	nts (fr	om pages 67	and 6	8	_K ).	-	
XIII to	XIV	Lo	g feet	4.757	(4916,4 (8339,4 }	16	+ 13		ontained Angle	
,,	22.12				ne satisfied.					Factor
			_				_			•
<b>x</b> ₁₆	+	<b>x</b> ₁₇	+	$\mathbf{x}_{18}$	• • •	=	$\mathbf{e_{i}}$	=	.000,	<b>^</b> 1
x ₁₆ x ₁₈	+	x ₁₇ x ₁₄	+	x ₁₈ x ₁₅	•••	=	e _l e _g	=	.000,	$\lambda_1 \\ \lambda_2$
	+	X ₁₄	+	<b>x</b> ₁₅	  - 12 x ₁₄	=	e ₁ e ₂ e ₃	= = =	· 000, + · 056,	λ ₁ λ ₃ λ ₃

# Figure 25—(Continued).

	Equa	tions be	tween the	Factors	· · · · · ·		
No. of	Value of		Co-eff	icients of		Values of the Factors	Adopted Errors
е	е	$\lambda_1$	λ	$\lambda_8$	λ,		
1	.000	+3	•••	+ 1	<b>†</b> 4	$\lambda_1 = - \cdot 046$	
2	.000		+3	+1	+ 2	$\lambda_2 = - \cdot \circ 34$	$x_{13} = +" \cdot 034  x_{16} = +" \cdot 022$
8	+ .056	,	*	+ 2		$\lambda_8 = + .068$	$x_{14} = - \cdot 243  x_{17} = - \cdot 204$
4	+10.0			•	+590	$\lambda_4 = + \cdot 017$	$x^{12} = + .500$ $x^{18} = + .185$

# Figure 26.

			,			
				Triangles 62	9 and 630.	
			C	Constants (from	page 68).	
	XVIII XIX	to XIX	Log feet	4·8029730,0 4·9006589,1	C 16+18	ontained Angle 137° 31' 16"'.665
		-	Equation	ons to be satisfic	ed.	Factor
	x ₁₆ x ₁₈ x ₁₆ 18 x ₁₈	$ \begin{array}{ccccc} + & x_{17} \\ + & x_{14} \\ + & x_{18} \\ - & 9 & x_{17} \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 - 27 x ₁₄	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\lambda_{1}$ $000,  \lambda_{1}$ $\lambda_{2}$ $\lambda_{3}$ $\lambda_{4}$
	Equa	tions betwe	en the Fact	ors		
No. of	Value of		Co-efficient	s of	Values of the Factors	Adopted Errors
е	е	$\lambda_1$	$\lambda_2$ $\lambda_8$	$\lambda_4$	2	
1 2	•000	_		+ 9	$\lambda_1 = - \cdot 054$ $\lambda_2 = + \cdot 041$	$x_{18} = +" \cdot 112  x_{16} = +" \cdot 017$
8 4	+ 11.0		* +2		$\lambda_3 = + \cdot 071$ $\lambda_4 = + \cdot 010$	$x_{14} = - \cdot 236$ $x_{17} = - \cdot 146$ $x_{15} = + \cdot 124$ $x_{18} = + \cdot 129$

#### Figure 27.

Figure 28.

					Triangles 65	5 and 656.		
				Con	stants (from	page 69		
	XXVII XXVIII		III I	Log feet	4·8923854 4·7650326	24 } 184	Contained Ang	le. 7″·016
				Equation	ons to be sati	sfied.		Factor.
	x ₁₀ x ₁₃ 26 x ₁₅	+ + + - 10	x ₁₁ - x ₁₀ x ₁₄ -		  - 15 x	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·000, ·000, — ·109, +1·1,	λ ₁ λ ₃ λ ₃ λ ₄
No. of	Value of			icients o		Values of the Factors	Adopte	l Errors
е	е	$\lambda_1$	λ	$\lambda_3$	$\lambda_4$			
1	•000	+3		+1	+ 16	$\lambda_1 = + \cdot 023$	$\mathbf{x}_{10} = -".\circ52$	$x_{18} = -$ "·057
8	100		+3 *	+ I + 2	<b>-</b> 2	$\lambda_3 = + \cdot 027$ $\lambda_3 = - \cdot 079$	$x^{11} = + .010$	$x_{14} = + \cdot 017$ $x_{15} = + \cdot 040$
4	+1.1				+1170	$y^4 = + .001$	A19 — + 030	-15 - 7 040

Figure 29.

#### Triangles 657 and 658. Constants (from page 69___). Contained Angle. XXXI to XXXII Log feet 4.8665228,7 XXXII , XXXV , 4.8496111,7 } ... 18+10 ... 108° 38′ 50″ · 647 Equations to be satisfied. Factor Equations between the Factors Values of the Co-efficients of Adopted Errors No. of Value of **Factors** $\lambda_{\mathbf{g}}$ $\lambda_3$ $\lambda_1$ $\lambda_4$ 1 $\lambda_1 = + \cdot 009$ .000 $\lambda_2 = + \cdot 028$ .000 +3 + 1 3 .071 +2 -2.0 +575 $\lambda_4 = - \cdot 004$

Figure 30.

#### Figure 31.

					ı	Triangles 66	0 to 66	<b>52.</b>				
						tants (from			١.			
					<del>-</del>	\	r-0- ·	~ <del>_</del> x	,,	-		_
	XXXVI	+o 3	Z X X V I	r <b>tt t</b>	or foot	4.8108512	<b>~</b> )				tained Ang	
	XXXVII	נ. ז	XIII	LIL	ng reer	4.8208628	,3 }	•••			155° 37′	
	XLI	,, 2	KLII		"	4·8298638 4·6442840	,8 }	•••	9+1	6	134 6	6 .016
					Equatio	ons to be sati	sfied.					Factor
	X4	+	X,	+	x ₆	•••		=	e ₁	=	.000,	$\lambda_1$
	X ₇				x ₉				_	<u>-</u>	-	$\lambda_{3}$
	x ₁₆		_		<b>x</b> ₁₈ ′				-		•000,	-
	X4		x ₇			•••			•		. 113,	•
	- ,		-		••	•••					026,	=
						- 15 x ₉						
	10 X ₇										6.3,	λ,
			<u> </u>				· · · · · · · · · · · · · · · · · · ·					
	Equa	tions	betwee	n the	Factors							
No. of	Value of			Co-effi	cients of	1		ues of Factor	f the		Adopte	ed Errors
е	е	λ	λ, λ	<u>λ</u>	λ _δ	λ ₆ λ ₇						
1	•000	+3		. +1	•••	o	λ ₁ =	= -	•048			
2	•000		+3	. +1	+1 -	2 - 3	λ ₃ =	= -	•045	X4	= +".093	$x_9 = -"\cdot 003$
8	•000											$x_{16} = + \cdot 029$
4	+ .113			+ 2	•••	+ 10	λ ₄ =	= +	• 143	X ₆	= + .072	$x_{17} = - \cdot 175$
5	+ .026			*	+2 -	15	λ ₅ =	= -	•044	. X7	= + .030	$x_{18} = + \cdot 146$
6	-5.3				+ 1	1276 — 169	λ ₆ =	= -	•006	. x ₈	=017	
7	-6.3					+ 1311	λ ₇ =	= -	•008			

Figure 32.

	,			Triangles 66	3 and 664.	
			Consta	•	$70_{-x}$ and $71_{-x}$	).
	XLII t	o XLIII "XLIV	Log feet	4·9416973,7 4·9569482,9	C 4	ontained Angle. . 30° 49′ 10‴ 767
			+ x ₇ + (x ₆ -	<del></del>		Factor $= + \cdot 260, \qquad \lambda_1$ $= \cdot \cdot 000, \qquad \lambda_2$ $= + \cdot 3, \qquad \lambda_3$
No. of	Value of e	λ ₁	Co-efficien		Values of the Factors	Adopted Errors
1 2 3	+ .260	_	+2 +4 *	+ 16 - 30 +1191	$\lambda_1 = + \cdot 249$ $\lambda_2 = - \cdot 182$ $\lambda_3 = - \cdot 008$	$x_8 = +.021$ $x_7 =036$ $x_6 = +.112$ $x_8 =036$

# Eastern Frontier Series—Section 23° to 26°.—Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
33	694	5	M I X XIII	0 / " 51 6 30 097 74 50 58 391	177	4.7672901,8	33	691	20 19	v	81 28 58 526 46 5 2 255	· 22 I	4.7054065,6
		6	II	54 2 31 . 512	176	4.6908428,2			21	VII	25 52 59.519	. 221	4.7469359,7
"	693	8 7 9	II I IV	76 59 58 368 52 25 32 077 50 34 29 555	176	4.6849799,3	,,	690	22 23 24	V VIII	58 16 2.651 66 46 24.543 54 57 32.806	.366	4.8931886,4
,,	692	10 11 12	I IV V	60 12 49 190 52 6 2 539 67 41 8 271	206	4.7056018,0	,,	689	32 31 33	VII VIII IX	47 55 19 779 75 29 9 973 56 35 30 248	356	4'9239241,3

Eastern Frontier Series—Section 23° to 26°.—Sides and Angles of the Non-Circuit Triangles—(Continued).

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
34	688	5 4 6	W _{IX} XI XII	0 / " 104 56 40 515 41 38 32 701 33 24 46 784	270	4.8152060,6	36	676	15 13 14	W XXV XXX XXXI	0 / // 42 32 52 506 92 33 41 148 44 53 26 346	.362	4'9909868,1
"	687	8 7 9	XII XI XIV	48 3 12 920 68 40 41 269 63 16 5 811	552	4·8983083,1 4·9960767,8	,,	675	12 10 11	XXXI XXX XXXIII	63 9 27 522 56 42 26 878 60 8 5 600	299	4·8338686,3 4·8055242,9
35	680	5 4 6	XIV XVI XVII	56 27 14 871 39 28 56 703 84 3 48 426	240	4.6925894,6	37	674	5 6+7 8	XXXIII XXXV XXXIV	44 I 15.081 102 56 16.740 33 2 28.179	.307	5.0000387,0
,,	679	8 7 9	XVII XVI XIX	42 16 38 820 63 26 38 490 74 16 42 690	206	4.7782547,9	38	673	5 4 6	XXXIV XXXVI XXXVII	36 48 48 065 42 44 9 231 100 27 2 704	172	4.7003886,6
,,	678	23 22 24	XIX XXI XXII	56 59 16 · 873 62 38 32 · 415 60 22 10 · 712	.330	4.8531533,4	,,	672	8 7 9	XXXVII XXXVI XXXVIII	60 12 1.739 87 59 47.434 31 48 10.827	255	4.9242647,4
,,	677	26 25 27	XXII XXI XXIV	82 28 21.723 52 16 14.844 45 15 23.433	395	4.8749042,4	39	671	5 4 6	XXXVIII XL XLI	40 32 42 550 88 42 33 317 50 44 44 133	204	4.8544405,6
,,	682	53 54 52	XVIII XX XXVI	41 53 31 · 320 77 11 18 · 850 60 55 9 · 830	237	4.8500123.2	22	670	8 7 9	XLI XL XLIII	83 8 13 010 54 17 35 549 42 34 11 441	. 203	4.7467988,9
,,	681	37 38 39	XXVI XX XXIII	84 48 21 · 852 60 20 51 · 466 34 50 46 · 682	. 281	4.8676796,7	,,	669	10 11 12	XL XLIII XLIV	41 34 23 857 64 37 1 650 73 48 34 493	. 229	4.8075974,2
"	686	51 49 50	XVIII XXVI XXVII	81 20 3 071 47 38 5 475 51 1 51 454	371	4.8278851,0	,,	668	20 19 21	XLIII XLIV XLV	52 32 7.460 85 46 16.980 41 41 35.560	. 209	4 8494803,5
,,	685	48 46 47	XXVII XXVI XXIX	65 17 18 365 47 48 48 774 66 53 52 861	. 467	4.8604329,3	40	667	$\begin{vmatrix} 2 \\ 1+8 \\ 7 \end{vmatrix}$	XLVIII XLVII	27 47 52 175 107 55 15 628 44 16 52 197	273	5.0024196,7
"	684	45 43 44	XXIX XXVI XXVIII	47 41 42 574 44 49 42 105 87 28 35 321	.325	4.7975261,8	41	666	5 8 6+7	XLVIII XLIX L	52 6 15.939 58 12 20.654 69 41 23.407	.387	4.8751922,6
,,	683	42 40 41	XXVIII XXVI XXIII	57 18 32 303 73 59 49 915 48 41 37 782	. 368	4'9254118,1	,,	665	7 1+8 2	L XLIX XLVII	36 50 0.999 93 11 19.114 49 58 39.887	.300	4'9581653,0

Figure 33.

				7	Crian	gles 69	94 to	689.					
		C	onsta	nts (f	rom	pages	81	w and	82_	- _W ).			
										Conta	ined Ang	les.	
	XLII to I	Log fee		.6908		(	•••	4+7+	10	•••	187°	29′ 20″.	201
	I ,, V	,,		. 7056		>	•••	<b>12</b> + 19 +	- 2 <b>2</b>	•••	172	2 13 .	872
	V " VII VIII " IX			·8931 ·8085		· · ·	•••	<b>24</b> + 3	1	•••	130	26 43 ·	678
•	VIII " IX	,	4	0003,	239,0						•		
			Equ	uation	s to I	be sati	sfied.			•			Factor
x	K4 .+ X6	+ x ₆	3			•••		•••		=		.000	•
	$\mathbf{x}_7 + \mathbf{x}_8$	+ x ₉		•••		•••	-	•••		= (		.000,	-
	$x_{10} + x_{11}$	+ x ₁		•••		•••		•••			e ₃ =	.000,	U
	x ₁₉ + x ₉₀	+ x ₂	_	•••		•••		•••			e, =	.000,	-
	x ₂₂ + x ₂₃	+ I ₂	_	•••		•••		•••			e ₅ =	.000,	•
	$\mathbf{x}_{31} + \mathbf{x}_{32}$ $\mathbf{x}_4 + \mathbf{x}_7$	_	-	•••		•••		•••			$e_6 = e_7 = +$	·000,	•
	$\mathbf{x_4} + \mathbf{x_7}$ $\mathbf{x_{12}} + \mathbf{x_{19}}$	$+ x_1 + x_2$		•••		•••		•••			$e_8 = +$		•
	$x_{24} + x_{31}$		138	•••		•••		•••			e ₉ = -	178,	_
17 1		+ 4 x ₈	, <b>-</b>	-18 x	<b>a</b>	+ 16 x	11	- 8 x	10		$e_{10} = -$		$\lambda_{10}$
12 x		+ 3 x ₂		–16 x,		+ 9 x		-14 x			$e_{11}^{10} = -$		$\lambda_{11}^{10}$
13 x		+19 x ₈		– 14 <b>x</b> {	_			•••			$e_{19} = -$		λ ₁₈
		J J		Equa	tions	betwee	en th	e Facto	ors				
No. of	Value of									 f			
е	e	$\lambda_1$	λ	λ	λ4	λ _δ	λ	λ	λ ₈	λ ₉	λ ₁₀	λ ₁₁	λ ₁₃
1	.000	+3		•••	•••	•••	•••	+1	•••	•••	+ 2	•••	•••
2	•000	-	+3		•••	•••	•••	+1		•••	<b>–</b> 14	•••	•••
3	· <b>o</b> oo		_	+3	•••	•••	•••	+1	+1	•••	+ 8	- 4	•••
4.	.000			•	+3	•••	•••	•••	+1	•••	•••	<b>–</b> 13	•••
5	• • • • • • • • • • • • • • • • • • • •				• •	+3	•••	•••	+1	+ 1	•••	<b>-</b> 5	+ 4
6	.000					•	+3		•••	+1	•••		+ 5
7	+ .017		-					+3			•••	+ 12	
8	+ .098					*		•	+3	•••	- 8	•••	+ 13
9	- 178									+ 2	•••	- 14	•••
-	1 1										+1174		•••
10	<del>- 4</del> .7												
	- 4·7 - 10·4											+942	<b>–</b> 81.

Figure 33—(Continued).

Values of the Factors	Adopted Errors
	$x_4 = +" \cdot 161$ $x_{10} = -" \cdot 259$ $x_{23} = -" \cdot 056$ $x_5 = - \cdot 217$ $x_{11} = + \cdot 134$ $x_{23} = + \cdot 017$ $x_6 = + \cdot 056$ $x_{13} = + \cdot 125$ $x_{24} = + \cdot 039$ $x_7 = + \cdot 115$ $x_{19} = + \cdot 029$ $x_{31} = - \cdot 217$ $x_8 = - \cdot 152$ $x_{20} = - \cdot 274$ $x_{32} = - \cdot 296$ $x_9 = + \cdot 037$ $x_{31} = + \cdot 245$ $x_{33} = + \cdot 513$

Figure 34.

				Tr	iangles 688	and 687.	
				Const	ants (from	page 82).	
	IX to XI "	XI XIV	Log feet	4°733 4°898	6184,1 3116,8		ontained Angle. . 110° 19′ 15″ 007
					s to be satis		Factor
	x ₄ x ₇ x ₄ - 6 x ₅	+ + - 3	x ₆ + x ₈ + x ₇ 2 x ₆ +	x ₆ x ₉ 	 - 10 x ₉	$= e_1$ $= e_3$ $= e_3$ $= e_4$	= $\cdot 000$ , $\lambda_1$ = $\cdot 000$ , $\lambda_2$ = $- \cdot 214$ , $\lambda_3$ = $-8 \cdot 5$ , $\lambda_4$
	Equa	tions bet	tween the l	Factors			
No. of	Value of		Co-effic	ients of		Values of the Factors	Adopted Errors
е	е	λ	λ	$\lambda_3$	$\lambda_4$		
1 2	•000	+3		+1	<b>-</b> 38 + 9	$\lambda_1 = - \cdot 058$ $\lambda_2 = + \cdot 058$	$x_4 = -" \cdot 165  x_7 = -" \cdot 049$ $x_5 = - \cdot 014  x_8 = - \cdot 083$
3	- '214		*	+2	•••	1 '% — 19/	$x_6 = + .170  x_9 = + .132$
4	-8.2				+1521	$\lambda_4 = - \cdot 007$	

Figure 35.

				Tr	iangles 68	0 and 679.		• .
				Consta	uts (from	page 83).		•
	XIV to XVI.,	XVI XIX	Log fo	eet 4·8869	9088,7	Con 4+7	tained Angle.	36"·226
	,			quations to				Factor
	x ₄ x ₇	+	X ₅ X ₈	$\begin{array}{ccc} + & x_6 \\ + & x_9 \end{array}$	•••	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= '000,	$\lambda_1$ $\lambda_2$
	14 X ₅		2 x ₆	+ 23 x ₈	<b>–</b> 5	$\begin{array}{ccc} & = & e_3 & = \\ \vdots & \vdots & \vdots & \vdots \\ & & & = & e_4 & = \end{array}$	= $-22.5$ ,	$\lambda_8$ $\lambda_4$
	Equa	tions be	etween th	e Factors				· · · · · · · · · · · · · · · · · · ·
No. of	Value of		Co-ef	ficients of		Values of the Factors	Adopt	ed Errors
e	e	$\lambda_1$	λ	$\lambda_8$	λ,			
1	.000	+3		+ 1	+ 12	$\lambda_1 = + \cdot 478$	,,,,,	
2	.000		+3	+ 1	+ 18	$\lambda_1 = + \cdot 478$ $\lambda_2 = + \cdot 580$ $\lambda_3 = - \cdot 818$	$x_4 = -".338$	$\mathbf{x}_7 = -"\cdot 240$
3	578		*	+ 2	•••	$\lambda_3 = - \cdot 818$	$\begin{array}{c} \lambda_5 = - \cdot 220 \\ \lambda_5 = + \cdot 564 \end{array}$	$x_8 =571$
4	-22.2				+754	$\lambda_4 = - \cdot 051$	1 <del>-6 - +</del> 504	. <del>д</del> 9 — т 1011

Figure 35—(Continued).

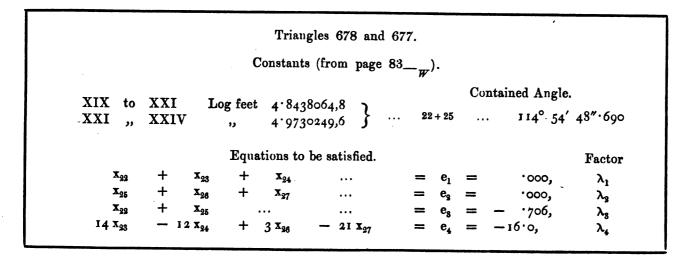



Figure 35—(Continued).

	Equa	tions be	tween the	Factors								
No. of	Value of		Co-effi	cients of		Values of the Factors	Adopted Errors					
е	e	$\lambda_1$	$\lambda_2$	λ ₃	λ,							
1	.000	+ 3		+ 1	+ 2	$\lambda_1 = + \cdot 163$	- "					
2	.000		+3	+ 1	<b>—</b> 18	$\lambda_3 = + .030$	$\mathbf{x}_{92} = -".280  \mathbf{x}_{95} = -".420$					
3	706		*	+ 2		$\lambda_8 = - \cdot 449$	$x_{23} = - \cdot 117  x_{26} = - \cdot 029$					
4	-16.0				+ 790	$\lambda_4 = - \cdot 020$	$x_{94} = + .403  x_{97} = + .449$					

Figure 35—(Continued).

			`		•	Triangles	686 to 681	•				
					Const	ants (fron	n page 83_	- _w ).				
							`				ed Angle.	
XVII XX	I to	XX XX	Ш	Log f	eet 4.8c 4.92	24459,5 68573,8	} 5	4+38		•	137° 32′ 10′	<b>'·3</b> 10
					Equation	s to be sa	tisfied.					Facto
X ₅₂	+	X 53	+	X 54	•••	•••		=	e ₁	=	.000,	$\lambda_1$
X49	+	X 50	+	<b>x</b> ₅₁	•••	•••	•••	=	e ₉	=	٠,000	$\lambda_{g}$
X ₄₆	+	X 47	+	X ₄₈	•••		• • •	=	e _s	=	.000,	λ ₈
X ₄₃	+	X44	+	X 46	• • •	•••	•••	=	<b>e</b> 4	=	.000,	$\lambda_4$
X ₄₀	+	X ₄₁	+	X48		• • •	•••	=	e _s	=	•000,	$\lambda_{\delta}$
<b>x</b> ₃₇	+	X ₃₈	+	X ₃₉		•••	•••	=	e ₆	=	.000,	$\lambda_6$
X 54	+	<b>x</b> 38						=	<b>e</b> ₇	=	+ '524,	$\lambda_7$
X 52	+	X ₄₉	+	X ₄₆	+ x ₄₃	+ x ₄₀	+ x ₃₇	=	e ₈	=	.000,	$\lambda_8$
24 X ₅₃	-11	X 52	+	<b>x</b> ₃₇	-30 x ₃₉			=	e ₉	= -	<b>–</b> 8·3,	$\lambda_9$
5 x ₅₄	— J I	X ₅₂	+	4 X ₅₁	— 18 x ₆₀	$+ 9 x_{48}$	- 9 x ₄₇	} =	e ₁₀	= .	<b>-</b> 9·2,	λ ₁₀
							— I 2 X ₃₈	_ ر	-10	-	<i>y</i> -,	10

# Figure 35—(Continued).

		-		Equ	ations be	tween th	e Facto	rs			
No. of	Value of			-		Co-e	ficients	of			
е	e	λ	λ	λ ₃	λ ₄	$\lambda_{g}$	λ ₆	λη	λ ₈	λ ₉	λ ₁₀
1	.000	+3		•••	•••		•••	+ 1	+ 1	+ 13	<b>–</b> 6
2	•000	. 3	+ 3			•••			+ 1		- 14
3	•000		. 3	+3	•••			•••	+ 1	•••	
4	.000	,		. 3	+ 3	•••		•••	+ 1	•••	+ 18
5	.000				J	+ 3		•••	+ 1		<b>–</b> 5
6	.000						+3	+ 1	+ 1	- 29	- 11
7	+ 524				*			+ 2			<b>–</b> 7
8	.000								+6	<b>–</b> 10	- 10
9	- 8.3									+ 1598	+ 122
10	- 9.2										+ 1712
	Values	of the F	'actors				A	.dopted	Errors		
λ ₁ : λ ₂ : λ ₃ : λ ₄ : λ ₅ :	= - '14 = - '04 = - '02 = + '01 = - '02	5 λ ₇ ο λ ₈ 2 λ ₉	= + = +	· 268 · 450 · 060 · 008 · 005	x ₄₁ =	: -"·22 : + ·24 : - ·02 : + ·03 : + ·07	7 3 5 3 1 3	x ₄₇ = +		$x_{50} = x_{51} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x_{53} = x$	-

### Figure 36.

				T	riangles 670	6 and 675.	
				Const	tants (from	page 81).	
	XXV t	o XXX , XXXI	Log fee	et 4·840 4·833	0819,2 8755,4 }	13+10	Contained Angle 149° 16′ 8″ 332
				Equations	s to be satis	sfied.	Factor
		+ + -	X ₁₄ X ₁₁ X ₁₀ 22 X ₁₄	+ x ₁₃ + x ₁₃ + 11 x ₁₃	   — 12	$ \begin{array}{rcl}  & = & e_1 \\  & = & e_2 \\  & = & e_3 \\  & = & e_4 \end{array} $	$= \begin{array}{ccc} & \cdot 000, & \lambda_1 \\ = & \cdot 000, & \lambda_2 \\ = & + \cdot 354, & \lambda_3 \\ = & -4 \cdot 7, & \lambda_4 \end{array}$
	Equa	tions bet	ween the	Factors	•		T.
No. of	Value of		Co-eff	icients of		Values of the Factors	Adopted Errors
е	е	$\lambda_{l}$	λ	λ ₃	λ,		
1	•000	+3	•••	+ 1	+ 1	$\lambda_1 = - \cdot 087$	
2	•000		+3	+1	— 1	$\lambda_3 =000$	$x_{10} = +" \cdot 170  x_{18} = +" \cdot 1$
3	+ .354		*	+ 2	•••	$\lambda_3 = + \cdot 266$	$x_{10} = +" \cdot 176  x_{18} = +" \cdot 1$ $x_{11} = - \cdot 046  x_{14} = - \cdot 0$ $x_{13} = - \cdot 130  x_{15} = - \cdot 1$
4	-4.7				+ 1278	$\lambda_4 = - \cdot 004$	120 NI - 1

Figure 37.

,	Triangle 6		_		
Co	onstants (from pa	ge 85 <u> </u>	- _W ).		
XXXIII to XXXV Log feet XXXV ,, XXXIV ,,	4·7478019,6 4·8531484,0 }	•••	Cont 6+7	tained A	ngle. 56′ 17″ [.] 315
Equations to be satisfie	ed.			Adopted :	Errors.
$x_5 + x_8 = 22 x_5 - 33 x_8 =$	+ .268		$\mathbf{x_5}$	=	+ "·097 + ·171
$22 x_5 - 33 x_8 =$	- 3.2	1	x ₈	=	+ .171

Figure 38.

					Triangles 673	and 672.				
					nstants (from p	age 85	₇ ).			
	XXXIV to XXXVI "	XXX		feet 4	;·8615048,5 ;·8629436,1	4	+7	Cor	ntained Angle.	″·584
	x ₇	+ 2 + 2 + 3	ι _δ + ι ₈ +	x ₆ x ₉	o be satisfied 34 x ₉	=	e ₁ e ₂ e ₃	=	·000, ·000, — ·492, — 11·2,	Factor $\lambda_1$ $\lambda_2$ $\lambda_3$
			tween the		T	<del></del>				λ4
No. of e	Value of e	λ ₁	Co-e	efficients $\lambda_3$	of $\lambda_4$	Values o Facto			Adopted	Errors
1 2 3 4	· 000 · 000 — · 492 — 11·2	+3			- 22 	$\lambda_1 = +$ $\lambda_2 = +$ $\lambda_3 = -$ $\lambda_4 = -$	·07	2 9	$x_4 = -" \cdot 176$ $x_5 = - \cdot 005$ $x_6 = + \cdot 181$	$x^8 = - \cdot 033$

Figure 39.

					Tria	ngles 671 t	to 668.							
				Const	ants (from	pages 85_	-w ^{an}	d 86_	- _w ).					
						_			Con	ntair	ed A	ngles.		
XXXV				g feet			•••	4+7-	+ 10		18	4° 34′	33".	757
$\mathbf{XL}$		" XL		,,	4.80760	63,5 }						_		
XLIV		,, XL	V	"	4.75034	58,6 }	•••	12+18	,	•••	15	9 34	52 3	30 <u>5</u>
				Εqι	nations to	be satisfied	l.							Facto
X4	+	X,	+	X ₆	•••				=	$\mathbf{e_{i}}$	=	•0	00,	$\lambda_1$
x ₇	+	X ₈	+	X ₉	•••	•••	•••		=	$\mathbf{e_{g}}$	=	.00	00,	$\lambda_{\mathbf{g}}$
<b>x</b> ₁₀	+	$\mathbf{x}_{11}$	+	X12	•••	•••			=	e _s	=	.00	00,	$\lambda_3$
<b>X</b> 19	+	<b>X</b> ₂₀	+	x ₂₁	• • •	•••	• • •		=	e,	=	•00	00,	$\lambda_{4}$
X4	+	x ₇	+	$\mathbf{x}_{10}$	•••	•••	• • •		=	e ₅	= -	- :39	98,	$\lambda_{5}$
<b>x</b> ₁₃	+	<b>x</b> ₁₉			•••	•••	•••		=	e ₆	= -	4	53,	$\lambda_{6}$
24 X ₅	<b>—</b> 1	7 ×6		3 x8	-23 x ₉	$+10x_{11}$	<b>–</b> 6	X ₁₈	=	e ₇	= -	+ •9,	,	$\lambda_7$
23 X ₁₀	<b>—</b> 1	$ox_{11}$	+1	б x ₉₀	-23 X ₂₁	•••			=	e _s	= -	- 2.4	,	λ

# REDUCTION OF THE NORTH-EAST QUADRILATERAL.

#### Final Figural Adjustments of the Non-Circuit Triangles.

#### Figure 39—(Continued).

	E	quati	ons	betw	een t	he F	actor	'8			
No. of	Value of				Co-	efficie	ents	of		Values of the Factors	Adopted Errors
е	e	$\lambda_1$	$\lambda_2$	λ	λ4	$\lambda_{5}$	$\lambda_6$	λη	λ ₈		
i	•000	+3				+ 1		+ 7		$\lambda_1 = + .088$	
2	.000		+3		•••	+ 1		<b>–</b> 20	•••	$\lambda_3 = + \cdot 095$	$x_4 = -" \cdot 184  x_{10} = -" \cdot 022$
3	•000			+3	•••	+ 1	+ 1	+ 4	+ 13	$\lambda_3 = + \cdot 141$	$x_6 = + .076  x_{11} = + .204$
4	.000				+3	•••	+ 1	•••	- 7	$\lambda_4 = + \cdot 225$	$x_6 = + \cdot 108  x_{12} = - \cdot 182$
5	398					+3		•••	+ 23	$\lambda_5 = - \cdot 279$	$x_7 = - \cdot 192  x_{19} = - \cdot 271$
6	- '453				*		+2	- 6	•••	$\lambda_6 = - \cdot 412$	$x_8 = + .088  x_{90} = + .162$
7	+ .0							+ 1539	<b>–</b> 100	$\lambda_7 = - \cdot 001$	$x_9 = + \cdot 104  x_{91} = + \cdot 109$
8	-2.4								+1414	$y^8 = + \cdot 001$	

Figure 40.

# Triangle 667. Constants (from page 86— $_{W}$ ). Contained Angle. XLV to XLVII Log feet 4.8679957.0 \\ XLVII ,, XLVIII ,, 4.6927431.4 \\ Equations to be satisfied. $x_{2} + x_{7} = - .358$ \\ $x_{2} + x_{7} = - .358$ \\ $x_{3} x_{2} - .21 x_{7} = + .3$ \\ $x_{4} x_{7} = - .238$

Figure 41.

				Tri	angles	666 an	d 665	•				
			C	onsta	nts (f	rom pag	e 86_	-w	).			
XL XL	VIII IX	to XLIX	Log feet	4. 4.	91793; 73663	3 ^{1,2} }		1		Con	tained Angle. 34° 58′ 58′	<b>'</b> · 437
x ₅ x ₂ 16 x ₅	++	$x_6 \\ x_7 \\ 8 (x_6 + x_7)$	_			atisfied. x ₈  18 x ₂		=	e ₁ e ₂ e ₃	=	·000, + ·064, - 3·0,	$\begin{array}{c} \textbf{Factor} \\ \boldsymbol{\lambda_1} \\ \boldsymbol{\lambda_2} \\ \boldsymbol{\lambda_3} \end{array}$

#### Figure 41—(Continued).

	Equa	tions between	en the Facto	ors		·
No. of	Value of	,	Co-efficients	of	Values of the Factors	Adopted Errors
е	e	$\lambda_1$	$\lambda_{g}$	$\lambda_3$		
1	.000	+4	+ 2	+ 28	$\lambda_1 = + \cdot 018$	$x_2 = +".063   x_7 = -".038$
2	+ .064		+ 3	+ 2	$\lambda_2 = + \cdot 012$	$x_6 =045$ $x_8 = +.039$
3	-3.0		*	+1044	$\lambda_3 = - \cdot 003$	$x_6 = + \cdot 044$

#### Brahmaputra Series.—Sides and Angles of the Non-Circuit Triangles.

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
42	635	5 4 6	A I A XXI	58 42 46 · 82 1 60 14 36 · 844 61 2 36 · 335	212	4'7472196,9	45	642	8 7 9	V XVII XVI XIX	61 7 28 100	. 220	4.7724660,7
"	636	8 7 9	II I IV	64 46 55 487 54 24 32 161 60 48 32 352	201	4.7095587,7	46	643	5 4 6	XIX XXI XXII	56 3 45 507 50 6 19 322 73 49 55 171	171	
43	637	5 4 6	VI VI VII	59 44 29 · 810 61 13 28 · 657 59 2 1 · 533	233	4.7717788,2	,,	644	8 7 9	XXII XXI XXV	60 1 1.719 69 2 8.785 50 56 49.496	201	4.7744137,1
,,	638	8 7 9	VII VI IX	55 21 11.763 63 44 28.992 60 54 19.245	. 226	4.7766919,0	47	645	5 4 6	XXV XXVIII XXIX	58 27 32 374 58 30 46 758 63 1 40 868	. 239	4.7658801,0
44	639	5 4 6	IX XI XII	63 28 49 287 55 36 25 830 60 54 44 883	235	4.7486366,7	,,	646	8 7 9	XXIX XXVIII XXXI	56 56 25 494 61 38 8 614 61 25 25 892	. 225	4.7665000,7
,,	640	8 7 9	XII XI	55 20 56 354 58 30 47 563 66 8 16 083	222	4.7534360,9	48	647	5 4 6	XXXI XXXIII XXXIV	63 47 23 088 59 52 50 455 56 19 46 457	. 227	4.7614186,7
45	641	5 4 6	XIV XVI XVII	59 15 36 354 62 55 10 98 5 57 49 12 661	230	4.7757871,8	,,	648	8 7 9	XXXIV XXXIII XXXVI	61 36 5.864 54 18 52.940 64 5 1.196	. 224	4.7330026,2

### Brahmaputra Series.—Sides and Angles of the Non-Circuit Triangles—(Continued).

Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet	Number of Figure	Number of Triangle	Figural No. of Angle	Serial Letter and Number of Station	Corrected Plane Angle	Spherical Excess	Logarithm of Side-length in Feet
48	649	30 28 29	XXXVII	60 26 3 952 58 39 45 473 60 54 10 575	. 252	4.7776573,7	49	652	12 10 11	Y XLII XLI XLIV	61 28 31 · 339 69 18 59 · 236 49 12 29 · 425	. 251	4.8250512,3
,,	650	27 25 26	XXXVII	66 48 32 · 453 52 30 57 · 624 60 40 29 · 923	. 245	4.7446689,9	50	653	18 16 17	XLIV XLV XLVII	43 40 51 545 50 37 25 704 85 41 42 751	.306	4.8196268,3
49	651	15 13 14	XL XLI XLII	48 30 35 160 80 9 32 835 51 19 52 005	237	4.8521736,8	,,	654	15 13 14	XLTII XLV X XXII	109 53 34 129 38 35 1 879 31 31 23 992	.308	4.8472760,6

				T	riangles 635	and 636.		
				Cons	tants (from	page $71_{-v}$ ).		
	XXI I	to I	Log	feet 4.	7506376,5 7558749,9	} 4+7	Contained An	•
				Equation	ns to be sati	sfied.		Factor
	x ₄ x ₇ x ₄ 13 x ₅	+ +	x ₈ + x ₇	- x ₉		$ \begin{array}{rcl}  & = & e_1 \\  & = & e_2 \\  & = & e_3 \\  & = & e_4 \end{array} $	= ·000, = - ·497,	$egin{array}{c} \lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4 \end{array}$
	Equ	ations bet	ween the	Factors				
							Ī	
No. of	Value of		Co-effi	cients of		Values of the Factors	Adopte	ed Errors
No. of	Value of e	$\lambda_1$	Co-effi λ ₂	cients of $\lambda_3$	λ,		Adopte	ed Errors
	1 1	λ		λ ₃			Adopte	
е	е	λ	λ	λ ₃ + 1	λ,	Factors	x ₄ = -"·251	$x_7 = -"\cdot 2a$
e l	• •	λ	λ ₃	λ ₃ + 1	λ ₄ + 2	Factors $\lambda_1 = + \cdot 121$	$x_4 = -" \cdot 251$ $x_6 = + \cdot 177$	$x_7 = -" \cdot 2$ $x_8 = + \cdot 1$

Figure 43.

	· · · · · · ·				riangles 63	7 and 638.		
	IV (	to VI "IX	Log		1	,	Contained Angle. 7 124° 57′ 58″	•594
			F	Equations t	to be satisfic	ed.		Factor
	x ₄ x ₇ x ₄ 12 x ₅	+ + + - :	x ₆ x ₈ x ₇ 12 x ₆	+ x ₆ + x ₉  + 15 x ₈	  — 12	x ₉ =	$e_1 = .000,$ $e_3 = .000,$ $e_3 =486,$ $e_4 = +1.2,$	$\lambda_1$ $\lambda_2$ $\lambda_3$ $\lambda_4$
	Equa	tions bet		e Factors		Values of t	ha	
	Value of		Co-ei	ficients of		Factors	Adopted 1	Errors
е	е	λ ₁	$\lambda_2$	λ ₃	$\lambda_4$			
1	.000	+3	•••	+ 1	0	$\lambda_1 = + \cdot 1$	21	
2	.000		+3	+ 1	+ 3	$\lambda_3 = + \cdot 1$	$x_{4} = -" \cdot 242 : x_{5} = + \cdot 137 : x_{6}$	$\mathbf{x}_7 = -" \cdot 244$
3	486		*	+ 2	···· .	$\lambda_3 = - \cdot 3$	$x_5 = + 137$	$x^8 = + .140$
4	+1.3				+657	$\lambda_3 = - \cdot 3$ $\lambda_4 = + \cdot 0$	$x_6 = + .105$	<b>x</b> ⁹ = + ⋅104

Figure 44.

						Triangles 6	<b>39</b> a:	nd 640.					
				•	C	onstants (from	n pa	ge 72	_V ).				,
IX	4	ΧI		T f.	. 1					Co	ntair	ned Angle.	
XI		XI		Log fee		4·7735439,7 4·7378211,7	}	•••	4+7	•••		114° 7′	14"'159
				Eq	uatio	ons to be satis	fied.						Factor
X4			$\mathbf{x_5}$			•••		=	$\mathbf{e_1}$	=		.000,	$\lambda_1$
			$\mathbf{x_8}$		$\mathbf{x_9}$	•••		,=	$\mathbf{e_2}$	=		.000,	$\lambda_{g}^{-}$
<b>x</b> ₇		+	x ₇	• •		•••		=	$\mathbf{e_{s}}$	=	_	.307,	$\lambda_3$
x ₇ x ₄			2 X6		4 X8	— 10 x ₉			e,			- •	$\lambda_{4}$

# Figure 44—(Continued).

	Equa	tions bet	ween the	Factors	1					
No. of	Value of		Co-eff	icients o	f	Values of the Factors	Adopted Errors			
e	e	$\lambda_1$	λ	λ ₃	λ,					
1	•000	+3		+ 1	<b>–</b> 1	$\lambda_1 = + \cdot 077$				
2	.000		+3	+ 1	+ 4	$\lambda_2 = + \cdot 078$	$x_4 = -" \cdot 154$ $x_7 = -" \cdot 153$ $x_5 = + \cdot 068$ $x_9 = + \cdot 064$			
3	- '307		*	+ 2	•••	$\lambda_3 = - \cdot 231$				
4	- •2				+561	$\lambda_4 = - \cdot 001$	$x^{8} = + .080$ $x^{9} = + .080$			

### Figure 45.

					Triangles 64	11 and 642.	
İ				Cor	nstants (fron	n page 73).	
						Co	ontained Angle.
	XIV t	o XVI , XIX	Log	feet 4	·7537901,1 ·7298332,3	} 4+7	127° 6′ 22″·167
			E	quations	s to be satisf	ied.	Factor
					•••		· · · · · · · · · · · · · · · · · · ·
	x ₇	+ >	k ₈ +	- x ₉		= e ₃ =	· '000, λ ₃
	X4	+ 2	<b>1</b> 7	′	•••	$= e_8 =$	$=$ 172, $\lambda_3$
	12 X ₅	- 143	K ₆ −	- 15 x ₈	1 I X ⁹	= e ₄ =	- '3, λ,
	Equa	ations bet	ween the	Factor	s		
No. of	Value of		Co-efl	icients (	of	Values of the Factors	Adopted Errors
е	е	$\lambda_1$	λ	λ ₃	$\lambda_4$		
1	.000	+3		+ 1	- 2	$\lambda_1 = + \cdot 043$	- ":08" ":08"
2	.000		+3	+ 1	+ 4	$\lambda_3 = + \cdot 044$	$x_4 = -" \cdot 087$ $x_7 = -" \cdot 085$ $x_5 = + \cdot 037$ $x_8 = + \cdot 035$
3	- 172		*	+ 2		$\lambda_8 = - \cdot 129$	$x_6 = + .037$ $x_8 = + .033$
4	3				+ 686	$\lambda_4 = - \cdot 001$	$x_6 = + .050$ $x_9 = + .050$

Figure 46.

					Triangles	643 and	l 644.			
				Co	onstants fro	m (page	73_ _v	).		
	XIX XXI	to XXI " XXV	Lo	g feet	4·7579231 4·7417710	, ⁶ }		4+7	Contained Angle	
,	x ₄ x ₇ x ₄ 14 x ₅	+ x, + x, + x, - 7 x,	5 <del>-</del> 1 7 5 -1	- T.	Equations to			· e ₁ e ₂ e ₃ e ₄	= '000, = '000, = - '183, = - '2,	$\begin{array}{c} \textbf{Factor} \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{array}$
No. of	Equat Value of		Co-effic	ients of			s of th	ıe	Adopted	Errors
1 2 3	.000		λ ₂ +3	+ 1	+ 7 - 5	$\lambda_2 =$	+ .04	15	$x^2 =041$ $x^2 =041$	$\mathbf{x}_7 = -" \cdot 092$ $\mathbf{x}_8 = + \cdot 040$
4.	2			• -	+678	$\lambda_4 =$	• • • • • • • • • • • • • • • • • • • •	)"	$x_6 = + .050$	

Figure 47.

```
Triangles 645 and 646.
                                         Constants (from page 74____).
                                                                                       Contained Angle.
            to XXVIII Log feet 4.7850506,0
, XXXI , 4.7453498,7
\mathbf{x}\mathbf{x}\mathbf{v}
                                                                                                    120° 8′ 56″·159
XXVIII "XXXI
                                     Equations to be satisfied.
                                                                                                                 Factor
                                                                                                 .000,
                                                                                                                    \lambda_{l}
                                                                                                 .000,
                                                                                                                    \lambda_2
                                                                                                 .323,
                                                                                                                    \lambda_{3}
                                                 — 12 X<sub>9</sub>
```

# Figure 47—(Continued).

	Equa	tions bet	ween the	Factors						
No. of	Value of		Co-effi	cients o	£	Values of the Factors	Adopted Errors			
е	e	$\lambda_1$	λ ₂ ՝	λ ₃	λ,					
1	.000	+.3	•••	+ 1	+ 2	$\lambda_1 = + \cdot 082$	$\mathbf{x}_{4} = -"\cdot 162  \mathbf{x}_{7} = -"\cdot 161$			
2	•000		+3	+ 1	+ 2	$\lambda_2 = + \cdot 082$	$x_4 = -"\cdot 162  x_7 = -"\cdot 161$ $x_5 = + \cdot 071  x_8 = + \cdot 071$			
3	- '323		*	+ 2	•••	$\lambda_3 = - \cdot 243$	$x^2 = + .001$ $x^3 = + .000$			
4	1			•	+630	$\lambda_4 = - \cdot 001$				

Figure 48.

					Triangles 647	7 and 648. page $74$ _ $_{ u}$ ).	
	XXXI to XXXIII XXXIII " XXXVI			Log feet 4.7446676,		7	Contained Angle 114° 11′ 43″ 933
			E	Equations	to be satisfie	d.	Factor
	x ₇ x ₄	+ x	3 7			$=$ $e_2$ $=$	$-$ .087, $\lambda_3$
	Equ	ations betw	veen th	e Factors			
No. of	Value of		Co-e	fficients o	£	Values of the Factors	Adopted Errors
е	e 	$\lambda_1$	λ ₃	λ ₃	λ4		
1 2	.000	+3	 + 3		- 4 + 1	$\lambda_1 = + \cdot 018$ $\lambda_2 = + \cdot 022$	$x_4 =046  x_7 =041$
3 4	- ·087		*	+ 2	 +517	$\lambda_3 = - \cdot 064$ $\lambda_4 = - \cdot 002$	$x_6 =006$ $x_8 =005$ $x_6 = + .052$ $x_9 = + .046$

Figure 48—(Continued).

Triangles 649 and 650.

Constants (from pages 
$$74$$
— $_{I}$ , and  $75$ — $_{I}$ ).

XXXV to XXXVII Log feet  $4.7875566.4$   $3.28+25$  ...  $3.11^{\circ}$  10′  $43''.557$ 

Equations to be satisfied.

Equations to be satisfied.

Factor

 $3.25 + 3.26 + 3.26 + 3.27 + 3.26 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.27 + 3.2$ 

Figure 49.

				Tria	ngles 651 and (	652.				
			C	onstan	ts (from page 7	′5_ _F	).			
XL to	XLI	T.	a foot		****			Contai	ned Angle	•
	XLIV	T)(	,,	4°75'	11418,9 77912,1 }	18	+ 10		149° 28′	32".590
			Equa	tions to	be satisfied.					Factor
$\mathbf{x}_{13}$	+	$\mathbf{x}_{14}$	+	$\mathbf{x}_{15}$	•••	-	$\mathbf{e_{l}}$	=	.000,	λ
$\mathbf{x_{10}}$		$\mathbf{x}_{11}$			• • •	=	e ₂	=	,000	$\lambda_1 \\ \lambda_2$
$\mathbf{x_{18}}$	+	<b>x</b> ₁₀			•••				.031,	$\lambda_3^{2}$
19 x ₁₅	- 17	7 X ₁₄	+ 1	2 X ₁₂	- 19 x ₁₁	=	e,		1.3,	$\lambda_4$

# Figure 47—(Continued).

	Equa	tions betw	ween the	Factors			Adopted Errors		
No. of	Value of		Co-effi	cients of	?	Values of the Factors			
е	e	$\lambda_1$	λ ₂ '	$\lambda_8$	λ,				
1	.000	+.3	•••	+1	+ 2	$\lambda_1 = + \cdot 082$	$x_{1} = -"\cdot 162  x_{2} = -"\cdot 161$		
2	.000		+3	+ 1	+ 2	$\lambda_2 = + .085$	$x_4 = -^{\circ} \cdot 102  x_7 = -^{\circ} \cdot 101$ $x_5 = +^{\circ} \cdot 071  x_8 = +^{\circ} \cdot 071$		
3	- '323		*	+ 2	•••	$\lambda_3 = - \cdot 243$	$x^{6} = + .001$ $x^{9} = + .000$		
4	- ·ı			-	+630	$\lambda_4 = - \cdot 001$			

# Figure 48.

					Triangles 647	and 648.	
	•				stants (from )		
	XXXI XXXIII	to XXXI	II I			·	Contained Angle 114° 11′ 43″ 933
			Eq	uations	to be satisfied	<b>1</b> .	Factor
	x ₄ x ₇ x ₄ 10 x ₅	+ x + x + x - 14 x	5 + 8 + 7	 - x ₉ 	  — 10 x ₉	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\lambda_{1}$ $000,  \lambda_{1}$ $000,  \lambda_{2}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{3}$ $000,  \lambda_{4}$
	Equ	ations bet	ween the	Factors		**************************************	
No. of	Value of	$\lambda_1$	Co-eff	icients o	λ4	Values of the Factors	Adopted Errors
1 2 3	·000 ·000 — ·087		 +3 *	+ 1		$\lambda_1 = + \cdot 018$ $\lambda_2 = + \cdot 022$ $\lambda_3 = - \cdot 064$	$x_4 =046$ $x_7 =002$
4	-1.3			Т.4	+ 517	$\lambda_4 = - \cdot 002$	$x_6 = + .052$ $x_9 = + .046$

Figure 48—(Continued).

				T	riangles 64	9 and 650.		
			C	onstants (f	rom pages	74_r and 75_r	).	
	XXXV XXXVII	to XXX	KVII I	log feet	4·7875566 4·8085256	24 } 28+25	Contained Angle	e. 10′ 43″ 557
	_ X ₂	₈ +		quations t + x _{so}		= '000,	Factor λ ₁	
<u> </u> -	X ₂ ; X ₂ ; I 2, X ₃ ;	. +	X ₂₆ X ₀₅	+ x ₂₇	•••	$= e_{2} : = e_{3} : = x_{26} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e_{4} : = e$	= '000,	$\lambda_{2}$ $\lambda_{8}$
			tween the					λ,
1	Value of		Co-eff	icients of		Values of the Factors	. Adopted	pted Errors
e	е	λ ₁	λ	λ ₈	λ,			
1	.000	+3	•••	+ 1	+ 1	$\lambda_1 = - \cdot 009$		
2	•.000		+3	+ 1	- 3		$x_{25} = +".016$	
3	+ .037		. *	+ 2			$x_{26} = + \cdot 038$ $x_{27} = - \cdot 054$	
4	-3.1				+490	$\lambda_4 = - \cdot 004$		180 — — 1000

Figure 49.

#### Triangles 651 and 652. Constants (from page 75____). Contained Angle. Log feet 4.7511418,9 ,, 4.7977912,1 XLto XLI 149° 28′ 32″·590 XLI " XLIV Equations to be satisfied. Factor $\mathbf{x}_{16}$ .000, $\boldsymbol{\lambda_1}$ X₁₂ .000, $\lambda_2$ $x_{13}$ .031, $\lambda_3$ 19 X₁₅ + 12 X₁₂ $-19 x_{11}$

#### Figure 49—(Continued).

Ì	Equa	tions b	etween the	e Factors					
No. of	Value of		Co-eff	ficients of		Values of the Factors	Adopted Errors		
е	e	$\lambda_1$ $\lambda_2$ $\lambda_3$ $\lambda_4$							
1	•000	+3		+ 1	+ 2	$\lambda_1 = + \cdot 008$			
2	.000		+3	+1	- 7	$\lambda_3 = + .002$	$\mathbf{x}_{10} = -\text{"} \cdot 018  \mathbf{x}_{13} = -\text{"} \cdot 013$ $\mathbf{x}_{11} = + \cdot 026  \mathbf{x}_{14} = + \cdot 025$		
3	031		*	+ 2		$\lambda_3 = - \cdot 022$	$x^{15} =008$ $x^{12} =015$		
4	-1.3				+ 1 1 5 5	$y^4 = - \cdot 001$			

Figure 50.

#### Triangles 653 and 654. Constants (from pages $75_{-\nu}$ and $76_{-\nu}$ ). Contained Angle. XLIV to XLV Log feet 4.9302297,7 XLV ,, XXII ,, 5.0256179,3 89° 12′ 28″·329 16 + 135.0256179,3 Equations to be satisfied. **Factor** .000, $\lambda_{\mathbf{l}}$ $x_{16}$ .000, X₁₃ λ 132, $\lambda_3$ 22 X₁₈ - 34 X₁₄ Equations between the Factors Values of the Co-efficients of Adopted Errors No. of Value of **Factors** е е λ $\lambda_8$ $\lambda_4$ $\lambda_1$ 1 .000 +3 + 1 2 .000 +3 +1 3 .132 +2 $\lambda_4 = - .008$ -7.8 + 1708

June, 1882.

W. H. COLE.

#### APPENDIX.

# No. 3.

# ON THE THEORETICAL ERRORS GENERATED RESPECTIVELY IN SIDE, AZIMUTH, LATITUDE AND LONGITUDE IN A CHAIN OF TRIANGLES.

The subject of the theoretical errors of functions of the angles of a triangulation, has been already fully dealt with in Chapter XV of Volume II, and it would have been unnecessary to add anything to what is there stated had not a flaw in the formulæ on pages 205 and 207, for the theoretical errors at the end of chains of single triangles, been discovered. This error would have escaped notice, but that General Walker's attention was attracted to certain discrepancies between theory and practice, which were subsequently met with in the relations between the magnitudes of the errors respectively generated in side, azimuth, latitude and longitude.

A careful examination of the formulæ was then undertaken, which led to the discovery that some of the terms in the expressions employed for deducing them had obtained wrong signs. The correct formulæ, which are given in this Appendix, have been verified in several ways, leaving no present doubt of their accuracy.

To save reference to Volume II it will be desirable to quote some of the results therein arrived at. Let  $X_1, X_2, X_3, \ldots$  denote the values of the observed angles in any chain of triangles,  $u_1, u_2, u_3, \ldots$  the reciprocals of their relative weights, and  $x_1, x_2, x_3, \ldots$  the most probable values of their errors; and let  $F(X_1, X_2, X_3, \ldots)$  denote any function of the observed angles, and  $F(X_1 - x_1, X_2 - x_2, X_3 - x_3, \ldots)$  the same function of the corrected angles. By Taylor's Theorem, if we neglect terms involving higher powers of  $x_1, x_2, x_3, \ldots$  than the first, because these errors are supposed to be very small,

$$F(X_1-x_1,X_2-x_2,X_3-x_3,\ldots)-F(X_1,X_2,X_3,\ldots)=-\{f_1x_1+f_2x_2+f_3x_3+\ldots\}.$$
 (i) where

$$f_1 = \frac{dF}{dX_1}$$
,  $f_2 = \frac{dF_2}{dX_2}$ ,  $f_3 = \frac{dF_3}{dX_3}$ , &c. . . . . . . . . . (ii)

Thus the most probable value of the error of any function of the observed angles  $F(X_1, X_2, X_3, \ldots)$  is  $f_1x_1 + f_2x_2 + f_3x_3 + \ldots$ 

Now  $\rho$  being the modulus for reducing relative weights to absolute weights, we have

$$e.\,m.\,s.^{9}\,X=\frac{u}{\rho^{9}}$$

and

 $e.m.s.^2$  of  $F(X_1, X_2, X_3, ...) = \frac{1}{\rho^2} \{ f_1^2 u_1 + f_2^2 u_2 + f_3^2 u_3 + ... \} = \frac{1}{\rho^2} [f^2 u]$  written briefly . . (iii) the brackets [], as usual, denoting summation.

If the angles  $X_1, X_2, X_3, \ldots$  are connected together by a group of geometrical conditions—such as those furnished by a single polygonal figure or network of triangles—or by several independent groups of geometrical conditions—such as are given by a chain of independent polygonal figures —each group will furnish equations between the errors of the angles involved in it of the form of equations (18) page 28, viz.

and every such series of equations may be so treated as to give the most probable values of the errors of the observed angles, so far as the available data can furnish them.

Each group (iv) contains fewer equations than unknown quantities, thus their solution requires the previous evaluation of 'indeterminate factors',  $\lambda_a$ ,  $\lambda_b$ ,  $\lambda_c$ , . . . . which may be expressed in terms of the right-hand members, thus:—

in which expressions  $B_a = A_b$ ,  $C_a = A_c$ , . . .  $C_b = B_c$ , . . . and so on.

The resulting values of the angular errors are given symbolically by equations (20) page 28 of this volume. The corresponding  $e.m.s.^2$  of  $F(X_1-x_1, X_2-x_2, X_3-x_3, \dots)$  may be expressed by a summation of terms of the form

$$\frac{1}{\rho^{2}} \left\{ [f^{2}u]^{*} - [fa.u] \left\{ [fa.u] A_{a} + [fb.u] A_{b} + [fc.u] A_{c} + \dots \right\} \right\} \\
- [fb.u] \left\{ [fa.u] B_{a} + [fb.u] B_{b} + [fc.u] B_{c} + \dots \right\} \\
- [fc.u] \left\{ [fa.u] C_{a} + [fb.u] C_{b} + [fc.u] C_{c} + \dots \right\} \\
- &c. \right\} \dots \dots \dots \dots \dots \dots$$
(vi)

one such term being furnished by each independent polygonal figure in the chain of triangles.

$$[f^{2}.u] = f_{1}^{2}u_{1} + f_{3}^{2}u_{2} + f_{3}^{2}u_{3} + \dots$$

$$[fa.u] = f_{1}a_{1}u_{1} + f_{2}a_{3}u_{2} + f_{3}a_{3}u_{3} + \dots$$

$$[fb.u] = f_{1}b_{1}u_{1} + f_{2}b_{3}u_{2} + f_{3}b_{3}u_{3} + \dots$$

$$[fo.u] = f_{1}c_{1}u_{1} + f_{2}c_{2}u_{2} + f_{3}c_{3}u_{3} + \dots$$

but it is to be understood that only those terms are significant which involve coefficients in (iv) of the angular errors,  $x_1, x_2, x_3, \dots$  entering (i); all other terms vanish.

^{*} In explanation of the summations

It is thus that the e.m.s. of any function of the corrected angles of any triangulation may be found. If the function involves angles entering many polygonal figures, the determination of its e.m.s. would be too laborious an undertaking to be generally attempted. In the present investigation we shall therefore confine our attention to a chain of single triangles, in which each triangle furnishes only one geometrical condition, viz., that the sum of its angles must equal  $180^{\circ}$  + the spherical excess of the triangle.

It will now be convenient to make a change in the notation hitherto employed, by denoting the observed values of the angles of a triangle by X, Y and Z, with X for flank angles and Y and Z for angles opposite sides of continuation; denoting their reciprocal weights by u, v and w, and the most probable values of their errors by x, y and z respectively. Putting e for the actual triangular error, and distinguishing each symbol where necessary by the numerical subscript designating the number of the triangle to which it belongs, each triangle will give an equation of the following form:—

$$x + y + z = e$$
 . . . . . . . . . . . (vii)

for which the indeterminate factor

see page 29 of Part I of this Volume, A being  $=\frac{1}{[aa.u]}$  or  $=\frac{1}{u+v+w}$ , because  $a_x=a_y=a_z=1$ .

Thus, on reference to (vi) it will be seen that each triangle, after its angles have been corrected, furnishes towards the summation determining the e. m. s.² of a function of the corrected angles, a term of the form

$$\frac{1}{\rho^2} \left\{ f_x^2 u + f_y^2 v + f_z^2 w - \frac{(f_z u + f_y v + f_z w)^2}{u + v + w} \right\} \quad . \quad . \quad . \quad . \quad (ix)$$

in which expression sometimes one and sometimes even two of the coefficients f for any triangle may = 0.

Hence, generally, for any function of the angles of a chain of n single triangles of which the weights of the angles are all in the same terms, i.e., require the same modulus  $\rho$  to reduce them to absolute weights,

$$e. m. s.^{2} \text{ of } F(X-x, Y-y, Z-z) = \frac{1}{\rho^{3}} \left[ f_{z}^{2} u + f_{y}^{2} v + f_{z}^{3} w - \frac{(f_{z} u + f_{y} v + f_{z} w)^{3}}{u + v + w} \right]. \quad (x)$$

If, for each triangle, u = v = w, the last expression becomes

e. m. s.² of 
$$F(X-x, Y-y, Z-z) = \frac{1}{\rho^2} \prod_{i=1}^{n} \left[ \left( [f^2] - \frac{1}{3} [f]^2 \right) u \right]$$
 . . . (xi)

In order to avoid for the future the frequent introduction of the modulus  $\rho$  we will assume that the weights of the angles have been previously made absolute.

The functions of the angles of a chain of triangles of the precision of which it is usually desirable to have some knowledge are:—

- (1). The linear (or side) ratios.
- (2). The inclinations of the sides to the adopted axes of coordinates.
- (3). The coordinates of the stations relatively to the adopted origin of coordinates.

When the coordinates are spherical and geodetic, the functions for examination under (2) are the computed azimuths of the sides of the triangulation relatively to the fundamental azimuth, and under (3) the differential latitudes and longitudes of the stations relatively to the station of origin.

The functions of whose precision a knowledge is usually most interesting, are the ratios of the terminal to the initial sides, and the differences between the terminal and the initial azimuths, latitudes and longitudes. The former appertain to what have invariably been termed in the present and the preceding volumes, the Linear Functions of the triangulation, and the latter to the Geodetic Functions. It will now be convenient as formerly to investigate the precision of these functions separately.

#### Theoretical Errors Generated in Side.

Let R be the ratio of the terminal to the initial side as obtained with the uncorrected observed angles; then

$$F(X, Y, Z) = R = \frac{\sin Y_1 \sin Y_2 \dots}{\sin Z_1 \sin Z_2 \dots} \dots \dots \dots \dots \dots (xii)$$

Hence

$$\frac{dF}{dX} = f_x = 0; \quad \frac{dF}{dY} = f_y = R \cot Y \sin 1''; \quad \frac{dF}{dZ} = f_z = -R \cot Z \sin 1'';$$

and if dR represent the error of R,

$$dR = R \sin^{2} \left\{ \cot Y_{1} y_{1} - \cot Z_{1} z_{1} + \cot Y_{2} y_{2} - \cot Z_{2} z_{2} + \dots \right\} \dots (xiii)$$

Now if we assume that the three angles of every triangle have been observed and corrected to satisfy the geometrical condition x + y + z = e, we have, when we substitute in (x),

$$F(X-x, Y-y, Z-z) = R - dR.$$

and

e. m. s.² of 
$$(R - dR) = R^2 \sin^2 1'' \int_{1}^{n} \left[ v \cot^2 Y + w \cot^2 Z - \frac{(v \cot Y - w \cot Z)^2}{u + v + w} \right]$$
 . . . (xiv)

This expression, with slightly different symbols, has already been given on page 198 of Volume II and is repeated here to make the subject complete.*

$$M \text{ cot } Y \sin x'' = \text{ tab. diff. (t.d.) of log sin } Y \text{ for } x''$$

$$M \text{ cot } Z \sin x'' = \dots \dots \log \sin Z \dots \dots$$

$$e. m.s.^2 \text{ of } (R - dR) = \frac{R^2}{M^2} \left[ \text{ (t.d. log sin } Y)^2 v + \text{ (t.d. log sin } Z)^2 w - \frac{(\text{t.d. log sin } Y. v - \text{t.d. log sin } Z. w)^2}{u + v + w} \right]$$

Further if the e.m. s.² of log (R-dR) is required it is obtained by multiplying the e.m. s.² of (R-dR) by  $\frac{M^2}{R^2}$ .



^{*} In order to employ (xiv) it is necessary to know the cotangents of the angles. As however these cotangents may not be needed for any other purpose, they can be replaced by 'tabular logarithmic differences' thus:—multiply the numerator and denominator of the right-hand member of (xiv) by the square of *M*, the modulus of common logs. Then since

Equation (xiv) is in the form which is applicable to any chain of single triangles. If we assume the triangles to be equilateral, the angles to be of equal weight, and the weight to be  $=\frac{1}{\epsilon^3}$ , where  $\epsilon$  is the e.m.s. of any angle, then R becomes = 1 and  $\cot Y = \cot Z = \frac{1}{1+\sqrt{2}}$ ; hence

e. m. s.² of 
$$(R - dR) = \frac{2}{3} \epsilon^2 n \sin^2 1''$$
. . . . . . . . . . . (xv)

### Theoretical Errors generated in Azimuth, Latitude and Longitude.

Before investigating the e. m. s. of the Geodetic Functions of angles, we may quote the following passage regarding them from Vol. II, page 201:—

"Strictly speaking these quantities are functions, not only of the angles but also of the fundamental "elements in terms of which they are obtained. They are influenced by errors in the adopted elements of "the figure of the earth; in the adopted values of the astronomically determined coordinates of, and the "azimuth at, the initial station; and in the length of the base of the figure. Here however we are dealing "with errors of the angular measurements only, and of their influence on the geodetic results, we must there"fore disregard the influence of errors in the geodetic and linear data". These remarks apply equally to the following investigations.

It is unnecessary in this place to express the differentials,  $\frac{dF}{dX}$ ,  $\frac{dF}{dY}$ ,  $\frac{dF}{dZ}$ , for the Geodetic Functions of the angles, because this has been already done in the present Volume in which we have two forms for expressing the geodetic error at the end of a chain of triangles; one is equation (57), page 54, and the other is equation (62), page 57. The former applies when the calculations have been carried along one flank of the chain, and the latter when a zig-zag course from flank to flank has been adopted. But from both these expressions the angular error x has been eliminated by aid of the equation

$$x+y+z=\circ,$$

an equation which may not be employed here; for we must deal with the observed angles—the original independent facts of observation—and therefore we have instead equation (vii).

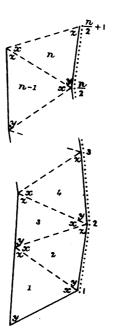
With the aid of the rule given at the bottom of page 54, it is easy to write down the expressions for the geodetic errors at the end of a chain of triangles, from which none of the angular errors are eliminated.

For the flank or direct traverse the following formulæ will hold:—

First. If the pth triangle have no side on the line of traverse, but only an angle, at traverse station l, we have



Secondly. If the qth triangle have a side in the traverse between traverse stations l and l + 1, the coefficients of the angular errors are given in the following expression


$$(\mu_l - \mu_{l+1}) a_q x_q + (\mu_{l+1} \beta_q + \phi_l) y_q - (\mu_l \gamma_q - \phi_{l+1}) z_q$$
 . . . . . (xvii)

For the zig-zag traverse the form is

the upper sign being applicable when the pth triangle lies to the left of the traverse and the lower when to the right.

Let the diagram in the margin represent a chain of n single triangles, the dotted line along the right flank being the course of the direct traverse and the broken

line representing the course of the zig-zag traverse. Then if F(X, Y, Z) = the difference of *latitude* or *longitude* between stations I and  $\frac{n}{2}$  + I or the *azimuth* at  $\left(\frac{n}{2} + I\right)$  as deduced from I obtained by employing the observed angles, uncorrected for triangular error, in the calculation, and if the error of this value due to the angular errors be E, the expressions for this error in terms of the angular errors will be as follows:—



First. In the case of the direct traverse

$$E = \phi_1 x_1 + \mu_1 \beta_1 y_1 - \mu_1 \gamma_1 z_1$$

$$+ (\mu_1 - \mu_2) \alpha_3 x_3 + (\mu_2 \beta_2 + \phi_1) y_2 - (\mu_1 \gamma_2 - \phi_2) z_2$$

$$+ \phi_2 x_3 + \mu_2 \beta_3 y_3 - \mu_2 \gamma_3 z_3$$

$$+ (\mu_2 - \mu_3) \alpha_4 x_4 + (\mu_3 \beta_4 + \phi_2) y_4 - (\mu_2 \gamma_4 - \phi_3) z_4$$

$$+ \cdot \cdot \cdot \cdot \cdot \cdot$$

$$+ \phi_n x_n - 1 + \mu_n \beta_{n-1} y_{n-1} - \mu_n \gamma_{n-1} z_{n-1}$$

$$+ \mu_n \alpha_n x_n + \phi_n y_n - \mu_n \gamma_n x_n$$
(Xix)

in which the subscripts of the  $\mu$ s and  $\phi$ s are the traverse station numbers.

When this equation is employed to represent the error in azimuth at station  $\left(\frac{n}{2} + 1\right)$  due to the errors of the observed angles, it is the error of the azimuth of station  $\frac{n}{2}$ . The error in azimuth of the last side of the chain is given by adding *unity* to the coefficient of  $z_n$  and the term then becomes

$$+ \left(1 - \frac{\mu_n}{2} \gamma_n\right) z_n$$

Secondly. In the case of the zig-zag traverse,

$$E = \phi'_{1}x_{1} + \mu'_{1}\beta_{1}y_{1} - \mu'_{1}\gamma_{1}z_{1}$$

$$- \phi'_{2}x_{2} + \mu'_{2}\beta_{2}y_{2} - \mu'_{2}\gamma_{2}x_{2}$$

$$+ \phi'_{3}x_{3} + \mu'_{3}\beta_{3}y_{3} - \mu'_{3}\gamma_{3}z_{3}$$

$$- \phi'_{4}x_{4} + \mu'_{4}\beta_{4}y_{4} - \mu'_{4}\gamma_{4}z_{4}$$

$$+ \cdot \cdot \cdot \cdot$$

$$+ \phi'_{n-1}x_{n-1} + \mu'_{n-1}\beta_{n-1}y_{n-1} - \mu'_{n-1}\gamma_{n-1}z_{n-1}$$

$$- \phi'_{n}x_{n} + \mu'_{n}\beta_{n}y_{n} - \mu'_{n}\gamma_{n}z_{n}$$

in which  $\mu'$  and  $\phi'$  are substituted for  $\mu$  and  $\phi$  as their subscripts are the triangle numbers, and there is no separate numbering of the traverse stations.

A table of substitutions for  $\mu$  and  $\phi$  is given on page 55, but as this is better adapted for arithmetical calculations than for theoretical investigations, it will be more convenient here to use that given on page 177 of Volume II, which is as follows, and in correspondence with which

$$a = \cot X$$
,  $\beta = \cot Y$ ,  $\gamma = \cot Z$  . . . . . . . . (xxi)

Table of Substitutions for  $\mu$  and  $\phi$ .

	Latitude.	Longitude.	Azimuth.
For E	$d\lambda_{n+1}$	$dL_{n+1}$	$dB_n$
,, μ	$_{\lambda}\mu$	$ u^{\mu}$	$_{A}^{\mu}$
" φ'	$\lambda \phi$	$_L\phi$	$_{m{arphi}}^{m{\phi}}$
			·
,, μ _ι	$+\frac{n}{n}\left[\Delta\lambda\right]\sin i''$	$+\prod_{1}^{n} \left[ \Delta L \right] \sin 1''$	$+\prod_{1}^{n} \left[ \Delta A \right] \sin 1''$
" µ ₂	$+\frac{*}{2}\left[\Delta\lambda\right]\sin i''$	$+\frac{\pi}{2} \left[ \Delta L \right] \sin i''$	$+\frac{n}{2}\left[\Delta A\right]\sin i''$
,, •			
), µn	$+\Delta\lambda_n \sin i''$	$+\Delta L_n$ sin $\iota''$	$+\Delta A_n \sin I''$
" фі	$-\int_{1}^{n} \left[ \Delta \lambda \tan A \right] \sin i''$	$+ \prod_{1}^{n} \left[ \Delta L \cot A \right] \sin i''$	$1 + \int_{1}^{n} \left[ \Delta A \cot A \right] \sin 1''$
" φ2	$-\frac{\pi}{2} \left[ \Delta \lambda \tan A \right] \sin i''$	$+\frac{n}{2} \left[ \Delta L \cot A \right] \sin i''$	$1 + \sum_{2}^{n} \left[ \Delta A \cot A \right] \sin 1''$
<i>,,</i> •		• ,• • • •	
,, <b>φ</b> n	$-\Delta \lambda_n \tan A_n \sin i''$	$+\Delta L_n \cot A_n \sin I''$	$1 + \Delta A_n \cot A_n \sin 1''$

The errors of the functions of the observed angles which respectively enter the *direct* and the zig-zag traverses being expressed by (xix) and (xx) we now have from (x), omitting the weight modulus  $\rho$ ,

e. m. s. 
$9$
  $F(X-x, Y-y, Z-z)$ 

by the direct traverse

$$= \phi_{1}^{2} u_{1} + \mu_{1}^{2} \beta_{1}^{2} v_{1} + \mu_{1}^{2} \gamma_{1}^{2} w_{1} - \frac{(\phi_{1} u_{1} + \mu_{1} \beta_{1} v_{1} - \mu_{1} \gamma_{1} w_{1})^{2}}{u_{1} + v_{1} + w_{1}} + (\mu_{1} - \mu_{2})^{2} a_{2}^{2} u_{2} + (\mu_{2} \beta_{2} + \phi_{1})^{2} v_{2} + (\mu_{1} \gamma_{2} - \phi_{2})^{2} w_{2} - \frac{\{(\mu_{1} - \mu_{2}) a_{2} u_{2} + (\mu_{2} \beta_{2} + \phi_{1}) v_{2} - (\mu_{1} \gamma_{2} - \phi_{2}) w_{2}\}^{2}}{u_{2} + v_{3} + w_{2}} + \dots$$

$$+ \dots$$
(xxii)

and, by the zig-zag traverse, it is

$$= \phi'_{1}^{3} u_{1} + \mu'_{1}^{2} \beta_{1}^{3} v_{1} + \mu'_{1}^{2} \gamma_{1}^{3} w_{1} - \frac{\{\phi'_{1} u_{1} + \mu'_{1} \beta_{1} v_{1} - \mu'_{1} \gamma_{1} w_{1}\}^{2}}{u_{1} + v_{1} + w_{1}}$$

$$+ \phi'_{2}^{2} u_{2} + \mu'_{2}^{2} \beta_{2}^{3} v_{2} + \mu'_{2}^{2} \gamma_{2} w_{2} - \frac{\{\phi'_{2} u_{2} + \mu'_{2} \beta_{2} v_{2} - \mu'_{2} \gamma_{2} w_{2}\}^{2}}{u_{2} + v_{2} + w_{2}}$$

$$+ \dots \qquad (xxiii)$$

Thus the e.m.s. of any geodetic function of the corrected angles may be computed, whether by the direct or by the zig-zag traverse; the results obtained from either process of computation should of course be identical.

In order to obtain simple expressions for the e.m.s. of the geodetic function, it is necessary to assume, as in (xv), that our chain of triangles consists of sensibly equilateral triangles, and that the weights of the observed angles are all equal, the e.m.s. of each angle being =  $\epsilon$ : then  $a = \beta = \gamma = \cot 60^{\circ} = \frac{1}{\sqrt{3}}$ , and from equation (xxii) we find that

by the direct traverse, e.m. s. of F(X-x, Y-y, Z-z),

$$= \frac{2}{3} \epsilon^{2} \left\{ \phi_{1}^{2} + \mu_{1}^{2} + \mu_{1}^{2} + \mu_{1}^{2} + \mu_{1}^{2} + \mu_{1}^{2} + \mu_{2}^{2} + \sqrt{3} (\mu_{2} \phi_{1} - \mu_{1} \phi_{2}) + \phi_{1}^{2} - \phi_{1} \phi_{2} + \phi_{2}^{2} + \phi_{2}^{2} + \phi_{2}^{2} + \mu_{2}^{2} + \mu_{2}^{2} + \mu_{2}^{2} + \mu_{2}^{2} + \mu_{3}^{2} + \mu_{3}^{2} + \sqrt{3} (\mu_{3} \phi_{2} - \mu_{2} \phi_{3}) + \phi_{2}^{2} - \phi_{2} \phi_{3} + \phi_{3}^{2} + \dots \right\}$$

$$= \frac{2}{3} \epsilon^{2} \left\{ 2 (\phi_{1}^{2} + \mu_{1}^{2}) + 3 (\phi_{2}^{2} + \mu_{2}^{2} + \phi_{3}^{2} + \mu_{3}^{2} + \dots) \right\}$$

$$- (\mu_{1} \mu_{2} + \phi_{1} \phi_{2} + \mu_{2} \mu_{3} + \phi_{2} \phi_{3} + \dots) \right\}$$

$$(xxiv)$$

since the terms involving the coefficients  $\sqrt{3}$  will be found, on substituting the values of  $\mu$  and  $\phi$ , to vanish.

Also from equation (xxiv) we find that

by the zig-zag traverse e.m. s.2 of F(X-x, Y-y, Z-z)

$$=\frac{2}{3}\epsilon^{9}\left\{\phi'_{1}{}^{9}+\mu'_{1}{}^{9}+\phi'_{2}{}^{9}+\mu'_{3}{}^{9}+\phi'_{3}{}^{9}+\mu'_{3}{}^{9}+\ldots\right\} \qquad (xxv)$$

The last expression appears at first sight by far the simpler; but while the direction of the traverse is practically constant for a direct traverse, for a zig-zag traverse it changes between consecutive sides by  $\pm$  120°, a fact which has to be carefully borne in mind when obtaining the values of  $\mu'$  and  $\phi'$ . It was partly owing to this being lost sight of in investigating the expressions which are given at pages 205 to 207 by formulæ of the zig-zag traverse, which were then adopted for the first time because of their apparently greater simplicity that the mistakes were made which it is the object of the present investigation to rectify.*

Before we are able to particularize the theoretical errors of the three geodetic functions, it is necessary to make a further assumption, viz., that the direction of the series is sensibly rectilinear.

First. Let the function be the Difference of Latitude between Stations 1 and  $(\frac{n}{2} + 1)$  which are connected by n triangles. We will in this case make use of both the direct and zig-zag traverse and, having shewn that the same result is arrived at by either, we will afterwards employ only the direct traverse.

Adopting the direct traverse we may put

$$\Delta \lambda_1 = \Delta \lambda_2 = \Delta \lambda_3 = \&c.$$

and

$$\Delta \lambda_1 \tan A_1 = \Delta \lambda_2 \tan A_2 = \Delta \lambda_3 \tan A_3 = \&c.$$

Substituting the corresponding values of the  $\mu$ s and  $\phi$ s, and inserting in (xxiv) we find

$$e. m. s.^{3} \text{ of } F(X - x, Y - y, Z - z) = e. m. s.^{3} \text{ of } (\lambda_{\frac{n}{2} + 1} - \lambda_{1})$$

$$= \frac{2}{3} \epsilon^{3} \Delta \lambda^{3} \sin^{3} I'' (1 + \tan^{2} A) \left\{ 2 \left( \frac{n}{2} \right)^{2} + 3 \left( \left( \frac{n}{2} - 1 \right)^{3} + \left( \frac{n}{2} - 2 \right)^{3} + \dots + 1^{2} \right) - \left( \frac{n}{2} \cdot \left( \frac{n}{2} - 1 \right) + \left( \frac{n}{2} - 1 \right) \left( \frac{n}{2} - 2 \right) + \dots + 2 \cdot 1 \right) \right\}$$

$$= \epsilon^{2} \frac{\Delta \lambda^{3} \sin^{2} I''}{\cos^{3} A} \left\{ \frac{2 n^{3} + 3 n^{3} + 10 n}{36} \right\} \dots \dots (xxvi)$$

$$= \epsilon^{2} \frac{c^{2}}{r^{3}} \frac{2 n^{3} + 3 n^{2} + 10 n}{36} \dots (xxvii)$$

e.m. s.² of inclination = 
$$\frac{2}{3} \epsilon^2 \pi$$
.

The two first terms of equation (183) page 205 should be multiplied by  $\frac{2}{3}$ .

The factor  $\frac{2n^3+3n^2+10n}{36}$  should be substituted for  $\frac{n(n+1)(2n+1)}{9}$  in equations (179) to (184) inclusive.

Corresponding corrections are required for the numerical values of the s.m.s. in page 206; correct values will be found at page 104 of the present appendix.

^{*} Equation (185) page 207 of Volume II should be

by equation (25) page 30, but with the substitution of r for  $\rho$ , the symbol there used for the radius of curvature, as  $\rho$  is used in this Appendix and in all investigations of theoretical error in the present and previous volumes, to indicate the modulus which is required for reducing relative weights to absolute weights. The last equation is independent of A the direction of the series.

When we employ the zig-zag traverse, it is necessary to remember that the azimuth of the traverse is alternately  $A - 60^{\circ}$  and  $A + 60^{\circ}$ , whence we have

$$\mu'_{1} = \frac{n}{1} \left[ \Delta \lambda \right] \sin 1'' = -\frac{c}{r} \cdot \frac{n}{2} \left\{ \cos(A - 60^{\circ}) + \cos(A + 60^{\circ}) \right\} = -\frac{c}{r} \cdot \frac{n}{2} \cos A$$

$$\phi'_{1} = -\frac{n}{1} \left[ \Delta \lambda \tan(A \pm 60^{\circ}) \right] \sin 1'' = +\frac{c}{r} \cdot \frac{n}{2} \left\{ \sin(A - 60^{\circ}) + \sin(A + 60^{\circ}) \right\}$$

$$= +\frac{c}{r} \cdot \frac{n}{2} \sin A$$

$$\mu'_{2} = \frac{n}{2} \left[ \Delta \lambda \right] \sin 1'' = -\frac{c}{r} \left\{ \left( \frac{n}{2} - 1 \right) \cos(A - 60^{\circ}) + \frac{n}{2} \cos(A + 60^{\circ}) \right\}$$

$$= -\frac{c}{r} \left\{ \frac{n-1}{2} \cos A - \frac{\sqrt{3}}{2} \sin A \right\}$$

$$\phi'_{2} = -\frac{n}{2} \left[ \Delta \lambda \tan(A \pm 60^{\circ}) \right] \sin 1'' = +\frac{c}{r} \left\{ \left( \frac{n}{2} - 1 \right) \sin(A - 60^{\circ}) + \frac{n}{2} \sin(A + 60^{\circ}) \right\}$$

$$= +\frac{c}{r} \left\{ \frac{n-1}{2} \sin A + \frac{\sqrt{3}}{2} \cos A \right\}$$

and so on.

Substituting these values of the  $\mu$ 's and  $\phi$ 's in (xxv) we find that

which is identical with (xxvii).

Secondly. Let the function be the Difference of Longitude between the Stations 1 and  $(\frac{n}{2} + 1)$ , which are connected by n equilateral triangles. We shall now have by the direct traverse

$$\Delta L_1 \cos \lambda_1 = \Delta L_2 \cos \lambda_2 = \Delta L_3 \cos \lambda_3 = \&c.$$

very nearly; and for an e. m. s. investigation, where the series is of ordinary length, we may assume without sensible error

$$\Delta L_1 = \Delta L_2 = \Delta L_3 = \&c.$$

and

$$\Delta L_1 \cot A_1 = \Delta L_2 \cot A_2 = \Delta L_3 \cot A_3 = \&c.$$

and substituting for  $\Delta L$  from equation (26) page 31 we have,

Thirdly. When the function is the azimuth of the last side of the chain at station  $(\frac{n}{2} + 1)$  as derived from the first side, we have by the direct traverse

$$\Delta A_1 \cot \lambda_1 = \Delta A_2 \cot \lambda_2 = \Delta A_3 \cot \lambda_3 = \&c.,$$

very nearly. Here again, for the present purpose, we may assume

$$\Delta A_1 = \Delta A_2 = \Delta A_3 = \&c.$$

and

$$\Delta A_1 \cot A_1 = \Delta A_2 \cot A_2 = \Delta A_3 \cot A_3 = \&c.$$

Substituting for  $\Delta A$  from equation (27) page 31

 $e.\,m.\,s.^2$  of  $F(X-x,\,Y-y,\,Z-z)=e.\,m.\,s.^2$  at station  $\left(\frac{n}{2}+1\right)$  of azimuth of last side of chain as derived from azimuth of first side

$$= \epsilon^{3} \left\{ \frac{2}{3} n - \frac{c}{\nu} \tan \lambda \left( \frac{\overline{n+1} \cdot n}{3} \cos A + \frac{n \sin A}{\sqrt{3}} \right) + \frac{c^{2}}{\nu^{3}} \tan^{2} \lambda \frac{2 n^{3} + 3 n^{2} + 10 n}{36} \right\} . \quad (xxx)$$

The units employed in (xxviii) and (xxix) are a second of arc in latitude and a second of arc in longitude. If it be desired to reduce both these units to feet, we must multiply the right-hand member of (xxviii) by the square of  $r \sin i''$ , the length of i'' of latitude in feet, and that of (xxix) by the square of  $\nu \cos \lambda \sin i''$ , the length of i'' of longitude in feet; we shall then obtain the following value for the e. m. s. of either function of the corrected angles:—

That is, for a series of n equilateral triangles the e.m.s. is the same for both co-ordinates when both are expressed in the same linear unit.

In the preceding investigations it has happened that n has been an even number, owing to the form of

diagram adopted for illustration. If we assumed the chain to commence one triangle in advance of its present adopted origin, or to terminate a triangle in advance of its present adopted terminus, n will become an odd number; and in the formulæ for e.m.s. of geodetic functions we must write (n-1) for n. For example, the expression

$$\epsilon^{2} \frac{c^{2}}{r^{3}} \left\{ \frac{2n^{3} + 3n^{3} + 10n}{36} \right\}$$

becomes

$$\epsilon^2 \frac{c^2}{r^2} \left\{ \frac{2n^3 - 3n^2 + 10n - 9}{36} \right\}$$

Bearing this in mind, we will continue, for the sake of convenience, to consider n an even number, and also to assume even numbers of triangles in the groups employed in the geodetic formulæ.

## Application to a Plane Surface.

It appears from (xxxi) that if a chain of equilateral triangles is only of such an extent that we may consider it as situated on a plane surface, and we wish to refer our errors to rectangular axes passing through station 1, then whatever be the direction of the series with reference to the axes, we shall have

e, m. s. of ordinate parallel to the axis of X = e. m. s. of ordinate parallel to the axis of Y

the unit being that adopted for c in the side length.

Further in (xxx), when the surface is a plane,  $\tan \lambda = 0$ , therefore

e.m.s. in bearing of either of the two sides at station 
$$\left(\frac{n}{2} + 1\right) = \epsilon \sqrt{\frac{2}{3}n}$$
. . . (xxxiii)

The preceding  $e.\ m.\ s.$  formulæ (xxviii), (xxix) and (xxx), for the errors generated in latitude, longitude and azimuth, have been obtained sequentially to the formulæ which are employed in the investigations of the most probable values of the angular errors, in the course of the simultaneous reduction of the triangulation. As however only the first terms of the expressions for  $\Delta\lambda$  and  $\Delta L$  are employed in the investigations, the second and following terms being ignored, it will be obvious that similar expressions for  $e.\ m.\ s.$  will be obtained if spherical co-ordinates are ignored from the outset, and the triangulation is assumed to be carried over a plane instead of a sphere, and is referred to rectangular co-ordinates. Thus:—

Let the side of origin of the chain be inclined at an angle  $\theta$  to the axis of X. Then the ordinate parallel to the axis of X of station  $\left(\frac{n}{2}+1\right)$ 

$$= c_1 \cos (\theta + X_1 + Y_2) + c_2 \cos (\theta + X_1 + Y_2 + \pi + Z_2 + X_3 + Y_4) + \dots (xxxiv)$$

or if for the sum of the angles at stations 1, 2, 3, &c., we write  $\Sigma_1$ ,  $\Sigma_2$ ,  $\Sigma_3$ , &c., the ordinate parallel to the axis of X

$$= c_1 \cos (\theta + \Sigma_1) + c_2 \cos (\theta + \Sigma_1 + \pi + \Sigma_2) + \ldots \qquad (xxxy)$$

Digitized by Google

Hence the error in the ordinate parallel to the axis of X

$$= dc_{1} \cos (\theta + \Sigma_{1}) - c_{1} \sin (\theta + \Sigma_{1}) d\Sigma_{1} \sin 1'' + dc_{2} \cos (\theta + \Sigma_{1} + \pi + \Sigma_{2}) - c_{2} \sin (\theta + \Sigma_{1} + \pi + \Sigma_{2}) (d\Sigma_{1} + d\Sigma_{2}) \sin 1'' + . . . . (xxxvi)$$

And since in the present instance  $\Sigma_2 = \Sigma_3 = \&c. = \pi$ , and  $c_1 = c_2 = \&c. = c$ , the error in the ordinate parallel to the axis of X

$$= \int_{1}^{n} \left[ dc \right] \cos \left( \theta + \Sigma_{1} \right) - c \sin \left( \theta + \Sigma_{1} \right) \left\{ \frac{n}{2} d\Sigma_{1} + \left( \frac{n}{2} - 1 \right) d\Sigma_{2} + \ldots \right\} \sin 1^{n} . \quad (xxxvii)$$

Similarly the error in the ordinate parallel to the axis of Y

$$= \int_{1}^{n} \left[ d c \right] \sin \left( \theta + \Sigma_{1} \right) + c \cos \left( \theta + \Sigma_{1} \right) \left\{ \int_{2}^{n} d\Sigma_{1} + \left( \int_{2}^{n} - 1 \right) d\Sigma_{2} + \ldots \right\} \sin 1'' \quad (xxxviii)$$

Now

$$d\Sigma_1 = x_1 + y_2$$
  
$$d\Sigma_2 = z_2 + x_3 + y_4$$

and as

$$c_{1} = c \frac{\sin Y_{1}}{\sin Z_{1}} \cdot \frac{\sin X_{2}}{\sin Z_{2}}$$

$$c_{2} = c \frac{\sin Y_{1}}{\sin Z_{1}} \cdot \frac{\sin Y_{2}}{\sin Z_{2}} \cdot \frac{\sin Y_{3}}{\sin Z_{3}} \cdot \frac{\sin X_{4}}{\sin Z_{4}}$$

therefore putting  $a = \cot X$ ,  $\beta = \cot Y$  and  $\gamma = \cot Z$ 

$$dc_1 = c_1 \left\{ \beta_1 y_1 - \gamma_1 z_1 + a_3 x_2 - \gamma_2 z_2 \right\} \sin 1''$$

$$dc_2 = c_2 \left\{ \beta_1 y_1 - \gamma_1 z_1 + \beta_2 y_3 - \gamma_2 z_2 + \beta_3 y_3 - \gamma_3 z_3 + a_4 x_4 - \gamma_4 z_4 \right\} \sin 1''$$

and since  $a = \beta = \gamma = \cot 60^{\circ} = \frac{1}{\sqrt{2}}$ 

the error in the ordinate parallel to the axis of X

$$= c \sin i'' \left\{ -\frac{n}{2} \sin \left(\theta + \Sigma_{1}\right) x_{1} + \frac{n}{2} \cdot \frac{1}{\sqrt{3}} \cos \left(\theta + \Sigma_{1}\right) y_{1} - \frac{n}{2} \frac{1}{\sqrt{3}} \cos \left(\theta + \Sigma_{1}\right) z_{1} \right.$$

$$\left. + \frac{1}{\sqrt{3}} \cos \left(\theta + \Sigma_{1}\right) x_{2} + \left\{ \left(\frac{n}{2} - 1\right) \frac{1}{\sqrt{3}} \cos \left(\theta + \Sigma_{1}\right) - \frac{n}{2} \sin \left(\theta + \Sigma_{1}\right) \right\} y_{2}$$

$$\left. - \left\{ \frac{n}{2} \cdot \frac{1}{\sqrt{3}} \cos \left(\theta + \Sigma_{1}\right) + \left(\frac{n}{2} - 1\right) \sin \left(\theta + \Sigma_{1}\right) \right\} z_{2}$$

$$+ \dots \right\}$$

$$\left. + \dots \right\}$$

100

Therefore

e. m. s.² of ordinate parallel to the axis of 
$$X = \epsilon^2 c^2 \sin^2 1''$$
  $\left\{ \frac{2}{3} \left( \frac{n}{2} \right)^2 \left( \sin^2 (\theta + \Sigma_1) + \cos^2 (\theta + \Sigma_1) \right) \right\}$ 

$$+ \frac{1}{3}\cos^{2}(\theta + \Sigma_{1}) + \left(\left(\frac{n}{2}\right)^{2} + \left(\frac{n}{2} - 1\right)^{2}\right) \left(\frac{1}{3}\cos^{2}(\theta + \Sigma_{1}) + \sin^{2}(\theta + \Sigma_{1})\right) - \frac{1}{3}(n - 1)^{2}\sin^{2}(\theta + \Sigma_{1})$$

$$+ \dots \}$$

From which the  $\theta$  has disappeared, and therefore the direction of the chain as regards the axes of the co-ordinates is immaterial, as it was shewn to be in the case of geodetic co-ordinates.

It is easy to see that the error in the ordinate parallel to the axis of Y must be the same as that parallel to the axis of X.

The inclination at station  $(\frac{n}{2} + 1)$  of either of the sides meeting at that point to the axis of X

$$= \theta + X_1 + Y_2 + \pi + Z_2 + X_3 + Y_4 + \dots + Y_n + \pi + \{Z_n\} \dots (xli)$$

the last term, in brackets, being omitted or employed according as the side is the flank side of triangle n, or the advanced side. Therefore the error in direction

$$= x_1 + y_2 + z_2 + x_3 + y_4 + \cdots + y_n + \{z_n\} \dots (xlii)$$

Hence the e.m. s. of the direction obtained with the corrected angles is in both cases

### Application to Functions of the Observed Angles, wholly uncorrected.

We may, if we please, by the aid of (iii) obtain the theoretical errors of the several results as calculated with the observed angles unadjusted for triangular error; when we shall have as follows:—

e. m. s.² of 
$$\left(\lambda_{\frac{n}{2}+1} - \lambda_1\right)$$

by the Direct Traverse = 
$$\epsilon^2 \frac{c^2}{r^2} \left\{ \frac{n^3 + n^2 + 2n}{8} \sin^2 A + \frac{2n^3 + 3n^2 + 10n}{36} \cos^2 A \right\}$$
 . . . . . . . . (xlv)

by the Zig-zag ,, = 
$$\epsilon^2 \frac{c^2}{r^2} \left\{ \frac{2n^3 + 3n^2 + 10n}{24} \left( \sin^2 A + \frac{2}{3} \cos^2 A \right) + \frac{n}{8} \cos 2A + \frac{\sqrt{3}}{48} n^2 \sin 2A \right\}$$
 . . . (xlvi)

e. m. s.² of 
$$\left(L_{\frac{n}{2}+1}-L_{1}\right)$$

by the Direct Traverse = 
$$\epsilon^2 \frac{c^2}{\nu^2} \sec^2 \lambda \left\{ \frac{n^3 + n^2 + 2n}{8} \cos^2 A + \frac{2n^3 + 3n^2 + 10n}{36} \sin^2 A \right\}$$
 . . . . . . (xlvii)

by the Zig-zag , = 
$$e^2 \frac{c^2}{\nu^2} \sec^2 \lambda \left\{ \frac{2n^3 + 3n^2 + 10n}{24} \left( \cos^2 A + \frac{2}{3} \sin^2 A \right) - \frac{n}{8} \cos 2A - \frac{\sqrt{3}}{48} n^2 \sin 2A \right\}$$
. (xlviii)

e.m.s.² of azimuth of last side at station  $\left(\frac{n}{2} + 1\right)$ 

by the Direct Traverse = 
$$\epsilon^2 \left\{ \frac{3}{2} n - \frac{c}{\nu} \tan \lambda \left( \frac{n \cdot n + 1}{2} \cos \Delta + \frac{n}{2 \sqrt{3}} \sin \Delta \right) \right\}$$

$$+\frac{c^{2}}{v^{2}}\tan^{2}\lambda\left(\frac{n^{3}+n^{2}+2n}{8}\cos^{2}A+\frac{2n^{3}+3n^{2}+10n}{36}\sin^{2}A\right)\right\} \qquad . \qquad . \qquad . \qquad . \qquad (xlix)$$

by the Zig-zag Traverse = 
$$e^2 \left\{ n - \frac{c}{\nu} \tan \lambda \left( \frac{n \cdot n + 1}{2} \cos A - \frac{\sqrt{3}}{2} \sin A \right) \right\}$$

$$+ \frac{c^2}{\nu^2} \tan^2 \lambda \left\{ \frac{2n^3 + 3n^2 + 10n}{24} \left( \cos^2 A + \frac{2}{3} \sin^2 A \right) - \frac{n}{8} \cos^2 A - \frac{\sqrt{3}}{48} n^2 \sin^2 A \right\} \right\} . (1)$$

and for rectangular co-ordinates

6. m. s.2 of ordinate parallel to the axis of 
$$X = \epsilon^2 c^2 \sin^2 1'' \left\{ \frac{n^3 + n^2 + 2n}{8} \sin^2 (\theta + \Sigma_1) + \frac{2n^3 + 3n^2 + 10n}{36} \cos^2 (\theta + \Sigma_1) \right\}$$
 . . . (li)

e. m. s. 2 of ordinate parallel to the axis of 
$$Y = \epsilon^2 c^2 \sin^2 1'' \left\{ \frac{n^3 + n^2 + 2n}{8} \cos^2 (\theta + \Xi_1) + \frac{2n^3 + 3n^2 + 10n}{36} \sin^2 (\theta + \Xi_1) \right\}$$
. . . (lii)

and 
$$e.m.s.^2$$
 of directions of sides terminating at station  $\left(\frac{n}{2}+1\right)=\epsilon^2\left(\frac{3n}{2}-1\right)$  or  $\epsilon^2\frac{3n}{2}$  . . . . . . . . . . . . . . . (liii)

It appears from comparing (xliii) with (xv) that the theoretical error of the ratio of the terminal to the initial side of the chain of equilateral triangles of which the angles are of equal weight is the same whether obtained with the observed or corrected angles. This apparent anomaly is easily explained; for when in each triangle

$$u = v = w$$

$$x = y = z = \frac{1}{3}e$$

and, see equation (xiii), dR, the error of R, due to the angular errors x, y, z, z, z. Further, since the angle X does not enter into the calculation, it appears that if merely the length of the terminal side is required in terms of the side of origin, no more accuracy is obtained theoretically by observing the three angles of each triangle, than by observing the backward and forward angles Y and Z only. See also footnote to page 203, Vol. II.

Again from (xliv) when the direction of the chain is meridional, i.e., A = 0 or  $A = 180^{\circ}$ , the Direct Traverse gives

$$e. m. s.^2 ext{ of } \left( \frac{\lambda_n}{\frac{n}{2} + 1} - \lambda_1 \right) = e^2 \frac{c^2}{r^2} \left\{ \frac{2 n^3 + 3 n^2 + 10 n}{36} \right\}.$$
 (liv)

which is identical with the value obtained with the corrected angles, see equation (xxvii). The meaning of this is that, so far as the first term of equation (25) page 30 is concerned, which is the only term that has been considered in these investigations, if the latitude of station  $\left(\frac{n}{2}+1\right)$  is computed from station 1, through a chain of equilateral triangles, the same result will be arrived at whether the observed angles, or these angles corrected for triangular error, are used. That this is the case is susceptible of other proofs: we may arrive at the value of the function of the corrected angles F(X-x, Y-y, Z-z) in two ways; either by performing the calculation with the corrected angles X-x, Y-y, Z-z, when we have the value of the function directly; or we may employ the uncorrected angles, X, Y, Z, in the calculation of the value of the function, and correct this value by -E, obtained by substituting for x, y, z, in equation (xix). In the special case here contemplated E will be found to vanish, giving F(X, Y, Z) = F(X-x, Y-y, Z-z). Again, if we take the expression  $\Delta \lambda = -\frac{c}{r} \cos A \csc i$ ", we see at once that when A is nearly c or i80° a small change in azimuth cannot affect the value of  $\Delta \lambda$ . It further appears that the e. m. e10 ( $\frac{\lambda}{2}+1$ ) as obtained with the observed angles is then a minimum; but as the

azimuth of the chain varies from the meridional direction towards the longitudinal, the e.m.s. also varies, and becomes a maximum when  $A = 90^{\circ}$  or  $270^{\circ}$ , and then

That is, the value of latitude of station  $\left(\frac{n}{2} + 1\right)$  is most affected by the errors of the observed angles when the chain is longitudinal.

It is easy to see that the converse is the case as regards the longitude of station  $\left(\frac{n}{2}+1\right)$ , when the uncorrected observed angles are employed in its calculation; the longitude being unaffected by the angular errors when the chain is longitudinal and most affected by them when the chain is meridional.

A similar comparison cannot be made between the azimuths at station  $\left(\frac{n}{2}+1\right)$  as obtained with the observed and corrected angles by the Direct Traverse; for the first and largest terms, which are independent of the direction of the chain, are essentially different, that for the observed angles being  $\frac{9}{4}$ ths of that for the corrected angles.

When we examine the formulæ for the Zig-zag Traverse we find no instance where the observed and corrected angles give the same value of the function.

For the c. m. s.² of  $\left(\frac{\lambda_n}{2} + 1\right)$  as obtained with the uncorrected angles the expression becomes a minimum when

 $\tan 2A = -\frac{3n^2\sqrt{3}}{2n^3+3n^2-8n}$ . Its value for a meridional or longitudinal chain can be ascertained by putting  $\sin A = 0$  or  $\cos A = 0$ . Similar remarks apply to the expression for the e.m.s.² of  $\left(\frac{L_n}{2} - L_1\right)$ . The formula for e.m.s. in azimuth does not seem to offer

occasion for special consideration

Application to Chains in which the Weights are not constant throughout, but vary in different Groups of Triangles.

Hitherto we have assumed the weights of all the angles of the chain of equilateral triangles to be equal; but it may be convenient to consider the case when successive groups of triangles have different weights.

For example suppose the chain to consist of three groups of triangles p, q and s in number (p+q+s=n), and that the reciprocal weights in each group are the same; but that they are different for different groups, and represent them by  $\epsilon_p^2$ ,  $\epsilon_q^2$  and  $\epsilon_s^2$  respectively. Then, in the case of the linear error, it is easy to see at a glance from (xiv) that

$$e.m.s.^{3} (R - dR) = \frac{2}{3} R^{2} \sin^{2} 1'' \left\{ p \epsilon_{p}^{2} + q \epsilon_{q}^{2} + s \epsilon_{s}^{2} \right\} . . . . . . . (lvi)$$

and here the form does not alter whether p, q and s are odd or even numbers.

For the geodetic errors we must refer to (xxii) or (xxiii) when we shall find that

$$e. m. s.^{3} \text{ of } (\lambda_{\frac{n}{2}+1} - \lambda_{1}) = \frac{c^{3}}{r^{3}} \left\{ \epsilon_{p}^{3} \frac{2 (p+q+s)^{3} + 3 (p+q+s)^{2} + 10 (p+q+s)}{36} + (\epsilon_{q}^{2} - \epsilon_{p}^{3}) \frac{2 (q+s)^{3} + 3 (q+s)^{2} + 10 (q+s)}{36} + (\epsilon_{s}^{2} - \epsilon_{q}^{2}) \frac{2 s^{3} + 3 s^{2} + 10 s}{36} \right\}. \quad . \quad \text{(Ivii)}$$

The formula for the e. m. s.² of  $(L_{\frac{n}{2}+1}-L_1)$  only differs from this in that the coefficient outside the brackets,  $\frac{c^3}{r^3}$ , is replaced by  $\frac{c^3}{r^3}\sec^2\lambda$ .

For the azimuth we shall have  $e. m. s.^3$  of the azimuth of the last side of chain at station  $\left(\frac{n}{2} + 1\right)$  as derived from the azimuth of the first side

$$= \left\{ \frac{2}{3} \left( p \, \epsilon_p^3 + q \, \epsilon_q^3 + s \, \epsilon_s^3 \right) \right.$$

$$- \frac{c}{\nu} \tan \lambda \left( \frac{\overline{p+2} \, (q+r) + 1 \cdot p \, \epsilon_p^3 + \overline{q+2r+1} \cdot q \, \epsilon_q^3 + \overline{s+1} \cdot s \, \epsilon_s^3}{3} \cos A + \frac{p \, \epsilon_p^3 + q \, \epsilon_q^3 + s \, \epsilon_r^3}{\sqrt{3}} \sin A \right)$$

$$+ \frac{c^3}{\nu^3} \tan^2 \lambda \left( \epsilon_p^3 \frac{2 \, (p+q+s)^3 + 3 \, (p+q+s)^3 + 10 \, (p+q+s)}{36} \right.$$

$$+ \left( \epsilon_q^3 - \epsilon_p^3 \right) \frac{2 \, (q+s)^3 + 3 \, (q+s)^2 + 10 \, (q+s)}{36} + \left( \epsilon_s^3 - \epsilon_q^3 \right) \frac{2 \, s^3 + 3 \, s^2 + 10 \, s}{36} \right) \right\} . \quad \text{(Iviii)}$$

It is unnecessary to write down the expression applicable to rectangular co-ordinates.

## Practical Application.

The formulæ which have now been investigated enable us to arrive at very fair approximations to the magnitudes of the errors which Theory leads us to expect to meet with at the extremity of a chain of symmetrical triangles. Employing these formulæ we may avoid making rigorous calculations, which are ordinarily far too intricate and laborious to be undertaken for determinations of theoretical error.

Let us now apply formulæ (xxviii), (xxix) and (xxx) numerically. It will be noticed from the two first expressions that the e. m. s. in both latitude and longitude is independent of the direction of the chain, and from the third, that the e. m. s. in azimuth is influenced by the direction though very slightly.

Assume the sides of the triangles to be about 15 miles long making c = say 80,000 feet; also that the arc-length of the chain is 8°, making n, the number of the triangles, about 72; then putting  $\lambda = 20^{\circ}$ , the middle latitude of India, we obtain the following values of the e.m.s:

```
e. m. s. in Latitude = 0.755 \epsilon

,, in Longitude = 0.59 \epsilon

,, in Azimuth = \epsilon \sqrt{48.040 - 2.413 \cos A - .057 \sin A}

= 7.10 \epsilon for a chain going north

= 6.75 \epsilon ,, south

= 6.94 \epsilon ,, east

= 6.93 \epsilon ,, west

= 6.93 \epsilon in the average.
```

It may be here noted that for the angles measured with the 36-inch and 24-inch theodolites of this Survey—which form a very considerable majority of the whole—the value of  $\epsilon$  may be taken as ranging from  $\pm$  0"·22 to  $\pm$  0"·66, and averaging  $\pm$  0"·44; while for the angles which were measured with the 18-inch and 15-inch theodolites, it ranges from  $\pm$  0"·75 to  $\pm$  1"·70*.

The formulæ being intended for a single chain of equilateral triangles require the application of two factors to make them more general; viz., one factor to take account of geometrical irregularity, the other to allow for the chain being double instead of single, that is to say, composed of polygonal figures and networks instead of single triangles. The direction of the chain does not affect the e. m. s. in latitude and longitude, and it affects the e. m. s. in azimuth so slightly that further consideration of direction may be neglected as of less importance than geometrical irregularity and the general strength of the chain. Thus it will be sufficient to substitute for the formulæ for the geodetic co-ordinates, those for the rectangular co-ordinates of a plane which are given by (xl), and which express the e. m. s. of each co-ordinate in feet, instead of seconds of latitude and longitude; and for the formulæ for the azimuth it will be sufficient to substitute that for the inclination to the axes of co-ordinates which is given by (xliii).

The value of a factor  $\kappa$ , to take cognizance of geometrical irregularity, may be readily obtained for the

^{*} See page 95 of Vol. II and page 64 of the present volume.

e. m. s. of side ratios, when the weights of all the angles are assumed to be equal; for by (xiv) we have for a chain of n equilateral triangles

the e.m.s. of 
$$(R-dR) = \epsilon R \sin i'' \sqrt{\frac{2}{3} n}$$
,

and therefore

the e. m. s. of log 
$$(R-dR) = \epsilon M \sin 1'' \sqrt{\frac{2}{3} n}$$
.

If we suppose the chain to consist of two equilateral triangles only, viz., ABD and DBC, and put  $R = BC \div AB$ , then by the second of these equations

e. m. s. of log 
$$(R-dR) = .000,0024 \epsilon$$
.

Now the angles of the triangulations are not all equal to  $60^{\circ}$ , but they usually range in magnitude from  $30^{\circ}$  to  $90^{\circ}$ ; to take account of this, suppose the side BD to be either reduced in magnitude until the angles at D become  $90^{\circ}$ , or increased until they become  $30^{\circ}$ , the angles at B remaining constant, then in either case we have

e.m.s. of log 
$$(R-dR) = .000,0042 \epsilon$$
.

Thus we see that the result of employing two triangles with angles of the extreme values admissible, instead of with angles of  $60^{\circ}$ , to stretch over the common distance AC, is nearly to double the e.m.s. of  $\log (R - dR)$ . If the distance AC were increased or diminished—as by increasing or diminishing the angle at B, BD remaining constant—the e.m.s. of  $\log (R - dR)$  would in like manner be increased or diminished; but when the distance is preserved, and the symmetry of the angles is alone disturbed, the e.m.s. is invariably increased. Thus since the angles of triangulations in hilly country are usually of average irregularity, while those of the triangulations in the plains are only slightly unsymmetrical, we may as a rule put

$$\kappa = \begin{cases} 1.4 \text{ in hilly country, and} \\ 1.1 \text{ in the plains.} \end{cases}$$

or more generally

$$\kappa = \sqrt{\frac{\left[\cot^2 Y + \cot^2 Z + \cot Y \cdot \cot Z\right]}{n'}}$$

where n' represents the number of equilateral triangles of a side-length equal to the mean side-length of the given chain which would form a chain of about the same length as the given chain. Thus if l =length of chain and c =average length then

$$n'=\frac{2l}{c}.$$

The value of a factor to take account of a chain being double instead of single may also be readily obtained for the e. m. s. of side ratios.

From (xi) we may find, as previously shewn at page 199 of Vol. II,

that e.m.s. of 
$$(R - dR) = 0.82 \epsilon R \sin 1^{m}$$
 in an equilateral triangle

and as under similar conditions in the configuration of the ground 7 single triangles span about the same distance as two hexagons—the side-lengths being the same in both—it is evident that  $e.\ m.\ s.$  of (R-dR) by the chain of hexagons is to the  $e.\ m.\ s.$  by the chain of single triangles

:: 1.29 
$$\sqrt{2}$$
 : 0.82  $\sqrt{7}$  or :: 0.84 : 1

If then we put

$$\zeta = 0.84$$

we shall have a fairly approximate factor to apply when the chain is composed of polygonal figures and net-works instead of single triangles.

Thus we obtain finally, for any chain of triangles

$$e. m. s. \text{ of } (R-dR) = \kappa \zeta \epsilon R \sin 1'' \sqrt{\frac{2}{3}n}$$

$$= \cdot 000,004 \kappa \zeta \epsilon R \sqrt{n}$$

$$e. m. s. \text{ of } \log (R-dR) = \kappa \zeta \epsilon M \sin 1'' \sqrt{\frac{2}{3}n}$$

$$= \cdot 000,0017 \kappa \zeta \epsilon \sqrt{n}$$

$$e. m. s. \text{ of either co-ordinate in feet}$$

$$= \kappa \zeta \epsilon c \sin 1'' \sqrt{\frac{2n^3 + 3n^3 + 10n}{36}}$$

$$= \cdot 000,0008 \kappa \zeta \epsilon c \sqrt{2n^3 + 3n^3 + 10n}$$

the value of  $\zeta$  being = 1 when the chain is single.

When the weights of the angles in different portions of the chain differ so materially that it would not be desirable to employ a constant value of  $\epsilon$  throughout, formulæ (lvi) to (lviii) can be employed. These formulæ can also be made applicable to the cases when a chain is partly single and partly double, or partly in the hills and partly in the plains, if the corresponding  $\epsilon$ s are multiplied by  $\kappa$  or  $\zeta$  as the case may require.

J. T. W. & W. H. C.

Addendum to page 106 of Appendix to Part I of Volume VII of the Account of the Operations of the Great Trigonometrical Survey.

The following formula should be inserted between the formulæ for the e. m. s. of log (R - dR) and the e. m. s. of either co-ordinate.

e. m. s. of azimuth = 
$$\kappa \zeta \epsilon \sqrt{\frac{2}{3}n}$$
  
=  $\cdot 82 \kappa \zeta \epsilon \sqrt{n}$ 

Note.—In all instances it is assumed that the three angles of every triangle have been observed.

Digitized by Google

#### APPENDIX.

## No. 4.

# ON THE DISPERSION OF THE RESIDUAL ERRORS OF A SIMULTANEOUS REDUCTION OF SEVERAL CHAINS OF TRIANGLES.

On the completion of each Simultaneous Reduction of the large sections of the triangulation of India, known as the North-West, South-East and North-East Quadrilaterals, it has been found that whatever the arithmetical rigor that may have been adopted, there remained discrepancies, or residual errors, at the junctions of the branches of the circuits, and where chains of triangles closed on base-lines: these residuals are almost wholly due to the circumstance that calculations had been made with logarithm tables to 7 places, whereas the natural numbers were occasionally of a magnitude requiring 8 significant figures. Where the arithmetical rigor was great these residual errors were, it is true, very small, as in the two former Quadrilaterals: but where the arithmetical rigor was relaxed, as in the last Quadrilateral, they were large. The dispersion of the residuals in the North-West and South-East Quadrilaterals was easily effected by inspection, by minute changes rarely exceeding o" ooi in a few of the values of y and z; the choice being governed by reference to the coefficients b and c of the primary equations of condition. The arbitrary corrections being so trifling and the mode of applying them so simple, it was not at the time considered necessary to draw special attention to them. Thus when the North-East Quadrilateral was completed and large discrepancies presented themselves, see the table on page 244, Major Herschel had not the information before him regarding what had been previously done. He knew, indeed, that arbitrary corrections had been applied; but in view of the large residual errors he had to deal with, he was of opinion that their dispersion should be of a more theoretical character; and hence he adopted the methods of Section 17, Chapter III, methods which were still arbitrary and led in many instances to comparatively large angular changes.

It is now proposed to describe the method originally employed for the dispersion of residuals, which method appears equally applicable when the residuals to be eliminated are of the magnitude of those of the North-East Quadrilateral as when they are small like those previously met with, and to illustrate it by an example derived from the last named Quadrilateral.

The original errors of the triangulation, in side, latitude, longitude and azimuth, are, for dispersion, equated to functions of the angular errors of the form

$$[by + cz].$$

Thus we have a series of equations of the form

$$[by + \mathfrak{c}z] = E,$$

see equations (66) page 59. When these equations have been solved and the values of the angular errors thus obtained have been applied in the several linear and geodetic calculations, any residuals,  $\delta E$ , should theoretically be dispersed by a second simultaneous solution of the equations of condition, symbolized thus:—

$$[\mathfrak{b}\,\delta y\,+\,\mathfrak{c}\,\delta z]\,=\,\delta E,$$

where b and c have the same values as before. But if  $\delta E$  is very small we may, by inspection, be able to assign trifling values to a few of the  $\delta y$ s and  $\delta z$ s, while putting the rest = 0, such as to satisfy all the equations simultaneously, and the arbitrary value assigned to each  $\delta y$  or  $\delta z$  may be so small in proportion to the original value of the corresponding y or z, as not to lessen the character of the reduction from that of one based on the theory of minimum squares. This is what was actually done in the two first Quadrilaterals.

In order to facilitate the selection of the  $\delta ys$  and  $\delta zs$  for arbitrary treatment, a few remarks must be made. An examination of the numerical coefficients in the several equations will shew that those in the side equations are not in any way dependent for their magnitude on their position in the equation; while in the geodetic equations the case is different, and the more remote the angles are from the closing point of the circuit, the larger in general will be the coefficients b and c. The reason in each case will be apparent on reference to equation (35) page 47, and to the formulæ (58) and (59) and the 'Table of Substitutions' on pages 54 and 55 respectively. The proportional increase in the coefficients of the geodetic equations, in receding from the closing point of the circuit, is most marked in those in latitude and longitude; it is much smaller in the azimuth equations and in these the coefficients may almost be considered constant.

From this we see without further consideration that in our arbitrary endeavours to satisfy the equations

$$\lceil b \delta y + \mathfrak{c} \delta z \rceil = \delta E,$$

we should, in the case of residuals in latitude and longitude, choose for the arbitrary assignment of values, triangles as far removed as possible from the junction of the branches of the circuit, because the  $\delta ys$  and  $\delta zs$  will then be of minimum magnitude; but where we are only concerned with side and azimuth residuals, the  $\delta ys$  and  $\delta zs$  may be taken near the terminus of the branch of the circuit to save the labour of subsequent calculation. The selection of  $\delta ys$  and  $\delta zs$  is somewhat further complicated by the fact that they will enter several equations; and the influence on all must be first ascertained before any values are adopted. In practice it will be found best to eliminate the latitude and longitude residuals first even at the expense of the linear and azimuth residuals; because the latter can be eliminated by a few changes at the end of the chain of triangles without sensibly affecting the former.

In the practical application of the foregoing method we find that a triangle may enter two circuits, in the right-hand branch of one and the left-hand of the other, and each circuit may furnish 4 residuals, perhaps a 5th if a base-line intervene; hence any angular changes in the angles of a triangle may possibly influence 8 residuals; or, in other words, we may have to deal simultaneously with 8 equations of the form

$$[ b \delta y + \mathfrak{c} \delta z ] = \delta E.$$

But we may not need to entirely eliminate the whole of the 8 residuals at once. It may be sufficient to eliminate only the 4 or 5 in one circuit, and portions of those in the other circuit, leaving the balance in the second circuit to be disposed of in the other branch. Still in this case we should carefully examine the coefficients of the unknown quantities and only choose those angles for treatment which, while disposing of those residuals which it is necessary to get rid of, do not injuriously affect the rest. It will not of course happen that the sum  $(b\delta y + c\delta z)$  for every triangle in each equation will invariably be of the right sign as



regards the whole of the residuals; but triangles can generally be found in which arbitrary values assigned to  $\delta y$  and  $\delta z$ , while considerably reducing the larger residuals, will increase the others but slightly, or injuriously affect only the side and azimuth residuals, which, as has been already indicated, can be disposed of at the end of the chain.

As an example for treatment we will take the residual errors of Circuit I of the North-East Quadrilateral; these residuals are:—

```
Equation (1) in Log side = 0.0 in the 7th place of decimals

,, (2) ,, Latitude = +0".014

,, (3) ,, Longitude = -0.031

,, (4) ,, Azimuth = +0.080
```

The right-hand branch of this circuit is alone susceptible of change. It contains 44 triangles of which the first 34 enter Circuit II, and the residuals of this circuit are:—

```
Equation (5) in Log side = -6.5 in the 7th place of decimals

,, (6) ,, Latitude = -0.000

,, (7) ,, Longitude = +0.0021

,, (8) ,, Azimuth = +0.0021
```

Hence in making any angular changes in the earlier part of the chain of triangles regard must be had to their effect on all 8 residuals. It is not necessary however that the residuals of Circuit II should be entirely eliminated because it is only right that the other branch should bear a share.

As the residuals have already been dispersed by another method it is not desirable to waste time in endeavours to make  $\delta y$  and  $\delta z$  as small as possible; but we will adopt values of o"·1 as convenient to work with. In practice o"·05 would probably have been the maximum value allowed.

An abstract of the calculation is given on page 111, and it was performed as follows:—The largest residuals in latitude and longitude are in longitude in both circuits. Turning to the values of  $\mathfrak{h}$  and  $\mathfrak{t}$  in Section 12 of Chapter III, we shall find that we can largely reduce these residuals if we put  $\delta y = -$  "10 and  $\delta z = -$ "10 in Triangle No. 9. After each  $(\mathfrak{h}\delta y + \mathfrak{t}\delta z)$  has been subtracted from the corresponding residual, we find that the latitude residual in Circuit I is a little larger and the azimuth residual considerably so, while the other residuals are either not altered or are reduced.

The latitude residual of Circuit I is now the largest in latitude and longitude, and the coefficients  $\mathfrak{h}$  and  $\mathfrak{c}$  of Triangle No. 2 appear very suitable for reducing it if we put  $\delta y = +$  "10 and  $\delta z = -$ "10. Subtracting  $(\mathfrak{b} \delta y + \mathfrak{c} \delta z)$  the residuals, except in side and azimuth, are now very small.

Turning our attention now to the latter we shall seek for suitable coefficients among the triangles at the end of the branch, and Triangle No. 43 will be found to answer our purpose if we put  $\delta y = + "\cdot 10$  and  $\delta z = + "\cdot 10$ . As this triangle does not enter Circuit II the residuals of that circuit are not affected.

The residuals in longitude of Circuit I, -"·010, is still too large to be allowed to stand and we must again seek for coefficients among the earlier triangles to reduce this. In Triangle No. 8 put  $\delta y = +$ "·10 and  $\delta z = 0$ , and the longitude residuals are reduced at the expense of the azimuth and side in Circuit I, and at the expense of the latitude in Circuit II.

The residuals of Circuit I are now such as can be disposed of among the last triangles of the branch which do not enter any other circuit; and those of Circuit II have been so much reduced that they may be well left for dispersion in the right-hand branch of that circuit.

Confining our attention therefore to the residuals of Circuit I, Triangles Nos. 36 and 44 will be found suitable for treatment for reducing these residuals within rejectaneous amounts, when they will stand as follows:—

#### Circuit I.

```
Equation (1) in Log side = 0.0 in the 7th place of decimals

,, (2) ,, Latitude = +0".001

,, (3) ,, Longitude = -0.001

,, (4) ,, Azimuth = +0.004
```

The residuals of the other circuit are:-

#### Circuit II.

```
Equation (5) in Log side = -2 \cdot 3 in the 7th place of decimals

,, (6) ,, Latitude = +0'' \cdot 009

,, (7) ,, Longitude = +0 \cdot 002

,, (8) ,, Azimuth = -0 \cdot 037
```

We have now to apply the arbitrary values of  $\delta y$  and  $\delta z$  to the linear and geodetic calculations; and when this has been done we find that the residuals never differ by more than o" oo from the magnitudes indicated on the substitution of the values of  $\delta y$  and  $\delta z$  in the equations: these differences are of course due to the adopted limit of arithmetical accuracy. The actual residuals of both circuits are now:—

#### Circuit I.

#### Circuit II.

Equation (5) in Log side 
$$= -2.3$$
  
,, (6) ,, Latitude  $= +0.008$   
,, (7) ,, Longitude  $= +0.003$   
,, (8) ,, Azimuth  $= -0.038$ 

Residuals left for dispersion in the right-hand branch.

If the arbitrary changes here shewn to suffice are compared with those that have actually been employed (see page 254), and the remaining residuals of Circuit II, with those on page 245, it will be seen that the method of adjustment now put forward is the more suitable to adopt.

## Abstract of the Calculation.

Circuit	Equation No.	·	Triangle 9					Triangl	e 2					
		Residual Errors after Simultaneous	Coefficients of y and z		Error ed by = - 10	Balance	Coefficients of y and z		Error ed by = + 10.	Balance	Coefficients of y and z		Error ad by = + · 10	Balance
		Reduction	b	t	Portion of E Eliminated Putting $\delta y =$ and $\delta z =$	Ã	ħ.	¢	Portion of Erro Eliminated by Putting $\delta y = + \cdot$ and $\delta z = - \cdot$	Ř	b	¢	Portion of Error Eliminated by Putting $\delta y = + \cdot 1$ and $\delta z = + \cdot 1$	Ř
(	· 1	y = + .01 ⁴ 8 = 0.0	+ 13	- 13 - :037	o.o	0.0	+ 22	— ·обо	+3.3	-3.3	+ 7	- 15	-0.8	-2.2
1	3	L=- '031	+ 1 038	+ .103	- '209	+ ·289	132		003	- ·009 + ·290	+ .006		+ .001	+ .000
(	5		-13	+ 13		-6.2	- 22	+11	-3-3	-3.3			•••	-3.5
п	7	L=+ '021	<ul><li>069</li></ul>	ľ	+ .013	+ '008		+ .003	001	+ .000	•••		•••	+ '009
	0	A = + · · 272	-1.032	- 1 029	+ '206	T -000	+1.038	+1.041	.000	+ .066	•••		•••	+ .066

## Abstract of the Calculation—(Continued).

Gircuit	Equation No.		Triangle 8  Coefficients of y and z			Triangle 36				Triangle 44				lation		
		Balance			F & +	Balance	Coefficients of y and z		Error ed by = - 10	Balance .	Coefficients of y and z		Error ad by = 13	Balance	ent Calcu	
		A	ħ	t	Portion of H Eliminated Putting $\delta y =$	<b>8</b>	b.	c	Portion of E Eliminated Putting $\delta y = $ and $\delta z =$	Ř	Ď	¢	Portion of Error Eliminated by Putting $\delta y = -1$ and $\delta z = -0$	Ř	By subsequent Calculation	
	(	1	-2.2	+9		+0.0	-3.4	+4	- 28	-3.3	-0.3	+6	- 10	-0.3	0.0	0.0
l	1	2	.000	· 'l		+ '002	- '002		]	003	+ .001	•••			+ .001	.000
İ	(	4	+ .000	- 1.050	required.	102 011	+ .102	+ 1'011	+ 1.033	+ '001	+ .134	- 1.000 	- 1 . 000 	+ 190	+ .001	+ .002
İ		5	-3.5	-9	Not re	-0.9	-2.3	•••			•••			•••	-2.3	-2.3
	$_{\rm n}$	6	+ .006	- :025	7	003	+ .000	•••		•••		•••		•••	+ .000	+ .008
		7	+ .000	+ '071		+ '007	+ '002	•••				•••		•••	+ '002	+003
		8	+ .066	+ 1.033		+ .103	037	•••	•••	•••		••	•••	•••	- ·o37	- ·o38

DEHRA DUN;

July 1882.

W. H. COLE.



## PART II.

## THE DETAILS OF THE OBSERVATIONS

AND

## THE FINAL RESULTS

OF THE TRIANGULATION OF FIVE OF THE COMPONENT SERIES INCLUDED IN

# THE NORTH-EAST QUADRILATERAL.

THE NORTH-EAST LONGITUDINAL

THE BUDHON MERIDIONAL

THE RANGIR MERIDIONAL

THE KARARA MERIDIONAL

NORTH-EAST LONGITUDINAL SERIES.

#### NORTH-EAST LONGITUDINAL SERIES.

#### INTRODUCTION.

The North-East Longitudinal Series is the chain of triangles which extends from the northern extremity of the Great Arc to that of the Calcutta Meridional Series, passing mostly through the belt of Tarái which lies at the foot of the Himalayan Mountains on the frontier of the British Territories. It extends from the vicinity of the Dehra Dún Base-Line to a little beyond the Sonákhoda Base-Line, and connects together the northern extremities of the several meridional chains of triangles which emanate from the Calcutta Longitudinal Series and lie between the meridians of the Great Arc and of the Calcutta Meridional Series. It was wholly executed under the superintendence of Captain—afterwards Colonel Sir Andrew—Waugh.

That by far the greater portion—about nine-tenths—of this important chain of triangles was carried almost entirely through the plains at the foot of the outer Himalayan ranges, instead of over those ranges themselves, was due to the circumstance that this portion of the Himalayas falls within the Nepalese Territories, and unfortunately a treaty had been made between the British and the Nepalese Governments, one of the articles of which prohibited Europeans from entering Nepal. More than once Colonel Everest had urged the Government of India to move the Nepalese to sanction the extension of the operations of this survey through their territories, as had invariably been permitted by all the Native States in India; but his requests were always refused. Had the triangulation been carried over the hills, the lengths of the sides might have been materially increased and the number of stations correspondingly diminished; the heavy cost of building towers at each of the stations in the plains, and clearing the lines between them, would have been avoided; and serious mortality in the survey establishments, which was caused by the operations having to be conducted through the deadly forests and jungles of the Tarái, might have been prevented.

In its execution this Series differs from all the other chains of principal triangles in that, instead of having been accomplished continuously from end to end, portions of it were executed on the completion and in continuation of the operations on the meridional series, with the object of tying together the northern extremities of those chains as soon as possible after each was completed.

Before any portion of the existing North-East Longitudinal Series—the details of

which are given in this volume—was commenced, a chain of triangles, originally called "The North Connecting Series in the Sub-Himalayan Range," was carried from the side Doiwála to Banog of the Great Arc, eastwards, to the northern extremity of the Budhon Meridional Series and then on to the west flank of some triangulation which had been extended beyond the present Rangír Meridional Series to points on the Sub-Himalayan Range. It was executed during the field seasons of 1841-43 by Captain Du'Vernet of the Madras European Regiment, with Saiyad Mohsin's 18-inch theodolite which is described at page 67 of the Appendices to Vol. II. The triangulation to the north of the Rangír Series—as at present constituted, and described in the introductory account thereof in Vol. VII—was executed by Mr. C. Lane, in the field seasons of 1839-42 with an 18-inch theodolite by Cary which is described at page 68 of the Appendices to Volume II. Then a chain of triangles, originally called "The North Connecting Series in the Pilibhít Tarái," was carried from the side Baheri-Atária on the east flank of the Rangír northern triangulation to the side Rámuápur-Kokra of the Amua Series, by Captain Waugh of the Bengal Engineers, in the field season of 1842-43; the instrument employed is believed to have been one of the 15-inch theodolites which were then available for the principal triangulation. The whole of the preceding operations were executed under the superintendence of Colonel Everest. In the field season of 1843-44 a chain of triangles, originally called "The North Longitudinal or Connecting Series," was carried by Captain Du'Vernet-under the superintendence of Captain Waugh who had then succeeded to the Surveyor Generalship—from the side Sultanpur-Karái of the Pilibhít Series to the side Khánpur-Mási of the Karára Series; the instrument which was employed is unknown, but it was probably one of the old 15-inch or 18-inch theodolites.

Full details of the above mentioned triangulations are given in Parts 2, 4, and 5 of Volume IX, and Part 2 of Volume X of the series of volumes entitled "The Trigonometrical Survey of the Peninsula of India" of which three copies were prepared in manuscript, one for record in the East India Office in London, the two others for the requirements of the Offices of the Surveyor General in Calcutta and of the Superintendent of the Great Trigonometrical Survey in Dehra Dún.

Shortly after the completion of these operations, the Survey was supplied—through the liberality of the Hon'ble Court of Directors of the East India Company—with instruments far superior in telescopic power and accuracy of graduation to those which had been available hitherto; moreover the operations on the Great Arc were completed about this time, and thus the two great theodolites which had been specially constructed for the requirements of the Great Arc, and are described at pages 28 to 37 of the Appendices to Vol. II, became available for employment on other series of triangles. The very marked superiority of the results obtained by the great (36-inch) theodolites and the new 24-inch theodolites, over those obtained by the older and much smaller instruments, induced Captain Waugh to have the whole of the angles of the several North Connecting Series re-measured with instruments of a better class, and to discard the first measurements. It happened that almost all the numerous towers which had been erected in the plains as stations of observation were still standing and available for re-employment; and it has already been shown in Chapter IV of Volume II, that when the object in view in revisionary operations is merely to remeasure the angles with

a superior instrument, without modifying the original design of the triangulation by altering the positions of the first stations or introducing new ones, the revision may usually be accomplished in very much less time than would be required for a new triangulation over virgin

It thus happened that the final triangulation of the North-East Longitudinal Series was commenced simultaneously in two places in the field season of 1845-46; at the northern extremity of the Chendwar Meridional Series by Mr. Logan, and at that of the Malúncha Meridional Series by Lieut. Reginald Walker. Mr. Logan, working westwards from stations LXXXIV-LXXXV, carried the new triangulation to the head of the Amua Series—connecting the Huriláong, Gora, Gurwáni and Karára Series en-route—and then commenced the revision of the contiguous portions of the North Connecting Series, which he completed up to the side Donau-Kaliánpur (xII-XIII), in 1849-50. The revision of the remaining westerly portion up to the Great Arc, was accomplished in 1850-51 by Captain Renny and Mr. John Peyton. Lieut. Reginald Walker, working northwards and then eastwards, carried the triangulation from stations c-ci to cxvii-cxviii in 1845-47. In the following year it was extended by Mr. C. Lane to its eastern limit, at the side cxxiv-cxxvi, a little beyond the Sonákhoda Base-Line. The portion of the Series included between the sides LXXXIV-LXXXV and c-cI was completed by Mr. Peyton in 1848-49. An account of these several operations will now be given.

## The Triangulation between Stations XII-XIII and LXXXIV-LXXXV, by Mr. George Logan.

Season 1845-46. PERSONNEL.

Mr. G. Logan, 1st Assistant. H. Keelan, 1st Class Sub-Assistant.
J. W. Rossenrode, 1st Class Sub-Assistant.

J. B. N. Hennessey, 3rd "

The Chendwar Meridional Series had been carried up to the side Harpur-Sawajpur (XXII-XXIII of Chendwar) by the end of the field season of 1844-45, and then only five triangles remained to complete the Series. In the following field season Mr. Logan proceeded to measure the angles of those triangles, and carry a longitudinal chain of triangles westwards from

their northern extremity. It had been conjectured that the triangulation might at first be carried northwards, through the country of the Raja of Rámnagar, to the Sumeshar range of the outer Himalayas, and then be turned westwards; and had it been possible to establish both flanks of the Series on the hills, this plan would have been followed; but it was found that one flank must necessarily be located in the plains, and that a considerable bend in the direction of the chain would be introduced by resorting to the hills. Thus Mr. Logan, who had been authorized by the Surveyor General to adopt whichever course he thought most judicious, decided on selecting the direct course through the plains. The north flank of the Series was carried as closely as possible to the boundary line between the British and the Nepal Territories, which the surveyors were prevented from crossing because of the treaty between the two Governments which has already been alluded to, and in virtue of which no Europeans were allowed to cross the Frontier.

During the first field season sites were selected for the three remaining stations (xxiv to xxvi) of the Chendwar Meridional Series, and for stations Lxxxv to LxxII of the Longitudinal Series. Towers—ranging in height from 25 to 35 feet, and composed of solid masonry pillars surrounded by solid earthen platforms—were built by the surveyors themselves on the sites selected for the principal stations; and the whole of the lines between these towers were cleared of trees and other obstacles of which the removal was necessary to secure the requisite mutual visibility along each 'ray'.

The whole of the principal angles—both horizontal and vertical—at these stations were measured and an astronomical azimuth of verification was observed at station xxv of the Chendwar Series, by Mr. Logan, during the last three months of the season, with Barrow's 36-inch theodolite.

After a long field season, lasting from early in October to the end of May, the party proceeded to Dinapore, there to spend the recess season.

Field operations were resumed in the month of October 1846, and by the 20th of

Season 1846-47.

PERSONNEL.

the following month sites had been selected for 9 stations and 19 'rays' had been traced, when two of the European Assistants and the greater portion of the native establishment were suddenly prostrated by a virulent malarious fever, contracted in the forests of the Tarái which had unfortunately been entered too soon after the termination

of the rainy season. It is reported that two-thirds of the natives "had to be literally carried into the Civil Station of Goruckpore for medical aid"; about thirty-five of them died outright, and of the survivors not a few "felt the effects of that jungle fever for several years after". A small party remained in the field throughout, collecting materials for the construction of the tower stations, with the aid of the inhabitants of the neighbouring villages. wards the end of December the convalescents were sufficiently numerous to permit of Mr. Logan resuming field operations, the party being strengthened by the entertainment of new hands, though not without much difficulty, as work in the Tarái was regarded with considerable apprehension and alarm. Heavy rains fell in January which destroyed large quantities of the sun-dried bricks that had been prepared for the construction of the towers, but the health of the party was unaffected and was generally good from the time of returning into the field until the end of the season. The principal triangulation was concluded in the month of March, at stations LXIII-LXIV, terminating at an earlier date than usual to permit of Mr. Logan's return to Dinapore, in order to commence preparations for the base-line which was to be measured in the following field season at Sonákhoda. Mr. Keelan and the other assistants were employed until the end of April in selecting stations in advance and executing minor triangulations from the principal series along the Gunduk river and towards Bettiah.

During the field season of 1847-48, Mr. Logan, his European assistants and his native

Season 1848-49.

Mr. G. Logan, 1st Assistant.

" J. W. Rossenrode, 1st Class Sub-Assistant.

" J. B. N. Hennessey, 2nd "
" J. O. N. James, 2nd "
"

establishment were wholly employed on the measurement of the Sonákhoda Base-Line, which is situated at the eastern extremity of the North-East Longitudinal Series. They spent the summer of 1848 in recess quarters at Allahabad, the nearest cantonment to the triangulation of the ensuing

field season. Operations were commenced by marching to the station of Mási (xxxv), at the

northern extremity of the Karára Meridional Series, with a view to examining the condition of the towers thereat and at the contiguous stations of the North Longitudinal or Connecting Series, which Major Du'Vernet had constructed in 1843-44. The summits of the pillars at each station had moreover to be enlarged to adapt them for supporting the stand of the great theodolite which Mr. Logan was employing, and which required pillars of a larger diameter than was needed for the stands of the smaller theodolites employed in the previous triangulation. At Mási the station pillar was a solid one, containing a series of markstones at different heights above the ground; the upper markstone was found to have been removed with a portion of the top of the pillar; but the markstones below were uninjured, and thus the mischief which had been done was readily repaired.

Mr. Logan then proceeded eastwards, towards the station of Chanda (LXIV) at which he had closed operations in 1847, selecting sites for the intermediate stations and clearing the rays on the lines. He also availed himself of the fine weather which usually occurs at this season of the year to take observations with the great theodolite, at stations xxxvII, XLI and xLVI, to fix the principal peaks of the snowy ranges of the Himalayas. Meanwhile the construction of the towers was progressing; the operations were however again impeded by an outbreak of fever which temporarily prostrated upwards of a third of the establishment, but fortunately the fever was of a less virulent and lasting nature than during the outburst of 1846, and it did not necessitate a complete suspension of the operations. Several of the rays had to be cleared with great labour through dense sál forest, in doing which considerable opposition was offered by the Raja of Akauna to Mr. Hennessey in clearing a line which passed near his fort; he sent out a party of matchlock men which compelled Mr. Hennessey to suspend operations until the district authorities could interfere in his support. The measurement of the principal angles was resumed by Mr. Logan towards the end of December, commencing at LXIII; by the middle of March they had been completed westwards up to stations XLIII and xLIV at the northern extremity of the Gurwáni Meridional Series; an azimuth of verification was observed at XLV; and the principal observations were continued up to stations xxxix and xL, where they were brought to a close towards the end of April. The party then proceeded for the recess season to Dehra Dún, where Mr. Hennessey was transferred to the Head Quarters' Office, for duty immediately under the Surveyor General; his services during the field season had been specially commended, as he had cleared over 200 miles of rays, much of it through dense forest and jungle, besides measuring 140 minor triangles, and laying down the positions of 720 villages.

Warned by the experience of previous years of the danger of entering the malarious

Season 1849-50.
Personnel.

Mr. G. Logan, 1st Assistant.
,, G. E. Terry, 1st Class Sub-Assistant.
,, J. O. N. James, 2nd ,, ,,
,, C. J. Carty, 8rd ,, ,,

tracts of the Tarái early in the field season, Mr. Logan did not leave Dehra Dún until late in October. The great theodolite was set up for observation at the station of Dadaura (xxxvIII) on the 7th December, between which and the 4th April observations were taken at 27 stations, com-

pleting up to the stations of Donau and Kaliánpur (xII-xIII), at the eastern end of, what was then called, the Pilibhít Series. Observations of circumpolar stars, for the determination of azimuths of verification, were taken at Stations xxxv and xIII.

The services of Mr. James, during this season, were most favorably reported on by Mr. Logan to the Surveyor General. Mr. James had re-cleared 138 miles of rays between stations of the principal triangulation; he had also executed a chain of minor triangles 100 miles in length towards Shájahánpur, in the course of which he determined the position of 634 points; he had also laid down the course of the Gogra river for 36 miles, by means of route surveys carried along both banks and connected with principal stations XXXIII.

# The Triangulation from Stations LXXXIV-LXXXV Eastwards to the Terminal Side CXXIV-CXXVI.

This portion of the North-East Longitudinal Series was accomplished in three sections by as many observers.

The Section LXXXIV-LXXXV to C-CI was executed in the field season of 1848-49 by Mr. John Peyton, who employed Barrow's 24-inch theodolite No. 1—described at page 46 of the Appendices to Volume II—in measuring the principal angles. No record of the season's operations is now forthcoming. Towers ranging in height from 20 to 30 feet, with solid pillars having markstones at the summit and basement, were constructed at each of the stations. Mr. Peyton had been directed to take observations for fixing the positions of the peaks on the snowy ranges of the Himalayas which ran parallel to his operations; but he appears to have been unable to do so, probably because the atmospheric conditions had become unfavourable by the time his stations, all towers, were ready for use; these observations were therefore carried out by Mr. J. O. Nicolson subsequently.

The Section c-ci to cv-cix was executed by Lieutenant Reginald Walker, R.E., dur-

Season 1845-46.
Personnel.

Lieutenant R. Walker, R.E., 2nd Assistant.

Mr. G. Terry,
1st Class Sub-Assistant.

W. C. Rossenrode, 1st
C. R. Webb,
3rd
y

ing the field season of 1845-46, as the northern portion of the Malúncha Meridional Series. Reference should be made to the introduction to that Series for an account of the difficulties under which the operations were conducted, owing partly to malarious fever contracted in the forests of

the Tarái, partly to unfavourable climatic conditions, and partly to the extreme length of the sides of the triangles. Towers with solid pillars were constructed at each of the stations. The observations at the several stations which are now included in the North-East Longitudinal Series were taken in the months of May and June 1846, when, after a long period of hot winds from the west which greatly obscured the atmosphere, the easterly winds set in, the weather became favourable, and mutual observations between the principal stations of the triangulation again became possible.

The theodolite employed in the measurement of the principal angles was Cary's 15-inch which is described at page 71 of the Appendices to Vol. II. The results obtained by Lieutenant Walker with this little instrument are most accordant and satisfactory, as regards the smallness both of the errors of observation and graduation (see Section 3, Chapter VII, Vol. II) and of the triangular and other geometrical errors. Thus, whereas all other portions of the

triangulation of this Series which had been executed with the smaller and more antiquated theodolites were subsequently revised with the 36- and the 24-inch theodolites, this portion was not revised. The instrument was however discarded at the end of the field season, and one of the great theodolites substituted for it.

In October 1846, Lieutenant Walker proceeded with four assistants, from his recess

Season 1846-47.
Personnel.

Lieutenant R. Walker, R.E., 1st Assistant.
Mr. C. Lane, Principal Sub-Assistant.
"W. O. Rossenrode, 1st Class
"C. R. Webb, 3rd
",
",
",
",
",
",
",
",
",
",
",
",

quarters at Titalya, to extend the triangulation eastwards to the Sonakhoda Base-Line. The operations lay wholly in the plains of the Tarái at the foot of the Himalayas, much of it through tracts of forest and jungle which necessitated the usual laborious process of selecting sites, erecting a tower of a height generally ranging from

20 to 30 feet at each station, and clearing the lines between the towers. The preliminary arrangements occupied much time, so that the measurement of the principal angles could not be undertaken before the month of March 1847. The measures of all the angles, both horizontal and vertical, were made with Troughton and Simms' 36-inch theodolite, which is described at pages 28 to 31 of the Appendices to Volume II. Lieutenant Walker had completed the observations at 9 stations, bringing the work up to station cxvIII, when he was struck down with fever, contracted in the malarious region on which he had so long been working. He proceeded to the Hill Sanatarium of Darjeeling for change of air and medical treatment; but on the arrival at Darjeeling of the dooly in which he was being carried, the sad discovery was made that he had died en route, without the cognizance of any of his attendants. In announcing his death to the Government, the Surveyor General stated that "by his lamented demise Government has lost a very talented and energetic officer, and "this Department has sustained an irreparable loss. The great practical success which "attended his labors from the commencement, together with his scientific acquirements and "entire devotion to the Great Trigonometrical Survey, marked him out from the first as an "officer of the highest order. During my recent inspection of his operations, I was particu-"larly struck with his great energy and force of character among difficulties of no ordinary "kind. No inclemency of climate, nor fear of danger, neither fatigue, heat nor inconvenience, "loneliness nor protracted bodily exertion, could quench the enthusiasm with which he re-"garded his work, nor repress his emulation to excel in his profession."

Observations of the principal angles at stations CXIX to CXXVI were still required to complete the eastern extension of this Series, which terminates at the east flank of the Rámganj polygon, the figure of which one of the sides is the Sonakhoda Base-Line. The whole of the angles were measured by Mr. Lane during the field season of 1847-48, with Troughton and Simms' 36-inch theodolite which had been employed during the previous field season by Lieutenant Walker. Subsequently, early in 1855, all the angles at the stations—cxx to cxxvi—which appertain to the Rámganj polygon were again measured by Mr. J. O. Nicolson, some with Colonel Waugh's 24-inch theodolite No. 2, and others with Barrow's 24-inch theodolite No. 1. For the Surveyor General apparently mistrusted the first measures, apprehending that they might have been vitiated by deflection of the towers at

some of the stations. The triangulation had exhibited a very much larger linear error on closing at the Sonakhoda Base-Line than had ever been met with previously, and there can be little doubt that this error must have been mainly due to the cause to which it was attributedviz., deflection of the tower stations and consequent displacement of the station marks on their summits—as the pillars were all solid, and there were no means of measuring the displacement by reference to the marks at their basements otherwise than by the expensive and tedious process of pulling them down to the ground, in order to obtain access to the lowest mark. This subject is fully discussed at pages 65 to 67 of Vol. VII; thus it is unnecessary to say more in this place than that the experience of the disadvantages of tower stations with solid pillars which was gained in the course of the operations on this Series, led shortly afterwards to the introduction of towers with perforated pillars, and with vaults leading to the basement mark, to which mark reference has since been made invariably; the upper mark is either dispensed with altogether, or a temporary substitute is provided, in the shape of a cross with a small hole in the centre which is carefully plumbed over the basement mark.

The second measures of the angles of the Rámganj polygon gave values which agreed so closely with the first that the differences may be fairly attributed to errors of observation rather than to errors caused by pillar deflection; thus there being no decisive evidence of errors of the latter kind, both values have been adopted; they have been combined together with their respective weights, in order to arrive at the 'concluded' or finally adopted value of each angle which results from the actual observations.

The Triangulation between the Eastern flank of the Great Arc and the Side XII-XIII

of the North-East Longitudinal Series.

Season 1850-51 PERSONNEL.

Captain T. Renny, R.E., Astronomical Assistant. Mr. J. Peyton, Chief Oivil Assistant.

F. C. Blewitt, 2nd Class Sub-Assistant.
A. T. Haycock, 3rd ,,

The final measurement of the angles of these triangles was executed in the field season of 1850-51 by Captain Renny (now Colonel Renny-Tailyour) and Mr. J. Peyton. The following account of the operations is extracted almost verbatim from a report by Captain Renny to the Surveyor General, dated 10th June 1853.

Mr. J. Peyton, Chief Civil Assistant, and two Sub-Assistants having been placed under my orders, I kept Mr. Haycock with me to assist in the observatory and office, and detached Messrs. Peyton and Blewitt in the beginning of October (1850), the former to build the towers that were wanted at stations in the plains, and the latter to construct platforms and cut roads at hill stations for the 24-inch theodolite.

Having received your instructions to make the revised section a double triangulation, I carried this improvement into effect by observing the angles made by the diagonals Banog to Chándípahár, and Dhela to Birond, so as to form two quadrilaterals; by adopting Mahesari Station of the Budhon Series, to complete a polygon round Mábegarh H.S.; and by connecting Birond and Donau Stations, in order to obtain a polygon round Baheri T.S.

The four stations of the Rangir Series, in the plains at the eastern end of my triangulation, had tall pillars about 40 feet high for the support of the theodolite, and in former operations a temporary scaffolding was erected around them for the observer and his tent; but as this arrangement was not nearly so convenient as a tower, and moreover the pillars had been found to vibrate with a little wind, it was considered advisable on this occasion to encase them in a solid tower of unburnt brick.

Mr. Peyton on leaving Dehra proceeded first to Mahesari Station, from whence he cleared the ray to Girjwála H.S., and after making arrangements for the repairs of the tower at Mahesari, of which the outer portion of unburnt brick was much dilapidated, he marched on to Sisgarh. He now commenced work on the towers at Sisgarh and Atária and also in repairing those at Kaliánpur and Donau, where Mr. Logan had left men for the preservation of the station marks; but he had a great deal of difficulty in getting workmen to proceed to Bagwara and Baheri, which are situated in unhealthy parts of the Tarái, as several masons had died there formerly when building the pillars at these stations for the Rangír Series. The delay in obtaining workmen and the unusual wetness of the season, which interfered greatly with the drying of bricks, prevented the towers being got ready at the two last named stations until near the middle of February. The original pillars were built with a hollow core and an open passage to it at bottom, in order to plumb down from the top to a mark below, but they were all found to incline so much as to prevent such a reference being made. It therefore became necessary to throw down a great part of each pillar and rebuild it; but after the towers were complete, the pillars again moved out of the perpendicular to a small extent, caused most probably from pressure of the outside casing of unburnt brick owing to unequal settlement of its foundation. As Mr. Peyton did not like to trust the lampmen to plumb down the great depth to the bottom of the pillar, he directed them to use an upper mark, which was carefully transferred to the bottom on the arrival of the observing party. This arrangement generally threw the lower mark out of the centre of the aperture at bottom of the pillar, and except in the case of Bagwara, caused them to differ from the station mark used in former operations; but the maximum difference does not exceed 31 inches, and they are noted in the description of stations inserted in the angle books.

At the Hill stations, platforms were constructed of stone and earth, 14 feet square, with a central pillar of masonry 3 feet 4 inches diameter for the theodolite. There are markstones at top and bottom of these pillars, and a masonry annulus is built round them at a clear interval of an inch or two, to isolate them from the remainder of the platform. Lime had to be brought from a great distance for the pillars and annuli, for although limestone generally abounded, the paháris [hill men] are not in the habit of burning it for their own use. A practicable path was always cut up the hill side for the theodolite from the nearest village road to the station. As the original platforms with exception of those at Banog and Doiwála had no masonry pillar for the theodolite, they had all to be rebuilt or altered accordingly, but the lower markstones were retained and the upper marks were also replaced at their previous heights, except in a few instances which are noted in the description of stations.

As it was not considered safe to send lampmen to Doiwála Station until near the end of October for fear of jungle fever, and it was also necessary to let Mr. Blewitt obtain a start in advance of the observing party, I only commenced taking the angles at Banog H.S. on the 23rd October. From Banog I proceeded regularly from station to station until I reached Dhela H.S. on the 10th January, when heavy snow fell on the mountains and interrupted the observations to Ghungti, Birond and Saunchália. In the course of 5 or 6 days the lampmen managed to show their signals at the first two of these stations, but Saunchália being full a thousand feet higher, or upwards of 8,500 feet above the level of the sea, all access to it was cut off for nearly a month. When the snow commenced falling, Mr. Blewitt was making the road up the hill at Birond, so I felt no anxiety respecting the lampmen at that station, as I knew he would assist them if necessary. I had previously caused huts to be constructed and wood stored at all these stations, and I had ordered the lampmen always to keep a month's supply of food by them in case of being snowed up; but still, fearing lest the men should have been careless in taking all the necessary precautions from ignorance of the danger they incurred in neglecting them, I was apprehensive that the lampmen at Ghungti and Saunchália might be in difficulty if not in actual danger, and I therefore despatched a couple of messengers to each of these stations particularly selecting active and energetic men for those sent to Saunchália, and I directed them to report to me immediately in case of any difficulty occurring, which they could not overcome, in communicating with the lampmen. I shortly heard of the welfare of the men at Ghungti, where the head lampman had been provident as respected supplies for his party, and the road to the station had not been much impeded with snow, but at Saunchália the snow had fallen very deep, and two of the lampmen had been snowed up for 4 days with scarcely any food, and were only rescued by the energy of the messengers I sent, who with great difficulty got a party of paháris to assist them and pushed their way through the snow. I had posted 4 men at Saunchália, but the day before the snow fell, two of them came down the hill to buy food for the party and were afraid to go up again until my messengers arrived, and the men on the hill being also unaccustomed to snow, were afraid or unable to venture down through the deep snow, after making an unsuccessful attempt.

Having taken all the angles at Dhela except those in connection with Saunchália, I marched to Bagwára Tower Station to assist Mr. Peyton in completing the towers, with the view of making over the remainder of the observations to him and returning to your office at Dehra, to enable me, agreeably to your orders, to take early measures for erecting an observatory at Banog. Accordingly on the 9th February I made over charge to Mr. Peyton, and he took the remainder of the observations, visiting all the tower stations first and ending with the hill stations of Birond, Saunchália and Dhela. At first he progressed very slowly on account of the length of the rays between the stations of Bagwára, Sísgarh, Baheri and Atária, and the necessity of reclearing these rays, but he eventually got all the angles satisfactorily completed by the 3rd of June.

There were two theodolites employed on this work, being the two you constructed from the original 24-inch Azimuth Circles of the 3-feet Astronomical Circles. It was at first intended to use No. 1, which was considered the best, but as it was on its way up from Calcutta when I commenced work, I observed with No. 2 at the first two stations I visited, viz., Banog and Ghandiál. These theodolites, especially No. 1, appear to be but little inferior to the great theodolites, and when used with care and the signals are tolerably good, the differences in the mean angles at different zeros do not appear to exceed 3 to 4 seconds in No. 1 and 4 to 6 seconds in No. 2.

The best mode of conveying the boxes of the theodolite in the mountains, is by means of a single bamboo or pole attached as in a palanquin, so that the carriers may move in single file, which enables them to take the instrument safely along any of the ordinary village tracks, and only necessitates the cutting of a small path to the station; whereas if two carriers are placed abreast, the village tracks must generally be widened for the purpose, and expensive roads made up to the stations. The ordinary bearers of the plains are preferable as carriers to the paháris, and get on very well in the hills after a little practice, but 2 to 6 paháris with drag-ropes for each box are necessary to assist when the roads are steep.

The result of the revision appears satisfactory as shown in the following instances. 1st. The uncorrected polygons and quadrilaterals re-enter with small differences. 2nd. The triangular error is generally under 1 second, and only in one instance exceeds 2 seconds, which occurs in the triangle Bagwára, Baheri, and Sísgarh, where the error amounts to 2"80, but the sides of that triangle are long and unfavourably situated for good angles. 3rd. In the heights, the differences by two or three independent deductions of the same stations are frequently under 1 foot, and seldom exceed 2 feet, whereas in the original work these differences were usually upwards of 10 feet and in two instances amounted to 37.7 and 46.1 feet respectively. And 4thly,—The comparison with the Rangír Series is more favourable than previously, and an extraordinary anomaly has also disappeared, which existed in the comparisons of the Budhon with the Great Arc and Himalaya Series (which the hill portion of my revised section was formerly called) as shewn in pages IV and V of the Introduction to the General Report of the Budhon Series.

The comparison of the Rangír Series at the common side (of the two series) Saunchália-Bagwára, formerly gave a difference of 5.4 inches per mile in excess, and this difference is now reduced to 2.9 inches per mile. The Budhon Series compared with the side Sheopuri to Godhna of the Great Arc was 6.24 feet in excess in 21½ miles, which amounted to 3.5 inches per mile, but when compared with the side Chándípahár to Mábegarh of the Himalaya Series there was only a difference in excess of 0.25 feet in 16½ miles, or about 0.2 of an inch per mile; from which comparisons there resulted a discrepancy of 3.3 inches per mile in the short triangulation from Godhna and Sheopuri to Chándípahár and Mábegarh, occupying only three triangles of the Budhon Series. As these three triangles formed part of the Mahesari polygon which re-entered very fairly, the discrepancy was supposed to be chiefly due to the Himalaya Series, and the result of the revision of the latter has proved this to be the case, for comparing the common triangle Chándípahár, Mábegarh, and Mahesari, of the Budhon and North-East Longitudinal Series, the former now gives an excess of 3.2 inches per mile, being a difference of only 0.3 of an inch from the result given by the Great Arc, and if the revised angles of the triangle Chándípahár, Mábegarh, and Mahesari were introduced into the Budhon Series, this difference would be still further reduced.*

^{*} It is to be remembered that the numerical values of discrepancies given in this and the preceding para. were derived from the preliminary computations, before any general adjustment of the triangulation had been attempted, and while the Budhon and the Rangír Meridional Series were still dependent for their initial elements on the old triangulation of the Calcutta Longitudinal Series the revision of which was not commenced until the year 1863.

My party being specially intended for the revision of Principal Triangulation, and composed only of such members of the Civil Establishment as could be spared for the purpose and a detachment of the Native Establishment of the North-West Himalaya Series, containing but a limited number of trained men, I was quite unable to carry on any Secondary Operations until Mr. Blewitt had completed the work assigned to him in preparing the platforms and roads at the hill stations. The Secondary Triangulation has been confined to laying down the position of the Roorkee College, and a Minor Series in the Rúdarpur Tarái to fixed points on the edge of the forest for the Rohilkhand Revenue Survey. There exist however all the secondary points laid down in the operations of the Himalaya Series and sections of the Rangír and Pilibhít Series, of which only the principal triangles are superseded by the revised triangulation.

I beg to acknowledge having received the most cordial assistance from Mr. Peyton, who exerted himself very diligently to get the towers ready in proper time, notwithstanding the great natural impediments of the unhealthy situations of Bagwara and Baheri and an unusually wet season. After receiving charge of the party from me on the 9th February, he finished the remaining observations of the Revised Section between Dhela and Kalianpur in a very satisfactory manner.

Thus was completed this chain of triangles, the length of which is 740 miles, and which is only 40 miles shorter than the Great Indus Series, the longest of any of the chains of the Indian triangulation that run directly from one base-line to another. As soon as was convenient after the completion of the triangulation, steps were taken to adjust the angles for the linear error generated between the two base-lines, and for the azimuthal error generated between certain stations, near the origin and the terminus of the Series, at which azimuths had been determined astronomically. A full description of the treatment to which the angles were subjected, in order to bring them into accordance with the verificatory base-lines and azimuths, is given in manuscript Volume XV of the "Trigonometrical Survey of the Peninsula of India", in the Introduction—dated 14th October 1861—which was written by Mr. Hennessey under the instructions of the then Surveyor-General, Colonel Waugh. There too will be found a statement of the discrepancies between the respective geodetic elements of latitude, longitude and azimuth, and between the side-lengths and the heights of the principal stations common to this Series and to the several meridional series closing on it, which were met with on the completion of the calculations of each series. These discrepancies were believed to be largely due to the circumstance that the initial elements of all the meridional series were derived from the triangulation of the Calcutta Longitudinal Series which had been executed under considerable difficulties and with a very inferior instrument—during the years 1826-32, when as yet the Survey Department was unfurnished with suitable instruments for the execution of so important a chain of triangles; see page 71 of Volume II. Thus no attempt was made to proceed with further reductions of any portion of the system of triangulation now known as the North-East Quadrilateral-which comprises the Calcutta and the North-East Longitudinal Series and the whole of the chains emanating from the former and closing on the latter—until after the revision of the southern Series which was accomplished in the years 1863-69. The reduction was further postponed until the completion of that of both the North-West and the South-East Quadrilaterals, for reasons which are fully explained in Section 7 of Chapter I of Volume II. Thus it was not taken in hand until 1876, when it was commenced under the immediate supervision of Major Herschel, in accordance with the principles which are set forth in Chapter XIV of Volume II.

The several circuits into which the chains of triangles were arranged for the final reductions of the North-East Quadrilateral were all made to close at stations appertaining to the North-East Longitudinal Series. The closing errors in Side, Latitude, Longitude and Azimuth and the portions of those errors which were thrown on the Series in the course of the final reductions, are given, the former in Section 10 and the latter in Section 18 of Chapter III of Volume VII; a full description of the method of treatment as regards the final evaluation of the linear and geodetic elements of the triangulation is given with complete numerical details in the same chapter. Here then it is only necessary to state that the heights have been checked by connection with the Spirit Leveling Operations of this Survey at twenty-one of the principal stations (specified at pages  $179_{-1}$  and  $180_{-1}$  of Volume VII); the magnitude of the errors of height which were generated in the course of the triangulation, and the methods by which they were dispersed, are set forth at pages 36 and 37 of Volume VII.

#### Secondary Triangulation.

The Secondary Triangulation which was executed in connection with the operations of this Series may be divided into three classes.

- (1). Triangles to fix the peaks of the Himalayan mountains.
- (2). Minor chains of triangles with off-shoots to fix points of importance at a distance from the principal series.
- (3). Ray traces.
- The Himalayan Snowy Peak Triangulation.—The whole of the most prominent peaks on the snowy ranges situated between the meridians of 78° and 89½° were fixed by observations taken mainly at the principal stations, but partly also at auxiliary stations situated at the eastern and western extremities of the Series, viz., in that portion of Sikkim which now belongs to the British Government and is known as the Darjeeling Hill Tracts, and also in the neighbourhood of Dehra Dún and Mussooree. The operations in Sikkim were executed in person by the then Surveyor General, Colonel Waugh. tions at the hill stations, whether principal or secondary, were collaterally of much service in determining values of the coefficients of refraction to be employed in reducing the vertical observations which were made at the stations in the plains. For the mutual observations between the stations which were situated on the mountains furnished values of the coefficient of refraction which might safely be adopted in computing the heights of all the snowy peaks observed at those stations, as the atmospheric conditions to which the rays between the stations and the rays between the stations and the peaks, were subjected, were fairly similar. But in the mutual observations between the principal stations situated in the plains, which considerably preponderated over the hill stations, the rays of light grazed the surface of

the ground, passing through an atmosphere of which the lower strata were very generally rarified by heat radiated from the surface of the ground, at the usual time for vertical observations; and this induced a refraction which was very slight in all cases, and was sometimes even negative in sign instead of positive, as in the "Observations of Terrestrial Refractions on the Plains of the Punjab", which form the subject of Appendix 3 of Volume II; on the other hand the rays of light between the principal stations and the snowy peaks passed high above the ground, and were refracted to a very much greater degree and always positively. Thus it is obvious that the values of the coefficient of refraction resulting from the mutual observations between the stations in the plains could not be employed in the reduction of the vertical angles at those stations to the snowy peaks. Consequently the heights of all the peaks which were observed at the hill stations—in Sikkim, and afterwards at the western extremity of the principal series—were regarded as fixed by the observations at those stations, and were employed in calculating the probable values of refraction in the observations to the same peaks from the stations in the plains; and then these values were employed in obtaining coefficients of refraction to be used in reducing the observations to such of the peaks as were observed only at the stations in the plains.

(2). Other Chains of Triangles.—Of these the most important was the triangulation to the subsidiary stations in Sikkim, at the eastern extremity of the Series, which was undertaken by the Surveyor General in person. It emanated from a base formed on the line cxvIII to cxxIII, and was executed with the largest theodolites which could be conveniently transported to the hill stations; thus Troughton's 36-inch theodolite was employed at Darjeeling, an 18-inch theodolite at Senchál and Birch hill, and a 12-inch at Tonglo, in measuring both the angles of the triangles and those to the snowy peaks.

On the western extremity of the Series auxiliary stations were fixed on the well known mountains of Nágtibba, Kidárkánta, Sirkanda &c., from which observations were taken—some by Colonel Everest when Surveyor General—to Gangotri, Jamnotri, and all the other prominent peaks of the Himalayas in this region. Observations were also taken at the hill stations of Jagesar and Khánkra, situated on the prolongation of the Rangír Meridional Series, which were principal stations of that Series as originally executed, but were omitted from the revisionary operations, probably because of the difficulty of conveying the large theodolites to them, and are now classed among the auxiliary stations.

A chain of minor triangles of which the angles were measured with a 7-inch theodolite was executed for a boundary survey of Nepal. It stretches from Station LII (Paragawa) to Station LXXXIV (Bulákípur).

A chain of first class triangulation with a 14-inch theodolite was carried, from the side Dahlelnagar (xxv of N.-E. L. S.) to Jarúra (xxxII of Amua Series), down to the town of Sháhjahánpur.

(3). Ray Traces.—These consist of chains of triangles which were carried over the sides of some of the principal triangles in the plains, with the primary object of enabling the direction of the lines between the stations to be exactly determined, before the 'ray cuting', as it was called, was commenced. The stations were about 2 miles apart, and were marked by a stout wooden pin, driven firmly into the ground, over which a flagstaff—usu-

#### NORTH-EAST LONGITUDINAL SERIES.

XVI_____

ally a long bamboo—was erected for observation. The three angles of each triangle were measured with 12-inch theodolites. The requisite directions could be and usually were computed from the triangulation, without any knowledge of the side-lengths; this could only be obtained with accuracy after the lengths of the sides of the principal triangles had been determined; see Chapter II, Part IV, of the Manual of Survey for India by Colonels Thuillier and Smyth. In the course of the execution of the ray traces, observations were taken to all visible points in the immediate neighbourhood which it might be useful to fix for topographical purposes; thus some of the ray traces became of additional importance, and the details of thirty of them, fixing about 400 points, are given in manuscript Volume XV of the Trigonometrical Survey.

It is intended to publish all necessary information regarding the results of the secondary triangulation which has been executed in connection with the operations of this Series, hereafter, in the Synoptical Volume for the Series, as is usual for all the secondary triangulation of this Survey; the preparation of that volume has however been postponed for the present, owing to a press of work of more immediate importance.

Dehra Don:	
November 1881.	J. T. WALKER.

## ALPHABETICAL LIST OF STATIONS.

Amúa	•	•	•	•	LXXXIII.	Dewánganj	•	•	•		CII.
Anárkali	•	•	•	•	XXXVII.	Dharamsing	1a .	•	•		LVI.
Asogápúr	•	•	•	•	XXIX.	Dhela	•	•			<b>V</b> .
Atária	•	•	•	•	XI.	Dipái					LXXX.
Atkonawa	•	•	•	•	XXXVI.	Dipnagar				•	CXIV.
Bágápár	•	•	•	•	LXI.	Donáo			_	•	XII.
Bagwára	•	•			VII.	Dúmdángi	•	•	•		CXXIII.
Baisi	•	•	•	•	CIV.	Ganespúr	•	•	•	•	XLVIII.
Bájra	•	•	•		LXVIII.	Ghandiál	•	•		•	LVI.
Bakwa	•	•	•	•	LXIX.	(of Great Arc Mer	idional	Series)	. •	•	<b>1711.</b>
Balúa	•	•	•	•	LXVI.	Gháos	•	•	•	•	LIV.
Bánarsi	•	•		•	LX.	Gharbaria	•	•	•	•	LVIII.
Bandarjúla	•	•	•		CXVIII.	Ghiba	•	•	•	•	CIX.
Bánghora		•	•		CXIII.	Ghungti		•	•	•	IV.
Bángra		•			LIII.	Girjwála	•			•	III.
Bankata		•			LI.	Harnáhi		•			LXXVI.
· Bansídíla		•		•	XLV.	Harpúr			•		C.
Barháta	•				CI.	Hilgi			•	•	XXVI.
Barsám			•		XCV.	Himáonpúr			•	•	LXXXVII.
Batwaia	•			•	LXXVIII.	Isrápúr 1	•	•		•	XLI.
${f B}{f e}{f h}{f e}{f r}{f i}$			•	•	IX.	Janjpati	•			•	XCVI.
Bela			•	•	XXXIII.	Jirol		_	•	•	XC.
Bharmi	,	•	•	•		Káimkhera	•			•	XIV.
Bhela	•	•	•	•	LVII.	Kalíánpúr	•	•	•	•	XIII.
Bhería Bisanp	úr	•	.•	•	XCVII.	Kamaldáha	•	•	•	•	CXII.
Bíarwa	, ui	•	•	•	XCIII.	Kanchábári	•	•	•	•	
Bigoía	•	•	•	•	LXXV.	Karái	•	•	•	•	CXXIV.
Birond	•	•	•	•	LXXVII.	Khánpúr	•	•	•	•	XXI.
Bulákípúr	•	•	•	•	VIII.	Kharkhari	•	•	•	•	XXXIV.
Chanda	•	•	•	•	LXXXIV.	Kokra	•	•	•	•	CXIX.
Chandarsanpúi	•	•	•	•	LXIV.	Kutía	•	•	•	•	XXIII.
Chándípahár	•	•	•	•	XCI.	Lachmípúr	•	•	•	•	XXVIII.
(of Great Arc Meric	lional	Series).	•	•	LIV.	Ladnía	•	•	•	•	CXVI.
Chelúa	•	•			XXXII.	Lákún	•	•	•	•	XCVIII.
Chotáki		•		_	CXXV.	Latona Latona	•	•	•	•	XXXI.
Chúni	•			•	CVI.		•	•	•	•	CIII.
Dadaora		•	•	•	XXXVIII.	Lohápánia Mábanyak	•	•	•	•	XLIV.
Dahlelnagar		-	•	•		Mábegarh Madagar	•	•	•	•	<u>I</u> .
Daorára		•	•	•	XXV.	Madanpúr Madanpúr	•	•	•	•	LXXXV.
	•	•	•	•	XXX.	Majháwa	•				XLVII.

### NORTH-EAST LONGITUDINAL SERIES.

2—*1*.

# ${\tt ALPHABETICAL\ LIST\ OF\ STATIONS--(Continued.)}$

<b>Mánícháok</b>	•	. •	•	•	XLII.	Ránígarh	•	•	•	•	П.
<b>Má</b> nikpú <b>r</b>	•	•	•	•	CXI.	${f R}$ úp ${f di}$	•		•	•	LXXIX.
Manúla		•	•	•	CVIII.	Saibara	•	•	•	•	XLIII.
<b>M</b> asáha	•	•	•	•	LXXXI.	Saidar <b>a</b>	•	•		•	XXVIL
Mási	,	•	•	•	XXXV.	Sáonbarsa	•	•	•		LIX.
Mathia	•	•		•	LXV.	Sáoncháli <b>a</b>	• .	•	•	•	VI.
Mehesari	•	•	•		LII.	Sathwári <b>a</b>	•	•	•	•	LXXIII.
(of Great Arc Mer	idion	al Serie	).			Semráh <b>a</b>	•	•	•	•	XCIX.
Minai	•	•	•	•	CV.	Semráo		•			XVII.
Mirzápúr	•	•	•	•	XCIV.	Shágarh		•	•	•	XVI.
$\mathbf{M}$ orairi	•	•	•	•	LXIII.	Shápúr		•	•		LXXXIX.
<b>M</b> úsaldanga	•	•	•	•	CXV.	Sikta					LXXIV.
Naonangarhi	•	•	•	•	LXXI.	Sinaría					LXXXII.
Narhar	•	•	•	•	XCII.	Sísgarh		•	•	•	<b>X.</b>
Newáda	•	•	•	•	XL.	Sonákhoda	•		•	•	CXXL
Newáni	•	•	•	•	CXXVI.	Sultánpúr		•	•	•	XX.
Nirpúr	•	•	•	•	CX.	Sundai	•		_		LXXXVL
Paragawa	•	•	•	•	LII.	Súpúr	•	•	•	•	LXIL
Pargáwa	•	•	•	•	LXXXVIII.	Tagría	•	•	•	•	CXVIL
Pathardi	•	•	•	•	L.	Tarharwa	•	•	•	•	LXXII.
<b>P</b> ipári	•	•	•	•	XLIX.	Thákúrganj	•	•	•	•	CXX.
Piparía	•	•	•	•	XIX.	Tilakurganj Tilakpúr	•	•	•	•	XXXIX.
Púrena	•		•	•	LV.		•	•	•	•	XLVI.
Rámganj		•	•	•	CXXII.	Tulsíp <b>ú</b> r	•	•	•	•	XVIII.
Rámnagar		•			XXIV.	Udepúr	•	•,	•	•	XVIII. XV.
Rámnagar			•	•	LXX.	Umra	•	•	•	•	
Rámnagar	•	•	•		CVII.	Upasai	•	•	•	•	LXVIL
Rámuápúr	•	•	•	•	XXII.						
ran	•	•	•	•	,						

### NUMERICAL LIST OF STATIONS.

LII					Mahammi	1 37373777					
1111	•	•	(of	Great A	Mehesari. rc Meridional Series).	XXXV	•	•	•	•	Mási.
LIV			•	_	Chándípahár.	XXXVI	•	•	•	•	Atkonawa.
	•	•	(of	Great A	rc Meridional Series).	XXXVII	•	•	•	•	Anárkali.
LVI	•	•	•		Ghandiál.	XXXVIII	•	•	•	•	Dadaora.
			(of	Great A	rc Meridional Series).	XXXIX	•	•	•	•	Tilakpúr.
1	•	•	•	•	Mábegarh.	XL	•	•	•		Newada.
$\Pi$	•	•		•	Ránigarh.	XLI	•	•	•		Isrápúr.
III	•	•		•	Girjwála.	XLII	•	•	•		Mánícháok.
IV		•		•	Ghungti.	XLIII	•	•		•	Saibara.
$\mathbf{v}$	•	•		•	Dhela.	XLIV	•	•			Lohápánia.
VI	•	•		•	Sáonchália.	XLV		•	•		Bansídíla.
VII				•	Bagwára.	XLVI				•	Tulsípúr.
VIII	•	•	•		Birond.	XLVII	•	•			Majháwa.
IX	•	•			Beheri.	XLVIII	•	•			Ganespúr.
$\mathbf{X}$	•				Sísgarh.	XLIX	•			•	Pipári.
XI					Atária.	ight  $ m L$			•	_	Pathardi.
XII		•			Donáo.	LI	•				Bankata.
XIII	•		•		Kalíánpúr.	LII			_		Paragawa.
XIV				•	Káimkhera.	LIII		•	_		Bángra.
XV		•	ì		Umra.	LIV	•	•	•	•	Gháos.
XVI					Shágarh.	LV		•	•	•	Púrena.
XVII	•	•			Semráo.	LVI		•	•	•	Dharamsingua.
XVIII			•	•	Udepúr.	LVII	•	•	•	•	Bharmi.
XIX	_		•	•	Piparía.	LVIII	•	•	•	•	Gharbaria.
XX	•	•	•	•	Sultánpúr.	LIX	•	•	•	•	Sáonbarsa.
XXI	•		•		Karái.	LX	•	•	•	•	Bánarsi.
XXII	_	•	•		Rámuápúr.	LXI	•	•	•	•	Bágápár.
XXIII			•	•	Kokra.	LXII	•	•	•	•	Súp <b>úr.</b>
XXIV	•	•	•	•	Rámnagar.	LXIII	•	•	•	•	Morairi.
XXV	•	•	•	•	Dahlelnagar.	LXIV	•	•	•	•	Chanda.
XXVI	•	•	•	•	Hilgi.	LXV	•	•	•	•	Mathia.
XXVII	•	•	•	•	Saidara.	LXVI	•	•	•	•	
XXVIII	• .	•	•	•	Kutía.		•	•	•	•	Balúa.
XXIX	•	•	•	•	Asogápúr.	LXVII	•	•	•	•	Upasai.
XXX	•	•	•	•	<u> </u>	LXVIII	•	•	•	•	Bájra.
	•	• .	•	•	Daorára.	LXIX	•	•	•	•	Bakwa.
XXXI	•	•	•	•	Lákún. Chalán	LXX	•	•	•	•	Rámnagar.
XXXII	•	•	•	•	Chelúa.	LXXI	•	•	•	•	Naonangarhi.
XXXIII	•	•	•	•	Bela.	LXXII	•	•	•	•	Tarharwa.
XXXIV	•	•	•	•	Khánpúr.	LXXIII	•	•	•	•	Sathwária.

### NORTH-EAST LONGITUDINAL SERIES.

# NUMERICAL LIST OF STATIONS—(Continued.)

LXXIV			•	. Sikta.	CI		•	•	•	Barháta.
LXXV		•	•	. Bíarwa.	CII				•	Dewánganj.
LXXVI	•	•	•	. Harnáhi.	CIII		•	•	•	Latona.
LXXVII				. Bigoía.	CIV		•		•	Baisi.
LXXVIII			•	. Batwaia.	$\mathbf{CV}$		•	•	•	Minai.
LXXIX		•		. Rúpdi	CVI		•	•	•	Chúni.
LXXX	•			. Dipái.	CVII	•	•	•	•	Rámnagar.
LXXXI			•	. Masáha.	CVIII	•	•	•	•	Manúla.
LXXXII			•	. Sinaría.	CIX	•		•		Ghiba.
LXXXIII		•	•	. Amúa.	$\mathbf{C}\mathbf{X}$	•	•	•	•	Nirpúr.
LXXXIV		•	•	. Bulákípúr.	CXI		•	•	•	Mánikpúr.
LXXXV			•	. Madanpúr.	CXII	•	•	•	•	Kamaldáha.
LXXXVI		•	•	. Sundai.	CXIII	•	•	•	•	Bánghora.
LXXXVII	• 、	•	•	. Himáonpúr.	CXIV	•	•	•		Dipnagar.
LXXXVIII	•	•		. Pargáwa.	$\mathbf{C}\mathbf{X}\mathbf{V}$	•	•	•	• '	Músaldanga.
LXXXIX	•	•	•	· Shápúr.	CXVI	٠,		•		Lachmípúr.
XC	•		•	. Jirol.	CXVII	•	•	•	•	Tagría.
XCI	•		. •	. Chandarsanpúr.	CXVIII	•	•	•	•	Bandarjúla.
XCII	•	•	•	. Narhar.	CXIX		•	•	•	Kharkhari.
XCIII	•	•	•	Bhería Bisanpúr.	$\mathbf{C}\mathbf{X}\mathbf{X}$	•				Thákúrganj.
XCIV	•	•		. Mirzápúr.	CXXI	•	•	•	•	Sonákhoda.
XCV		•	•	. Barsám.	CXXII			•		Rámganj.
XCVI	. •	•		. Janjpati.	CXXIII		•	•	•	Dúmdángi.
XCVII		•		. Bhela.	CXXIV	•			•	Kanchábári.
XCVIII	•	•	•	. Ladnía.	CXXV	•			•	Chotáki.
XCIX	•	•	•	. Semráha.	CXXVI	•	•		•	Newáni.
C	•	•	•	. Harpúr.						

#### NORTH-EAST LONGITUDINAL SERIES.

#### DESCRIPTION OF STATIONS.

- LII. Mehesari Tower Station (for description, see Great Arc Meridional Series).
- LIV. Chándípahár Hill Station (for description, see Great Arc Meridional Series).
- LVI. Ghandiál Hill Station (for description, see Great Arc Meridional Series).
- I. Mábegarh Hill Station, lat. 29° 53′, long. 78° 30′, is situated on the hill of that name in the Ajmere pargana of the Garhwal district. A rude temple adjoins the station to the south. The villages of Nahli and Budholi are distant about 3 miles to the N., and the encampment of Sahor, on the road from Kotdwára, is about 9 miles off.

The pillar is solid, and 6.9 feet high. It has a mark-stone at top, and another 5.9 feet below.

II. Ránigarh Hill Station, lat. 30° 4′, long. 78° 45′, stands on the highest part of the hill of that name, in the Baraseo pargana of the Garhwal district. The adjacent places are,—the civil station of Paori, distant about 7 miles to the N.N.E.; the village of Naiáthána, about 6 miles, and the spring of Adwani, on the high-road from Kotdwára to Srínagar, about half a mile to the E.

The pillar is solid, and 2.5 feet high. It has a mark-stone at top, and another at bottom.

III. Girjwála Hill Station, lat. 29° 33′, long. 78° 45′, is built on the high peak of that name, which is one of the low range of hills that divides the Patli Doon from the Doab. It is situated in the Garhwal district. The circumjacent places, with their distances and bearings, are,—Barápúra village (in the Bijnor district), about 10 miles W.; Kálúsaiud choki, about 4 miles N.W.; Kiloli cattle sheds, about 1½ miles S., and the small village of Bhogpúr, about 4½ miles in the same direction.

The pillar is solid, and 2 feet high. It has one mark-stone at top, and another at bottom.

IV. Ghungti Hill Station, lat. 29° 46′, long. 78° 58′, stands on the hill of Ghungti or Ghungtigarh, in the Iríagarh pargana of the Garhwal district. The circumjacent places, with their distances and bearings, are,—Samroli village, about 2 miles N.W.; Naosera village, about 4 miles, and Kimúsera village, about 5 miles distant.

The pillar is solid, and 3 feet high. It has a mark-stone at top, and another at bottom.

V. Dhela Hill Station, lat. 29° 27′, long. 79° 2′, is situated in the Kumaon district, and stands near the south-eastern extremity of the Patli Doon, on the low range of hills which divides this Doon from the plains of Rohilcund. The adjacent places, with their distances and bearings, are,—the small village of Dhela, in tahsil Kashípúr of the Moradabad district, about 2 miles to the S.E.; and the mandi or mart of Chilkia, about 10 miles in the same direction.

The pillar is solid, and 1.7 feet high. It has a mark-stone at top, and another at bottom.

VI. Sáonchália Hill Station, lat. 29° 30′, long. 79° 22′, is situated in pargana Kota, thana Kálidongi of the Kumaon district, and stands on a lofty peak in the southern range of the Sub-Himalaya mountains. The circumjacent villages, with their distances and bearings, are,—Halsan, about 6 miles to the N.E.; Kanamajot, about 7½ miles to the W., and Begni, about 5 miles to the S.S.W.

The pillar is solid, and 4 feet high. It has a mark-stone at top, and a mark engraved on the rock in situ.

VII. Bagwara Tower Station, lat. 28° 59′, long. 79° 22′, is situated in the Rúdarpúr pargana of the Tarai district, and stands on an elevated mound, distant about 500 yards to the N. of the village of Bagwara. The adjacent villages, with their distances and bearings, are,—Rúdarpúr about 5 miles to the E., and Lambákhera, about 2 miles to the W.

The pillar is perforated, and 38.5 feet high. It has a mark-stone at level of ground floor.

VIII. Birond Hill Station, lat. 29° 15′, long. 79° 45′, is situated in pargana Díánirao, thana Haldwáni of the Kumaon district, and stands on the southern range of the Sub-Himalaya mountains. The village of Birond is distant about 2½ miles to the N.N.E.

The pillar is solid. It has a mark-stone at top, and a mark engraved on the rock in situ.

IX. Beheri Tower Station, lat. 28° 52′, long. 79° 38′, is situated in pargana Rúdarpúr of the Tarai district, and stands on an eminence close to the west side of the village after which it is named. The circumjacent villages, with their distances and bearings, are,—Ajítpúr, about 1 mile S.; Bára, about ½ of a mile E.; Ratangarh, about 3 miles S.S.W.; and Shágarh, about 8 miles S.W. The low forest of the Tarai runs within 2 miles of the village of Beheri.

The pillar is perforated, and 37.8 feet high. It has a mark-stone at level of ground floor.

X. Sisgarh Tower Station, lat. 28° 44′, long. 79° 21′, is situated in pargana Sirsáñwan, thana Dhunka, and tahsil Shai of the Bareilly district. It is in the centre of a fort, after which it is named. The fort is built on a mound, elevated about 40 feet above the level of the surrounding country. The high-road from Bareilly to Almora passes by the station. The large village of Sisgarh is situated immediately to the N.

The pillar is perforated, and 38 feet high. It has a mark-stone at level of ground floor.

XI. Atária Tower Station, lat. 28° 38′, long. 79° 38′, is situated in pargana Richa, tahsil Jehánábád of the Bareilly district, and stands on a mound near the left or east bank of the Baigul river. The circumjacent places, with their distances and bearings, are,—the small village of Atária, about ½ a mile N.E.; Beraor village, about 2 miles S.W.; Nawábganj, a town on the Pilibhít and Bareilly road, about 8 miles S.S.E.; and the large town of Richa, about 7 miles N.N.W.

The pillar is perforated, and 37.8 feet high. It has a mark-stone at level of ground floor.

XII. Donáo Tower Station, lat. 28° 45′, long. 79° 48′, is situated in pargana Parewa, than and tahsil Jehánábád of the Bareilly district, and stands on a low mound, said to be the site on which the village of Donáo stood. The circumjacent villages, with their distances and bearings, are,—Bára Manjilia, about 1 mile to the S.E.; Udepúr, 1.4 miles N.N.W.; Bare, 1 mile E.S.E.; Pinjára, 2·13 miles S. by W., and Omiria, 1.6 miles W. by N. The minarets of Pilibhít are visible from the tower, being distant 7.9 miles towards the S.S.E.

The pillar is solid, and 24 feet high. It contains five mark-stones, one at top, another 2 feet above the bottom, and three others at distances of 4, 10, and 16 feet respectively below the former.

XIII. Kalíánpúr Tower Station, lat. 28° 35′, long. 79° 47′, is situated in pargana Parewa, thana and tahsil Jehánábád of the Bareilly district, and stands on a mound about 15 feet high, the eastern declivity of which is occupied by the small village from which the name of the station is derived. The adjacent villages are,—Seopuri and Senjána to the N.E., and Kamaría and Dáñría to the S.W., the large village of Jehánábád being distant about 4 miles to the N.W.

The pillar is solid, and 20 feet high. It has four mark-stones, one at top, the other three placed at 2, 8, and 14 feet respectively above the level of ground floor.

XIV. Káimkhera Tower Station, lat. 28° 37′, long. 79° 55′, is situated in pargana Pilibhít of the Bareilly district, and stands on a flat piece of cultivated land almost midway between the villages of Káimkhera and Naogáoń-Kalíánpúr. The minarets of Pilibhít are visible from the station, being distant 4.9 miles to the W. by N.

The pillar is solid, and 24 feet high. It has five mark-stones, one at top, the others at 2, 8, 14, and 20 feet respectively above the level of ground floor.

XV. Umra Tower Station, lat. 28° 29′, long. 79° 55′, is situated in pargana Bisalpúr of the Bareilly district, and stands on a low mound elevated about 10 feet above the general level of the surrounding country. The adjacent villages, with their distances and bearings, are,—Umra, about 300 yards S.S.W., and Amdar, about 0.7 of a mile S.S.E.

The pillar is solid, and 20 feet high. It has four mark-stones, one at top, the others at 2, 8, and 14 feet respectively above the level of ground floor.

XVI. Shágarh Tower Station, lat. 28° 33′, long. 80° 4′, is situated in pargana Powain of the Sháhjehánpúr district, and stands on the centre of a mound said to be the site of the ancient fort of Shágarh. The broad belt of forest which borders the Malan river approaches within ½

of a mile of the station. The adjacent villages, with their distances and bearings, are,—Shágarh, on the eastern declivity of the mound, about 100 yards to the E., and Púranpúr, about 6 miles in the same direction.

The pillar is solid, and 20 feet high. It has four mark-stones, one at top, the others at 2, 8, and 14 feet respectively above the level of ground floor.

XVII. Semráo Tower Station, lat. 28° 23′, long. 80° 4′, is situated in pargana Powain of the Sháhjehánpúr district, and stands on a small low mound adjoining a tank. The adjacent villages, with their distances and bearings, are,—Semráo, about 1½ miles towards the N.N.E., and Gunsíai, about 4½ miles N.E. The dense forest which borders the Kanont and Malan rivers lies about ½ of a mile W. of the station.

The pillar is solid, and 27 feet high. It has four mark-stones, one at top, the others at 5, 18, and 21 feet respectively above the level of ground floor.

XVIII. Udepúr Tower Station, lat. 28° 29′, long. 80° 13′, is situated in pargana Powain, of the Sháhjehánpúr district. The circumjacent villages, with their distances and bearings, are,—Udepúr, about ½ a mile to the N.E. by N.; Lálpúr, about ½ a mile to the N.N.E.; and Púranpúr, about ½ miles to the N.W.

The pillar is solid, and 22 feet high. It has five mark-stones, one at top, the others at 4, 11, 19, and 21 feet respectively above the level of ground floor.

XIX. Piparía Tower Station, lat. 28° 20′, long. 80° 13′, is situated in pargana Kothar, of the Sháhjehánpúr district, and stands on an extensive grassy plain, about midway between the Gumti and Juknía rivers. The adjacent villages, with their distances and bearings, are,—Piparía, about 0.6 miles towards the N.W. by W., and Guluria, 3.3 miles to the W.N.W.

The pillar is solid, and 25 feet high. It has five mark-stones, one at top, the others at 4, 12, 20, and 24 feet respectively above the level of the ground floor.

XX. Sultánpúr Tower Station, lat. 28° 25′, long. 80° 21′, is situated in pargana Kothar, of the Sháhjehánpúr district. The circumjacent places, with their distances and bearings, are,—Sultánpúr village, about ‡ of a mile to the S.S.E.; Seramao village, about 5 miles to the S.E., and the ruins of the ancient fortress of Mathi, 2 miles to the S.W.

The pillar is solid, and 28 feet high. It has a mark-stone at top, and two others at 5 and 13 feet respectively above the level of ground floor.

XXI. Karái Tower Station, lat. 28° 16′, long. 80° 21′, is situated in the Kothar pargana of the Sháhjehánpúr district, and stands on low ground in the midst of a dense forest. The Katna stream is not far distant to the E. The adjacent villages, with their distances and bearings, are,—Karái, about 1 mile to the W.S.W.; Nanaota, about 1½ miles S.W., and Kothar, about 4 miles to the S.

The pillar is solid, and 26 feet high. It has five mark-stones, one at top, the others at 5, 12, 19, and 25 feet respectively above the level of ground floor.

XXII. Rámuápúr Tower Station, lat. 28° 22′, long. 80° 31′, is situated in pargana Nighásan of the Khairábád district. The village of Pipáría is distant 1.05 miles to the S.E.

The pillar is solid, and 28 feet high. It has a mark-stone at top, and another at bottom.

XXIII. Kokra Tower Station, lat. 28° 12′, long. 80° 31′, is situated in tehsíl Haidarábád of the Mahamdi district, and stands on flat ground on the verge of an extensive jungle. The village of Kokra is distant about 1½ miles to the S.W.

The pillar is solid, and 26 feet high. It has a mark-stone at top, a second at level of ground floor, a third 2 feet below, and two others at 4 and 10 feet respectively above, this level.

XXIV. Rámnagar Tower Station, lat. 28° 17′, long. 80° 42′, is situated in tehsíl Nighásan of the Khairábád district. The Chaoka river flows about ‡ of a mile away, and the village of Rámnagar is close by to the E.

The pillar is 27.9 feet high. It has a mark-stone at top, another at bottom, and a third at 23.8 feet above the latter.

XXV. Dahlelnagar Tower Station, lat. 28° 4′, long. 80° 41′, is situated in tehsil Aliganj of the Mahamdi district, and occupies the highest part of the mound on which the village of Dahlelnagar stands.

The pillar is solid, and 28 feet high. It has a mark-stone at top, and another at bottom.

XXVI. Hilgi Tower Station, lat. 28° 8′, long. 80° 50′, is situated in pargana Nighásan of the Khairábád district, and stands on a slightly elevated piece of ground, the site of the ancient village of Hilgi. The station is situated on the right bank of the Chaoka river, from which it is distant about 500 yards.

The pillar is solid, and 38 feet high. It has a mark-stone at top, another at bottom, and some others between.

XXVII. Saidara Tower Station, lat. 27° 58′, long. 80° 49′, is situated in pargana Kheri of the Khairábád district, and stands on the site of an ancient town elevated about 40 feet above the surrounding country. The adjacent places, with their distances and bearings, are,—Máháwáganj village, about 1 mile to the N., and Kheri, a town, about 3 miles to the S.E. The station is on the right bank of the river Ul, which, in part, forms the boundary of the Tarai.

The pillar is solid, and 22.5 feet high. It has a mark-stone at top, another at bottom, and five others at 4, 8, 12, 16, and 20 feet respectively above the latter.

XXVIII. Kutía Tower Station, lat. 28° 3′, long. 80° 58′, is situated in pargana Nighásan, of the Khairábád district, and is built on the elevated site on which the village of Kutía stands. The Ghágra, a small river which falls into the Chaoka, flows at the distance of ‡ a mile to the N.E.

The pillar is solid, and 22.5 feet high. It has a mark-stone at top, another at bottom, and three others at 6, 12, and 18 feet respectively above the latter.

XXIX. Asogápúr Tower Station, lat. 27° 53′, long. 80° 59′, is situated in pargana and tehsíl Oel of the Khairábád district, and stands on a mound elevated about 12 feet above the level of the annual inundation of the Chaoka river. The station is about 50 yards to the W. of the village of Asogápúr.

The pillar is solid, and 24 feet high. It has a mark-stone at top, another at bottom, and two others at 6 and 15 feet respectively above the latter.

XXX. Daorára Tower Station, lat. 28° 0′, long. 81° 8′, is situated in tehsíl Daorára of the Khairábád district, and stands within an old fortress in the centre of the village of Daorára. The site of the tower is elevated about 16 feet above the level of the surrounding country.

The pillar is solid, and 22 feet high. It has a mark-stone at top, another at bottom, and three others at 6, 12, and 18 feet respectively above the latter.

XXXI. Lákún Tower Station, lat. 27° 49′, long. 81° 9′, is situated in pargana Tambaor of the Khairábád district, and stands in the centre of the village of Lákún. The site of the tower is elevated about 13 feet above the level of the annual inundation.

The pillar is solid, and 24 feet high. It has a mark-stone at top, another at bottom, and two others at 2 and 8 feet respectively above the latter.

XXXII. Chelúa Tower Station, lat. 27° 56′, long. 81° 17′, is situated in pargana Isánagar of the Khairábád district, and stands between the small village of Chelúa and the Ghágra or Sárju river. It is distant about ½ a mile from the former, and some 1½ miles from the latter. The village of Isánagar is distant about 2 miles to the S.S.W.

The pillar is solid, and 24 feet high. It has a mark-stone at top, another at bottom, and two others at 8 and 16 feet above the latter.

XXXIII. Bela Tower Station, lat. 27° 47′, long. 81° 21′, is situated in pargana Mulápúr of the Khairábád district. It stands on a slightly elevated piece of ground, on an island in the Ghágra or Sárju river.

The pillar is solid, and 24 feet high. It has a mark-stone at top, another at bottom, and two others at 2 and 8 feet respectively above the latter.

XXXIV. Khánpúr Tower Station, lat. 27° 39′, long. 81° 12′, is situated in pargana Mulápúr of the Khairábád district, and stands in the centre of an old fortress within the village of Khánpúr. The site of the station is elevated about 40 feet above the level of the surrounding country.

The pillar is solid, and 12 feet high. It has a mark-stone at top, and another at midheight.

XXXV. Mási Tower Station, lat. 27° 38′, long. 81° 26′, is situated in pargana Baori of the Baráich district, and stands in the centre of the village of Mási. The site of the station is elevated about 8 feet above the level of the annual inundation. The village of Mulápúr is distant about 6 miles to the N.W., and Chalári village, about the same distance to the S.W.

The pillar is solid, and 24 feet high. It has a mark-stone at top, and two others at 3 and 8 feet respectively above the level of foundation.

XXXVI. Atkonawa Tower Station, lat. 27° 46′, long. 81° 32′, is situated in pargana and thána Nándpára of the Baráich district, and is built on the site of a deserted village on the western extremity of the high ground bounding the kádar of the Ghágra river.

The pillar is solid, and 30 feet high. It has a mark-stone on its upper surface.

XXXVII. Anárkali Tower Station, lat. 27° 36′, long. 81° 39′, is situated in pargana, thána and district Baráich, and stands on the site of a deserted village on the western extremity of the high ground which bounds the kádar of the Ghágra river. The city of Baráich is distant about 2 miles to the S.S.W.

The pillar is solid, and 30 feet high. It has a mark-stone on its upper surface.

XXXVIII. Dadaora Tower Station, lat. 27° 43′, long. 81° 45′, is situated in pargana Nándpára of the Baráich district, and stands on the N.W. corner of an old fortress, in the lands belonging to the village of Dadaora.

The pillar is solid, and 30 feet high. It has a mark-stone on its upper surface.

XXXIX. Tilakpúr Tower Station, lat. 27° 33′, long. 81° 49′, is situated in máoza Tilakpúr, thána and tehsíl Akaona of the Baráich district, and stands on the eastern bank of a tank distant about 2½ miles to the S.W. of Kaliánpúr village. The other adjacent villages, with their distances and bearings, are,—Gilaolia, 1¾ miles E., and Bhataora, 1¼ miles N.E.

The pillar is solid, and 28 feet high. It has a mark-stone at top, and another 2 feet below.

XL. Newáda Tower Station, lat. 27° 40′, long. 81° 57′, is situated in máoza Newáda, pargana, thána and tehsíl Bhinga of the Baráich district. The circumjacent places, with their distances and bearings, are,—Bhinga, a town, about 2½ miles N.E. by N.; Kowálpúr village, about 1½ miles S.E., and Amúa village, nearly 2 miles W.S.W.

The pillar is solid, and 28 feet high. It has a mark-stone at top, and another 2 feet below.

XLI. Isrápúr Tower Station, lat. 27° 29′, long. 81° 59′, is situated in máoza Bálápúr, pargana, thána and tehsíl Akaona of the Baráich district, and stands on the site of a deserted village distant 4 miles to the S.S.W. of Akaona temple. The village of Majháwa is about 5½ miles to the N.E. by N.

The pillar is solid, and 27 feet high. It has a mark-stone at top, and another 2 feet below.

XLII. Mánícháok Tower Station, lat. 27° 37′, long. 82° 7′, is situated in the centre of the small village of that name in pargana, thána and tehsíl of Balrámpúr, district Baráich.

The pillar is solid, and 28 feet high. It has a mark-stone at top, and another 2 feet below.

XLIII. Saibara Tower Station, lat. 27° 27′, long. 82° 8′, is situated in the district of Gonda Baráich, and stands at the N.W. angle of a square tank to the N. of the village of Saibara. The adjacent villages, with their distances and bearings, are,—Gidhuraia, about 1½ miles to the N.E., and Hasuadol, about 2.8 miles in the same direction.

The pillar is solid, and 24 feet high. It has four mark-stones, one at top, another at bottom, and other two at 8 and 16 feet respectively above the latter.

XLIV. Lohápánia Tower Station, lat. 27° 33′, long. 82° 17′, is situated in pargana, thána and tehsíl of Balrámpúr of the Baráich district. The adjacent places, with their distances and bearings, are,—Baghaia village, about 0.7 of a mile to the S.S.W.; Sugánagar village, about 2 miles in the same direction, and Juráwandi mosque, about 3 miles to the S.E.

The pillar is solid, and 24 feet high. It has a mark-stone at top, and another 2 feet below.

XLV. Bansídíla Tower Station, lat. 27° 24′, long. 82° 19′, is situated in pargana Balrámpúr of the Gonda Baráich district. The circumjacent villages, with their distances and bearings, are,—Birádi and Kimeria, 1 mile to the N.; Kankíra, on the Rápti river, 1 mile to the W.; Misaraolia and Kusha Balrámpúr, 5 miles to the W., and Dharamnagar, 2 miles to the S.

The pillar is solid, and 20 feet high. It has a mark-stone at top, and another at bottom.

XLVI. Tulsípúr Tower Station, lat. 27° 31′, long. 82° 28′, is situated in pargana, thána and tehsíl Tulsípúr of the Baráich district, and stands on the southern bank of a river, distant about ½ a mile S. by E. of the village of Tulsípúr. The adjacent villages, with their distances and bearings, are,—Sukrámpúr, about 1·3 miles to the S.W.; Madnagar, about 1 mile to the S.S.E., and Giráháwa, about ½ a mile to the S.

The pillar is solid, and 25 feet high. It has a mark-stone at top, and another 2 feet below.

XLVII. Majháwa Tower Station, lat. 27° 21′, long. 82° 32′, is situated in máoza Majháwa, pargana, thána and tehsíl Balrámpúr of the Baráich district. The circumjacent villages, with their distances and bearings, are,—Birda, about 2½ miles to the W.; Intai, about 1 mile N., and Singárjot, about 2½ miles to the S. by E.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another 2 feet below.

XLVIII. Ganespúr Tower Station, lat. 27° 28′, long. 82° 39′, is situated in máoza Ganespúr, pargana Baber, thána and tehsíl Panchpirwa of the Baráich district. The circumjacent villages, with their distances and bearings, are,—Bhagwánpúr, about 1½ miles N.; Semrána, about 1½ miles S.E., and Sisowa, about ½ of a mile to the S. by W.

The pillar is solid, and 25 feet high. It has a mark-stone at top, and another 2 feet below.

XLIX. Pipári Tower Station, lat. 27° 18′, long. 82° 42′, is situated in pargana Ratan-púr Báñsi, thána and tehsíl Báñsí, of the Goruckpúr district, and stands on the S.W. corner of an old fort in the village of Pipári. The circumjacent villages, with their distances and bearings, are,—Sihoria, about 1½ miles N.; Pirela, about 2 miles N. by E., and Semera, about 16 miles to the N.E. by E.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another at bottom.

L. Pathardi Tower Station, lat. 27° 26′, long. 82° 47′, stands on an elevated piece of ground, in máoza Biarwa, pargana Ratanpúr Báñsi, thána Jákub Itwa, tehsíl Báñsi, district Goruckpúr. The adjacent villages, with their distances and bearings, are,—Pathardi, about ½ a mile to the S.E. by E.; Bairchawa, about ½ of a mile to the N.E., and Semára, about 1 mile N.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another at bottom.

LI. Bankata Tower Station, lat. 27° 16′, long. 82° 52′, stands on a slightly elevated piece of ground, in máoza Bankata, pargana Ratanpúr Báñsi, thána Jákub Itwa, tehsíl Báñsi, district Goruckpúr. The adjacent villages, with their distances and bearings, are,—Asangáwa, somewhat less than ½ a mile to the S., and Tálpúrwa, nearly a mile to the S.S.W.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another at bottom.

LII. Paragawa Tower Station, lat. 27° 24′, long. 82° 58′, is situated in máoza Paragawa, pargana Ratanpúr Báñsi, thána Tharaoli, tehsíl Báñsi, district Goruckpúr. The station stands on the ruins of an old building, and is distant about 350 yards to the N. of the village of Paragawa; the other adjacent villages, with their distances and bearings, are,—Athari, about ¾ of a mile W.S.W., and Kárídia, 1 mile N.E.

The pillar is solid, and 16 feet high. It has a mark-stone at top, and another at bottom.

LIII. Bángra Tower Station, lat. 27° 13′, long. 83° 3′, stands on the west side of the village of that name, in máoza Bángra, pargana Ratanpúr Báñsi, thána and tehsíl Báñsi, district Goruckpúr. The circumjacent villages, with their distances and bearings, are,—Kelália, about 0.6 miles W.; Gonália, about 1 mile N.W. by N., and Sikaoda, about 1½ miles N.E.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another at bottom.

LIV. Gháos Tower Station, lat. 27° 21′, long. 83° 8′, stands on the summit of an elevated piece of ground, the site of an ancient village, in pargana Ratanpúr Báñsi, thána and tehsíl Báñsi, district Goruckpúr. The adjacent villages, with their distances and bearings, are,—Rámpúr, about 1½ miles W.S.W., and Birdpúr, somewhat more than 2 miles N.E. by N.

The pillar is solid, and 26 feet high. It has a mark-stone at top, and another at bottom.

LV. Púrena Tower Station, lat. 27° 11′, long. 83° 13′, stands in the village of that name, in pargana Haveli Goruckpúr, thána Deopúr, tehsíl Mansúrganj, district Goruckpúr. The adjacent villages, with their distances and bearings, are,—Mandúr, about 1½ miles S.; Rattúpúr, about 1½ miles N.E., and Pipári, about 2 miles N.

The pillar is solid, and 26 feet high. It has a mark-stone at top, and another at bottom.

LVI. Dharamsingua Tower Station, lat. 27° 5′, long. 83° 7′, is situated in pargana Báñsi of the Goruckpúr district, and stands on the bund of a tank 200 yards E.S.E. of Dharamsingua village, and 300 yards S.W. of that of Gaori-Rái.

The pillar is solid, and 25 feet high. It has a mark-stone at top, and another at bottom.

LVII. Bharmi Tower Station, lat. 27° 20′, long. 83° 18′, is situated in máoza Bharmi, pargana Benaikpúr west, thána Tharaoli, tehsíl Báñsi, district Goruckpúr. The circumjacent villages, with their distances and bearings, are,—Barwás, 0.8 miles S. by E.; Basaola, 2 miles S.W. by S.; Pikápár, about 2½ miles W. by S., and Sikári, about 3 miles W.N.W.

The pillar is solid, and 26 feet high. It has a mark-stone at top, and another at bottom.

Digitized by Google

__. ·.v

LVIII. Gharbaria Tower Station, lat. 27° 3′, long. 83° 18′, is situated in pargana Haveli Goruckpúr of the Goruckpúr district, and stands 50 yards within the western verge of the forest. The Gunghi nadi flows at about 1′8 miles to the W. The village of Gharbaria, near the road from Karmeni Ghat to Mahadeoa, is distant about 80 yards to the N.W.

The pillar is solid, and 25 feet high. It has a mark-stone at top, and another at bottom.

LIX. Sáonbarsa Tower Station, lat. 27° 11′, long. 83° 24′, stands at a distance of about 200 yards from the village of that name, and is situated in máoza Porandarpúr, pargana Haveli Goruckpúr, thána Deopúr, tehsíl Mansúrganj, and district Goruckpúr. The circumjacent villages, with their distances and bearings, are,—Máhádeoa, nearly 2 miles to the E.N.E.; Jampta, 11 miles N.W. by N., and Kaolda, nearly 21 miles N.W. by N.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another at bottom.

LX. Bánarsi Tower Station, lat. 27° 19′, long. 83° 29′, stands on the site of an ancient town, situated in máoza Bánarsi, pargana Haveli Goruckpúr, thána Deopúr, tehsíl Mansúrganj, district Goruckpúr. The circumjacent villages, with their distances and bearings, are,—Barwára, nearly ‡ of a mile to the N.W. by N.; Karela, 2 miles N.W. by W.; Pipráhia, 1 mile S. by E., and Harmandil, 1‡ miles S.W.

The pillar is solid, and 16 feet high. It has a mark-stone at top, and another at bottom.

LXI. Bágápár Tower Station, lat. 27° 11′, long 83° 34′, stands on the site of a deserted village situated in máoza Bágápár, pargana Haveli Goruckpúr, thána and tehsíl Mansúrganj of the Goruckpúr district. The circumjacent villages, with their distances and bearings, are,—Bágápár, 1 mile N. by W.; Nadúa, 2 miles N.E., and Lakima, about 1½ miles S.S.E.

The pillar is solid, and 25 feet high. It has a mark-stone at top, and another at bottom.

LXII. Súpúr Tower Station, lat. 27° 18′, long. 83° 41′, stands on a slight swell of ground, situated in máoza Súpúr, pargana Tilpúr, thána Kothíbhár, tehsíl Mansúrganj, and district Goruckpúr. The circumjacent villages, with their distances and bearings, are,—Súpúr, 1½ miles N.E. by E.; Ganespúr, nearly 1½ miles S.E. by E., and Kohorawál, nearly 2½ miles E. by N.

The pillar is solid, and 26 feet high. It has a mark-stone at top, and another at bottom.

LXIII. Morairi Tower Station, lat. 27° 10′, long. 83° 44′, stands on a mound, elevated 15 feet above the level of the surrounding country, and situated in pargana Tilpúr, thána Kothíbhár, district Goruckpúr. The site of the deserted village of Morairi is distant about ½ of a mile to the S.W. The circumjacent villages, with their distances and bearings, are,—Majhána, nearly 1½ miles N.W.; Rámpúr, 1 mile N., and Karmáhi, 2 miles N.E. by N.

The pillar is solid, and 15 feet high. It has a mark-stone at top, and another at bottom.

LXIV. Chanda Tower Station, lat. 27° 16′, long. 83° 51′, is situated in pargana Tilpúr, thána Kothíbhár, district Goruckpúr, and stands on the western bank of a large tank, distant about 2 miles to the N.E. of the village of Chanda, belonging to the rája of Nichlaol.

The pillar is solid, and 26 feet high. It has a mark-stone at top, and another at bottom.

LXV. Mathia Tower Station, lat. 27° 8′, long. 83° 54′, is situated in máoza Mathia, pargana Sidhoa Jabuna, thána Nimua, and district Goruckpúr, and is distant 1½ miles to the S.W. by W. of the village of Mathia. The adjacent villages, with their distances and bearings, are,—Langari, 1 mile to the N.W., and Phatakdaona, ½ of a mile to the S. by E.

The pillar is solid, and 27 feet high. It has a mark-stone at top, and another at bottom.

LXVI. Balúa Tower Station, lat. 27° 14′, long. 84° 3′, stands on a swell of ground situated in máoza Balúa, pargana Majhowa, thána Bágha, and district Champáran. The station is on the outskirts of a forest which runs along the east bank of the Gandak river. The circumjacent villages, with their distances and bearings, are,—Balúa, 1½ miles N. by E.; Bailawa, 1½ miles N.N.W., and Tulsundi, ½ a mile S.

The pillar is solid, and 20 feet high. It has a mark-stone at top, and another at bottom.

LXVII. Upasai Tower Station, lat. 27° 5′, long. 84° 4′, is situated in máoza Upasai, pargana Sidhoa Jabuna, thána Nimua, of the Goruckpúr district. The station stands on the western bank of a branch of the Gandak river which separates the Sáran from the Goruckpúr district. The circumjacent villages, with their distances and bearings, are,—Upasai, 1½ miles S.W.; Upasai-tola, 1 mile W., and Belwanía, 2 miles W.N.W.

The pillar is solid, and 27 feet high. It has a mark-stone at top, and another at bottom.

LXVIII. Bájra Tower Station, lat. 27° 12′, long. 84° 11′, stands on the site of a deserted village, situated in máoza Bhikaolia, pargana Majhowa, thána Bágha, and district Champáran. The circumjacent villages, with their distances and bearings, are,—Dhakdhía, nearly 1 mile S. by E., and Semra, 1½ miles W. by N.

The pillar is solid, and 20 feet high. It has a mark-stone at top, and another at bottom.

LXIX. Bakwa Tower Station, lat. 27° 3′, long. 84° 14′, is situated in máoza Bakwa, pargana Majhowa, thána Bágha, and district Champáran. The village of Bakwa is distant 04 of a mile to the W.S.W.; the other circumjacent villages, with their distances and bearings, are,—Mathia, rather more than ½ of a mile to the E.N.E., and Bisambharpúr, 2½ miles to the N.N.E.

The pillar is solid, and 20 feet high. It has a mark-stone at top, and another at bottom.

LXX. Rámnagar Tower Station, lat. 27° 9′, long. 84° 22′, stands nearly 1 mile to the S. by E. of the Rámnagar rája's house, and is situated in máoza Bela, pargana Rámnagar, thána Banjaría, and district Champáran. Bela temple is distant nearly ‡ of a mile to the W.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another at bottom.

LXXI. Naonangarhi Station, lat. 26° 59′, long. 84° 26′, is situated in máoza Marahia, pargana Majhowa, thána Betia, district Champáran, and stands on the highest part of the ruins of an ancient fortress, elevated about 82 feet above the level of the surrounding country. The village of Laoríha is distant nearly  $\frac{3}{4}$  of a mile to the N.E. by E.

The pillar is solid, and 2 feet high. It has a mark-stone at top, and another at bottom.

LXXII. Tarharwa Tower Station, lat. 27° 6′, long. 84° 33′, is situated in máoza Tarharwa, pargana Rámnagar, thána Banjaría, district Champáran, and stands on a slight swell of ground ½ of a mile S.E. of the village after which it is named. The adjacent villages, with their distances and bearings, are,—Katgarhoa, 1 mile S.W., and Sissai, 1½ miles to the N.E.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another at bottom.

LXXIII. Sathwária Tower Station, lat. 26° 58′, long. 84° 34′, stands on the northern bank of the Sikrana river, in máoza Sathwária, pargana Majhowa, thána Betia, and district Champáran. The circumjacent places, with their distances and bearings, are,—Sathwária village, 1 mile to the N., and Boudi-tola temple, 1 miles to the N.W. by N.

The pillar is solid, and 25½ feet high. It has a mark-stone at top, and another at bottom.

LXXIV. Sikta Tower Station, lat. 27° 2′, long. 84° 43′, stands on the northern bank of a tank, in máoza Sikta, pargana Majhowa, thána Betia, district Champáran. The boundary between the British and Nepal territories runs 0.2 of a mile to the N. of the station, and a triple-junction boundary pillar of the Majhowa, Rámnagar and Naringa (in Nepal) parganas is 2½ miles to the W. The adjacent villages, with their distances and bearings, are,—Sikta, nearly 1½ miles to the S.E., and Parsa, ½ a mile W. by N.

The pillar is solid, and 22 feet high. It has a mark-stone at top, and another at bottom.

LXXV. Bíarwa Tower Station, lat. 26° 52′, long. 84° 42′, stands to the west of the village of that name, and is situated in máoza Burwa, pargana Majhowa, thána Betia, and district Champáran. The adjacent villages, with their distances and bearings, are,—Gharáwa, 1½ miles to the E.N.E., and Burwa temple, about ½ a mile to the S.S.W.

The pillar is solid, and 26 feet high. It has a mark-stone at top, and another at bottom.

LXXVI. Harnáhi Tower Station, lat. 26° 56′, long. 84° 51′, is situated in máoza Harnáhi, pargana Majhowa, thána Motíhári, district Champáran, and is built on a mound occupied by the old village from which it derives its name. The circumjacent villages, with their distances and bearings, are,—Ghamaria, § of a mile to the E.; Ghona, the same distance to the N.N.W., and Dánar, 1½ miles S.W. by S.

The pillar is solid, and 24 feet high. It has a mark-stone at top, and another at bottom.

LXXVII. Bigoía Tower Station, lat. 26° 46′, long. 84° 50′, stands on the south side of the village of that name, in máoza Bigoía, pargana Majhowa, thána Motíhári, and district Champáran. The circumjacent villages, with their distances and bearings, are,—Bhaonipúr, ½ a mile to the S. by W.; Masoa, ¾ of a mile to the S.E., and Harmoa, 2½ miles to the N.

The pillar is solid, and 28 feet high. It has a mark-stone at top, and another at bottom.

LXXVIII. Batwaia Tower Station, lat. 26° 50′, long. 84° 59′, stands on the west bank of a tank near the small village of Batwaia, in máoza Narkatia, pargana Majhowa, thána Motíhári, and district Champáran. The circumjacent villages, with their distances and bearings, are,—Jítpúr, 1½ miles to the S.E. by S., and Pakaria, rather more than 1½ miles to the W.S.W.

The pillar is solid, and 18 feet high. It has a mark-stone at top, and another at bottom.



LXXIX. Rúpdi Tower Station, lat. 26° 40′, long. 85° 0′, is situated in máoza Rúpdi, pargana Majhowa, thána Motíhári, and district Champáran. The circumjacent villages, with their distances and bearings, are,—Rúpdi, 0·4 miles to the S. by E.; Chetaona, 1½ miles N. by W., and Malkonia, nearly the same distance to the N.W. by N.

The pillar is solid, and 25 feet high. It has a mark-stone at top, and another at bottom.

LXXX. Dipái Tower Station, lat. 26° 45′, long. 85° 8′, stands on the south-west corner of a tank bank, in máoza Dipái, pargana Simraol, thána Daka, and district Champáran. The circumjacent villages, with their distances and bearings, are,—Bádhar, 2 miles S.; Dipái, ½ mile W., and Maowai, 1 mile to the N.E. by N.

The pillar is solid, and 24 feet high. It has a mark-stone at top, and another at bottom.

LXXXI. Masáha Tower Station, lat. 26° 37′, long. 85° 11′, is situated in máoza Masáha, pargana Mehesi, thána Daka, and district Champáran. The adjacent villages, with their distances and bearings, are,—Masáha, ½ a mile N.W. by N., and Hátihaol, 1 mile to the W.

The pillar is solid, and 29 feet high. It has a mark-stone at top, and another at bottom.

LXXXII. Sinaría Tower Station, lat. 26° 45′, long. 85° 22′, is situated in máoza Karímábád, pargana Majhowa, thána Maisaora, district Champáran, and stands on the south bank of a tank, along the north bank of which runs the boundary line between the British and Nepal territories. The adjacent villages, with their distances and bearings, are,—Sinaría, a little more than ‡ of a mile to the E.N.E., and Asogi, about ‡ of a mile to the S.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another at bottom.

LXXXIII. Amúa Tower Station, lat. 26° 36′, long. 85° 19′, stands on the boundary between the Amúa and Bailwa máozas, in pargana Bábra, thána Maisaora, and district Champáran. The circumjacent villages, with their distances and bearings, are,—Amúa, 0.68 miles to the S.; Belwa, 1.15 miles to the N., and Inarwa, 1.09 miles to the N.N.E.

The pillar is solid, and 35 feet high. It has a mark-stone at top, and another at bottom.

LXXXIV. Bulákípúr Tower Station, lat. 26° 41′, long. 85° 29′, stands on the southeast corner of a tank bank, about ½ of a mile S.W. of the village of that name, in máoza Bulákípúr, pargana Míla, thána Ríga, and district Tirhoot. The adjacent villages, with their distances and bearings, are,—Ríga, 1¾ miles S. by W., and Sonár, ¾ of a mile N.W. by N.

The pillar is solid, and 30 feet high. It has a mark-stone at top, and another at bottom.

LXXXV. Madanpúr Tower Station, lat. 26° 31′, long. 85° 29′, stands on a slightly elevated piece of ground to the west of the village of that name, and is situated in máoza Madanpúr, pargana Míla, thána Ríga, and district Tirhoot. The circumjacent places, with their distances and bearings, are as follows:—Dhúrwa village, 2.04 miles to the S.W. by W.; Chota Parsoni temple, 3.02 miles to the W.S.W.; Dhoadni village, 0.83 miles to the N.W., and Dhanga village, 0.81 miles to the N.

The pillar is solid, and 25 feet high. It has a mark-stone at top, and another at bottom.

The adjacent villages, with their distances and bearings, are,—Batnáha, ‡ of a mile to the N.E. by E., and Bangra, rather more than 1‡ miles to the S.

The pillar is solid, and  $25\frac{3}{4}$  feet high. It has a mark-stone at top, and another at bottom.

LXXXVII. Himáonpúr Tower Station, lat. 26° 29′, long. 85° 40′, stands on the southern skirt of the village of that name, in pargana Nanpúr, thána Jhála, and district Tirhoot. The village of Baloia is distant 1.4 miles to the E. by S., and that of Mádopúr, 1¾ miles to the S.W. by W.

The pillar is solid, and 21 feet high. It has a mark-stone at top, and another at bottom.

LXXXVIII. Pargáwa Tower Station, lat. 26° 34′, long. 85° 49′, stands about ½ a mile to the E. by N. of the village of that name, in pargana Basotara, thána Jhála, and district Tirhoot. The adjacent villages, with their distances and bearings, are,—Jádupati, 1½ miles to the N.N.E., and Chandarsána, 2½ miles to the S.S.E.

The pillar is solid, and  $24\frac{1}{2}$  feet high. It has a mark-stone at top, and another at bottom.

LXXXIX. Shápúr Tower Station, lat. 26° 25′, long. 85° 50′, stands about ‡ of a mile to the N.W. of the village of that name, in pargana Tajpúr, thána Jhála, and district Tirhoot. The adjacent villages, with their distances and bearings, are,—Bagotipúr, nearly 1 mile W., and Rámpúr, nearly ‡ of a mile to the N.N.E.

The pillar is solid, and  $24\frac{3}{4}$  feet high. It has a mark-stone at top, and another at bottom.

XC. Jirol Tower Station, lat. 26° 31′, long. 85° 58′, stands about ‡ of a mile to the S.W. of the village of that name, in pargana Bhála, thána Kanjaoli, and district Tirhoot. The adjajent villages, with their distances and bearings, are,—Baingra, about ‡ of a mile to the W., and Durgaoti, 1½ miles to the S.S.E.

The pillar is solid, and  $26\frac{3}{4}$  feet high. It has a mark-stone at top, and another at bottom.

XCI. Chandarsanpúr Tower Station, lat. 26° 23′, long. 86° 1′, stands about ‡ of a mile to the S.W. of a portion of the straggling village of that name, in pargana Jarel, thána Dhanga, and district Tirhoot. The adjacent villages, with their distances and bearings, are,—Tigra, 1‡ miles to the W.N.W., and Kamálpúr, nearly ‡ of a mile to the S.E.

The pillar is solid, and  $24\frac{3}{4}$  feet high. It has a mark-stone at top, and another at bottom.

XCII. Narhar Tower Station, lat. 26° 32′, long. 86° 9′, stands about 250 yards to the N.W. of the nearest portion of the long and straggling village of that name, in pargana Bachaor, thána Dhanga, and district Tirhoot. The village of Chaprári is distant 1½ miles to the N.E.

The pillar is solid, and  $25\frac{1}{2}$  feet high. It has a mark-stone at top, and another at bottom.

XCIII. Bhería Bisanpúr Tower Station, lat. 26° 23′, long. 86° 11′, is situated in pargana Ahti, thána Dhanga, and district Tirhoot. The station takes its name from the two villages Bhería and Bisanpúr, from the latter of which it is distant 0.4 miles to the E. The other adjacent villages, with their distances and bearings, are,—Rámkhetári, 1½ miles to the S.E., and Kavaia, 2 miles to the N.

The pillar is solid, and 25½ feet high. It has a mark-stone at top, and another at bottom.

XCIV. Mirzápúr Tower Station, lat. 26° 31′, long. 86° 19′, stands about 200 yards to the S. of the village of that name, in pargana Bachaor, thána Kanjaoli, and district Tirhoot. The adjacent villages, with their distances and bearings, are,—Dholakar, rather more than 1½ miles to the S.S.W., and Juktia-atsára, 1½ miles to the S.E. by E.

The pillar is solid, and 26 feet high. It has a mark-stone at top, and another at bottom.

XCV. Barsám Tower Station, lat. 26° 21′, long. 86° 21′, stands about 1 mile to the N.E. by E. of the village of that name, in pargana Jabdi, thána Bháwára, and district Tirhoot. The village of Rudpúr is distant about \{\frac{1}{2}} of a mile to the S.E., and that of Basua, 2\{\frac{1}{2}} miles to to the N.N.W.

The pillar is solid, and  $25\frac{1}{2}$  feet high. It has a mark-stone at top, and another at bottom.

XCVI. Janjpati Tower Station, lat. 26° 28′, long. 86° 29′, stands about ‡ of a mile to the W. of the straggling village of that name, in pargana Jabdi, than Bhawara, and district Tirhoot. The adjacent villages, with their distances and bearings, are,—Largapati, 1 mile to tha S.S.W., and Siswar, nearly the same distance to the S.W.

The pillar is solid, and  $24\frac{3}{4}$  feet high. It has a mark-stone at top, and another at bottom.

XCVII. Bhela Tower Station, lat. 26° 19′, long. 86° 31′, stands about 180 yards to the E. of the centre of the straggling village of that name, in pargana Ahlapúr, thána Bháwára, and district Tirhoot. The village of Barhámpúr is distant 2¾ miles to the N.W. by N.

The pillar is solid, and  $25\frac{3}{4}$  feet high. It has a mark-stone at top, and another at bottom.

XCVIII. Ladnía Tower Station, lat. 26° 26′, long. 86° 40′, stands about 150 yards to the S.W. of the nearest portion of the straggling village of that name, in pargana Ahlapúr, thána Bháwára, and district Tirhoot. The adjacent villages, with their distances and bearings, are,—Makhára, 1½ miles to the N.N.E., and Kusmai, 2 miles to the S.S.W.

The pillar is solid, and 241 feet high. It has a mark-stone at top, and another at bottom.

XCIX. Semráha Tower Station, lat. 26° 16′, long. 86° 40′ stands about ‡ of a mile to the N.N.W. of the village of that name, in pargana Nárádigar, thána Supaol, and district Bhágalpúr. The adjacent villages, with their distances and bearings, are,—Sunbarsa, ‡ of a mile to the N.E., and Parsa, 1½ miles to the N.W.

The pillar is solid, and 24.4 feet high. It has a mark-stone at top, and another at bottom.

C. Harpúr Tower Station, lat. 26° 22′, long. 86° 49′, stands about 100 yards N.E. of the straggling village of that name, in pargana Nárádigar, thána Supaol, and district Bhágalpúr. The adjacent villages, with their distances and bearings, are,—Thakia, nearly ‡ of a mile to the E.N.E., and Kabiai, ½ a mile to the W.S.W.

The pillar is solid, and 20 feet high. It has a mark-stone at top, and another at bottom.

CI. Barháta Tower Station, lat. 26° 13′, long. 86° 48′, stands 0·4 of a mile to the W. of the village of that name, in pargana Nárádigar, thána Supaol, and district Bhágalpúr. The adjacent villages, with their distances and bearings, are,—Míásambar, about 2 miles N.W. by N., and Modára, about 1¾ miles to the S.W.

The pillar is solid, and 22 feet high. It has a mark-stone at top, and another at bottom.

The adjacent villages, with their distances and bearings, are,—Thakia. nearly \(\frac{1}{4}\) of a mile to the E.N.E., and Kabiai, \(\frac{1}{2}\) a mile to the W.S.W.

The pillar is solid, and 20 feet high. It has a mark-stone at top, and another at bottom.

CI. Barháta Tower Station, lat. 26° 13′, long. 86° 48′, stands 0·4 of a mile to the W. of the village of that name, in pargana Nárádigar, thána Supaol, and district Bhágalpúr. The adjacent villages, with their distances and bearings, are,—Míásambar, about 2 miles N.W. by N., and Modára, about 1¾ miles to the S.W.

The pillar is solid, and 22 feet high. It has a mark-stone at top, and another at bottom.

CII. Dewánganj Tower Station, lat. 26° 17′, long. 86° 57′, stands in the midst of a strip of forest at about ½ a mile to the N.W. of the village of that name, and is situated in pargana Haraot, and district Púrnea. The village of Chakla is distant 0.4 of a mile to the N.W.

The pillar is solid, and 20 feet high. It has five mark-stones, one at top, another at bottom, and the others at 6, 12, and 18 feet respectively above the latter.

CIII. Latona Tower Station, lat. 26° 7′, long. 86° 56′, stands in the midst of a strip of forest at about 1 mile N.E. of the village of that name, and is situated in pargana Nárádigar of the Bhágalpúr district. The circumjacent villages, with their distances and bearings, are,—Latona-Gádi-Hát, 1½ miles W.; Daparka, 1 mile E.N.E., and Kasaka, 2¾ miles E.S.E.

The pillar is solid, and 26 feet high. It has five mark-stones, one at top, another at bottom, and the others at 6, 14, and 22 feet above the latter.

CIV. Baisi Tower Station, lat. 26° 25′, long. 86° 58′, stands about 1 mile to the N. of the large village of that name, in pargana Dhasowar of the Púrnea district. The Nepal boundary runs about 4 miles to the N. of the station. The adjacent villages, with their distances and bearings, are,—Ratanpúra, 1.4 miles to the N.W., and Kamálpúr, 1½ miles in the same direction.

The pillar is solid, and 20 feet high. It has five mark-stones, one at top, another at bottom, and the others at 6, 12, and 18 feet respectively above the latter.

CV. Minai Tower Station, lat. 26°•20′, long. 87° 6′, stands at 0·6 of a mile to the S.W. of the large village of that name, in pargana Haraot, district Púrnea. The large town of Náthpúr is about 1½ miles to the E. by S. The circumjacent villages, with their distances and bearings, are,—Chápin, 2½ miles N. by W.; Dhárára, 2½ miles N.E. by N., and Madura, 1½ miles E. by N.

The pillar is solid, and 32 feet high. It has six mark-stones, one at top, another at bottom, and four others at 6, 14, 22, and 26 feet above the latter.

CVI. Chúni Tower Station, lat. 26° 11′, long. 87° 5′, stands about 200 yards S.E. of the hamlet of that name in the Púrnea district. The circumjacent villages, with their distances and bearings, are,—Shápúr, 1½ miles to the N.E.; Mírápati, 1½ miles to the E., and Ratansarpati, 2 miles to the S.S.E.

The pillar is solid, and 19 feet high. It has a mark-stone at top, another at bottom, and three others at 7, 13, and 18 feet respectively above the latter.

CVII. Rámnagar Tower Station, lat. 26° 2′, long. 87° 4′, stands at  $\frac{1}{4}$  of a mile N.N.W. of the village of Rhata Rámnagar, in pargana Dharampúr, of the Púrnea district. The adjacent villages, with their distances and bearings, are,—Puráni, 1 mile N. by E., and Dakária, 1½ miles to the W.

The pillar is solid, and 20 feet high. It has five mark-stones, one at top, the others at 1 foot below, and 6, 13, and 19 feet respectively above, the level of ground floor.

CVIII. Manúla Tower Station, lat. 26° 5′, long. 87° 13′, stands about 1 mile N.N.W. of the village of Manúla-Páti, in pargana Dharampúr, of the Púrnea district. The adjacent villages, with their distances and bearings, are,—Bargonia, 1·4 miles to the S.W., and Rámganj, nearly 1¾ miles N.E. by N.

The pillar is solid, and 20 feet high. It has five mark-stones, one at top, the others at  $1\frac{1}{2}$  feet below, and 7, 13, and 19 feet respectively above, the level of ground floor.

CIX. Ghiba Tower Station, lat. 26° 14′, long. 87° 15′, stands about 0·3 of a mile to the N.E. of the village of that name, in pargana Haraot, of the Púrnea district. The adjacent villages, with their distances and bearings, are,—Majháwa, 1 mile N., and Pairwáha, the same distance E. by S.

The pillar is solid, and 22 feet high. It has a mark-stone at top, the others at  $1\frac{1}{2}$  feet below, and 7, 13, 19, and 20 feet respectively above, the level of ground floor.

CX. Nirpúr Tower Station, lat. 26° 22′, long. 87° 18′, stands on an elevated part of the right bank of a small stream called Gaoria, in pargana Sultánpúr, of the Púrnea district. The village of Nirpúr is distant about ½ a mile to the E. The circumjacent villages, with their distances and bearings, are,—Maiásiri, ¾ of a mile N. by E.; Semnagar, 2½ miles W. by S., and Pipra, nearly 3¾ miles to the E.S.E.

The pillar is solid, and 28 feet high. It has a mark-stone at top, another at bottom, and three others placed at 9, 18, and 27 feet respectively above the latter.

CXI. Mánikpúr Tower Station, lat. 26° 12′, long. 87° 24′, stands on the eastern edge of an extensive undulating tract of elevated land, situated in pargana Sultánpúr, of the Púrnea district. The circumjacent villages, with their distances and bearings, are,—Mánikpúr Bardáha, about 1 mile to the E. by S.; Madárganj, about 2½ miles to the S.S.W., and Puran, about 3½ miles E. by S.

The pillar is solid, and 29 feet high. It has a mark-stone at top, another at bottom, and several others intermediate.

CXII. Kamaldáha Tower Station, lat. 26° 21', long. 87° 28', stands on a flat piece of ground, about ½ of a mile N.E. of the village of that name in thána Báhádúrganj, of the Púrnea district. The circumjacent villages, with their distances and bearings, are,—Balchentha, 1½ miles to the N.N.W.; Khesri, ¾ of a mile N.E., and Batráha, 3½ miles W. by S.

The pillar is solid, and 28 feet high. It has a mark-stone at top, another at bottom, and three others at 9, 18, and 27 feet respectively above the latter.

CXIII. Bánghora Tower Station, lat. 26° 13', long. 87° 35', stands on the north bank of

a tank, distant about ½ a mile to the S. of the small village of that name, in pargana Sultánpúr, of the Púrnea district. The circumjacent villages, with their distances and bearings, are,—Kakuruha, 1½ miles N.E. by N.; Chedarmi, 3½ miles W. by S., and Relawa, 3½ miles S.E. by E.

The pillar is solid, and 25 feet high. It has a mark-stone at top, another at bottom, and several others intermediate.

CXIV. Dipnagar Tower Station, lat. 26° 21', long. 87° 39', stands immediately to the W. of the small village of that name, in pargana Fatepur Singhia, of the Purnea district. To the north of the station, and at a distance of about 200 yards from it, is a small stream, on the opposite bank of which are the ruins of a fort called Báligarh. The circumjacent villages, with their distances and bearings, are,—Parindáha and Bhattábári, 5 miles to the S.E. and S.W. respectively.

The pillar is solid, and 28 feet high. It has a mark-stone at top, another at bottom, and three others at 9, 18, and 27 feet respectively above the latter.

CXV. Músaldanga Tower Station, lat. 26° 13′, long. 87° 45′, stands at about 50 yards to the N.W. of the small village of that name, in thána Báhádúrganj, of the Púrnea district. The large village of Majkúri Gola is distant about 2½ miles to the S.S.W. The other circumjacent villages, with their distances and bearings, are,—Khopra, 2½ miles W.S.W.; Haldikora, nearly 2½ miles E.S.E.; and Ruponi, 1½ miles N. by W.

The pillar is solid, and 28 feet high. It has a mark-stone at top, another at bottom, and three others at 9, 18, and 27 feet respectively above the latter.

CXVI. Lachmípúr Tower Station, lat. 26° 22′, long. 87° 51′, is situated in thána Báhádúrganj, of the Púrnea district. The southern of two villages, named Lachmípúr, on the right bank of the Ratwa, is distant about ½ a mile to the W., and the large village of Dálibhát stands on the other bank of the river, just opposite to Lachmípúr. The other adjacent villages, with their distances and bearings, are,—Patargháti, 2½ miles W. by N., and Kúlri, 3 miles S.W. by S.

The pillar is solid, and 26 feet high. It has a mark-stone at top, another at bottom, and three others at 8, 16, and 25 feet respectively above the latter.

CXVII. Tagría Tower Station, lat. 26° 13′, long. 87° 56′, is situated in thána Báhádúrganj of the Púrnea district. The southern of two small villages, named Tagría, on the banks of a small nala, is distant about ½ a mile to the S.W., and about 200 yards further on to the E. is the Baríkankai river. The village of Gangi Sáhibganj is distant a little more than ½ of a mile to the E. by N.

The pillar is solid, and 22 feet high. It has a mark-stone at top, another at bottom, and three others at  $7\frac{1}{2}$ , 12, and 21 feet respectively above the latter.

CXVIII. Bandarjúla Tower Station, lat. 26° 22′, long. 88° 0′, stands on the northern of two contiguous mounds, distant about ½ of a mile to the S.S.W. of the southern of two villages, named Bandarjúla, and is situated in thána Kalíáganj, of the Púrnea district. The other adjacent villages, with their distances and bearings, are,—Terhari, ½ a mile to the S. by E., and Pokhar, 1¾ miles to the N.W.

The pillar is solid, and 18 feet high. It has a mark-stone at top, another at bottom, and two others at 6 and 17 feet respectively above the latter.

Digitized by Google

CXIX. Kharkhari Tower Station, lat. 26° 14′, long. 88° 5′, is situated in thána Kishanganj, of the Púrnea district. The large village of Kharkhari lies about 1 mile to the N.N.W., and stands between the Máhánada and Doñk rivers, the former of which is about half a mile, and the latter 250 yards, distant from it. The circumjacent villages, with their distances and bearings, are,—Jehángírpúr, 3 miles S.E. by E., and Dhántola, 5¾ miles in the same direction.

The pillar is solid, and 30 feet high. It has a mark-stone at top, another at bottom, and three others at 10, 20, and 29 feet respectively above the latter.

CXX. Thákúrganj Tower Station, lat. 26° 25′, long. 88° 10′, stands on the edge of some high land, distant about 200 yards to the S. by W. of the small deserted village of Thákúrganj, and is situated in thána Kalíáganj, of the Púrnea district. The town of Kalíáganj is about 2 miles to the S.; the village of Barri Patesri is 1·1 miles towards the S.E. by S., and that of Bhaispára about 1¾ miles towards the W.N.W.

The pillar is solid, and 10 feet high. It has mark-stones at top, bottom and intermediately.

CXXI. Sonákhoda Tower Station, lat. 26° 15′, long. 88° 15′, is situated in thána Kalíáganj of the Púrnea district, and stands at a distance of 200 yards to the N. of the village of Sonákhoda, and close to a cart road leading to Kishanganj. The village of Hátgáon is about 3 miles towards the S.W.; Páhárkáta, nearly 5 miles to the W. by S., and Gernábári, about 2½ miles nearly due west.

The tower at this station is entirely of masonry, 24 feet high and 14 feet square at top, and as it marks the S.W. extremity of a base-line, its construction is adapted to that purpose by means of a vaulted passage running through it, on a level with the ground, in the direction of the base-line. In the centre of the tower, on the floor of the vaulted passage, is a small piece of brass on which the station mark is cut, and this mark has been transferred to the top of the tower by means of a hole in the vault, and the pillar raised above it for the theodolite. This pillar is built on the vault of the passage, and is separated by a small annular space from the rest of the building so as to be isolated from it. When all the observations had been taken at this station, the two ends of the vaulted passage were closed with masonry, and a cone of masonry 3 feet high was built on the top of the tower over the theodolite pillar. The distance between the upper mark on the top of the pillar, and the mark on the floor of the vaulted passage is 21.6 feet. A flight of steps is built along one side of the tower with a landing place at top, the portion which adjoins the tower being of masonry like it, but the lower part which projects beyond it was of mud, and was removed after the observations had been all taken, so as to prevent idle people gaining access to the top.

CXXII. Rámganj Tower Station, lat. 26° 19′, long. 88° 20′, is situated in thána Kalíáganj of the Púrnea district, and stands close to the S.W. side of the village of Rámganj. The village of Ghágra, is about 1½ miles towards the S.S.E., and that of Manikpúr about 1½ miles nearly due W.

The station is marked in the same manner as Sonákhoda Tower Station, with the difference that the height of the tower here is 20 feet above the surface of the ground, and the distance between the upper and lower marks is 18 feet.

CXXIII. Dúmdángi Tower Station, lat. 26° 29′, long. 88° 20′, is situated in thána Kalíáganj of the Púrnea district, and stands on the western extremity of some high land which extends to the eastward of the station, and has a command of about 60 feet over the country to the south, and 30 feet over that to the west. The river Máhánada flows at a distance of 250 yards, and the village of Jagarchi lies about 200 yards to the S.W. of the station. The other circumjacent villages, with their distances and bearings, are,—Sítalghati, 1½ miles to the S.W.

by W.; Patargácha, nearly 1 mile towards the N.N.W., and Púrangácha, about 11 miles towards the E.N.E.

The pillar is solid, and 10 feet high. It has a mark-stone at top, and another at bottom.

CXXIV. Kanchábári Tower Station, lat. 26° 28′, long. 88° 28′, is situated in thána Kalíáganj of the Púrnea district, and stands near the S.E. extremity of the same high land on which Dúmdángi Tower Station is built. The small village of Kanchábári lies at a distance of 70 yards to the S.; Khotágách, at about 50 yards towards the N. by E., and Rátígách, about 1 mile to the W.N.W.

The tower is solid, 60 feet square at base, 14 feet square at top, and 20 feet high. It has an isolated central pake pillar for the theodolite to rest on, with markstones at top, bottom and intermediately.

CXXV. Chotáki Tower Station, lat. 26° 11′, long. 88° 23′, is situated in thána Thákúrgáon of the Dinájpore district, and stands on the north bank of a tank distant about 1 of a mile to the N. of the village of Chotáki, and half a mile S. of Bunágáon.

The pillar is solid, and 23 feet high. It has mark-stones at top, bottom and intermediately.

CXXVI. Newáni Tower Station, lat. 26° 16′, long. 88° 32′, is situated in thána Boda or Kaonrikot of the Rungpore district, and stands at the N.W. corner of a tank distant about ‡ of a mile to the N.W. of the principal portion of the straggling village of Jholai. Newáni is the name of the locality in which the station is placed. The circumjacent villages, with their distances and bearings, are,—Dúngápára, about half a mile to the W.; Ghogochodi, about 1‡ miles to the N.E. by N., and Kúlúganj, 1‡ miles towards the S.S.E.

The pillar is solid, and 24 feet high. It has mark-stones at top, bottom and intermediately.

Digitized by Google

### NORTH-EAST LONGITUDINAL SERIES.

#### PRINCIPAL TRIANGULATION. ADDENDUM TO DESCRIPTION OF STATIONS.

Note.—Consequent on modern alterations of district and other boundaries, the sites occupied by the stations are in some instances now included in civil divisions of territory which differ from the district, pargana, or village, recorded in the preceding descriptions of stations: a complete list of all the stations of the series including a suitably modified statement of the altered subdivisions in question is accordingly given in the following table, and is derived chiefly from the annual reports, up to 1881, made by the Civil Officials to whose care the stations have been committed. The statement also gives additional information as to position, construction, and present condition of certain of the stations; where no entry regarding present condition is made against a station it is to be assumed that the station when last reported on by the district Official was in good order.

The spelling of names is in accordance with that given in the lists of more important places published under the orders of Government whenever such names occur in the lists.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station				
LII	Bijnor  Tah. Bijnor, P. Mandáwar  S. S. W. 1½ Sháhbazpur W. 1½ Ratanpur Raiya N. N. W. Kíratpur (town) E. 3  The station consists of a towe of unburnt bricks and must cement, 14 feet square at top enclosing a central, isolated pillar of masonry 13 5 feet in dia meter at top, which is solid to a height of 12 feet above ground level and perforated thereafter: it has a mark-stone at the level of the ground, and others at 7 and 12 feet respectively above this level. The station of 1843—which was 12 feet in height—was revisited in 1851 in the cours of the operations of the North-East Longitudinal Series, when the masonry pillar was found in good order and the upper mark-stone undisturbed. When again visited in 1865-66 in connection with the Great Arc Meridional Series Section 24°—30°, the pillar and upper mark-stone were found in good preservation: on this occasion the height of									
•	the pillar wa diameter, ha of 1881.	s raised to 13½ ving been left for	feet, but no mar or reference to	k-stone was placed the old mark-ston	l at its summit, a hollo e. Reported as grea	ow cylindrical space, 4 inches in atly injured by the heavy rains				
LΙV		Bijnor	Tah. and P. Na- jíbabad	Chándi	Shámpur S. 4	The platform is built of stones and earth. It was considerably damaged by a land slip, and one side of the pillar has given way, as reported in 1870.				
LVI	•••	Tehri (Foreign Garhwál)	Thá. Bhogpur	On waste land		The pillar is isolated and enclosed in a platform of stones and earth 14 feet square.				

Nors.—Stations LII, LIV and LVI appertain to the Great Arc Meridional Series, Section 24° to 80°. P. stands for pargana, Tsh. for tahsil, and Thá for thána.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station					
I		Garhwál	P. Ganga Salán, Patti Ajmir	Nahli-Badholi	miles Simalna S. 2 Shalni W. by S. 1½ Badholi N. N. E. 1¾ Mahera S. S. E. 1¾	The station consists of a plat- form of stones and earth, 14 feet square at top, enclosing a central, isolated pillar of ma-					
	Meridional an Longitudinal	nd the North Cor Series, and again	necting Series— n in 1865 to origin	was revisited in 18 nate the Kumaun a	350 in the course of tl nd Garhwál Survey; o	sonry which has a mark-stone hich was common to the Budhon he operations of the North-East on neither of these occasions was en way, as reported in 1878.					
· 11	Adwáni	Garhwál	P. Barasiún, Patti Patwal- siúm	Gidrásu Bania- gaon	Gidrásu E. S. E. 13 Dungra S. S. E. 13 Sutar S. S.W. 13	The pillar is isolated, 3½ feet in diameter, and is euclosed in a platform of stones and earth 14 feet square.					
III	<b></b>	<b>33</b>	P. Tallásalán, Patti Bhábar		Kálusaiyyid W. N. W. 21 Kálagarh S. E. 5 Gotkolari S. W. 21	The pillar is isolated, 3½ feet in diameter, and is enclosed in a platform of stones and earth.					
IV	<b></b>	<b>,</b> ,	P. Mallasalán, Patti Iriakot	Samroli	Iriakot N.N.W. 13 Páli W. by S. 23 Dhangalgaon E. 13	The pillar is isolated, 3\frac{1}{2} feet in diameter, and is enclosed in a platform of stones and earth 14 feet square.					
v	•••	Kumaun	P. Kota, Thá. Rámnagar	Dhela	Dhela S. by E. 13 Sawaldi S. E. 41 Rámnagar E.S.E. 83	Ditto.					
VI	•••	<b>,,</b>	P. Kota, Thá. Káladhúngi	Bagni	Halsán N. E. by N. 3 Bismoli N. W. 4½ Bagni S. 2½	There is no pillar, the platform is solid.					
VII	<b></b>	Tarái	P. and Thá. Rudarpur	Bagwára	Saiduliganj N. W. 1 Chandain S. 1 Kulerah E. 2						
VIII		Kumaun	P. Dhianirau, Thá. Haldwá- ni	Birond	Chamli N.E. 23 Babiar N.W. by N. 3 Udua W.S.W. 33						
IX		Tarái	P. and Thá. Rudarpur	Baheri	Ajitpur S. by E. 1 Bara E. by N. 1 Ratangarh S.W. 23	The pillar is isolated and en- closed in a tower of sun-dried bricks; an arched passage gives access to the ground					
	gives access to the ground level mark. In 1866 Mr. W. Ivey, Assistant Surveyor, found the tower washed down, the central pillar cracked horizontally at 7½ feet from top and the upper portion shifted 7 inches to S.E. He closed up the arched passage and raised a pile of kacha masonry all round the base to a height of 30 feet.										

						— <u>I.</u>
No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
<b>x</b>	···	Bareilly	P. Sirsáwán	Sísgarh	miles Ghulámganj W. S. W. 1½ Bísalpur E.S.E. 1 Girdhárpur S. ¾	The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central perforated pillar of masonry
	station of 18 of 2 feet, and meter; the c to be so defle height and e	39 was a perforated in the reafted as to necessed as to necessed in a kacental section.	ted masonry colu ter—the diameter isited in the cour sitate the disman tha tower—the u	mn standing 38.3 r at top of shaft be se of the operational thing of a consider pper 5 feet of it	feet above the mark- eing 3 feet—surmoun- ons of the North-East erable portion of it; it	the level of the ground. The stone, 9 feet square to a height ted by a capital of 4 feet dia-Longitudinal Series, was found was then rebuilt to its present om: at the same time a second
XI		Bareilly	P. Richha	Atária	Town of Richha N. W. 6 Nawábganj S. S. E. 63 Jahánabad E. 8	The station consists of a tower of unburnt bricks and mud cement, about 14 feet in diameter at top, enclosing a central perforated pillar of masonry whose summit is 37.8
	forated maso the diameter deflected whe basement cou tersection of bolt imbedde in the cours no trace of engraved on operations of pillar, which	nry column 37.3 at top of shaft ben the observation and not be plumbed the diagonals of d in an external e of the operation the four external a new mark-story the North-East was then rebuilt.	feet above the meing 3 feet—surns on the Rangír ed from the sum a quadrilateral, masonry pillar bons of the North pillars was for let into the ba Longitudinal Serto its present height	nark-stone, 9 feet somounted by a caping Meridional Series mit of the pillar; each angular poing uilt in the adjaces Connecting Series, the insement. On againties, it was found in the and enclosed in	square to a height of a tal of 4 feet diameter; es came to be made, the point of observe t of which was denote ent fields. When the es, the pillar was fount instrument was accorn n visiting the station decessary to dismantle	The station of 1839 was a per- leg feet, and circular thereafter— to the column was found greatly so that the mark-stone in the ation was indicated by the in- elected by a dot engraved on an iron e station was revisited in 1843 and still further deflected, and dingly plumbed over a mark in 1851 in the course of the a considerable portion of the the same time a second mark 3.5
XII	Bara Danwán	Pilibhít	P. Jahánabad	Bara Danwán		The pillar is isolated and enclosed in a circular kacha tower 18 feet in diameter at top.
XIII	•••		Tah. Pilibhít	Kaliánpur	Khamaria W. by N. 2 Jahánabad N. N. W. 3½ Nawábganj (on road Bareilly to Pilibhít) W. S. W. 7½	The pillar is isolated and enclosed in a circular tower of sun-dried bricks.
· XIV	<b></b>	22	-		Káim N. W. 1½ Santokhpura (on road from Pi- libhít to Púran- pur) S. W. 1½ Sardha S. E. by S. 2	The pillar is isolated and enclosed in a circular tower of sun-dried bricks. Reported in 1867 as fallen down and now merely a heap of debris.
XV	•••	23	P. Bísalpur	Omrakhán Singh	Rámnagar E. S. E. 3 Sohan N. E. 2½	The pillar is isolated and enclosed in a paka tower.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
XVI		Pilibhít	P. Púranpur	Sháhgarh	miles Púranpur S. E. by E. 7 ³ Mádho Tánda N. E. 7	The pillar is isolated and enclosed in a paka tower.
xvII	Simraia	"	•••	Simraia	Kasganja E. 23 Deoria W. by S. 61	The pillar is isolated and enclosed in a kacha tower.
XVIII	•••	"		Udepur	Púranpur N. W. 31 Jitpura E. N. E. 31	Ditto.
XIX	Rámpur	Sháhjahánpur	Tah. Pawáyan, P. Khutár	Rámpur	DundwaS. by E. 11 Gutia E. 11	The pillar is isolated and enclosed in a kacha tower. Reported as much injured by the heavy rains of 1879.
XX	•••	"	Ditto.	Sultánpur	Gopálpur W. by N. 21 Chatipur N. W. 11	Ditto.
XXI	Hirpur	<b>»</b>	Ditto.	Hirpur	Chándpur N. 3½ Khutár S. S. W. 4¾ Damodarpur N. E. by N. 2¾	The pillar is isolated and enclosed in a circular kacha tower. Reported as much injured by the heavy rains of 1879.
XXII	Piparia	<b>K</b> he <b>ri</b>	P. Bhúr, Tah. Lakhímpur, Thá. Bhira	<b></b>	Bhira S. by E. 23 Jankapur S. by E. 1 Nagria N. E. 11	The pillar is isolated, 6 feet square at base and 3½ feet in diameter at top, and is enclosed in a square kacha tower supported by wooden posts and branches of trees.
XXIII	Kokra	y	Tah. Muhamdi, P. Haidar- abad		Gauri E. by S. 2½ Hardua W. 2 Khamaria S. 1½	The station was constructed in 1833 for the Amua Meridio- nal Series as a tower of sun-dried bricks and mud und, the other at the surface of

cement, 25 feet in height, with two mark-stones, one 2 feet below the level of the ground, the other at the surface of the tower. The upper mark-stone was found wanting, and the tower in a dilapidated condition when visited in 1843, in the course of the operations of the Pilibhít Tarái Series. The old structure was then dismantled to the level of the lower mark, and a new tower 26 feet high constructed, with an isolated central paka pillar which contained mark-stones at distances of 2, 6, 12, 18, 24, 27, and 28 feet, respectively, above the lowest mark-stone. When the station was subsequently visited in 1850, in the course of the North-East Longitudinal Series, the upper portion of the pillar and tower were found to have been destroyed. The structure was again dismantled to within 10 feet of the surface of the ground, and a mark-stone having been found there, it was used as a centre over which a new pillar, with an earthen tower around it, was constructed to the height of 26 feet above the level of the ground, which carried a mark-stone at its surface placed in the normal of the lower mark. Pillar partly fallen down, as reported in 1871.

XXIV	 Kheri	Tah. Lakhím- pur, P. Bhúr		The pillar is solid and isolated, 31 feet in diameter at top, and is enclosed in a circular kacha tower 18 feet in diameter at top.
XXV	 "	Tah. Lakhim- pur, P. Ali- ganj	 Bhúrpur S. W. 1½ Aliganj N. W. 4 Khánpur E. N. E. 1	closed in a tower of sun-dried

tion when visited in 1850 in the course of the operations of the North-East Longitudinal Series. Pillar partly fallen down, as reported in 1871.

<del></del>	1	<del></del>		1		
No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
XXVI	Halgi	Kheri	Tah. Lakhim- pur, P. Bhúr		miles Srinagar S. 2½ Basaha S. W. 1½ Gangapur N. E. 1½	The pillar was isolated and enclosed in a kacha tower. Washed away by the river Chauka in 1869.
XXVII .	Sideri	,,	Tah. and Thá. Lakhímpur, P. Kheri		Lakhímpur S. by E. 1½ Kheri S. S. E. 4½	The pillar is isolated and enclosed in a kacha tower. Partly fallen down as reported in 1869.
XXVIII		"	Tah. Lakhim- pur, P. Sri- nagar, Thá. Dhaurahra		Udara E. 21 Bel S.W. 3 Jamunhia N.W. 13	The pillar is isolated and enclosed in a kacha tower.
XXIX		. 33	Tah. and Thá. Lakhímpur, P. Kheri		Atkona N.N.W. 4 Sakethu N.E. 4½	Ditto.
XXX	·	,,	Tah. Nighásan, P. and Thá. Dhaurahra	•••	Kufara N.N.W. 5½ Matera N.E. 7½	Ditto.
XXXI		<b>,</b>	Tah. Nighásan, P. and Thá. Dhaurahra		Parsia N. by W. 1 Fatch pur S. W. 1 Nidaura E. 21	Ditto.
XXXII	<b></b>	23	Tah. Nighásan, P. Firozabad, Thá. Dhau- rahra		Bírsinghpur S. S. W. 4 Isanagar S. W. 31 Palha W. S. W. 21	The pillar is isolated and enclosed in a kacha tower supported by strong posts and earth. Pillar partly fallen down as reported in 1871.
XXXIII		Bahraich	Tah. Nánpára, Taluka Mal- lapur	Patak Purwa	Firozabad N. W. 4 Benda E. by S. 4½ Belamohan S.E. 1	The pillar is isolated and enclosed in a kacha tower supported by wooden posts.  Reported in 1878 as being only 11 feet high.
XXXIV		Sitapur	Tah. Biswán, P. Kundri, Thá. Tambaur	Khánpur	Seota S.E. by S. 4 Sikri N. 1 Zálimpur S. W. 31	The station consists of an earth- en tower—with diameters at top and bottom, respectively,
	1844 was rev good preserve	isited in 1845, ition. It was a	at the conclusion again visited in 1	of the Karára M 1850 in the cours	eridional Series, and e of the operations of	of 13 and 17 feet—enclosing bove the base. The station of was then apparently found in f the North-East Longitudinal epair the earthen tower.
XXXV		Bahraich	P. Fakhrpur, Thá. Sisia		Sisia S. S. W. 5 Rewamansúr E. S. E. 41	The station consists of an earthen tower—with diameters at top and bottom, respectively, of 18 and 40 feet—enclosing a central, solid pil-
	the surroundi of the Karára in the course	ng tower with d a Meridional Se of the operation the central pill	iameters at top a cries, and was ther as of the North-E	nd bottom, of 11 apparently found ast Longitudinal S	and 18 feet—was revi in good preservation. Series; the mark-stor	The station of 1844—which had sited in 1845 at the conclusion. It was again visited in 1849 at summit and the upper 4 he surrounding tower extended

to its present dimensions.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
XXXVI -	Atkanna	Bahraich	Tah. and P. Nánpára	Aswa Muhamad- pur	miles Asua S. E. 1½ Intuha S. W. 3½ Matera Kalán W. by N. 6	The pillar is isolated, 61 feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 14 feet square at top.
XXXVII	•••	<b>&gt;&gt;</b>	Tah. and P. Bahraich	Ratnapur	Singhapurási S. E. by S. 1 Bakshiganj S. 13	Ditto.
XXXVIII		<b>))</b>	Tah. and P. Nánpára	Dadaura	Madewa E.N.E. 3½ Phulwaria S.S.E. 1½ Ramuapur W. by N. 3	Ditto.
XXXIX		<b>,</b>	Tah. Bahraich, P. Ikauna	Tilakpur	Subkha E. by N. 2½ Kamaulia W. S. W. 1	The pillar is isolated, 6½ feet square at base and 3½ feet in diameter at top, and is enclosed in a kacha tower 18½ feet square at base and 14 feet at top.
XL		<b>2</b> 2	Tah. Bahraich, P. Bhinga	Newáda	Naubasta S. by E. 31	The pillar was isolated, 6½ feet square at base and 3¾ feet in diameter at top, and was enclosed in a kacha tower 20 feet square at base and 1½ feet at top. Washed away by the river Rapti in 1877.
XLI		33	Tah. Bahraich, P. Ikauna	Isrápur	Bálapur W. 1 Lalitnagar N. 3	The pillar is isolated, 6½ feet square at base and 3½ feet in diameter at top, and is enclosed in a kacha tower 20 feet square at base and 14 feet at top.
XLII		Gonda	Tah. Utraula, P., Taluka and Thá. Balrám- pur	Manichauk	Arnahwa W. by N. ½ Chatauni N. by E. 1½ Amarnagar S.E. 1½	Ditto.
XLIII	Sabaira	"	Tah. Utraula, P. and Thá. Bal- rámpur	Sabaira	Sekharpur Gangapur E. 21 Balrámpur E. by S. 6	The station as built in 1847 consists of an earthen tower enclosing a central, isolated pillar of masonry. When again visited in 1849, in the course of the North-East Longitudinal Series operations, no alteration in its construction appears to have been made.
XLIV	Lohápania	"	Tah. Utraula, P., Taluka and Thá. Balrám- pur	Lohápania	Sáhebnagar E. by S. 1	The pillar is isolated, 6½ feet square at base and 3¾ feet in diameter at top, and is enclosed in a kacha tower 14 feet square at top.

NOTE.—P. stands for pargana, Tah. for tahsil, and Thá. for thána.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
XLV	Básadela	Gonda	Tah. Utraula, P., Taluka and Thá. Balrám- pur	Básadela	miles Tendua N.E. 1 Fatehjot W. 13	The station as built in 1847 consists of an earthen tower enclosing a central, isolated pillar of masonry which has a mark-stone at top,
						When again visited in 1849, as construction appears to have
XLVI		Gonda	Tah. Utraula, P., Taluka and Thá. Tulsipur	Tulsipur Khás	Pátan N. W. 2 Tulsipur N. 1½	The pillar is isolated, 6½ feet square at base and 3¾ feet in diameter at top, and is enclosed in a kacha tower 20 feet square at base and 14½ feet at top.
XLVII		<b>,</b> ,	Tah. and Thá. Utraula, P. and Taluka Balrámpur	Majhawa	Pipra N. by E. 2 Utraula S. W. 5	The pillar is isolated, 7 feet square at base and 3½ feet in diameter at top, and is enclosed in a kacha tower 20 feet square at base and 14 feet at top.
XLVIII		<b>ນ</b>	P., Taluka and Thá. Tulsipur, Tah. Utraula	Ganespur	Panchpirwa N. E. by N. 4 Budhi S. 53	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 20 feet square at base and 14½ feet at top.
XLIX		Basti	Tah. Domaria- ganj, P. Bánsi, Thá. Tilakpur	Pipri Buzurg	Chaukuda S. 3½ Hír N. N. E. 3½	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha-paka tower 20 feet square at base and 14 feet at top. No upper mark-stone found in 1867.
L	•••	23	Tah. Domaria- ganj, P. Bánsi, Thá. Dhebarua	Pathárdaghi	Dhebarua E. N. E. 3½	Ditto.
LI	•…	<b>33</b> .	Tah. Domaria- ganj, P. Bánsi, Thá. Misraulia		Pacher S. S. E. 12 Karhi S. W. 31	Ditto.
LII	••• •	n	Tah. and P. Bánsi, Thá. Chilhia	Pairagwa	Chilhia S. E. 5	Ditto.
LIII		,,	Ditto.	Tigra	Kundri W. N. W. 41 Bánsi S. W. 51	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha-paka tower 20 feet square at base and 14 feet at top. Upper part of the masonry pillar broken and mark-stone missing, as reported in 1867.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
LΙV		Basti	Tah. and P. Bánsi, Thá. Chilhia	Ghaus Khás	miles Shiupur N. W. by N. 2 Dargudewa S. E. 5	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha-paka tower 20 feet square at base and 14 feet at top.
LV	•••	Gorakhpur	Tah. Maharáj- ganj, P. Have- li, Thá. Semra		Menkhai N. W. 13 Bhirewa S. W. by W. 13	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha-paka tower 20 feet square at base and 14 feet at top. Greater portion of the tower fallen down, only about 6 feet of it standing, and no mark-stone found, as reported in 1867.
LVI	in the course		ast Longitudinal			The station as built in 1847 consists of a solid tower, 20 feet square at base, 14 feet at top, and about 25 feet When again visited in 1849, preservation, and no alteration
LVII						The pillar is isolated and perforated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kachapillar much broken, and mark-
LVIII	and perforate		Tah. Maharáj- ganj, P. Have- li, Thá. Ra- gauli nry which contain	as mark-stones. V	When again visited in 1	The station as built in 1847 consists of a solid tower, 20 feet square at base, 14 feet at top, and about 25 feet high, enclosing a central, isolated 349, in the course of the North-
	to have been	made. Part of	the tower injured	und in good present, and no mark-sto	rvation, and no altera one found, as reported	tion in its construction appears in 1867.
LIX		Gorakhpur	Tah. Maharáj- ganj, P. Have- li, Thá. Semra	Saunbarsa		The pillar is isolated and perforated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kachapaka tower 20 feet square at base and 14 feet at top. Part of the tower injured, and no mark-stone found, as reported in 1867.
LX		"	Tah. Maharáj- ganj, P. Have- li, Thá. Sirsia		Sirsia N.N.E. 51	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha-paka tower 20 feet square at base and 14 feet at top. Part of the tower injured, and no mark-stone found, as reported in 1867.

<del></del>				7701	<b>***</b>			
No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station		
LXI		Gorakhpur	Tah. and Thá. Maharájganj, P. Haveli	Bágápár	miles Rámpur S. E. 1½	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha-paka tower 20 feet square at base and 14 feet at top. Part of the tower injured, and no mark-stone found, as reported in 1867.		
LXII		<b>"</b>	Tah. and Thá. Maharájganj, P. Tilpur	Sehpur	Chauk S. W. 51 Nichlaul E. by N. 51	Ditto.		
LXIII		<b>33</b>	Tah. Maharájganj, P. Tilpur, Thá. Kothibhár	Morairi	Kothibhár S. E. by E. 43	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 17 feet square at base and 14 feet at top. Part of the tower injured, and no mark-stone found, as reported in 1867.		
LXIV	•••	"	Tah. Maharáj- ganj, P. Til- pur, Thá. Nichlaul	<b>J</b> eld <b>a</b>	Doma N. by W. 2 Basodi S. W. 2½ Baja N. W. 2½	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 20 feet square at base and 14 feet at top. Part of the tower injured, and no mark-stone found, as reported in 1867.		
LXV	•••	29	Tah. Parauna, P. Sidhua Job- na, Thá. Ko- thibhár	Mathia	Kardah N.E. 2	Ditto.		
LXVI		Chumparun	P. Majhauwa, Thá. Bagaha	Balua		The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 18 feet square at base and 14 feet at top.		
LXVII		Gorakhpur	Tah. Parauna, P. Sidhua Jobna, Thá. Kothi- bhár		Batsura N.E. 3½ Bagua E. 4	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 18 feet square at base and 14 feet at top. Part of the tower injured, and no mark-stone found, as reported in 1867.		
LXVIII		Chumparun	P. Majhauwa, Thá. Bagaha	Bijrah		The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 20 feet square at base and 14 feet at top.		

Note.—P. stands for pargana, Tah. for tahsil and Thá. for thána.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
LXIX		Chumparun	P. Majhauwa, Thá. Bagaha	Bakwa	miles Chandrapur W. 11 Ratwal S. by W. 2	1
	mit and ano East Longitu	ther in the groudinal Series, and	ud floor. The s	station was built in construction appe	n 1847 in the course	op, having a mark-stone at sum- of the operations of the North- de in 1852, when again visited
LXX		Chumparun	P. Rámgir, Thá. Lauria	Baita	Beláspurwa N. W. 3 Pachrukha E. by S. 1 Bahuari N. E. 1	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 20 feet square at base and 14 feet at top.
LXXI		"			Gondauli N. W. by N. 3 Dubaulia E.S.E. 1 Dumra S. S. E. 11	The station consists of a plat- form of burnt bricks and mud cement, 14 feet square, enclosing a central pillar of masonry 2 feet high and 4
	course of the	North-East Lon	gitudinal Series o	per surface and an operations, and no f the Huríláong I	change in its construc	tion was built in 1847 in the ction appears to have been made
LXXII	•••	Chumparun	P. Rámgir, Thá. Lauria	Tarharwa	Singárpur W. N. W. 2½	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kachatower 20 feet square at base and 14 feet at top. Tower and pillar fallen down as reported in 1872.
LXXIII		"	Ditto.	Sathwaria	Sáthi N. N. W. 2½ Pokharia Rai S. W. 3½ Jaintia S. E. by E. 3	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 20 feet in diameter at base and 14 feet at top.
LXXIV		<b>&gt;&gt;</b>	P. Majhauwa, Thá. Bettiah	Sikta	Balthur W. 31	Ditto.
LXXV	·	<b>&gt;&gt;</b>	Ditto.	Birwa.	Sirsiwa W.N.W. 2 Ratanmála W. 21	Ditto.
LXXVI	•••	"	P. Majhauwa, Thá. Adápur	Harnáhi	Champápur S. S. E. 3	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 20 feet in diameter at base and 14 feet at top. The pillar half fallen down as reported in 1872.
LXXVII		<b>&gt;&gt;</b>	P. Majhauwa, Thá. Moti- haree	Bigoia	Segowlie Canton- ment W.N.W. 2½	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 20 feet in diameter at base and 14 feet at top.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station	
LXXVIII		Chumparun	P. Majhauwa, Thá. Adápur	Narkatia	miles Narkatia W. by N. 2½	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 20 feet in diameter at base and 14 feet at top.	
LXXIX	•••	<b>33</b>	P. Majhauwa, Thá. Moti- haree	Rúpdi	Siswa N. W. 3½ Pataura Bhilha Nizamat S. 2½	Ditto.	
LXXX	•••	<b>,,</b>	P. Semraun, Thá. Dháka	Dipái	Nonaura E. 1 Murshadabad N. by E. ½	Ditto.	
LXXXI		"	P. Mehsi, Thá. Dháka	Masáha	Barashankar E. 44 Dháka Rám- chandar N. E. by N. 44	Ditto.	
LXXXII		Mozufferpore	P. Babra, Thá. Shiuhar	Sinduria	Bhawánipur W. by S. 2	Ditto.	
LXXXIII	and 4 feet in mark-stones Chendwar M	diameter at top: have been fixed	the latter has a in the solid p operations, as all	mark-stone at its illar. It was not the observations be	sing a central pillar of summit, in the normal necessary to revisit	The station consists of a tower of unburnt bricks—with diamasoury, 6½ feet square at base of which—it is assumed—other this station in the course of the st Longitudinal and the Chend-	
LXXXIV	•••	Mozufferpore	P. Mahalla, Thá Seetamurhee	. Bulákipur	Ríga S. S. W. 21	The pillar is isolated, 6½ feet square at base and 4 feet in diameter at top, and is enclosed in a kacha tower 20 feet in diameter at base and 14 feet at top.	
LXXXV	6½ feet squar which—it is	re at base and 4 f assumed—other	eet in diameter a mark-stoues ha	it top: the latter ave been fixed in t	has a mark-stone at the solid pillar. The	The station as built in 1846 consists of a tower of unburnt ing a central pillar of masonry, its summit, in the normal of station was revisited in 1849, in ts construction appears to have	
LXXXVI		Mozufferpore	P. Mahind, Tha	. Kararbana	Jujhárpati W. N. W. 2	The pillar is isolated and enclosed in a kacha tower.	
LXXXVII		,,	P. Nánpur, Thá Pupri	. Himaunpur	Sherpur N. E. 21 Bhasaipur N. W. by W. 21	Ditto.	
LXXXVIII		"	P. Basotra, Thá Pupri	. Pargáwa	Basotra S. W. by W. 1½ Chorwat S. E. by S. 2¾	The pillar is isolated and enclosed in a kacha tower. A portion of the upper part was reported as broken down in 1868; in 1874 it was found 183 feet high.	

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
LXXXIX	•••	Durbhunga	P. Tájpur, Thá. Benipati	Sháhpur	miles Jogiadah W. 2½ Páli E. S. E. 3½	The pillar is isolated and enclosed in a kacha tower.
<b>X</b> C	Basantnagar	<b>&gt;&gt;</b>	Ditto.	Jarel Hassár N. N. E. 23 Jhakti N. E. 34		Ditto.
XCI	•••	,	P. Jarel, Thá. Benipati	_		The station as built in 1849 consists of a tower of sun-dried bricks enclosing an isolated pillar of masonry. When again visited in 1852, in the course of the North-East Longitudinal Series operations, no alteration in its construction appears to have been made.
XCII		"	P. Bachhaur, Thá. Khajauli	Narhar	Narath S. W. 1 Chitáhi W. by N. 13	The pillar is isolated and enclosed in a kacha tower. Much injured by floods in 1880.
XCIII	Simri	,,	P. Háti, Thá. Mudhoo- bunnee	Simri	Mirzapur N.E. 1½ Pariharpurjabdi N.W. 1¾	The station as built in 1849 consists of a tower of sun-dried bricks enclosing an isolated pillar of masoury. When again visited in 1852, in the course of the North-East Longitudinal Series operations, no alteration in its construction appears to have been made.
XCIV		"	P. Bachhaur, Thá. Ladnia	Mirzapur	Sidhap Kalán N. W. by W. 81	The pillar is isolated and enclosed in a kacha tower.
XCV	Dakohi	,	P. Gaur, Thá. Mudhoo- bunnee	Rudarpur	Rakhwári W. 13 Andhara N. E. by N. 8	The pillar is isolated and enclosed in a kacha tower. Found 18 feet high in 1868, not known when the upper portion fell.
XCVI		))	P. Jabdi, Thá. Phulprás	Laukaha	Bijnaha N. 11 Parsáhi Siswár S. by E. 31	The pillar is isolated and enclosed in a kacha tower. Found only 12 feet high in 1868, not known when the upper portion fell.
XCVII	Belaha	"	P. Álápur, Thá. Phulprás	Barhampur	Urgaon Asli N. E. by N. 21	The pillar is isolated and enclosed in a kacha tower.
XCVIII		<b>n</b>	P. Álápur, Thá. Laukaha	Ladnia	Mesápur Madhubani W. 41 Bingson Birbati S. W. by S. 41	The pillar was isolated and enclosed in a kacha tower. Entirely fallen down as reported in 1868.
XCIX	•••	Bhágalpur	P. Náridigar, Thá. Soopole	Sunbarsa	Khánpur E. by N. 11	The pillar is isolated and enclosed in a kacha tower.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
C		Bhágalpur	P. Náridigar, Outpost Dag- mara	Harpur	miles Dagmara Piprahi N. N. W. 2 Nandipur W. ½	The pillar is isolated, 3½ feet in diameter at top, and is enclosed in a kacha tower.
CI		"	P. Náridigar, Thá. Soopole	Barháta	Srípur N. 1½ Jharka S. W. by W. 2	Ditto.
CII		<b>,</b>	P. Haraut, Thá. Pratápganj	Diwánganj	Baijnáthpur W. by S. 13 Sukhanagar E. N. E. 11	The pillar is isolated and perforated, and is enclosed in a kacha tower.
CIIÍ	•••	"	P. Náridigar, Thá. Soopole	Latona	Kabia E. by S. 21	The pillar is isolated, and enclosed in a square kacha tower.
CIV		22	P. Dhapur, Thá. Pratápganj	Chakla Rám Missir's Baisi	Sibnagar S. E. by E. 2 Kamálpur N. E. by E. 1½	Ditto.
CV	•••	23	P. Ĥaraut, Thá. Pratápganj	Minai	Rajganj E. by N. 1½ Náthpur E. S. E. 2	The pillar was isolated and enclosed in a kacha tower 13½ feet square at top, having an embankment of earth thrown up around the base. Washed away by the river Koosee in 1873.
CVI	•••	Purneah	P. Dharampur, Thá. Rániganj	Chúni	Husanpur W. by S. 11	The pillar is isolated and enclosed in a kacha tower 15 feet square at top, having an embankment of earth thrown up around the base.
CVII	the North Fr	not Longitudinal	Ditto.	Rámnagar Rahta	N. E. by N. 11 Rámnagar Ma- hesh S. E. 3	The pillar is isolated and enclosed in a square kacha tower. It was not necessary to revisit this station as all the observations, both for about the same time. Greater
				in 1872 and 1873.	eries, were completed	about the same time. Greater
CVIII	Manúlapati	Purneah	P. Dharampur, Tha. Rániganj			The pillar is isolated and enclosed in a kacha tower. It was not necessary to revisit this station as all the observations, both for the North-East Longitudinal, and North Malúncha Series, were completed at the same time.
CIX		Bhágalpur	P. Haraut, Thá. Pratápganj	Ghiba	Sulda N. 1½ Bishanpur W. by S. 2½	The pillar is isolated and enclosed in a kacha tower 14 feet square at top, having an embankment of earth thrown up around the base.

1.						<u> </u>
No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
CX		Purneah				The pillar is isolated and
-		٠	Thá. Matiári			enclosed in a kacha tower 14 feet square at top, having an embankment of earth thrown up around the base.
CXI		,,	Ditto.	Mánikpur	Barha W. 1	Ditto.
CXII		,,	P. Tirakhardah, Thá. Matiári	Kamaldáha	Tirakhardah N.E. 3	Ditto.
CXIII		,,	P. Sultánpur, Thá. Arrareah	Bhenigara	Arrareah S. by W. 5½	The pillar is isolated and enclosed in a kacha tower 13 feet square at top, having an embankment of earth thrown up around the base.
CXIV		<b>)</b> )	P. Fatchpur, Thá. Arrarcah	Dipnagar	Balua S. E. by S. 1½ Pararia W. by N. 1	The pillar is isolated and enclosed in a kacha tower 14 feet square at top, having an embankment of earth thrown up around the base.
CXV		,,	P. Srípur, Th <b>á.</b> Bahádurganj	Músaldánga		The pillar is isolated and enclosed in a kacha tower 13 feet square at top, having an embankment of earth thrown up around the base.
CXVI		"	P. Fatehpur Singhia, Thá. Bahádurganj	Lachmipur	Bhág Kálpi Pír W. 2	Ditto.
CXVII		<b>"</b>			Bahádurganj N. W. 43	The pillar was isolated and enclosed in a kacha tower 13 feet square at top, having an embankment of earth thrown up around the base. Swept away in 1880.
CXVIII		"	P. Fatehpur Singhia, Thá. Káliaganj	Bandarjúla	Powakháli S. by W. 2½	The pillar is isolated and enclosed in a kacha-paka tower 14 feet square at top.
CXIX	•	"	P. Súrajpur, Thá. Káliaganj	Kharkhari	Haldagaon S. W. by W. ½ Keshijra N. W. by W. 1	The pillar is isolated, 4 feet in diameter, and is enclosed in a kacha-paka tower 14 feet square at top.
CXX		, ,,	P. Fatehpur Singhia, Thá. Káliaganj	Thákurganj	Furabári N.W. ½ Káliaganj S.S.E. 8	The pillar is isolated, 13 feet high and 4 feet in diameter at top, and is enclosed in a kacha-paka tower 14 feet square at top, having an embankment of earth thrown up around the base.
CXXI	•••	"	P. Súrajpur, Thá. Kália- ganj	Sonakhoda	Gobindpur W. 21	

Note.—P. stands for pargana and Thá. for thána.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
CXXII		Purneah	P. Súrajpur, Thá. Kália- ganj	Rámganj	miles Khojagaon E. N. E. 1½ Badangáchh W. N. W. 1½	•••
CXXIII		"	P. Fatehpur Singhia, Thá. Káliaganj	Dúmdángi	Tentulia E. N. E. 8	The pillar is isolated, 4 feet in diameter at top, and is enclosed in a kacha tower 14 feet square at top, having an embankment of earth thrown up around the base.
CXXIV		,,,	Ditto.	Kanchabári	Tentulia W. N. W. 53 Babud Bhajan- pur N. N. E. 4	The station, as originally constructed in 1848, consists of a mound of earth (i.e., tower) 60 feet square at base, 14 feet at top, and 20 feet in height, thrown up against an annular wall of masonry, I foot thick, enclosing a solid, isolated masonry pillar with mark-stones at top, bottom and intermediately. When subsequently visited the upper mark-stone was found undisturbed, and no change appears to have been made in the construction of the station.
CXXV		Dinagepore `	P. Salbári, Thá. Thákurgaon	Chotáki	Bámankumár E. N. E. 13 Belia N. by E. 21	The pillar as built in 1848 is isolated, 4 feet in diameter, and is enclosed in a kacha tower 14 feet square at top. When again visited in 1855, in the course of the operations of the Assam Longitudinal Series, no alteration was made in the construction of the pillar.
CXXVI	 No change w	Jalpáiguri vas made when	Tah. Rajnagar, P. and Thá. Boda	Cherakute	Taria W. 5½ but in 1855, when vis	The pillar is 29.2 feet high. As originally constructed, the pillar was 4 feet in diameter at top, and 24 feet in height. sited again in the course of the

No change was made when it was visited in 1853 and 1854; but in 1855, when visited again in the course of the Assam Longitudinal Series operations, the height was increased by 5.2 feet, and a mark-stone placed on the top in the prolongation of the normal through the original upper mark-stone, which was found undisturbed: the pillar is isolated and of the solid kind; in the original construction it carried mark-stones at top, bottom and intermediately, and was enclosed in a kacha tower 14 feet square at top.

NOTE.—P. stands for pargana, Tah. for tahsil, and Thá. for thána.

August, 1882.

J. B. N. HENNESSEY,
In charge of Computing Office.

# NORTH-EAST LONGITUDINAL SERIES.

#### OBSERVED ANGLES.

## At LII

January 1851, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch
Theodolite No. 1.

Angles	Seconds of Observed Angles at each Zero										Probabilities and
Angles.	0°0′	180°0′	7° 12′	187°12′	14°24′	194° 24′	21° 36′	201° 36′	28° 48′	208° 48′	General Means.
LIV & I	138.44	" l 36·26 l 35·90	1 38.60	1 37.62	1 37.46	1 36.00	1 36.78	1 37.36	137.14	137.46	Probability = 0'22
Means	38:48	36·08	37 ^{.8} 5	37.43	37.31	36.14	36.95	37:35	36.76	36.44	31° 17′ 37″•11
I & III	h19.36	h20'72 h21'32	h19.48	h21.42	h22.10	h20.32	l 21.94 l 22.86	l 22.68	y30.33	h20.02	Probability = 0.38
Means	18.97	31,03	19.43	20.20	22:38	20.12	22'40	22.75	20.64	20.30	48° 41′ 20″·88

NOTE.—LII and LIV of Great Arc Meridional Series.

At LIV November 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1. Seconds of Observed Angles at each Zero Probabilities and Angles. General Means. 187°12′ 14°24′ 194°24′ 21°36′ 201°36′ 28°48′ 000 180°0′ 208° 48′ " h 5.62 l 5.26 l 4.86 l 5.92 l 6.64 l 4.28 17.16 16.96 18.00 h 5.30 18.14 16.56 17.76 h 6.13 1 3.00 1 v.03 1 2.88 1 2.25 1 4.24 Probability = 0.35 LVI & I 81.9 1 1 5.60 Means 7.88 66° 35′ 5″·94 5.87 4.28 6.08 6.77 6.76 6.60 4'41 5.00 4'44 h55.46 h54.84 l52.08 l53.86 l53.98 l55.34 l54.26 l56.24 l55.82 l57.12 h55.10 h54.36 l51.02 l55.90 l54.70 l54.30 l53.44 l56.24 l55.68 l57.08 LVI & LII Probability = 0.45 \$53.94 1 54.38 Means 54.34 54.83 53.85 56.24 55.75 55.58 24.38 21.22 24.21 149° 53′ 54″.80 +55.28 + 54.38 + 51.55 + 54.71 + 54.34 + 54.82 + 53.85 + 56.24 + 55.75 + 57.10-5.87 - 4.58 - 4.44 - 5.90 - 6.08 - 4.41 - 6.77 - 6.76 - 7.88 - 6.69I & LII Probability = 0.37 149° 53′ –66° 35⁽ 49.41 49.80 47.11 48.81 48.26 50.41 47.08 49.48 47.87 50.41 83° 18′ 48″ 86 At LVI November 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 2. Seconds of Observed Angles at each Zero Probabilities and Angles. General Means. 000 180° 0' 187°12′ 14°24′ 194°24′ 21°36′ 201°36′ 28°48′ 138.14 135.52 134.88 137.46 138.36 137.92 137.88 138.92 h40.90 h36.36 II & II Probability = 0.50 137.06 135.80 135.42 138.06 137.96 135.76 136.72 138.84 h41.24 h37.32

Note.—LII, LIV and LVI of Great Arc Meridional Series.

35.66 35.12 37.26 38.16 36.84 32.30 38.88

Means

37.60

53° 43′ 37″ 53

36.84

41.07

#### At LVI—(Continued.) November 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 2. Seconds of Observed Angles at each Zero Probabilities and Angles. General Means. 180° 0′ 187°12' 14°24' 194°24' 21°36' 201°36' 28° 48′ 208° 48′ 0°0′ l 25.60 l 25.44 h 29.22 h 26.88 l 27.26 l 29.76 l 25.58 l 28.92 l 23.12 h 28.66 l 26.36 l 27.00 h 28.26 h 26.54 l 26.22 l 29.18 l 25.66 l 30.20 l 25.52 h 28.20 I & LIV Probability = 0.50 l 25.92 h25.10 Means 25.08 26.30 28.74 26.71 26.74 25.62 29.26 24.92 39° 29′ 27″.25 29.47 28.43 At I December 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1. Seconds of Observed Angles at each Zero Probabilities and Angles. General Means. 000 180°0′ 7° 12′ 187°12′ 14°24′ 194°24′ 21°36′ 201°36′ 28°48′ 208°48′ 120.26 120.35 423.50 151.88 455.14 155.24 151.58 455.30 455.24 451.48 Probability = 0.22 LVI & II 120.46 121.16 h22.36 122.50 h22.02 122.02 121.28 h21.92 h21.80 h22.02 Means 20.21 20.24 22.28 22.10 22.08 22.28 21.58 54° 22′ 21″.80 22'II 22'17 21'90 h23.60 h22.40 l23.80 l23.80 h23.00 l22.80 l21.02 h22.06 h22.62 h23.66 II & IV Probability = 0.19 h24'42 h23'30 l24'78 l22'28 h21'86 l23'84 l23'34 h22'66 h22'88 h23'84 Means 24.01 22.82 24.20 23.04 22.43 23.32 22.63 22.81 22.72 23.75 56° 21′ 23″·19 l 36.10 l 37.62 l 39.38 l 36.40 l 38.36 l 39.98 l 36.56 h 37.86 h 36.72 h 37.04 II & III Probability = 0.37 136.66 134.44 139.56 136.48 139.00 138.76 137.74 h37.82 h37.54 h37.44

39.37

16.02

14.2

+36.38 + 36.03 + 39.47 + 36.44 + 38.68 + 39.37 + 37.15 + 37.84 + 37.13 + 37.24 - 24.01 - 22.85 - 24.29 - 23.04 - 22.43 - 23.32 - 22.63 - 22.81 - 22.75 - 23.75

16.52

37.15 37.84 37.13

15.03 14.38 13.49

Note.—LIV and LVI of Great Arc Meridional Series.

15.18

39.47 36.44 38.68

13'40

36.38 36.03

13.18

12.37

Means

III & VI

97° 5′ ·56° 21′ 97° 5′ 37″ 57

Probability = 0.38

40° 44′ 14″·38

37.24

At I—(Continued.)

December 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

Angles	Seconds of Observed Angles at each Zero										Probabilities and
Angles.	0°0′	180° 0′	7°12′	187°12′	14° 24′	19 <b>4°</b> 24′	21° 36′	201°36′	28° 48′	208° 48′	General Means.
III & LII	l 53.62 l 53.84	l 53·52 l 53·70	" l 52.00 l 51.78	" l 54.06 l 53.48	" l 50·76 l 52·96	151.13	" h51.38 l 52.80	1 51.84	" l 52·30 l 52·26	" l 52.94 l 53.52	Probability = 0.24
Means	53.73	53.61	51.89	53.77	51.86	52.63	52.09	52.10	52.58	53°23	69° 12′ 52″·72
LII & LIV	l 38·92 l 49·26	l 37 [.] 92 l 39 [.] 90	h38·04 h36·62 h37·46	l 40·98 l 38·42	h40°18 h42°48	l 37°54 l 36°96	h40°46 l 37°16	l 39 [.] 44 l 38 [.] 20	l 37·32 l 37·84	l 38·84 l 38·32	Probability = 0.37
Means	39.29	38.01	37'37	39.70	41.33	37.25	38.81	38.82	37.58	38.28	65° 23′ 38″·79
LIV &	l 30·80 l 28·78	l 30.62 l 30.80	h27.84 h28.18	l 27.68 l 29.12	h29°02 h29°24	l 28.82 l 29.10	l 29.70 l 29.76	h27.56 h28.06	h26.96 h28.06	h29.70 h28.38	Probability = 0.30
Means	29.79	30.41	38.01	28.40	29.13	28.96	29.73	27.81	27.51	29.04	73° 55′ 28″·91

At II

December 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

Angles.				Probabilities and							
Angles.	0°0′ 180°0′ 7°12′ 187°12′ 14°24′ 194°24′ 21°36′ 201°36′ 28°48′ 208°48′									General Means.	
IV & I	1 44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	" l 43·32 l 42·92 l 43·26	" l 44 [.] 82 l 44 [.] 24	" l 43 [.] 62 l 42 [.] 08	" l 43·54 l 43·02	" l 44.14 l 42.88	" l 42·26 l 41·60	" l 43:38 l 42:14	" l 40°12 l 42°72 l 43°34	" l 42·20 l 42·68	Probability = 0°26
Means	44'35	43.17	44.23	42.85	43.58	43.21	41.03	42.76	42.06	42.44	80° 15′ 43″·09

Note.—LII, LIV and LVI of Great Arc Meridional Series.

## At II—(Continued.)

December 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

A1				Probabilities and							
Angles.	0,0,	180°0′	7°12′	187° 12′	14°24′	194° 24′	21°36′	201° 36′	28° 48′	208° 48′	General Means.
I & LVI	l 2·18	l 3.14 l 1.02 l 0.64 l 2.94	" 1 3.25 1 4.14	l 2.12 l 3.30	" l 3.60 l 5.46	" l 2·84 l 3·40	" l 3:76 l 4:80	" 1 3·78 1 4·56	l 5.06 l 3.84 l 2.62	" l 2·82 l 2·76	Probability = 0'27
Means	2.33	1.93	3.83	2.71	4.23	3.13	4.58	4.12	3.84	2.79	71° 54′ 3″-34

## At III

December 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

Angles.			Seco	nds of O	bserved	Angles a	it each Z	Zero			Probabilities and	
Angles.	0°0′	180°0′	7° 12′	187° 12′	14° 24′	194° 24′	21° 36′	201° 36′	28° 48′	208° 48′	General Means.	
LII & I	l 51.30 l 21.00	1 52.74	152'48	1 52.10	151.44	l 90.92	147.80	" l 50°24 l 50°44	1 50.24	" l 50·12 l 50·76	Probability = 0.33	
Means	21.12	52.51	52.08	52.06	51.58	50.69	48.74	50°34	49'99	50°44	62° 5′ 50″:90	
I & IV	l 15.00 l 13.44 l 13.66	l 12.39 l 13.38	l 14.15	l 13.42 l 13.28	l 14.10	l 13.14 l 14.18	l 14.46 l 13.60	l 15.02 l 13.58	l 12 [.] 32	l 13°14 l 14°20 l 13°70	Probability = 0.18	
Means	14'03	12.37	14.11	13.32	14.18	13.66	14.03	14:30	13.10	13.68	75° 35′ 13″.68	

Note.—LII and LVI of Great Arc Meridional Series.

## At III—(Continued.)

December 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

			Sec	onds of	Observed	Angles	at each	Zero			Probabilities and
Angles.	0° 0′	180° 0′	7° 12′	187° 12′	14° 24′	194° 24′	21° 36′	201° 36′	28° 48′	208° 48′	General Means.
IV & VI	l 7.82 l 6.28 l 5.18	" l 6.92 l 7.94	l 6.13 l 6.13	" l 9°14 l 8°78	l 7:10 l 7:26	" 2 8.54 2 8.12	" 1 8·28 1 7·48	" l 7:66 l 7:96	l 7·16 l 8·74	" 1 6·58 1 6·82	Probability = 0'27
Means	6.43	7.43	6.13	8.96	7.18	8.33	7.88	7.81	7.95	6.70	52° 0′ 7″·48
IV & V	l 4.80 l 4.04 l 3.18	l 4.80 l 4.96	l 4:34 l 4:86	l 4'20 l 4'72	l 4:88 l 3:78	l 4.04 l 4.08	l 7:30 l 6:30	l 4.38	l 5 [.] 84 l 6 [.] 34	l 5.98 l 4.56 l 4.88	Probability = 0.26
Means	4.01	4.88	4.60	4.46	4:33	4.21	6.80	4.81	6.09	5.14	70° 36′ 4″•96
VI & V	- 6.43 +64.01	+64·88 - 7·43	+64.60 + 6.13	+64·46 - 8·96	- 7·18	+64·51	+ 66·80 - 7·88	+64·81	+66°09 - 7°95	+65·14 - 6·70	Probability = 0.32
70° 35′ -52° °′	57.28	57.45	58.48	55.20	57.15	56.18	58.92	57:00	58.14	58.44	18° 35′ 57″·48

## At IV

December 1850, observed by Captain T. Renny Tailyour with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

			Sec	onds of	Observed	l Angles	at each	Zero			Probabilities and
Angles.	<b>0</b> ° 0′	180°0′	7°12′	18 <b>7°</b> 12′	14° 24′	194° 24′	21°36′	201°36′	28° 48′	208° 48′	General Means
VI & V	" l 21.82 l 22.60	" l 20 [.] 30 l 20 [.] 92	" l 21·50 l 20·36 l 20·92	" l 20:36 l 23:12 l 22:44	" l 21·72 l 21·44	" l 24·28 l 24·22	" l 21°58 l 23°04	" l 23.68 l 23.40	" l 23.08 l 22.78	" l 23:76 l 24:86	Probability = 0.39
Means	23,51	20.01	20'93	21'97	21.28	24.5	22'31	23'54	22.03	24'31	43° 13′ 22″•46

			Sec	onds of (	Observed	Angles	at each 2	Zero			Probabilities and
Angles.	1							28° 48′	208° 48′	General Means.	
V & III				" l 35.24 l 35.92					l 34.04 l 36.00		Probability = 0'18
Means	36.20	36.43	36.96	35,43	36·44	36.14	35.26	36,25	35.03	36.30	53° 15′ 36″·18
III & I				l 36·18 l 35·04							Probability = 0.3
Means	36,81	34.45	37.12	35.61	37.75	36.19	38.13	36·6o	37.06	35.40	63° 40′ 36″ 52
I & II	l 56·46 l 56·28	l 58·66 l 57·14	l 57:28 l 56:86	l 56·56 l 55·96	l 56·02 l 56·78	l 56·34 h 56·48 h 57·42	h 56·56 h 56·72	h 57°74 h 57°68	1 58·34 1 56·76 1 56·36 1 56·78	1 57.78 1 55.80	Probability = o'1
Means	56.37	57.90	57.07	56.26	56.40	56.75	56.64	57.71	57:06	56.79	43° 22′ 56″.90
VI & III	+36.20	+20 [.] 61 +36 [.] 43	+20°93 +36°96	+21.97 +35.73	+21·58 +36·44	+24·25 +36·14	+22·31 +35·56	+23,24 +36.45	+22.03 +35.02	+36.30	Probability = 0.3
43° 13′ +53° 15′	58.41	57:04	57.89	57.70	58.03	60.39	57.87	60.56	57°95	60,61	96° 28′ 58″·64
	y and	June 1	Lieut	-Colonei	l Waug	n's 24-	inch T	heodolit	your an e No. ]	d Mr.	J. Peyton with
Angles.	000	180° 0′		onds of ( 			at each		28° 48′	208° 48′	Probabilities and General Means.

At V—(Continued.)

January and June 1851, observed by Captain T. Renny Tailyour and Mr. J. Peyton with

Lieut.-Colonel Wayah's 24-inch Theodolite No. 1.

		. •									
Angles.		_	Sec	onds of	Observed	Angles	at each	Zero			Probabilities and
Tukies.	0°0′	180°0′	7° 12′	187° 12′	14° 24′	194° 24′	21° 36′	201° 36′	28° 48′	208° 48′	General Means.
III & VI	h 2.88 h 4.34		" l 4.68 l 3.30				" l 5.82 l 4.86			l 3.88 l 3.66	Probability = 0.23
Means	3.61	2.86	3.99	3.93	2.99	4.98	5°34	3.22	3.20	3.77	144° 4′ 3″'-86
IV & VI	+63.61 -20.43	-19.81 +65.86	-19.73 -63.99	+63.39 +51.36	+62.00	+64 [.] 98	+65°34 -21°38	+63.55	+63.20	+63.77 -21.08	Probability = 0.32
144° 3′ — 56° 8′	42.89	42.92	44.56	42.27	41.03	43.41	43°96	40.73	41.71	42.69	87° 55′ 42″′.71
III & VIII	l 6·12 l 5·94	l 7.06 l 6.32	l 7:38 l 8:78	l 5.78 l 6.28	l 7·34 l 6·22	l 7·24 l 6·86	l 5'38 l 6'84	l 8.00 l 8.00	1 5.28 1 6.38 1 6.26	1 7·38 1 6·64	
Means	6.03	6.69	8.08	6.03	6.78	7.05	Q.11	8.02	6.14	7.01	173° 5′ 6″·80
VI & VIII	+ 6.03 - 3.01	+ 6.69 - 2.86	- 3.33 + 8.08	- 3.63 + 6.03	+ 6.78 - 2.99	+ 7.05 + 4.08	- 5.34 + 9.11	+ 8.02 - 3.55	+ 6·17	+ 7°01	Probability = 0.34
173° 5′ -144° 4′	2,43	3.83	4.00	2'10	3°79	2.07	0.11	4'47	2.28	3°24	29° 1′ 2″'94
lii & Vii	l 1.30	l 1.66 l 1.94	l o.44 l o.88	l 3.30 l 3.30	l 3.14 l 3.14	l 2.80 l 2.68	l 1.00	l 2·26 l 3·64	l 3.55 l 5.08	l 3·36	
Means	1.84	1.80	0.66	3.5	2.60	2.24	1.01.	2.95	2.65	3.04	214° 9′ 2″·34
VI & VII	- 3.91 +91.84	+61.80 - 2.86	- 3.33 +60.66	- 3.53 + 63.52	+62.60 - 2.99	+62·74 - 4·98	+61.91	+62.95	+62.65	+63.04	Probability = 0.34
214° 8′ -144° 4′	58.33	58.04	56.67	59.32	59.61	57.76	56.22	59°40	59:06	59°27	70° 4′ 58″·48
VIII & VII	+61.84 - 6.03	- 6.69 +61.80	+ 60·66 - 8·08	+63·25 - 6·03	+62.60 - 6.78	+62·74 - 7·05	– 6.11 +91.01	+62°95 - 8°02	+62.65	- 7.01 + 63.04	Probability = 0.37
214° 8′ -173° 5′	55.81	55.11	52.28	57.22	55.82	55.69	55.80	54.93	56.48	56.03	41° 3′ 55″-55

At VI

May 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

			Seco	onds of (	Observed	Angles	at each	Zero			Probabilities and
Angles.	0,00	180°0′	7° 12′	187° 12′	14° 24′	194° 24′	21° 36′	201°36′	28° 48′	208° 48′	General Means.
VIII & V		" h14·86 h14·94									Probability = 0.46
Means	16.67	14'90	14.66	14.08	14.41	16.44	16.01	17.22	12.22	12.95	131° 35′ 15″·08
VII & V	h38.18	h 37.92 h 37.40	h40°52 h40°14	h39°04 h39°86	h37°00 h38°50	h36.66 h38.18	h40°38 h38°54	h39.46 h38.28	h37.26 h37.74 h37.02	h35.28 h34.26	Probability = 0.46
Means	37.80	37.66	40.33	39`45	38.75	37.42	39.46	38.87	37°3 <del>4</del>	34.03	78° 1′ 38″-10
VIII & VII	+ 76.67 -37.80	+ 74 [.] 90 - 37 [.] 66	+ 74·66 -40`33	+ 74·98 -39·45	+ 74.41 - 37.75	+ 76 [.] 44 -37 [.] 42	+ 76 [.] 01 + 39 [.] 46	+77 ²²	+ 72·57 -37·34	+72.95 -34.92	Probability = 0.48
131°34′ -78° 1′	38.87	37:24	34.33	35`53	36·66	39.03	36·5 <b>5</b>	38.35	3523	38.03	53° 33′ 36″•98
V & III	\$61.62	h61°52 h61°40	h60·62 h59·94	h61°54 h58°28 h57°98	µ60.15	h 58·80 h 58·34	h60.05	h61:34 h61:32	464.05	h63°90 h61°62	Probability = 0.46
Means	б2·12	61.46	60 [.] 28	59°27	60.11	5 ⁸ ·57	59.61	61.33	63.07	62.76	17° 19′ 60″·86
V & IV	h 57°12	h 56·32 h 58·12	h54°38 h55°36	h 56·28 h 56·72	h 57·76 h 57·02	h56·10 h55·24	h53°36 h55°70 h54°96	h 56·42 h 56·64	h 58°04 h 56°82	h 59°10 h 58°40	Probability = 0.38
Means	57.10	57.22	54.87	56.20	57.39	55.67	54.67	56.23	57°43	58.75	48° 50′ 56″·61
III & IV	- 62.13 + 114.10	+ 117.22 + 117.22	5 – 60.3 5 – 60.3	7 + 116·5	7 – 60°	39 + 115 11 – 58	67 + 114 57 – 59	:67 + 116 :61 – 61	23 – 6 1.33 – 6	7°43 + 118 3°07 – 6:	8.75 Probability 2.76 = 0.33
48° 49' -17° 19'	54.98	55.76	5 54°5	9 57'2	3 57'	28 57	'10 55	;·o6 5!	5'20 5	54.36 2	5°99 31° 30′ 55″°76

At VII February and March 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1. Seconds of Observed Angles at each Zero Probabilities and Angles. General Means. 0°0′ 180°0′ 7°12' 187°12' 14°24' 194°24' 21°36' 201°36' 28°48' 208°48' 129.34 129.40 125.66 127.70 h27.94 h29.04 h27.96 h29.98 h30.18 h31.04 128.78 129.24 128.34 128.02 h28.12 h28.36 h27.24 h28.72 h29.92 h28.68 V & VI Probability = 0.30 h29.08 20.06 20.32 27.00 27.86 28.03 28.40 27.60 20.35 30.05 20.60 31° 53′ 28″.66 Means \$\line{1}60.04 & l 57.72 & l 59.76 & l 57.48 & h61.34 & h58.78 & h58.82 & h58.84 & h57.90 & h58.22 & h58.90 & l 56.80 & l 57.58 & l 57.90 & h58.36 & h59.40 & h59.74 & h59.76 & h57.46 & h58.70 Probability = 0.25 VI & VIII 1 57·80 \$59.48 1 57.44 52° 10′ 58″.69 Means 59.47 57.44 58.67 57.69 59.83 59.09 59.28 59.30 57.68 58.46 +20.06 + 20.32 + 27.00 + 27.86 + 28.03 + 28.70 + 27.60 + 29.35 + 30.05 + 29.60A & AIII Probability = 0.33 +59.47 + 57.44 + 58.67 + 57.69 + 59.83 + 59.09 + 59.28 + 59.30 + 57.68 + 58.4631° 53' +52° 10' 88.53 86.76 85.67 85.55 87.86 87.79 86.88 88.65 87.73 88.06 84° 4′ 27′ 35 135.72 137.90 137.90 138.20 h37.16 h37.78 135.24 134.22 136.78 h38.74 VIII & IX 135.62 139.28 138.48 138.90 h36.38 h37.76 135.12 133.80 136.60 h39.94 Probability = 0.51 h 39.20 Means 64° 29′ 37" 07 35.67 38.59 38.19 38.22 36.44 37.44 32.18 34.01 36.69 39.59 h47'10 h54'68 h54'66 h54'70 h53'00 h53'90 h55'02 h55'88 h57'50 h55'10 h47'28 h55'12 h53'82 h55'24 h54'26 h55'12 h54'58 h55'18 h54'92 VIII & X \$55.62 47.10 54.00 54.54 54.00 53.15 54.08 55.02 55.53 56.10 55.01 130° 30′ 53″ 99 Means +47.19 +54.90 +54.24 +54.96 +53.12 +54.08 +55.07 +55.23 +56.10 +55.01 IX & X Probability = 0.81-35.67 - 38.59 - 38.19 - 38.55 - 36.77 - 37.77 - 35.18 - 34.01 - 36.69 - 39.29130° 30′ -64° 29′ 11.2 16.31 16.02 16.41 16.32 16.31 16.80 66° 1' 16" 92 21.33 19.41 15.72

At VIII

April and May 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

Angles.			Seco	onds of (	Observed	Angles	at each 2	Zero			Probabilities and
	0°0′	180°0′	7° 12′	187° 12′	14° 24′	194° 24′	21° 36′	201° 36′	28° 48′	208° 48′	General Means.
XII & IX	" h34.20 h33.76	h30.66 h32.34	h31.92	h31.86 h32.64	h35.16	h34.72 h34.80	" h34.88 h33.08	h33.92	#32.00 #30.00	" h30.68 h30.44	Probability = 0.48
Means	33.08	31.20	31.05	32.52	35.42	34.76	33.08	33.01	31.33	30.26	19° 20′ 32″'87
IX & VII	h41°34 h39°86	h43 [.] 24 h41 [.] 34	h41.30 h39.44	h40.13 h40.30	h37.98 h38.28	h38.94 h39.32	h38·38 h38·04	h39·60 h39·56	h39.84 h38.90	h 39·86 h 39·04	Probability = 0.36
Means	40.60	42.50	40'32	40.16	38.13	39.13	38.31	39.28	39°37	39°45	36° 50′ 39″·72
VII & VI	h ₂ 8·38 h ₂ 9·38	h30°30 h31°28	h28.64 h30.58	h31°56 h29°46	h28.08 h28.96	h29·56 h30·32	h32·76 h32·86	h29°96 h29°82	h31·16 h32·16	h29.76	Probability = 0.39
Means	28.88	30.40	29.61	30.21	28.52	29°94	32.81	29.89	31.66	29.41	74° 15′ 30″·20
V & VI	h46.06 h45.80	h47°78 h48°02	h49°40 h48°08	h46·66 h46·28	h46·62 h47·34	h46 [.] 22 h44 [.] 94	h47°10 h47°60	h46·76 h45·72	h46°04 h47°54	h44·64 h44·44	Probability = 0.36
Means	45'93	47*90	48.74	46.47	46.98	45.28	47:35	46.54	46.79	44.24	19° 23′ 46″.65
VII & V	+88.88	+90°79 -47°90	+89 [.] 61 -48 [.] 74	-46.41 +90.21	+88·52 -46·98	+89°94 -45°58	+92 [.] 81 -47 [.] 35	+89·89 -46·24	+91·66 -46·79	+89°41 -44°54	Probability = 0.45
74° 14' -19° 23'	42'95	42.89	40.87	44'04	41'54	44.36	45.46	43.65	44.87	44.87	54° 51′ 43″-55

March 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

A		•	Sec	onds of (	Observed	Angles	at each 2	Zero			Probabilities and
Angles.	0° 0′	180° 0′	7° 12′	187° 12′	14° 24′	19 <b>4° 24′</b>	21° 36′	201°36′	28° 48′	208° 48′	General Means.
XII & RM	и 18.78 18.14	h 7.78 h 7.60	" h 9°44 h 7°62	h 8·72 h 9·22	" h 6 [.] 74 h 6 [.] 24	h 7 [.] 94 h 9 [.] 06	h 7.44 h 7.52	l 9.02 l 8.92 l 9.36	" l 9 [.] 44 l 8 [.] 54	" l 9.44 l 9.38	
Means	8:46	7.69	8.23	8.97	6.49	8.20	7.48	<b>0.10</b>	8.99	9.41	67° 7′ 8″·36
Supplemental Angle	51.24	52.31	51.47	51.03	23.21	21.20	52.23	20.00	21.01	50.20	292° 52′ 51″·64
XI & R M	h 19.70 l 17.24 l 18.34	h 19.64	l 16 [.] 32	h 15.05	l 15.04 l 17.02	l 12.04 l 18.22 l 16.02	l 13.70 l 16:00	l 13°94 l 13°78	l 17·86 l 17·80	l 12.60 l 17.52 l 17.20	
Means	18.43	19.27	16.11	15.02	16.03	15.23	14.85	13.86	17.83	15.77	14° 53′ 16″·36
XII & XI	+68·46 18·43	+67.69 +67.69	+68.23	+68 [.] 97	+66 [.] 49 -16 [.] 03	+68.20 +68.20	+67 [.] 48 -14 [.] 85	-13.86 +69.10	+68·99 -17·83	+69 [.] 41 -15 [.] 77	Probability = 0.60
67° 6' -14° 53'	50.03	48.42	52.42	53.02	50.46	52.97	52.63	55.54	21.19	53.64	52° 13′ 52″.00
RM & X	h44·74 h45·70 h44·36	h44 [.] 22 h43 [.] 32	h45°22 h43°94	l 43°52 l 44°20	h41.68 h43.86 h39.50 h41.70 h39.00	h39.96	h43°40 l 44°52	l 45°56 l 45°58	l 42·76 l 45·06	l 44'28 l 44'28	·
Means	44.93	43°77	44.28	43.86	41.12	40.10	43.96	45°57	43.01	44.58	44° 8′ 43″·62
XI & X	+ 18.43	+ 19 ^{.2} 7	+ 16·11	+15.03	+16.03	+15.23	+14 ^{.8} 5 +43 [.] 96	+ 13·86 +45·57	+17.83	+15.44	Probability = 0.72
14° 53′ +44° 8′	63.36	63.04	60.69	59.78	57.18	55.69	28.81	59°43	61.24	60.02	59° 1′ 59″ 98

At IX—(Continued.)

March 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

Angles	Seconds of Observed Angles at each Zero										Probabilities and
Angles.	0°0′	180°0′	7° 12′	187° 12′	14°24′	194° 24′	21° 36′	201° 36′	28° 48′	208° 48′	General Means.
RM & VII	l 19:08	" h 16·94 h 17·94	" l 13·40 l 13·86	" l 14·32 l 14·06	" l 17°56 l 18 62	" l 15.18 l 11.66 l 15.24	" l 18.00 l 16.38	" l 17:60 l 16:70	l 15.14 l 12.14	" l 16·36 l 17·40	
Means	19.04	17.44	13.63	14.10	18.00	14.13	17.19	17.15	15.63	16.88	99° 8′ 16″•33
X & VII								+77°15		+ 76·88 -44·28	Probability = 0.66
99° 7′ -44° 8′	34'11	33.67	29.05	30.33	36.94	33'97	33.53	31.28	31.21	32.00	54° 59′ 32″*72
RM & VIII	h 5.14 h 6.68	h 3.48 h 4.40	h 2·28 h 3·76	h 3·66 h 4·46	h 1.44 h 2.10	h 3°56 h 3°74	h 5·22 h 3·46	h 3.06 h 2.98	l 3·34	l 1.08	
Means	2.01	3'94	3.03	4.06	1.80	3.62	4.34	3.03	3.55	2.46	177° 48′ 3″·54
VII &								+63.05		-16.88	Probability = 0.59
177° 47′ —99° 8′	46·8 ₇	<b>4</b> 6·50	49'39	49.87	43.71	49'52	47.15	45.87	47.60	45°58	78° 39′ 47″ [.] 21
VIII &	- 5.01 + 21.24	+52·31 - 3·94	+ 51.47 - 3.03	- 4.00 + 21.03	+ 53·51	- 3.02 + 21.20	+52·52 - 4·34	- 3.03 + 20.00	- 3.55 + 21.01	+ 50°59 - 2°46	Probability = 0.46
292° 52′ -177° 48′	45.63	48.37	48.45	46.97	51.41	47.85	48·18	47:88	47°79	48.13	115° 4′ 48″·09

At X

March 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

			Sec	onds of	Observed	Angles	at each	Zero			Probabilities and	
Angles.	0°0′	180° 0′	7° 12′	187° 12′	14° 24′	194° 24′	21°36′	201° 36′	21° 48′	208° 48′	General Means.	
VI & IX	1 7.70	<b>h</b> 0.18	h 8.14	" h11°52 h10°84	h 10.42	h 8.50	h 9.74	h 10.58	h 8.66		Probability = 0.27	
Means	8.56	9.44	9.58	11.18	9.86	8.79	9.03	10.48	8.97	9'49	58° 59′ 9″·51	
IX & XI	h11.08	h13°34 h11°64 h11°30		h11°04 h10°76	h12.36	h 11.50	h 9.64 h11.16	h10.46 h11.40	y 10.18	h 7.54 h 9.72	Probability = 0.29	
Means	10.41	12.00	10.84	10.00	12.00	10.25	10.40	11.08	11.18	8.63	49° 31′ 10″·84	

At XI

April 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

Angles.			Sec		Probabilities and						
Angies.	0°0′	208° 48′	General Means.								
X & XII	" h22.48 h23.60	" h27.28 h25.90	l 24°18	1 26.52	1 25.50	" l 25 [.] 34 l 24 [.] 34	h23.50	h26.04	" h25:36 h27:86	h25.98 h27.72	
Means	23.04	26.59	23.82	27.10	25.61	24.84	24.10	<b>25</b> 45	26.61	26.85	123° 39′ 25″·40
IX & XII	h31.50	l 31°16 h35°10 h32°94 h33°60	h29.88	h 33.66	h34.00	h34°00 h34°86	h30.56	h37'14	h35°22 h37°26	h35°94 h35°24	Probability = 0.58
Means	32.40	33.50	30.46	32.00	33.41	34.43	32.03	36.31	36.54	35.29	52° 12′ 33″·70

#### At XI—(Continued.) April 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1. Seconds of Observed Angles at each Zero Probabilities and Angles. General Means. 187°12′ 14°24′ 194°24′ 21° 36′ 201° 36′ 28° 48′ 208° 48′ 00 0' 180° 0′ 7° 12′ +83.04 +86.50 +83.82 +87.10 +85.61 +84.84 +84.10 +85.45 +86.61 +86.85 X & IX Probability = 0.49 -32.40 - 33.50 - 30.46 - 32.00 - 33.41 - 34.43 - 32.03 - 36.31 - 36.54 - 35.59123° 38′ -52° 12′ 71° 26′ 51″.70 50.64 53'39 53.36 54.50 52.30 50.41 52.07 50.37 51.56 h45.08 h42.32 l47.88 l43.90 l43.40 l42.08 h45.60 h44.32 h41.38 h42.92 XII & XIII Probability = 0.57h45.38 h44.08 148.08 142.78 142.66 142.66 h45.62 h44.14 h40.92 h44.54 45.23 43.30 47.98 43.34 43.03 Means 42.37 45.61 44.53 41.12 43.73 55° 25′ 43″ 99 At XII March 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2. Seconds of Observed Angles at each Zero Probabilities and Angles. General Means. 0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50° 0′ 230° 0′ XIV & 116.20 113.30 116.86 116.80 114.83 113.30 114.30 116.22 112.32 113.30 112.84 116.14 Probability = 0.36 XIII l14.87 l16.30 l15.83 l17.40 l16.90 l14.66 l14.87 l15.63 l15.43 l12.30 l17.90 l15.36 Means 15.60 15.10 16.32 17.10 15.82 14.58 16.50 15.40 15.80 15.82 15.25 47° 16′ 15″ 61 April 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1. Seconds of Observed Angles at each Zero 180°0′ 187°12' 14°24' 194°24' 21°36' 201°36' 28° 48' 208° 48′ 000 7°12′ h61.08 h57.76 h58.54 h58.40 l61.06 l38.30 h59.74 h63.20 h59.46 h57.18 XIII & XI h 58.84 h 57.40 h 61.72 h 59.08 l 62.24 l 60.08 h 62.46 h 60.84 h 58.62 l 58.96 Probability = 0.47 1 59.86 1 58.98 h63.38

58.74 61.62 59.19 61.86 62.02

Means

59'96

57.28

60.04

48° 59′ 59″·85

58.37

59.04

At XII—(Continued.)

April 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

A1			Sec		Probabilities and						
Angles.	0,0,	180°0′	7° 12′	187°12′	14° 24′	194° 24′	21° 36′	201° 36′	28° 48′	208° 48′	General Means.
XI & IX	h33.84 h34.50	h35.58 h37.06	h35.28	h33.24 h35.15 l32.14	1 34.20	1 35.40 1 35.00	h33.00 h31.82 h31.88	h32·60 h32·90	h35·88 h36·96	h33.56 h33.80 l37.98 l36.24	Probability = 0.43
Means	34.03	36.32	35.02	33.00	34.08	35.30	32.53	32.75	36.42	35.40	75° 33′ 34″·51
XI & VIII						h15·16 h13·92					
Means	17.28	14.03	16.55	14.43	15.23	14.24	13.00	14.24	12.01	12.47	121° 8′ 14″·73
IX & VIII	+77°28	+74°02 -36°32	+76·22 -35 <b>·0</b> 5	+74.43 -33.60	+75.23 -34.08	+74°54 -35°20	+73°06 -32°23	+74·74 -32·75	-36.43	+72.47 -35.40	Probability = 0.59
121° 7' -75° 33'	43.26	37.70	41.12	40.83	41.45	39*34	40.83	41.00	38.29	37.07	45° 34′ 40″•22

# At XIII

April 1851, observed by Mr. J. Peyton with Lieut.-Colonel Waugh's 24-inch Theodolite No. 1.

Angles.				Probabilities and							
22.5.00	0°0′	180° 0′	208° 48′	General Means.							
XI & XII	h20°14 h16°98 h17°94	h18:46 h16:48	n 17.56 16.14	h19.12	h 16·70 h 18·26	h 19.30		h 16.24 h 17.28	h15°20 h18°02	h 18.20	Probability = 0.28
Means	18.32	17'47	16.85	18.89	17.48	19.58	17.70	17.16	19.91	17:35	75° 34′ 17″•74

# At XIII—(Continued.)

March and April 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles.	Seconds of Observed Angles at each Zero	Probabilities and
Angles	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 80°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′	General Means.
RM & XII	" " " " " " " " " " " " " " " " " " "	
Means	38.38 38.04 34.40 34.40 34.40 36.42 34.42 34.42	2° 32′ 37″·15
XII &	l26·87 h25·66 h25·43 h23·43 h25·90 h24·66 l28·46 l25·90 h24·77 h24·87 h26·44 h25·76 l27·14 h24·76 h26·03 h24·23 h24·96 h25·63 l22·03 l26·07 h25·33 h26·17 h27·10 h27·30 l27·73	Probability = 0.24
Means	27.01 25.51 25.43 25.43 25.12 26.07 25.09 25.02 25.22 26.77 26.23	67° 35′ 25″.69
XIV &	l35·87 h37·10 h38·97 h40·67 h40·33 l40·07 l34·14 l37·17 h37·26 h38·00 h38·83 h35·67 l37·70 h38·54 h39·97 h41·40 h40·07 l39·50 l39·20 l38·46 h37·47 h38·20 h38·77 h36·74 l34·63	Probability = 0.44
Means	36.43 37.85 39.44 41.04 40.50 39.43 32.85 32.85 32.37 38.10 38.80 36.51	59° o' 38"·28

## At XIV

Angles.				Probabilities and									
	0°0′	180°0′	10°0′	190° 0′	20°0′	200° 0′	80° 0′	210° 0′	40° 0′	220° 0′	50° 0′	230° 0′	General Means.
XVI &	#36·97	" h34·66 h34·64 h33·27	" l34·87 l33·73 l31·27	" l29°20 l l30°07 l	" 29'44   29'37	" h32·57 h h33·07 h	" 33*50 34*83	" h32 [.] 80 h33 [.] 40	" h32°10 h33'93	" h30.66 h32.73	" l31·67 l30·87	" l33·20 l34·34	Probability = 0.55
Means	36.37	34.10	33*29	29.64	29.41	32.82	34.12	33.10	33.03	31.40	31.52	33'77	62° 17′ 32″ 73

## At XIV-(Continued.)

March 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Amalaa					Probabilities and								
Angles.	0°0′	180°0′	10°0′	190°0′	20° 0′	200° 0′	30°0′	210° 0′	40° 0′	220° 0′	50°0′	230°0′	General Means.
XV & XIJI	" h25.84 h23.77	, <b>h</b> 23°40 , h24°94	122.82	7 123.26	126.16	y53.57	h24.43	, h22.60 , h24.00	h24.13	k25.20	124.03	122.00	Probability = 0'22
Means	24.81	<b>24</b> ° į 7	<b>2</b> 3 [.] 94	23.85	26·18	23.64	25.00	23.30	24.07	24.84	25.02	24.30	72° 0′ 24″·43
XIII & XII	h21.46	y18.13 y19.39	l20·93 l19·94	l19 <b>·</b> 94 l19 <b>·</b> 37	l16·87 l18·73	h20.60 h20.00	h16·40 h18·83	h19.10 h18.82	h19·20	h19.16	l20'97 l20'83	l19.00 l17.30	Probability = 0.33
Means	19.80	17.25	20'44	19.66	17:80	20.30	17.62	18.99	18.89	18.60	20.00	18.12	65° 8′ 19″·03

#### At XV

Angles	Seconds of Observed Angles at each Zero	Probabilities and
Angles.	0° 0′ 180° 0′ 10° 0′ 190° 0′ 20° 0′ 200° 0′ 30° 0′ 210° 0′ 40° 0′ 220° 0′ 50° 0′ 230° 0′	General Mcans.
XIII &	" " " " " " " " " " " " " " " " " " "	Probability = 0.42
Means	55.24 28.85 26.44 24.10 60.43 26.80 28.82 28.45 28.80 28.80 20.30 20.81	48° 58′ 57″·79
XIV & XVI	h45°16 h40°80 h42°90 h42°90 h42°14 h41°77 h41°24 h40°43 l45°17 l42°16 l42°77 l43°73 h41°80 h42°37 l45°60 h41°43 h42°30 h42°97 h42°90 h41°13 l43°20 l43°03 l42°63 l44°46 h43°30	Probability = 0.30
Means	43'42 41'59 44'25 42'17 42'22 42'37 42'07 40'78 44'19 42'60 42'70 44'10	58° 6′ 42″·7×

# At XV—(Continued.)

March 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles	Seconds of Observed Angles at each Zero												Probabilities and
Angles.	0°0′	180° 0′	10° 0′	190° 0′	20° 0′	200° 0′	30° 0′	210°0′	40°0′	220°0′	50° 0'	230° 0′	General Means.
XVI & XVII	h48·17 h50·36 h51·63	h50°40 h51°60				л 152°47 1853°20		, <b>h</b> 51·67 , <b>h</b> 51·63	"   150:33   153:17	, 152·44 , 152·24	" l49.73 l52.27	154°03 154°50	Probability = 0.35
Means	50.02	21.00	53.28	53.65	51.95	52.84	53.60	51.65	51.75	52.34	51.0C	54*27	66° 32′ 52″·28

## At XVI

Angles	Seconds of Observed Angles at each Zero	Probabilities and
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 80°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′	General Means.
XVIII & XVII	" " " " " " " " " " " " " " " " " " "	Probability = 0.35
Means	21.16 55.82 56.83 56.23 57.24 57.84 57.85 57.85 57.85 57.85 57.85	58° 39′ 24″·09
XVII &	h57·73 h58·73 l57·73 l59·53 l58·16 h58·10 h61·53 h58·60 h57·87 h55·87 h56·53 h57·10 h58·60 h59·20 l55·83 l58·97 h55·86 h56·37 h58·90 h57·77 h58·20 h57·36 h57·23 h57·34	Probability = 0.31
Means	58.17.58.97 56.48 59.55 57.01 57.54 60.55 58.19 58.04 56.65 56.88 57.55	61° 10′ 57″•88
XV & XIV	l42°03 l43°73 l44°17 l45°20 l43°80 l46°56 h46°47 h47°26 h48°93 h48°30 h45°97 h46°43 l41°53 l44°67 l44°10 l44°60 l45°94 l45°10 h45°77 h47°63 h46°73 h46°57 h44°67 h47°70	Probability = 0.49
Means	41.18 44.30 44.14 44.00 44.81 42.83 46.13 41.42 41.83 41.44 42.33 41.01	59° 35′ 45″*58

At XVII

March 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles.	Seconds of Observed Angles at each Zero  Angles.												Probabilities and
шдан	0°0′	180° 0′	10°0′	190°0′	20° 0′	200° 0′	30°0′	210°0′	40°0′	220°0′	50°0′	230°0′	General Means.
XV & XVI	l 8·13	l 7·70 l 8·74	l 8·67	l 9.10 l 9.10	18.10	h9.96	l 11 <b>'</b> 43	l 8·63	111.06	111.03	1 8·90 113·17		Probability = 0.30
Means	7.68	8.22	9.87	10.82	8.85	9:70	10.03	9.72	10.08	10.43	11.04	9.67	52° 16′ 9″·77
XVI & XVIII	140.04 141.32	l41'00 l40'70	l40·73 l39 <b>·</b> 43	l 38·10 l 40·37	l41°70 l40°40	h36·40 h37·90	140'90 138'64	141°57 140°37	137·87 138·60	140°43 139°56	l41°04 l38°16	l40·40 138·40	Probability = 0.32
Means	40'71	40.85	40°08	39°24	41.05	37.15	39.77	40°97	38.24	40.00	39.60	39'40	55° 30′ 39″.76
XVIII &	h30.86 h26.77 h26.90	h26.53	l25·37 l27·07	l27:30 l28:63	l26·76 l28·60	h29·40	l26·24 l24·63	l26.00	l 28·00 l 27·47	l26·94 l27·17	127·86	5 <b>l</b> 28 <b>·2</b> 7 5 <b>l</b> 27·83	Probability = 0.26
Means	28.18	27.93	26.33	27'97	27.68	27.92	25.44	26.55	27.74	27.06	28.73	28.05	58° 11′ 27″-46

## At XVIII

Angles.				Probabilities and									
Angious	0°0′	180° 0′	10°0′	190°0′	20° 0′	200° 0′	30°0′	210°0′	40°0′	220°0′	80°0′	230°0′	General Means.
XX & XIX	#20.60 #10.34 #10.34	116.14	110.23	" 118:03   117:63	717.07	<i>l</i> 14.80	116.04	110.03	" l 17·87 l 17·30	l21.84	<b>l20</b> 10	, 117.36	Probability = 0.37
Means	19*97	16.22	19*34	17.83	18.34	15.67	17.97	18.80	17.59	20°27	19.30	18.33	64° 23′ 18″•33

# At XVIII—(Continued.)

March 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

A				Second	s of O	bserved	Angle		Probabilities and				
Angles.	0°0′	180° 0′	10°0′	190° 0′	<b>2</b> 0° 0′	200° 0′	30° 0'	210°0′	40° 0′	220°0′	50° 0′	230° 0′	General Means.
XIX & XVII	\$53.63 \$153.63	l ₅₅ .70 l ₅₅ .76	l55:27 l53:30	" 153:44 153:50	l 57 <b>·2</b> 4 l 55·43			" 155 [.] 80 156 [.] 67		154.80 157.60		l ₅₄ ·07 l ₅₇ ·34	Probability = 0.30
Means	53.77	55'73	54*29	53°47	56.34	57.17	55`38	56.54	54.08	56.30	55,52	55 <b>'</b> 71	53° 6′ 55″·38
XVII & XVI	h58.17	157'94 157'00	l 52·80 l 56·26	l 57·50 l 55·43	l55'76 l55'60	158·37 157·30	155.33 155.33	156·37 156·87	l 59°34 l 59°20	155.33 156.27	l55.03 l56.17	l57.66 l56.40	Probability = 0.35
Means	56.67	57.47	54.23	56.47	55.68	57.84	55.37	56.62	59°27	55.80	55.60	57.03	65° 49′ 56″·53

## At XIX

Angles.			Probabilities and										
zingics.	0°0′	180° 0′	10° 0′	190° 0′	20° 0′	200° 0′	80° 0′	210° 0′	<b>40°</b> 0′	220° 0′	50°0′	<b>23</b> 0° 0′	General Means.
XVII & XVIII	136·37 136·94	139°56 139°20	7 138·06 137·96	137°00 ( 137°00 (	139 [.] 96 139 [.] 37	136°00 136°14	h36·37 h38·20	h38·24 h39·20	n h40·77 h36·73	h34·23 h35·34	#37 <b>·</b> 60 #37·13	h38·03 h38·20	Probability = 0.40
Means	36.66	39.38	38.01	37.00	39.67	36.07	37'29	38.72	38.75	34.79	37°37	38.13	68° 41′ 37″•65
XVIII &	h 6.07 h 6.23	h 7.12	h 5.23	l 6·30 l 6·63	l 6°04 l 6°14	l 6.00 l 5.70	l 3.50 l 4.57	<b>у</b> 4.00	h 5.13	h 7.13	h 7.03	h 5.54 h 6.03	Probability = 0.28
Means	6.30	7.09	5.30	6.47	6.09	5.85	4'04	7:03	5.75	7.87	7:27	5°79	51° 57′ 6″·24
XX & XXI	h 4.73 h 3.97	h 5.16	h 4.23 h 3.14	l 3 [.] 44 l 2 [.] 64	l 3·36 l 3·30	l 5·56	l 3.97 l 4.30	h 5.00	h 2.90	h 3°50 h 2°86	h 2°30	h 3.80 h 4.97 h 2.37	Probability = 0.20
Means	4.32	4'41	3.84	3.04	3.33	4'37	4,00	4'47	3.02	3.18	3,10	3.41	65° 36′ 3″·67

. March	1850,	, obser	ved by	Mr.	G. Lo	gan wi	At X		n and	Simm	s' 24-	inch I	heodolite No. 2.
Angles				Probabilities and									
Angles.	000	180° 0′	10° 0′	190° 0′	20° 0′	200° 0′	30°0′	210° 0′	40° 0′	220° 0′	50°0′	230° 0′	General Means.
XXII &	h16·76	" h15.07	h15.10	h13.26	" h17·80 h16·60	" 5 h16·34 5 h16·87	" h13.00 h14.83	" h15 [.] 80 h16 [.] 20	h12.66	" 5 l 1 5·90 7 l 1 5·03	" 115.64 116.70	" l15 [.] 10 l17 [.] 47	Probability = 0'27
Means	16.48	15.14	16.54	15.97	17.23	16.61	13.92	16.00	14.52	15.47	16.14	16.50	72° 41′ 15″·82
XXI & XIX	h58·47	h59.80	h59°24 h59°23	h57.67	h59°50	h60.00 h59.47	h60°20 h59°0;	h58.03	h60°37	156°04 5156°83	. 157·80 157·60	l59·63 l58·66	Probability = 0'26
Means	59°27	59°27	59.54	58.04	58.64	59°74	59.64	. ₅ 8·80	59.17	56.44	57.70	29.12	51° 19′ 58″·76
XIX & XVIII	h32°90	h33.80	h36°06 h34°63	h34·40 h34·63	h37.07 h35.20	, <b>h</b> 37·30 h38·50	h38°00 h36°37	h37°50	h35'97 h36'77	137·56 136·47	l37.93 l38.63	l36·77 l37·14	Probability = 0.48
Means	32.5	34'42	35.35	34.2	36.14	37.90	37.19	37.45	36.37	37'02	38.28	36·96	63° 39′ 36″·15
	At XXI  March 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch I  Seconds of Observed Angles at each Zero											heodolite No. 2.	
A walas	ł												Probabilities and
Angles.	0°0′	180°0′		190°0′	20°0′	200° 0′	30° 0′			220° 0′	50° 0′	230° 0′	Probabilities and General Means.
XIX & XX	"	"	10°0′	"	"	200° 0′ " ! 57.90 ! 59.24	"	210°0′	40° 0′	"	"	"	General Means.
XIX &	h ₅ 8·20 h ₅ 8·64	# h55°07 h56°70	10°0′ " 159°14 158°10	" 155:57 156:40	" 156·50 157·44	"	" 157:63 159:16	210°0′ " l60·36 l59·30	40°0′ " l60·63 l58·77	" l 58·77 l 58·00	" l60·37 l60·43	" 159·56 159·53	General Means.
XIX &	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16,55°07°. 16,56°7°. 55°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°89°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 56°99°. 5	10°0′ " 150°14 158°10 58°62	155.57 156.40 55.99	156·50 157·44 56·97	" 157.90 159.54	157.63 159.16 58.40	210°0′ " 160·36 159·30 59·83	40°0′ " l60·63 l58·77 59·70	158.77 158.00 58.39	160·37 160·43 60·40	159·56 159·53 59·55	General Means.  Probability = 0.40  63° 3′ 58″.39
XIX & XX  Means	h ₅ 8·20 h ₅ 8·64 58·42 h ₃ 9·70 h ₄ 0·93	55.89 h39.56 h37.43	10°0′ " 159°14 158°10 58°62 6133°86 6138°56	" 155:57 156:40 55:99 6139:86	156.50 157.44 56.97 138.40 138.00	157.90 159.24 58.57	157.63 159.16 58.40 137.70 137.97	210°0′ " 160·36 159·30 59·83 139·54 140·57	40°0′ " 160.63 158.77  59.70  140.04 139.50	" 158.77 158.00 58.39 141.83 137.80	" 160·37 160·43 60·40 136·30 138·97	" 159.56 159.53 59.55  139.90 140.54	General Means.  Probability = 0.40  63° 3′ 58″.39
XIX & XX  Means  XX & XXII	h58·20 h58·64 58·42 h39·70 h40·93 h46·73	55.89 0 h39.56 1 h37.43 38.50	10°0′  159°14 158°10  58°62  6133°86 138°56  36°18	" 155.57 156.40 55.99 6139.86 6141.67 40.77	126.50 157.44 56.97 138.40 138.00	1657.90 159.24 58.57 6139.73	157.63 159.16 58.40 137.70 137.97 37.84	210°0′  " 160·36 159·30  59·83  139·54 140·57  40·06	40°0′ " 160°63 158°77  59°70  140°04 139°50  39°77	" \$\langle 158.77 \$\langle 158.00  58.39  \$\langle 141.83 \$\langle 137.80  39.82  \$\langle 152.40	" 160°37 160°43 60°40 136°30 138°97 37°64	" 159.56 159.53 59.55 139.90 140.54 40.22	Probability = 0.40  63° 3′ 58″.39  Probability = 0.42

<b>F</b> el	At XXII  ruary and March 1850, observed by Mr. G. Logan with Troughton of 24-inch Theodolite No. 2.	and Simms'	
Angles	Seconds of Observed Angles at each Zero	Probabilities and	
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°04 210°0′ 40°0′ 220°0′ 50°0′ 230°0′	General Means.	
XXIV & XXIII	h59·17 l63·40 l63·70 l59·20 h59·54 l61·36 h64·16 l64·30 l62·84 l61·73 l61·63 l63·83 h66·80 l65·00 l62·06 l63·20 h61·60 l61·93 h65·37 l64·37 l61·63 l61·10 l62·77 l60·93 l59·87	Probability = 0.43	
Means	59.99 64.30 65.88 60.49 60.24 61.62 64.42 67.34 67.34 61.45 65.38	61° 33′ 62″·28	
XXIII &	l33.66 l35.44 l34.07 l38.10 h33.33 l33.44 l37.67 l36.24 l36.06 l35.20 l32.70 l33.00 l34.17 l34.30 l33.00 l32.73 h35.73 l33.34 l33.64 l34.20 l37.74 l35.87 l32.50 l32.47 l37.70 l34.14	Probability = 0.37	
Means	33.05 34.84 33.24 30.18 34.23 33.30 32.12 32.55 32.54 35.60 35.24	52° 52′ 34″•55	
XXI & XX	19.07 18.23 16.73 14.47 13.90 16.40 13.33 12.76 16.50 14.50 13.47 15.00 19.03 17.36 17.20 15.90 14.57 15.10 15.13 13.93 15.13 13.76 14.27 15.13 15.90 16.10	Probability = 0.47	
Means	9.05 7.80 6.97 5.43 4.86 5.15 4.53 3.35 5.83 4.13 3.87 5.07	53° 23′ 5″ 53	
Februar	At XXIII y 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch I	Theodolite No. 2.	
Anglos	Seconds of Observed Angles at each Zero	Probabilities and	
Angles.	0° 0′ 180° 0′ 10° 0′ .190° 0′ 20° 0′ 200° 0′ 30° 0′ 210° 0′ 40° 0′ 220° 0′ 50° 0′ 230° 0′	General Means.	
XXI & XXII	l32·57 l34·47 l35·63 l32·44 l37·87 l34·10 l38·07 l37·46 h35·33 l35·94 l35·87 l41·90 l35·54 l35·47 l35·30 l37·07 l37·50 l35·54 l39·57 l36·10 h34·57 l39·17 l35·76 l40·86 l34·84	Probability = 0.59	
Means	34.06 34.07 32.42 34.26 32.60 34.85 38.85 36.28 34.01 32.26 32.85 41.38	68° 6′ 3 <b>6″·42</b>	

# At XXIII—(Continued.)

February 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Ameleo				Probabilities and									
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′								<b>230°</b> 0′	General Means.			
XXII &	l 18·33 l 21·93	121.13	122'13	l 18 [.] 76	l 18 <b>'4</b> 3	123.73	l 16.77	" l 16·90 i l 17·73 i	18.36	<i>l</i> 16·93	122.74	716.67	Probability = 0.53
Means	20.13	20.68	21.49	18.75	19.5	22.62	15.75	17.32	17:80	17:98	19.34	17.79	62° 47′ 19″·08
XXIV &	160·80 158·10	l 59°14 l 60°67	l60·80 l58·53	l 56·43 l 57·34	l 56·80 l 57·10	160·07 158·84	l 57 ⁻ 93 l 58-43	l60°44 l61°00	l60·54 l57·83	160·30 158·57	l61·34 l57·53	l 59·90 l 57·67	Probability = 0.32
Means	59.45	20.01	59.67	56.89	56.02	59°46	58.18	60.72	59.19	59°44	59°44	58.79	64° 42′ 59″·01

#### At XXIV

Angles.	Seconds of Observed Angles at each Zero	Probabilities and	
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′	General Means.	
XXVI & XXV	" " " " " " " " " " " " " " " " " " "	Probability = 0.29	
Means	45'10 43'57 45'84 43'00 44'05 44'62 43'59 44'03 46'69 43'62 44'97 44'09	44° 55′ 44″ 43	
XXV & XXII	l43·93 l44·04 l43·83 l42·73 l44·50 l43·70 l42·16 h43·37 h42·76 l44·33 l43·40 l44·46 l41·40 l43·00 l44·13 l43·80 l44·40 l43·53 l42·90 h44·37 h43·04 l44·60 l43·86 l45·64 h43·87		
Means	42.67 43.22 43.08 43.27 44.45 43.62 42.08 43.87 42.00 44.47 43.63 45.05	119° 7′ 43″·70	
XXIII &	l39·70 l38·60 l44·60 l39·77 l37·14 l39·37 l37·44 l40·83 l40·86 l41·63 l41·26 l38·56 l38·33 l38·17 l43·43 l41·43 l39·03 l39·14 l38·93 l41·10 l38·80 l38·40 l39·96 l39·24	Probability = 0.45	
Means	39.02 38.39 44.02 40.60 38.09 39.50 38.10 40.04 30.83 40.05 40.01 38.00	55° 38′ 39″·83	

At XXIV—(Continued.)

February 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles.				Seco	nds of O	bserved A	ingles at	each Zer	0	_			lities and Means.	
ΨΨ	0.04	180°0′	10° 0′	190° 0′	20° 0′	200° 0′	30° 0′	210° 0′	40° 0'	220° 0′	50° 0′	230° 0′	Probabilities General Mes	
XXV & XXIII	+ 102°67 + - 39°02 -	7 103.52 +	# 103°98 + 44°02 —	# 103 [.] 27 + 40 [.] 60 –	# 104°45 + 38°09 –	7 103.62 + 39.26 -	38·19 – 38·19 –	,, 103.82 + 40.92 –	,, 39.83 -	" + 104*47 + - 40*02 —	, 103.63 + 40.61 -	. 38.90 . 38.05		28′ 63″.88
119° 6′ -55° 38′	63.62	65.13	59.96	62-67	66.36	64.36	64.79	62.90	63.07	64.45	63.03	<b>6</b> 6.12	[중   c	63,2

At XXV

			Probablities and										
Angles.	0°0′	180° 0′	10°0′	190° 0′	20° 0′	200° 0	′ <b>8</b> 0°0	<b>2</b> 10°0	40°0′	220° 0′	50° 9′	230°0′	General Means.
XXIII & XXIV	l58·90 l57·10	159·63 157·36	l56.00 l58.86	159·50 160·53	159 [.] 37 156 [.] 97	159 [.] 77 160 [.] 80	7 158·30 158·73	l57 [.] 20 l56 [.] 67	7 158·37 158·53	l57°50 l57°50	156.30	l59·96 l59·90	Probability = 0.34
Means	58.00	58.20	57 <b>°4</b> 3	60.03	58.17	60°29	58.52	56.94	5 ^{8·} 45	57.73	56.32	59°93	51° 47′ 58″·36
XXIV & XXVI	l25.97 l24.83	l25·16 l24·90	l24·56 l25·70	l23·10 l22·53	l26·77 l27·17	l26·80 l28·60	l26·70 l26·43	l22'67 l23'80	l27·54 l27·90	l25·24 l24·67	l26·74 l23·87	127°64 127°96	Probability = 0.46
Means	25.40	25.03	25.13	22.83	26.97	27.70	26.57	23.54	27.72	24.96	25.31	27*80	бо° 29′ 25 <b>*</b> *72
XXVI &	h48·57 h48·67	h49°50 h49°84	l50°00 l50°86	l47°53 l49°54	l46·73 l47·77	l49°96 l48°70	149·86 148·40	l49*53 l48*94	l47·83 l48·03	l49*63 l45*77	l50:23 l51:90	147°56 147°57	Probability = 0°32
Means	48.62	49°67	50°43	48.24	47°25	49°33	49.13	49'24	47'93	47'70	51.07	47.57	68° 17′ 48″-87

<b>F</b> eb <b>ru</b> ary	At XXVI 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch I	Theodolite No. 2.
A 1	Seconds of Observed Angles at each Zero	Probabilities and
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′	General Means.
XXVIII & XXVII	" " " " " " " " " " " " " " " " " " "	Probability = 0.18
Means	44.40 44.41 44.52 42.90 44.04 44.02 42.40 44.40 42.00 43.60 44.84 44.84	55° 25′ 44″·71
XXVII &	h35.63 h36.74 h39.26 h35.24 h37.73 h37.06 l39.13 l38.30 l40.93 l38.44 l42.10 h42.10 h36.34 h37.94 h37.03 h38.17 h38.97 h38.16 l38.50 l38.20 l40.07 l38.13 l39.63 h38.64 h38.43	Probability = 0.37
Means	35.00 34.34 38.12 34.58 38.32 34.01 38.85 38.52 40.20 38.50 40.84 30.10	57° 39′ 38″·39
XXV & XXIV	h51.00 h52.63 h48.00 h52.90 h50.74 h51.67 l48.07 l48.40 l51.07 l51.80 l49.04 h49.17 h50.43 h49.43 h50.27 h49.23 h50.73 h52.57 l46.53 l49.96 l52.17 l51.20 l51.10 h52.17 h51.40 h52.00	Probability = 0.37
Means	50.45 21.03 40.14 21.18 20.44 25.15 44.30 40.18 21.25 21.20 20.04 21.11	74° 34′ 50″·48
<b>F</b> ebruary	At XXVII 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch T	Theodolite No. 2.
	Seconds of Observed Angles at each Zero	Probabilities and
Angles	0° 0′ 180° 0′ 10° 0′ 190° 0′ 20° 0′ 200° 0′ 30° 0′ 210° 0′ 40° 0′ 220° 0′ 50° 0′ 230° 0′	General Means.
XXV & XXVI	" " " " " " " " " " " " " " " " " " "	Probability = 0'21
Means	32.85 34.04 33.45 33.02 33.03 35.38 34.22 34.20 33.98 33.30 34.64 33.02	54° 2′ 33″ 64
XXVI & XXVIII	h24·16 h22·33 h25·56 h24·53 h26·57 h26·00 h22·77 h24·70 h25·20 h24·26 h25·40 h23·60 h25·40 h24·33 h24·34 h24·20 h25·13 h25·47 h22·80 h23·93 h25·77 h26·50 h24·90 h24·24	Probability = 0.27
Means	24.78 23.33 24.02 24.37 25.82 25.24 25.25 24.32 25.49 25.38 25.12 23.02	55° 14′ 24″.67

### At XXVII—(Continued.)

February 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles.	Seconds of Observed Angles at each Zero	Probabilities and
Angles.	0° 0′ 180° 0′ 10° 0′ 190° 0′ 20° 0′ 200° 0′ 30° 0′ 210° 0′ 40° 0′ 220° 0′ 50° 0′ 230° 0′	General Means.
XXVIII & XXIX	" " " " " " " " " " " " " " " " " " "	Probability = 0.23
Means	61.64 65.10 20.02 61.48 65.50 65.10 61.15 61.02 60.04 61.60 60.00 65.52	58° 42′ 61″·46

### At XXVIII

Angles	Seconds of Observed Angles at each Zero	Probabilities and
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′	General Means.
XXX & XXIX	" " " " " " " " " " " " " " " " " " "	Probability = 0.28
Means	40.23 40.53 32.03 38.00 39.20 39.22 39.10 40.10 32.20 30.89 30.13 40.20	68° 22′ 39″·39
XXIX & XXVII	h46·36 h46·27 h50·17 h48·70 h50·00 h48·83 h50·20 h49·20 h50·06 h50·46 h50·53 h50·10 h48·33 h48·66 h48·06 h49·14 h50·37 h49·57 h48·43 h49·30 h47·74 h49·70 h51·47 h47·70 h49·50	Probability = 0.26
Means	47'35 47'47 49'24 48'92 50'19 49'20 49'32 49'25 48'90 50'08 50'13 48'56	63° 51′ 49″·05
XXVII & XXVI	h50°74 h52°87 h51°30 h54°50 h49°77 h51°24 h49°16 h51°37 h49°80 h50°30 h47°60 h51°16 h49°67 h52°37 h54°80 h53°56 h51°37 h50°56 h50°24 h51°60 h51°83 h50°54 h51°03 h52°80 h51°13	Probability = 0.37
Means	50.51 25.65 25.41 24.03 20.24 20.30 40.40 21.40 20.85 20.45 40.50 21.24	69° 19′ 51″·17

#### At XXIX

February 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles	Seconds of Observed Angles at each Zero	Probabilities and
Angles.	0° 0′ 180° 0′ 10° 0′ 190° 0′ 20° 0′ 200° 0′ 30° 0′ 210° 0′ 40° 0′ 220° 0′ 50° 0′ 230° 0′	General Means.
XXVII &	" " " " " " " " " " " " " " " " " " "	Probability = 0'17
Means	10'13 9'34 9'18 10'17 10'15 9'47 10'40 10'92 10'75 10'47 10'84 9'49	57° 25′ 10″·11
XXVIII & XXX	h41°67 h43°53 h40°77 h40°47 h41°87 h41°77 h42°73 h41°74 h42°63 h40°63 h41°13 h42°00 h44°93 h44°30 h40°94 h40°90 h41°27 h42°00 h42°00 h41°07 h41°10 h41°13 h41°10 h44°50 h43°33	Probability = 0.28
Means	. 43.70 43.72 40.86 40.69 41.27 41.89 42.37 41.67 41.85 40.87 41.23 41.25	55° 6′41″ [.] 83
XXX &	h5·77 ho·87 h3·40 h2·83 h2·63 h3·60 h1·53 h3·16 h2·97 h4·50 h0·77 h2·50 h3·40 h3·90 h2·70 h3·30 h3·40 h3·90 h3·13 h4·37 h2·40 h2·53 h4·17 h2·50 h1·47 h3·74	Probability = 0°16
Means	3.80 5.08 3.02 3.02 3.42 5.32 3.12 3.62 3.42 5.32 3.34	65° 3′ 3″·10

#### At XXX

Seconds of Observed Angles at each Zero												Probabilities and		
Angles. 0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°,0′ 80°0′ 210°0′ 40°0′ 220°									220° 0′	50° 0′	230° 0′	General Means.		
XXXII &	7.70 7.80			# \$6 [.] 8 ₇ \$7 [.] 67							љу∙оз љу∙оз љу∙50	#6·80 #7·50	Probability = 0°22	
Means	7.75	6.23	7:08	727	7'17	8.30	7'92	6.28	5.66	6.24	8.27	7:15	57° 33′ 7″•16	

At	X	XX-	-(Co	ntin	ned.	)
ed	by	Mr.	G.	Log	ya <b>n</b>	wi
		eodol				

January and February 1850, observe rith Troughton and Simms' 24-inch

	Seconds of Observed Angles at each Zero												Probabilities and
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′								230° 0′	General Means.			
XXXI &	h13.33	h14·57 h14·30	h14 <b>:</b> 43 h14 <b>:</b> 93	h13.60 l	11.00	h13.84 h13.80	h14.37	h14°13 h h14°83 h	13.40	h16°40 } h16°14 }	, 112.32 115.32	" h13°53 h12 27	Probability = 0.29
Means	13.42	14'44	14.68	14.52	13.11	13.87	14.35	14.48	13.33	16.27	12.30	12.90	57° 8′ 13″·95
XXIX & XXVIII	h39·14	h38·70 h39·13	h38·80 h39·07	h41.90 l	41.14 39.40 41.10	h38·33 h40·76	h39·60 h38·84	h38·37 h h37·40 h	i41*20 i38*80	h39·80 l h37·36 l	h39°10 h40°67	h36 <b>·40</b> h37·50	Probability = 0.34
Means	39.54	38.92	38.04	41.49	40.22	39.22	39.22	37.89	40.00	38.58	39.89	36.95	56° 30′ 39″ 29

#### At XXXI

Angles	Seconds of Observed Angles at each Zero	Probabilities and	
Angles.	0° 0′ 180° 0′ 10° 0′ 190° 0′ 20° 0′ 200° 0′ 30° 0′ 210° 0′ 40° 0′ 220° 0′ 50° 0′ 230° 0′	General Means.	
XXIX & XXX	" " " " " " " " " " " " " " " " " " "	Probability = 0'20	
Means	43.69 43.40 44.12 43.52 44.29 44.39 44.55 45.28 45.68 43.92 45.61	57° 48′ 43″·69	
XXX & XXXII	h27.70 h26.74 h27.14 h27.97 h29.20 h31.80 h27.43 h27.83 h29.27 h29.60 h29.03 h32.53 h27.96 h27.03 h28.07 h27.57 h30.63 h27.13 h27.56 h27.47 h28.03 h29.50 h28.96 h31.17 h29.00	Probability = 0.38	
Means	27.83 26.89 27.61 27.77 29.92 29.31 27.50 27.65 28.65 29.55 29.00 31.85	52° 7′.28″·63	

# At XXXI—(Continued.)

January 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles.	Seconds of Observed Angles at each Zero	Probabilities and
Angress	0° 0′ 180° 0′ 10° 0′ 190° 0′ 20° 0′ 200° 0′ 80° 0′ 210° 0′ 40° 0′ 220° 0′ 50° 0′ 230° 0′	General Means.
XXXII & XXXIII	" " " " " " " " " " " " " " " " " " "	Probability = 0°24
Means	45.79 46.62 46.63 46.34 46.13 45.02 42.24 42.13 44.44 43.02 46.53	52° 34′ 45″ 68
XXXIII & XXXIV	h56·47 h55·60 h55·40 h56·33 h56·14 h58·77 h55·73 h55·07 h56·34 h56·83 h58·47 h54·40 h55·46 h55·23 h56·70 h55·36 h54·87 h6o·47 h56·64 h57·00 h54·34 h54·40 h56·77 h53·20 h57·44 h53·76	Probability = 0.32
Means	55.97 55.42 56.05 55.85 55.21 58.89 56.19 56.04 55.34 55.62 56.33 53.80	67° 31′ 55″·92

### At XXXII

Angles.		Seconds of Observed Angles at each Zero												
	0,00	180°0′	10°0′	190° 0′	20° 0′	200°.0′	30° 0′	210° 0′	<b>4</b> 0° 0′	<b>22</b> 0° 0′	50° 0′	230° 0′	General Means.	
XXXIII	h58·96 h61·90 h57·83	" h58·80   h57·53			" h60·70 h59·90		# \$58:77 \$58:07	, <b>h</b> 59.43 , <b>h</b> 61.90	" h58:90 h58:00	" <b>h</b> 58·44   <b>h</b> 59·84	n h61·10 h59·93	" 1658·86 1657·44	Probability = 0'25	
Means	59.26	58.17	58.90	59.17	60·30	59.19	58.42	60.67	58.45	59.14	60.22	58.15	65° 28′ 59″·22	

# At XXXII—(Continued.)

January 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

			Probabilities and										
Angles.	0° 0′	180° 0′	10° 0′	190° 0′	20° 0′	′ 200° 0′	30° 0′	210° 0′	40° 0′	220° 0′	50° 0′	230° 0′	General Means.
XXXI &	h27.17 h23.80 h24.67	h27.06 h25.97		" h24.76 h h24.90 h		" 5 h24*27 5 l 25*66		"   h22°50     h22°90		" h24·50 h23·66	h24°53 h23°67	, <b>h</b> 26·67 : <b>h2</b> 6·36	Probability = 0.34
Means	25.51	26.22	26.22	24.83	23.08	24'97	25.99	22.70	26.03	24.08	24.10	26.52	70° 19′ 25″·12

### At XXXIII

				Second	s of Ol	served	Angles	at eac	h Zero				Probabilities and			
Angles.	0°0′	180°0′	10° 0′	190°0′	20° 0′	200° 0′	30°0.	210°0′	40°0′	220° 0′	50° 0′	<b>230°</b> 0′	General Means.			
XXXVI & XXXV			<b>h</b> 16.37									h16.36	Probability = 0.24			
Means	17.26	14.22	16.92	15.52	16.90	16.4	15.21	17.32	15.31	15'97	16.03	16.26	56° 28′ 16″•22			
XXXV & XXXIV	h47°33 h46'83	<i>h</i> 44 <b>.</b> 90	h44·57 h45·33	h45°20 h45°47	h43·87 h43·67	h47°10 h45°60	<i>k</i> 46·80 <i>k</i> 46·60	h43°54 h42°17	h43·10	h44°23 h46°00	l41.83 l44.00	143'97 145'87	Probability = 0.38			
Means	47.08	45°53	44'95	45°3 <b>4</b>	<b>43'7</b> 7	46.32	46.40	42.86	44.12	45.13	42.92	44°52	69° 55′ 44″ [.] 97			
XXXIV & XXXI	h13.64	. h17°10 h16°10	<b>h</b> 14 <b>·</b> 90	h14.30 h14.27	h17·30 h18·17	h17.46	h13 [.] 83 h14 [.] 60 h15 [.] 64	h14·96   h16·67	\$16.40 \$18.5	<b>h</b> 16·60 <b>h</b> 16·73	l 15°53 l 15°26	l 16·07 l 16·83	Probability = 0.31			
Means	14'27	16.60	15.23	14.24	17:74	17.10	14.69	15.83	17:33	16.67	15.39	16.45	56° 1′ 16″·03			
XXXI &	h14.22	h17:93 h16:94	h14·87 h15·34	h14·94   h16·33	h13.43 h15.40	h14°34	h15.30 h12.30	h16·87   h15·73	616.23 616.24	h15.60 h13.97	l 18·40 l 16·54	l 15.03 l 14.84	Probability = 0.29			
Means	15.49	17.44	15.11	15'64	14.22	14.61	15.49	16.30	16.84	14'79	17:47	14'94	61° 56′ 15″•72			

### At XXXI—(Continued.)

January 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles.	Seconds of Observed Angles at each Zero	Probabilities and
Angles.	0° 0′ 180° 0′ 10° 0′ 190° 0′ 20° 0′ 200° 0′ 80° 0′ 210° 0′ 40° 0′ 220° 0′ 50° 0′ 230° 0′	General Means.
XXXII & XXXIII	" " " " " " " " " " " " " " " " " " "	Probability = 0.24
Means	45'79 46'62 46'62 46'34 46'13 45'05 45'59 46'24 45'12 44'47 43'95 46'22	52° 34′ 45″ 68
XXXIII & XXXIV	h56·47 h55·60 h55·40 h56·33 h56·14 h58·77 h55·73 h55·07 h56·34 h56·83 h58·47 h54·40 h55·46 h55·23 h56·70 h55·36 h54·87 h60·47 h56·64 h57·00 h54·34 h54·40 h56·77 h53·20 h57·44 h53·76	Probability = 0.32
Means	55.97 55.42 56.02 52.82 52.21 58.89 56.19 56.04 52.34 52.62 56.33 53.80	67° 31′ 55″·92

### At XXXII

Angles.				Probabilities and General Means.									
	0°0′	180°0′	10°0′	190° 0′	<b>20°</b> 0′	200°.0′	30° 0′	210°0′	<b>40°</b> 0′	<b>22</b> 0° 0′	50° 0′	230° 0′	General Means.
XXXIII & XXXI	h58.96 h61.90 h57.83	" \$58·80 \$57·53			" h60·70 h59·90			" h59:43 h61:90		" h58·44 i h59·84 i	h61·10 h59·93	" h58·86 h57·44	Probability = 0.25
Means	59.26	58.17	58.00	59°17	60.30	29.19	58.42	60.67	58.45	59.14	60.52	58.12	65° 28′ 59″*22

### At XXXII—(Continued.)

January 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

A 1		Seconds of Observed Angles at each Zero											Probabilities and			
Angles.	0° 0′	180° 0′	10° 0′	190° 0′	20° 0′	200° 0′	30° 0′	210° 0′	40° 0′	220° 0′	50° 0′	230° 0′	General Means.			
XXXI &	h27.17 h23.80 h24.67	" h27:06   h25:97		" h24·76   h24·90			" h26·87 h25·10		" h25·70 h26·33		h24°53 h23°67	" 3 h26·67 5 h26·36	Probability = 0.34			
Means	25.51	26.22	<b>2</b> 6·55	24.83	23.08	24'97	25.99	22.70	26.03	24.08	24.10	26.23	70° 19′ 25″·12			

### At XXXIII

	Seconds of Observed Angles at each Zero									Probabilities and			
Angles.	0°0′	180°0′	10°0′	190°0′	20°0′	200° 0′	30°0′.	210°0′	40°0′	220° 0′	<b>50°</b> 0′	230°0′	General Means.
XXXVI & XXXV	h17.34											, <b>h</b> 16·16 , <b>h</b> 16·16	Probability = 0'24
Means	17.26	14.22	16.97	15.52	16.90	16.24	15.41	17.32	15.31	15'97	16.03	16.26	56° 28′ 16″•22
XXXV & XXXIV	h47.33 / h46.83 /	44.30 440.10	h44·57 h45·33	h45.47	h43·87 h43·67	h47·10 h45·60	<b>h</b> 46·80 h46·60	h43°54 i h42°17 i	h43·10 h43·10	h44'23 h46'00	l41.83 l44.00	143'97 145'87	Probability = 0.38
Means	47'08	45°53	44.95	45.34	43'77	46.32	46.40	42.86	44.12	45.13	42.92	44°52	69° 55′ 44″ [.] 97
XXXIV & XXXI	h14.00 p	117'10 116'10	µ14.00	h14.30 j h14.27 j	617·30 618·17	h17:46	h13 [.] 83 h14 [.] 60 h15 [.] 64	h14 [.] 96 l h16 [.] 67 l	\$16.40 \$18.30	<b>h</b> 16·60 <b>h</b> 16·73	l 15°53 l 15°26	l 16·07 l 16·83	Probability = 0.31
Means	14.52	16.60	15.23	14.24	17.24	17:10	14.69	15.82	17:33	16.67	15.39	16.45	56° 1′ 16″·03
XXXI &	414.20 y	117'93 116'94	h14·87 h15·34	h14*94 } h16*33 }	h13.43 h15.40	h14.34	h15.30 h12.30	h16·87 }	616.03 616.24	h13.97	l 18·40 l 16·54	l 15'03 l 14'84	Probability = 0.29
Means	15.49	17°44	15.11	15.64	14.22	14.61	15.49	16.30	16.84	14.49	17:47	14'94	61° 56′ 15″·72

#### At XXXIV

January 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles.	Seconds of Observed Angles at each Zer	0	Probabilities and
Angloss	0° 0′ 180° 0′ 10° 0′ 190° 0′ 20° 0′ 200° 0′ 80° 0′ 210° 0′ 40° 0	y 220°0′ 50°0′ 230°0′	General Means.
XXXI &	### ### ##############################	37 h45.83 l51.60 l47.37	Probability = 0.29
Means	48.20 20.28 48.33 20.02 48.80 48.40 49.09 47.43 20.2	5 47.83 50.04 48.59	56° 26′ 49″·14
XXXIII & XXXV	h10.13 h7.77 h8.66 h9.43 h10.76 h10.60 l10.70 l10.50 h 8.8 h10.17 h8.70 h8.53 h9.53 h13.03 h10.43 l 8.47 l 7.96 h11.8 h 9.57	33 h10·40 l8·63 l11·60 7 h 9·43 l7·13 l 7·90	Probability = 0.26
Means	10.12 8.54 8.60 0.48 11.15 10.25 0.20 0.53 10.3	5 9.92 7.88 9.75	49° 47′ 9″.57

# At XXXV

A				Second	s of Ob	served	Angles	at eac	h Zero				Probabilities and
Angles.	0°0′	180° 0′	10° 0′	190° 0′	20° 0′	200° 0′	30° 0′	210° 0′	40° 0′	220° 0	50°0′	<b>230°</b> 0′	General Means.
XXXIV & XXXIII	h 5.43	" h 5·36 h 5·24	h 5.60	h 4.00	h 4.44	h 6.64	h 7.60	" h 7.43 h 5.53	h 7.07 h 6.63	h 7.23	" h 7°57 h 7°54	" h 5'97 h 5'94	Probability = 0.21
Means	6.42	5.30	5'99	6.03	4.80	6.84	6.92	6•48	6.85	6.71	7.56	5:96	60° 17′ 6″•32
XXXIII & XXXVI	h16.80	h17.00	h14·37 h17·16	h17:40 h16:50	h17 [.] 20 h16·87	h14.20 h16.12	h16.00 h18.43 h15.67	\$15.80	h18.17	h17:07 h16:56 h17:47	h17.83	h12.46 h13.00	Probability = 0.40
Means	16.70	18.33	15.77	16.93	17.04	15.44	16.40	15.67	17:29	17.03	18.00	12.76	65° 9′ 16″·46

# At XXXV—(Continued.)

December 1849, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

				Second	s of Ol	bserved	Angles	at eac	h Zero				Probabilities and		
Angles.	0° 0′	180°0′	10°0′	190° 0′	20° 0′	0' 200° 0' 30° 0' 210° 0' 40° 0' 220° 0' 50					50° 0′	230° 0′	General Means.		
XXXVI &	h 4.33 h 4.17	h 2°40 h 0°33	h 3.70	h 2:30	h 4.06	h4.73	" h 3°74 h 1°60 h 5°03	h 3.63	h 4.47	h o.66	h o 83	<i>ኤ</i> 7:07 <b>ኤ</b> 5:94	Probability = 0.44		
Means	4'25	1.32	3.30	1,33	3.03	3.62	3.46	2.22	3.77	1.52	1°20	6.21	61° 13′ 2″·96		
XXXIII &	h18·13	h18·17 h17·60	h17:96 h17:96	h17.60 h17.50	h18.66 h17.57	<b>y</b> 10.80	h17°44 h19°03 h18°90	y10.00	h20.80	h18·77 h17·30 h17·30	h18·17	h18.43 h18.13			
Means	18.65	17.89	17.13	17.22	18.13	17:37	18.46	16.49	20.70	17:88	18.32	18.58	27° 12′ 18″ 07		

#### At XXXVI

Angles.				Probabilities and									
Angus.	0°0′	180°0′	10°0′	190° 0′	20°0′	200° 0′	' 80° 0′	210° 0′	40°0′	220° 0′	50° 0′	230° 0′	General Means.
XXXVIII	" l45 [.] 23 l43 [.] 23	" l45:37 l46:73	" l42 [.] 97 l44 [.] 67	142.30	" h42·77 h42·76	h43'17	h45.43	" h42·73 h45·50	h45°70	" h42:70 h43:70	" l44 [.] 40 l44 [.] 94	" h44 [.] 87 h43 [.] 03	Probability = 0.31
Means	44.53	46°05	43.82	43.69	42.77	42.49	44*92	44.13	46.17	43°20	44.67	43*95	44° 49′ 44″·20
XXXVII	l45 [.] 33 l46 [.] 33	l45·80 l44·17	l48·70 l45·63	l47*90 l44*70	h48·17 h46·50	h46·53 h46·80	h50.83	h50·20 h47·57 h47·40	h46·80 h45·30	h45·74 h46·16	l45 [.] 60 l <b>4</b> 3 [.] 70	<b>h</b> 47.00 <b>h</b> 47.00	Probability = 0.35
Means	45.8 4	4. 99	47.17	46·30	47°34	46.67	48.97	48.39	46.05	45'95	44.65	46.62	69° 49′ 46″·58

### At XXXVI—(Continued.)

January 1850, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Analas	Seconds of Observed Angles at each Zero  Angles.									
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′	General Means.								
XXXV &		Probability = 0.58								
Means	30.01 36.20 38.4 38.82 34.44 36.42 36.22 30.23 30.88 36.83 32.13	58° 22′ 27″ 93								

### At XXXVII

Angles	Seconds of Observed Angles at each Zero									Probabilities and			
Angles.	0°0′	180°0′	10° 0′	190° 0′	20° 0′	200° 0′	30° 0′	210°0′	40°0′	220° 0′	50° 0′	230° 0′	General Means.
XXXV &	h14.20 h12.12	h12·73 h13·27	h11.00 h11.22	h11.30	h12.96	h11.87	h 8·67 h 9·84	h11.04   h10.12	7 l 9.70 l13.14	112.84	l16·50	l13.04 l14.03	Probability = 0.40
.Means	13*34	13.00	11.39	12.45	12.40	11.87	9.26	10.01	11'42	11.42	14.40	13.24	48° 57′ 12″·14
XXXVI & XXXVIII	h 4°90	<b>h</b> 5'43 <b>h</b> 5'57	h 4.93 h 5.43	h 4.43 h 6.64	h 5°30 h 4°86	h 6°53 . h 7°63 .	h 10.30	h 6·96 h 6·80	l 4.97 l 5.63	l 8 [.] 93	l 7:60 l 7:93	l 4°06 l 5°04	Probability = 0.43
Means	5.53	5.20	5.18	5°54	5.08	7.08	8.00	6.88	5.30	9.19	7.77	<b>4°5</b> 5	69° 51′ 6″·35
XXXVIII & XXXIX	h55:74 h55:70	h54·57 h54·40	h53·97 h54·20	<i>h</i> 54°04 <i>h</i> 53°00	h54 [.] 27 h54 [.] 70	h54.50	h50°73 h51°73	h53°04 h53°86	l54:00 l55:00	l49 07 l49 53	l52·30 l54·83	l54·57 l51·40	Probability = 0.47
Means	55.72	54.49	54.09	53.2	54'49	53.65	51.53	53°45	54°50	49:30	53 ⁻ 57	52.99	71° 20′ 53″•42

At XXXVIII

December 1849, observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Angles.	Seconds of Observed Angles at each Zero	Probabilities and
ing.co.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 280°0′	General Means.
XL & XXXIX	" " " " " " " " " " " " " " " " " " "	Probability = 0.42
Means	39.80 43.05 38.02 41.00 40.34 30.80 40.51 34.80 40.40 45.83 30.84 40.04	52° 49′ 40″·50
XXXIX &	h14:10 h8:80 h13:90 h5:83 l16:60 h 8:86 h14:90 h13:54 h10:06 h10:40 l12:30 h10:17 h12:17 h9:96 h12:57 h5:77 l15:87 h10:13 h14:43 h10:80 h 6:73 h 6:90 l11:53 h10:10 h9:84 h 8:17 h 7:94 h8:53	Probability = 0.76
Means	13.14 0.38 13.54 2.40 10.54 0.20 14.02 15.12 8.35 8.41 11.05 10.14	57° 36′ 11″·22
XXXVII & XXXVI	h13.57 h10.87 h6.33 h11.23 l7.53 h6.40 h7.87 h 9.33 h14.67 h10.87 l9.30 h13.30 h12.93 h 9.77 h9.80 h12.27 l8.20 h6.70 h7.30 h11.97 h 9.67 h13.77 h 9.73 h10.40 h 8.86 h10.30 h12.86	Probability = 0.60
Means	13.5 10.35 8.33 11.42 4.84 6.22 4.20 10.62 11.22 15.20 6.25 11.82	65° 19′ 10″·14

At XXXIX

April 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles	Seconds of Observed Angles at each Zero  Angles.										
angue.	0° 0′	207° 0′	General Means.								
xxxvIII	h 57°16 h 57°50	h 56·12 h 57·02	h 57°00 h 57°84	h 56 [.] 94 h 57 [.] 00	" 2 55.54 2 57.24 2 58.32	7 58·42 7 58·62	7 58·46 7 57·88	" 1 57:38 1 57:50	Probability = 0.21		
Means	57°33	56.57	57°42	56.97	57°03	58.52	58.17	57°44	51° 2′ 57″·43		

At XXXIX—(Continued.)

April 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite,

Angles.		i	Seconds of	Observed	Angles at	each Zero	•		Probabilities and General Means.
Angless	0° 0′	180°0′	9° 0′	189°0′	18°0′	198° 0′	27° 0′	207° 0′	
XXXVIII & XL	h 7.86 h 7.60	h 9.04 h 10.22	h 7:98 h 6:28	h 7°74 h 8°04	l 6·36 l 9·88 l 8·36	l 9:90 l 8:44	1 8.68 1 9.24	l 8·10 l 8·22	Probability = 0°29
Means	7.73	9.78	7.13	7.89	8.30	9°17	8.96	8.19	64° 13′ 8″·38
XL & XLI	<b>ў</b> 18.46 <b>ў</b> 18.46	h 17°28 h 17°08	h 16.26 h 17.76	h 16.78 h 17.42	l 15.86 l 16.74 l 17.84	l 17.90 l 18.62	l 17·24 l 17·20	l 17.74	Probability = 0'19
Means	18.33	17.18	17.16	17.10	16.81	18.30	17.23	17:67	7°° 35′ 17″°47

At XL April 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.			Seconds of	Observed	Angles at	each Zero			Probabilities and
mgaes	0° 0′	180°0′	9° 0′	189°0′	18°0′	198°0′	27° 0′	<b>2</b> 07° 0′	General Means.
XLII &	k 0.48	y 1.88	y 3.10	h 2·50 h 1·08	h 0.00	h 1.34 h 1.66	y 5.20 y 1.13	<b>у</b> 1.00	Probability = 0'19
Means	0.82	<b>0</b> '97	2.2	1.49	1.02	1.20	1.84	1.58	61° o' 1"•47
XII & XXXIX	k 29°02 k 28°36	h 30°48 h 29°04	h 30.00	h 30.00 h 28.46	h 29°22 h 29°66	h 32°18 h 29°94	h 30.38	y 30.10	Probability = 0.25
Means	28.69	29.76	29.61	29.23	29`44	31.00	30.23	30.33	55° 57′ 29″·83

At XL—(Continued.)

April 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.		Probabilities and							
Angue.	0°0′	180° 0′	8°0′	189°0′	18° 0′	3°0′ 198°0′ <b>27</b> °0		207° 0′	General Means.
XXXIX & XXXVIII	" h 11.42 h 11.86	h 11.08 h 12.24	h 12.68 h 12.86 h 12.98	h 15.10	" h 10.26 h 11.68	h 11.72 h 11.78	h 12.96	y 13.13 y 13.13	Probability = 0.29
Means	11.79	11.66	12.84	13.88	11.13	11.65	12.46	12.07	62° 57′ 12″·18

At XLI

# March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.			Seconds o	f Observed	l Angles at	t each Zero	)		Probabilities and
	000	180°0′	9°0′	189° 0′	18°0′	198°0′	27° 0′	207° 0′	General Means.
XXXIX & XL	h 13.48	h 12.86 h 13.12 h 13.18	" h 12.24 h 13.60	" h 12.60 h]12.96	" h 14.40 h 14.36	h 14.70 l 13.52	" l 12°76 h 14°52	" h 12 [.] 70 h 12 [.] 24	Probability = 0'22
Means	13.30	13.05	13.07	12.78	14.38	14.11	13.64	12.47	53° 27′ 13″·35
XL & XLII	h 5.26 h 4.28	h 4.84 h 5.60	\$ 4.54 \$ 4.80	h 5.10 h 2.04	h 3.42 h 2.10	h 3.34 l 4.00	h 3.06 h 4.08	h 4.40 h 5.40	Probability = 0.29
Means	4.77	5.53	<b>4°</b> 57	5.07	2.76	3.67	3.22	4'90	54° 4′ 4″ [.] 32
XLII & XLIII	h 43°14 h 42°62	h 43°20 h 42°60	h 44.12 h 43.18	h 43°38 h 42°86	h 41°42 h 42°66	k 41.36 l 42.78	h 41°10 h 41°64	h 40.28 h 41.94 h 43.00	Probability = 0.26
Means	42 [.] 88	42'90	43.65	43'12	42.04	42'07	41.37	41.76	60° 15′ 42″·47

At XLII

March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	Observed	Angles at	each Zero			Probabilities and
Angles.	0°0′	180°0′	8 ₀ 0,	189°0′	18° 0′	198° 0′	27°0′	207° 0′	General Means.
XLIV &	l 54.74 l 53.88	1 53.20 1 23.30	l 52.48 l 53.74	l 53.55 1 24.50	h 52·62 h 53·44	l 53.80 l 53.78	l 52.72 l 54.24	7 7 54.22 1 53.84	Probability = 0'14
Means	54.31	53.40	23.11	53.41	53.03	53.79	53*48	54.03	66° 13′ 53″·65
XLIII &	l 22.02	l 23.68 l 22.76	h 22:44 h 21:36	h 23.26 h 22.24	h 23·12 h 22·48	h 22.38 h 22.90	h 24.52 h 22.54	l 23.18	Probability = 0.16
Means	22.77	23.12	21.00	22.75	22.80	22.64	23.23	23'43	45° 55′ 22″*84
XLI &	1 55·16 1 55·56	l 56.06 l 56.68	h 54°94 h 56°20	h 53°44 h 53°94	h 53.26 h 54.96	h 53°50 h 53°62	h 54.82 h 56.74	l 52.90 l 53.78	Probability = 0.39
Means	55.36	5 ⁶ ·37	55.57	53.69	54.11	53.26	55.78	53'34	64° 55′ 54″*72

March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.			Seconds o	f Observed	Angles at	each Zero			Probabilities and
Angios.	0°0′	180°0′	9° 0′	207° 0′	General Means.				
XLI &	h 54.62 h 55.58	h 55'72 h 55'74	1 56.08 1 55.36	l 54·36 l 54·42	" h 55.14 h 55.14	" h 57.26 h 56.20	l 53·46 l 53·48	l 55.02 l 54.56	Probability = 0.32
Means	55.10	55.73	55.72	54.39	55°27	56.73	53°47	54'79	73° 48′ 55″•15

At XLIII—(Continued.)

March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.		Seconds of Observed Angles at each Zero										
Angres.	0° 0′	180°0′	9° 0′	189°0′	18°0′ 198°0′		27°0′ 207°0′		General Means.			
	"	"	, "	<i>"</i>	"	,	*	"				
XLII & XLIV	h 14.18 h 14.18	h 11.34 h 11.56 h 12.76	l 14.34 l 14.54	l 15.54 l 14.64	h 13.40 h 14.74	h 14.44 h 14.32	l 13.84 l 13.80	l 14.53	Probability = 0.32			
Means	14.65	11.89	14.44	15.09	14.07	14.38	13.82	14.60	55° 26′ 14″·12			
XLIV &	h 21.66	h 23.32 h 23.52	l 24.22 l 22.20	l 23.56 l 22.58	h 24.28 l 24.64	l 21.70 l 23.16	l 22.88 l 23.28	l 24 [.] 86 l 23 [.] 74	Probability = 0.23			
Means	22.83	23.42	23°36	23.07	24.46	22.43	23.08	24.30	53° 19′ 23″ 37			

At XLIV

March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds	of Observe	d Angles a	at each Zei	ro .		Probabilities and
Angles.	0•0′	180° 0′	9° 0′	189° 0′	18° 0′	198°0′	27° 0′	207°0′	General Means.
XLVI & XLV	l 17.90 l 15.68 l 16.46	l 14·86 l 14·34	h 16·62 h 15·36	l 14.90 l 15.62	h 16·10 h 15·78	h 15.54 l 14.38	l 13.26	l 14.44 l 15.88	Probability = 0°24
Means	16.68	14.60	15.99	15.56	15'94	14'96	14.68	15.16	65° 14′ 15″·41
XLV & XLIII	l 4:32 l 3:04	l 4.98 l 5.52	h 3.90	l 2°74 l 2°22	h 3.62 h 3.26	h 3·18	l 2·92 l 4·12	l 4.00 l 5.24	Probability = 0°26
Means	3.68	5°25	3*49	2.48	3.44	3.41	3.25	3.52	62° 54′ 3″ 57

At XLIV—(Continued.)

March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.		Seconds of Observed Angles at each Zero										
angus.	0° 0′	180° 0′	9° 0′	189°0′	18°0′	198°0′	27°0′	207°0′	General Means.			
XLIII &	l 51.10	\$ 50.24 \$ 21.14	h 53.10	l 51.86 l 52.74	h 54.42 l 55.86	h 51.92 h 52.30	7 54.88 7 53.10	l 53.88 l 53.48	Probability = 0.46			
Means	51.77	50.84	52.72	52.30	55.14	52.11	53.99	53.68	58° 19′ 52″·82			

At XLV

March and April 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.			Probabilities and						
	0°0′	180°0′	9° 0′	189° 0′	18° 0′	198° 0′	27°0′	207° 0′	General Means.
XLIII & XLIV	h 34°22 h 34°46	h 34'98 h 34'46	y 33.86	h 35 ²⁴	l 31.46 l 32.00	l 36.02 l 34.24	h 33°48 h 34°96	h 35:30 h 34:72	Probability = 0.31
Means	34*34	34.72	34.28	34'32	32.18	35.58	34.53	35.01	63° 46′ 34″ 33
XLIV & XLVI	h 27·18 h 26·76	h 28.76 h 28.46	h 27.50 h 27.66	h 27.90 h 27.68	l 28·52 l 28·84	l 29.98 l 28.90	h 28.02 h 27.18	h 27·56 h 26·92	Probability = 0.28
Means	26.97	28.61	27.58	<b>27</b> .79	28.68	29'44	27.60	27.24	57° 22′ 27″ 99
XLVI & XLVII	h 29.80 h 29.20	h 28·14 h 28·30	h 28·38 h 28·44	h 30°10 h 29°62	l 31.19	l 30.06	h 30.86 h 30.04	h 29.72 h 29.92	Probability = 0.26
Means	29.50	28.33	28.41	<b>2</b> 9 [.] 86	30.10	29.61	30.42	29.82	56° 50′ 29″·50
XLIII & RM	h 20.28 h 20.86	h 21.66 h 20.64	h 20'12 h 21'34	h 22.66	l 25.32 l 24.30 l 24.40	l 22.16	h 22.28	h 22.56 h 23.04	
Means	20'72	21.12	20.43	23.05	24.67	22.58	22.85	22.80	69° 23′ 22″·28

At XLVI

March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	Observed	Angles at	each Zero			Probabilities and General Means.
Angles.	0°0′	180° 0′	9°0′	189°0′	18° 0′	198° 0′	27°0′	207° 0′	
XLVIII &	h 6.00 h 3.00	l 4:02 l 3:62	" h 6.48 h 6.02	h 3.72 h 5.72	" h 4.98 h 4.26	" h 4.74 h 4.36	" h 5.20 h 3.46	h 3.76 h 3.78	Probability = 0.26
Means	4.08	3.82	6.25	4.2	4.62	4.22	4.33	3.77	54° 33′ 4″·63
XLVII & XLV	h 3.20 h 2.28	l 3.92 l 4.64	h 5°24 h 3°76	h 5.15 h 3.29	h 3.42 h 4.92	h 3°38 h 4°32	l 4.20 l 4.25	l 3.06 l 4.32	Probability = 0.20
Means	2.24	4.58	4.20	4.34	4.12	3.85	4.21	3.69	67° 8′ 4″·01
XLV & XLIV	y 18.99 y 18.00	l 19.42 l 19.06	h 16·38	h 17·84 h 19·62	h 16.60 h 17.56	h 16.08	l 17:58 l 16:60	l 14.96 l 16.86	Probability = 0.47
Means	18.93	19'24	15.88	18.73	17.08	15,00	17:09	15.01	57° 23′ 17"•36

March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Ameles			Seconds of	f Observed	Angles at	each Zero			Probabilities and
Angles.	0°0′	180° 0′	9° 0′	189°0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.
XLV &	h 31'24 h 28'12	h 28.00 h 27.94	h 27.22 h 27.56	h 27.10 h 27.04	l 26.02 l 26.94	l 27.76 l 27.58	l 26.06 l 26.80	l 26.18	Probability = 0.36
Means	29.68	27.97	27.39	27.07	26.48	27.67	26.43	26.57	56° 1′ 27″·41
XLVI & XLVIII	l 44.26 l 43.32	h 44.46 h 44.40	h 45.38 h 44.28	h 46·56 h 44·54	l 46.00 l 46.08	l 44·50 l 44·62	l 46·14 l 46·44	l 45.82 l 45.56	Probability = 0'29
Means	43°79	44'43	44.83	45.22	46.04	44.26	46.39	45.69	61° 48′ 45″•15

At XLVII—(Continued.)

March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.			Seconds of	f Observed	l Angles at	each Zero			Probabilities and
Angue.	0° 0′	180° 0′	207° 0′	General Means.					
XLVIII & XLIX	h 14·48 h 14·34	h 13.88	h 14.58 h 14.88	" h 14°46 h 14°32	" l 14.78 l 13.64	" l 14.78 l 14.22	" l 14·56 l 14·64	" 1 14.19 1 14.44	Probability = 0.06
Means	14.41	14.47	14.43	14.39	14'21	14.65	14.60	14'30	65° 3′ 14″•47

At XLVIII

March 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.			Seconds of	f Observed	l Angles at	each Zero	)		Probabilities and
	0°0′	180° 0′	8.0.	189°0′	18°0′	198° 0′	27° 0′	<b>207°</b> 0′	General Means.
L & XLIX	" h 35'20 h 36'82 h 37'76	h 36.76 h 37.92	" 1 35.60 1 37.94	h 37.40 h 38.18	" h 36·26 h 36·76	h 38·62 h 36·90	" h 36·44 h 36·44	" 1 36·26 1 37·14	Probability = 0.18
Means	36.20	37°34	36.77	37.79	36.21	37 ⁻ 76	36.44	36.40	59° 24′ 36″·99
XLIX & XLVII	h 47.86 h 47.58	h 47.52 h 47.08	l 48·68 l 45·54	h 47.26 h 47.08	h 49°24 l 47°58	h 47°20 h 47°50	h 46·98 l 47·72	7 48·58 7 47·54	Probability = 0.13
Means	47:72	47:30	47.11	47.17	48.41	47°35	47.35	48.06	59° 5′ 47″•56
XLVII &	h 11.74 h 11.96	h 11.24 h 11.24	l 9.76	h 10.66 h 10.54	l 11.15	y 11.00	h 11.42 h 11.40	l 11.00 l 10.50	Probability = 0.21
Means	11.85	11'24	10'12	10 60	11.26	10'34	11.26	10.63	63° 38′ 10″·99

At XLIX

February 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

A = =3 ==			Seconds of	Observed	Angles at	each Zero			Probabilities and General Means
Angles.	0°0′	180° 0′	9°0′	189°0′	18°0′	198° 0′	27°0′	207° 0′	General Means.
XLVII &	l 57.40 l 58.76	1 57.38 1 58.08	l 59.00 l 59.64	h 59°96 h 59°26	h 58.88 h 58.88	h 58.48 l 58.34	l 58·22 l 57·30	1 58.68 1 57.98	Probability = 0.23
Means	58.08	57.73	59.32	59.61	58.88	58.41	57.76	58.33	55° 50′ 58″·52
XLVIII & L	h 50°04 h 51°30	h 51.68	l 50°18 l 49°52	h 50.04 h 50.72	h 50.56 h 51.38	h 49°10 h 49°28	l 50.03	l 49·86 l 50·52	Probability = 0.26
Means	50.67	51.64	49.85	50.38	50.97	49.19	51,50	20.10	49° 2′ 50″·52
L & LI	h 20°02 h 19°76	h 19.50 h 19.50	l 19.76 l 20.40	h 19.68 h 20.16	h 19.42 l 18.02	h 19.72 h 19.34	l 20.24 l 18.98	1 10.18 1 18.08	Probability = 0.18
Means	19.89	19.42	20.08	19.92	18.72	19.23	19.76	18.63	74° 44′ 19″ 49

At L

February 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

A1		Seconds of Observed Angles at each Zero									
Angles.	0,0,	180°0′	9°0′	189°0′	18° 0′	198°0′	27°0′	207°0′	General Means.		
LII & LI	h 39.98 h 38.86	h 40.34	" l 40'34 l 42'16	l 41.00 l 41.84	" h 41.36 h 41.58	" h 42.60 h 40.44	l 38.78 l 39.32	" l 41.92 l 41.86	Probability = 0.35		
Means	39.42	40.5	41.5	41.42	41.42	41.25	39.02	41.89	53° 7′ 40″·78		
LI &	h 42.70 h 42.02	h 41.82 h 40.60	l 38·44 l 39·06	l 42.02 l 40.84	h 39.66 h 39.92	h 38.70 h 40.74	l 40.18	1 40.02 1 38.22	Probability = 0.40		
Means	42.36	41.31	38.75	41.43	39.79	39.72	40.32	39°27	53° 59′ 40″·36		

At L—(Continued.)

February 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	Observed	l Angles at	each Zero	,		Probabilities and
Angles.	0°0′	207° 0′	General Means.						
XLIX & XLVIII	h 31.80 h 32.32	h 33.46 h 32.80	l 33°26 l 31°92	l 30.44 l 31.42	h 32.06 h 32.92	h 32.80 h 32.30	l 33.66 l 34.18	l 30.80 l 32.00	Probability = 0.31
Means	32.00	33.13	32.29	30.03	32.49	32.22	33.03	31.40	71° 32′ 32″·38

At LI
February 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Amelos			Seconds of	Observed	Angles at	each Zero	ı		Probabilities and
Angles.	<b>0°</b> 0′	180° 0′	9°0′	189°0′	18° 0′	198° 0′	27° 0′	207°0′	General Means.
XLIX &	l 39.08 l 38.76	l 38·76 l 38·88	h 38.60 h 38.78	h 36.60 h 36.70	l 36·56 h 36·64	h 35.50 h 35.40	h 37°12 l 37°86	l 40·58 l 40·48	
Means	38.92	38.82	38.69	36.65	36·60	35.45	37°49	40.23	107° 3′ 37″·89
L & LII	h 38·06 h 36·84	h 38·22 h 38·72	h 37.96 h 36.88	h 33.98 h 35.26	l 34.96 h 36.88	h 35.26 h 35.92	h 36·30 l 38·22	l 39.58 l 38.98	Probability = 0.51
Means	37 <b>°4</b> 5	38.47	37.42	34.62	35.92	35.29	37.26	39.28	55° 47′ 37″'.00
XLIX &	+ 98·92 - 37·45	+ 98·8 ₂ - 38·47	+ 98·69 - 37·42	+ 96·65 - 34·62	+ 96.60 - 35.92	+ 95.45 + 95.59		+ 100·53 - 39·28	Probability = 0'24
107° 2' -55° 47'	61.47	60.35	61.52	62.03	60.68	59.86	60.53	61.25	51° 16′ 0″·89
LII &	h 54.90 h 56.96	h 55.84 h 56.30	h 54.92 h 55.66	h 55.80	l 54.34 h 56.94	h 54.10	h 55 [.] 94 l 57 [.] 34	l 53.86 l 55.34	Probability = 0.20
Means	55°93	56.07	55.59	55°54	55.64	55.31	56.64	54.60	70° 9′ 55″·63

At LII

February 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	Observed	Angles at	each Zero			Probabilities and General Means.
Angles.	0°0′	180° 0′	9°0′	189°0′	18°0′	198° 0′	27° 0′	207°0′	General Means.
LIV &	h 22.86 h 23.22	n h 24°50 h 22°54	" h 25.26 h 24.10	h 22.40 h 21.60 h 22.90	h 21'92 h 24'14 h 24'36	h 23.22 h 23.66	h 21°50 h 22°64	h 22.78 h 22.88	Probability = 0°27
Means	23'04	23.22	24.68	22.30	23.47	23.44	22.07	22,83	50° 41′ 23″·17
LIV & LI	h 53.44 h 51.76	h 48.88 h 51.24	h 52.60 h 52.94	h 51.88	l 51.88	l 53°26 l 52°94	h 54°10	h 52.02 h 52.22	
Means	52.60	50,06	52.77	52.04	51.22	53.10	53.19	52.13	107° 54′ 52″-21
LIII & LI	+ 52.60 - 23.04	+ 50.06 - 23.22	+ 52.77 - 24.68	+ 52°04 - 22°30	+ 51.77	+ 53.10	+ 53.10	+ 52°12 - 22°83	Probability = 0.45
107° 54′ —50° 41′	29.56	26.54	28.09	29.74	28.30	29.66	31'12	29.29	57° 13′ 29″·04
LI & L	h 42'92 h 43'20	h 44.86 h 44.20	h 42.04 h 42.64	h 44.00	l 41.76 l 43.62	l 42.98 l 43.62	h 42°20 h 43°60	h 43.70 h 43.42	Probability = 0.26
Means	<b>4</b> 3°06	44'53	42'34	44.34	42.69	43.30	42.90	43.26	71° 4′ 43″·34

At LIII

February 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles			Seconds of	Observed	Angles at	each Zero			Probabilities and
Angles.	0,0,	207°0′	General Means.						
LI & LII	h 35.70 h 34.56	h 35.86	h 36.56 h 37.16	" h 34'24	h 36·56 h 36·90	" h 34.44 h 37.68	h 34.68 h 36.98	<b>h</b> 37.60 <b>h</b> 35.88	Probability = 0.30
Means	35.13	35.98	36.86	34.54	36.73	36·06	35.83	3 ⁶ .74	52° 36′ 35″ 95

At LIII—(Continued.)

February 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	Observed	Angles at	each Zero	,		Probabilities and General Meaus.
Angles.	<b>0°</b> 0′	180° 0′	8° 0′	189° 0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.
LII &	h 14.04 h 15.48	h 16.00° h 15.94	h 14.80 h 14.50	h 15.78	h 14.98 h 14.82	h 15.32	h 16.26	h 13.22 h 15.48	Probability = 0'23
Means	14.76	15'97	14`50	15.78	14'90	14.89	16.07	14.35	50° 25′ 15″·15
LIV &	h 44.26 h 47.34 h 45.36	ħ 45 [.] 28 ħ 43 [.] 52	h 45°20 h 45°88	l 44.20 l 44.62	l 45°64 l 46°80	l 45.58 l 46.92	h 45.24 h 44.14	h 44`70 h 43`96 h 46`28	Probability = 0°24
Means	45.65	44*40	45'54	44.26	46.22	46.25	44.84	44`98	74° 39′ 45″·31
LV & LVI	h 31.38	h 32.76 h 33.96	h 33.30 h 32.38	l 32.18	l 34.40 l 30.84 l 32.40	l 32·16 l 31·40	h 32.00	h 34.98	Probability = 0.38
Means	31.40	33.36	33.14	31.88	32.22	31.28	31.07	34.96	59° 6′ 32″·63

At LIV

February 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Amelea			Seconds of	f Observed	l Angles at	each Zero	)		Probabilities and
Angles.	0° 0′	180° 0′	9° 0′	189° 0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.
LVII &	l 18.38	l 17.62 l 17.52	l 20.70 l 17.38	l 17.52 l 18.06	l 18:08 h 18:54	y 10.08	" h 17.64 h 18.50	" h 18·14 h 17·52	Probability = 0.20
Means	18.59	17:57	19.04	17.79	18.31	19.59	18.07	17.83	59° 5′ 18″-31

At LIV—(Continued.)

February 1849, of	bserved by	Mr. G.	. Logan	with	Barrow's	36-inch	Theodolite.
-------------------	------------	--------	---------	------	----------	---------	-------------

		Seconds of Observed Angles at each Zero										
Angles.	0,0,	180°0′	9° 0′	189°0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.			
LV &	l 42'92 l 43'88	l 46·26 l 45·42	" l 44.26 l 46.88	l 47.88 l 44.48	" l 46·30 h 44·62	h 45:46 h 46:66	h 46 [.] 94 h 46 [.] 04	" h 43.76 h 47.42 l 46.02	Probability = 0.31			
Means	43.40	45.84	45'57	46.18	45°46	46.06	46.49	45.73	52° 47′ 45″ 59			
LIII &	l 23.04	l 20:38 l 21:72	l 22.82 l 22.76	l 21.00	l 22.56 h 23.54	y 55.18	h 21.60 h 22.50	l 22.18	Probability = 0.26			
Means	22.29	21.05	22.79	20.85	23.02	33,13	22.05	21.04	78° 53′ 22″.06			

At LV

January 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

A1			Seconds of	f Observed	Angles at	each Zero	)		Probabilities and
Angles.	0° 0′	180°0′	9° 0′	189° 0′	18° 0′	198°0′	27°0′	207° 0′	General Means.
LIII &	l 27.68 l 28.30	l 31.06 h 33.20 h 32.22	h 32·14 l 32·06	h 27·56 h 29·26	l 27.44 l 28.22	l 30.28 l 27.14	h 32.90 h 30.84	h 28.28 h 29.42	Probability = 0.65
Means	27.99	32.36	32.10	28.41	27.83	28.71	31.87	28.85	52° 32′ 29″·77
LIV &	h 13°14 h 12°58	l 14.66 h 14.02	h 14.14	h 14.30	l 12.24 l 11.40	l 14.00	h 13.84 h 15.94	h 13.46 h 14.70	Probability = 0.33
Means	12.86	14.34	13.10	14.09	12.13	14.08	14.89	14.08	48° 22′ 13″-82
LVII & LIX	h 25.70 h 25.96	l 24.44 l 25.16	h 24.80 l 23.54	h 23.02 h 22.00	l 24.74 l 24.28	l 23°12 l 24°38	h 26.66 h 25.92	h 25.16	Probability = 0.36
Means	25.83	24.80	24.12	22.96	24.21	23.75	• 26.29	24.08	64° 58′ 24″·55

At LV—(Continued.)

January 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	Observed	Angles at	each Zero			Probabilities and
Angles.	0°0′	180°0′	9°0′	189°0′	18°0′	198°0′	<b>27°</b> 0′	207° 0′	General Means.
LIX &	h 29.00 h 31.38	l 30.22 l 30.24	h 26:48 l 30:16 l 30:90	h 32.55 h 33.55	l 31.38	1 30.80 1 31.00	h 27.44 h 27.88	l 29:34 h 32:86 k 32:36	Probability = 0.51
Means	30.10	30.48	29.18	32.72	31.55	30.03	27.66	31.22	67° 42′ 30″·49
LVIII &	h 26·62 h 24·60	l 24.78 l 25.14	h 25.18	h 27.30 h 27.88	l 26.84 l 27.52	l 29.50 l 26.60	h 24·08 h 24·44	l 29°17 h 26°56 h 24°80	Probability = 0.45
Means	25.61	24.96	25.52	27.59	27.18	28.05	24.56	26 [.] 84	68° 33′ 26″•25
LVI &	l 57.96 l 56.86	l 54.84 l 55.26	h 57 [.] 26 l 56 [.] 14	h 55.60 h 52.86	l 57°38 l 56°90	l 56·76 l 55·86	h 55.08 h 54.98	h 57.00 h 53.46 h 56.00	Probability = 0.38
Means	57:41	55°05	56.40	54.53	57°14	56.31	55.03	55'49	57° 50′ 55″ 92

At LVI

January 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Am alos	Seconds of Observed Angles at each Zero  Angles.										
Angios.	0°0′	180°0′	<b>9°</b> 0′	189° 0′	18°0′	198°0′	27° 0′	207° 0′	General Means.		
LIII &	h 31.78 h 32.38	h 31.14	h 33°16 h 32°58	h 32.08 h 31.00	h 32·72 h 32·20	" h 32.76 h 32.06	h 31.36 h 31.40	h 31.24 h 31.44	Probability = o'17		
Means	32.08	31.22	32.8%	31.87	32.46	32,41	31.48	31,40	63° 2′ 32″·03		

At LVI—(Continued.)

January 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.	Seconds of Observed Angles at each Zero						Probabilities and		
Angles.	0°0′	180°0′	9°0'	189° 0′	18° 0′	198° 0′	<b>2</b> 7°0′	207° 0′	General Means.
LV &	h 39.84 h 39.56	h 40°74 h 40°34	h 39.66 h 40.82	h 38.54 h 40.94	h 40.06 h 39.92	h 40.00 h 40.00	h 38.86 h 41.13	h 40.60 h 39.56	Probability = 0.09
Means	39.70	40°54	40.54	39°74	39'99	40'00	39'99	40.08	56° 59′ 40″·04

At LVII

January 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	Observed	Angles at	each Zero			Probabilities and
Angles.	<b>0</b> ° 0′	180° 0′	9° 0′	189° 0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.
LX & LIX	" 2 60.02 2 57.88	" l 60°08 l 57°48 l 58°52	l 57·84 l 59·08	" 1 59.40 1 58.68	" l 59 [.] 44 l 57 [.] 60	" 1 59·16 1 57·86	" 1 57·36 1 59·24	1 58·66 1 59·70	Probability = 0.10
Means	58.95	58.69	58.46	59°04	58.52	58.21	58.30	59.18	49° 7′ 58″·71
LIX &	l 7.30 l 7.76	l 7.26 l 9.38	l 7.06 l 7.20	l 7·28 l 7·62	l 9:36	l 8·14 l 8·28	l 6 [.] 72 l 7 [.] 76	1 8·70 1 9·30	Probability = 0.21
Means	7.63	8.32	7:13	7*45	8.24	8.31	7.24	9.00	54° 31′ 7″·90
LV &	l 30.14	l 28·28 l 28·44	l 29.06 l 28.92	l 27.22 h 28.14	l 30.08 l 28.36	l 28·80 l 28·72	l 30.64 l 29.28	l 28.00 l 27.26	Probability = 0.33
Means	30.43	28 [.] 36	28.99	27.68	29.22	28.76	29.96	27.63	72° 32 [′] 28″·88

At LVIII

January 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	f Observed	l Angles at	each Zero	)		Probabilities and
Angles.	0°0′	180° 0′	9°°0′	189 <b>°</b> 0′	18°0′	198° 0′	27° 0′	207° 0'	General Means.
LVI &	h 53.18	h 56·94 h 55·18	1 56·58 1 56·60	h 54.22 h 54.22	h 53°46 h 52°62	h 54.44 h 53.30	h 53°74 h 53°34	h 53.18	Probability = 0.46
Means	52.24	56.06	56.20	54.47	53.04	53.87	53.24	53.29	54° 26′ 54″-24
LV & LIX	h 58.88 h 57.82	h 57.02 h 58.04	l 59.18	l 59°04 l 57°58	h 57.70	h 57.62 h 58.56	h 60.03	h 59°34 h 58°54	Probability = 0.26
Means	58·3 <b>5</b>	57`53	. 59.11	58.31	58.85	58.09	бо:12	58.04	57° 15′ 58″-66

At LIX

January 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Analaa			Seconds o	f Observed	l Angles at	each Zero	•		Probabilities and
Angles.	0°0′	180° 0′	9°0°	198° 0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.
LVIII &	h 32.22 h 31.76	" h 30.82 l 31.50	h 34.62 h 33.40	h 33.05 h 33.05	" h 31.88 h 32.82	" h 34.16 h 32.38	l 31.28 h 32.36	h 33°52 h 31°96	Probability = 0.29
Means	31.00	31.16	34.01	32.81	<b>32</b> .35	33°27	31.02	32.74	55° 1′ 32″.53
LV &	h 28·12 h 27·92	h 29.30	h 26.40 h 25.12 h 26.98	h 26·16 h 26·44	h 27.82 h 28.60	h 25.82 h 26.74	l 26·56 h 25·06	h 25.78 h 26.54	Probability = 0.54
Means	28.02	30.21	26.17	26 [.] 30	28.31	26·28	25.81	26.16	60° 30′ 27″•18

At LIX—(Continued.)

January 1849, obscrved by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	Observed	Angles at	each Zero	1		Probabilities and
Angles.	. 0.0,	180°0′	9° 0′	189°0′	18°0′	198°0′	27°0′	207°0′	General Means.
LVII &	h 6·56 h 5·12	h 2.40 l 2.98 l 3.44	h 3 [·] 24 h 4 [·] 74	n 4·64 h 1·96	h 2·62 h 3·76	h 4·32 h 4·18	l 6·24 l 3·30	l 2.84 h 3.04	Probability = 0.34
Means	5.84	2.94	3.09	3.30	3.10	4.5	4.77	2.94	67° 6′ 3″·90
LX & LXI	h 60.2 h 60.08	h 63·58 l 62·96	h 61.86 h 63.32	h 62.86	h 62·82 h 62·34	h 63°38 h 61°74	l 61 [.] 94 l 60 [.] 44	y 20.20	Probability = 0.37
Means	60.30	63.27	62.29	62.03	62.28	62.26	61.19	60.32	57° 35′ 1″·86

At LX

January 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.			Seconds of	Observed	Angles at	each Zero	,		Probabilities and
Angres.	0° 0′	180°0′	9°0′	189°0′	18°0′	198° 0′	27° 0′	207° 0′	General Means.
LXII &	h 49.62 h 49.34	l 46·72 l 46·36	7 48·44 7 47·34	h 47°04 h 45°74	l 45'30 l 45'94	7 1 46·18 1 46·18	7 7 7 7 8 8 9 1	l 46·20 l 47·24	Probability = 0.41
Means	49*48	46.24	47 ^{.8} 9	46.30	45.62	46.18	47.70	46 [.] 72	61° 27′ 47″·07
LXI &	h 39°60 h 38°58	l 36·94 l 37·46	l 38·16 l 39·72	h 36.08	l 36·48 l 37·24		l 39.70 l 36.82	l 39·14 l 39·14	Probability = 0.34
Means	39.09	37*20	38.94	37.26	36.86	39.01	38.50	39.48	62° 27′ 38″·26

At LX—(Continued.)

January 1849, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

		Seconds of Observed Angles at each Zero										
Angles.	Angles. 0° 0′ 180° 0′ 9° 0′ 189° 0′ 18° 0′ 198° 0′ 27° 0′ 207° 0′											
LIX &	n h 60.66 h 60.62	1 59.25 h 62.90 h 59.16	l 56·72 l 56·72 l 56·74	h 60.20 h 58.36	и пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробедения пробеден	h 58·20 h 58·44	" l 58·20 l 58·36	l 56·64 l 59·38	Probability = 0.46			
Means	60.64	60.23	56.23	59.28	59.78	58.32	58.38	58.01	63° 45′ 58″·92			

At LXI

December 1848, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

	•		Seconds of	f Observed	l Angles at	each Zero	)		Probabilities and
Angles.	0° 0′	180°0′	9° 0′	189°0′	18°0′	198°0′	27° 0′	207° 0′	General Means.
LIX & LX	" h 18.04 h 18.76	" h 17°96 h 19°84	l 19.36 l 20.05 l 19.8	h 19'94	" h 20·56 l 19·66	" l 21°34 l 22°80	" h 19:34 h 19:34	" l 18.78 l 20.48	Probability = 0.36
Means	18.40	18.00	19.79	19.47	20.11	22.07	19.66	19.63	59° 57′ 19″·75
LX & LXII	h 7:30 h 7:40	h 7.54 h 6.52	l 10.84 l 7.72 l 8.20	h 9.10	1 5.80 1 7.68	l 10.06	h 9.34 h 9.30	l 6.66	Probability = 0.40
Means	7:35	7:03	8.92	8·8 <b>o</b>	6.4	10.00	9'42	7.91	67° 59′ 8″-28
LXII &	k 34°20 k 33°20	h 36.00 h 34.18	l 33°12 l 34°38	h 32.42 h 34.22 h 35.82	l 33.30 l 34.16	l 32·50 l 33·86	h 33.30	h 34.84 h 34.58	Probability = 0.22
Means	33.40	35.09	33.75	34.12	34'03	33.18	33.32	34.41	54° 1′ 33″ 99

At LXII

December 1848, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

A T			Seconds of	Observed	Angles at	each Zero	ı		Probabilities and
Angles.	0°0′	180° 0′	9°0′	189°0′	18° 0′	198°0′	27°0′	207° 0′	General Means.
LXIV &	h 27.66 l 27.42 l 28.28	l 25.08 l 25.64	h 29.84 h 28.12 l 29.00	l 28·50 l 26·56	h 25.88 l 27.26	h 28.60 h 28.50	l 27 [.] 20 l 27 [.] 02	l 28·42 l 27·98	Probability = 0.39
Means	27.79	25.36	28.99	27°53	26.22	28.55	27.11	28.30	59° 40′ 27″·51
LXIII &	l 36·78 l 36·16	l 37°38 l 36°54	h 39.62 l 32.40 l 35.00 l 37.92	l 34 ¹ 14 l 36 ² 4	h 36.62 l 40.96 l 38.44	h 39.64 h 35.28 l 35.46	l 35.76 l 36.50	l 35.06 l 37.70	Probability = 0.33
Means	36.47	36.96	36.24	35.19	38 [.] 67	36.49	36.13	36.38	60° 48′ 36″·60
LXI & LX	l 5.42 l 8.14 l 3.02	l 8:04 l 5:82	l 4.06 l 5.32	l 2·38 l 5·04	l 7.04 l 3.64 l 5.42	h 4.73 h 5.18	l 5.38	l 4.24 h 3.82 k 8.02	Probability = 0.31
Means	5.83	6.93	4.69	3.41	5:37	4'95	5.80	5.36	50° 33′ 5″-33

At LXIII

December 1848, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles		Seconds, of Observed Angles at each Zero										
Angles.	0°0′	180° 0′	9° 0′	189° 0′	18°0′	198° 0′	27° 0′	207° 0′	General Means.			
LXI &	l 50.48 l 50.30	" l 47.80 l 50.26	" h 49.84 h 49.46	l 51·18 l 50·56	" l 49·90 l 48·72	" l 49.02 l 48.14	h 49°30 h 49°98	" \$ 48.66 \$ 49.34	Probability = 0.25			
Means	50.30	49.03	49.65	50.87	49.31	<b>4</b> 8·58	49.64	49'00	65° 9′ 49″·56			

Means

43'93

43.23

At LXIII—(Continued.) December 1848, observed by Mr. G. Logan with Barrow's 36-inch Theodolite. Seconds of Observed Angles at each Zero Probabilities and Angles. General Means. 18°0′ 27° 0′ 180°0′ 900' 189° 0′ 198° 0' 207°0' 0°0' 1 36.86 38·50 h 39.80 1 40.78 1 37.20 l 40.94 h 39.38 h 39.40 LXII & Probability = 0.43 39.46 LXIV 62° 44′ 38″.85 36.22 38.29 40.83 Means 39.51 39.03 37.71 39.42 39.72 March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite. Seconds of Observed Angles at each Zero 0°0' 180° 0' 0′ 120 192°0′ 24° 0' 204° 0' y 60.18 h 60.56 y 61.68 1 60'20 l 61.33 LXIV & y 60.10 Probability = 0.17 LXV h 60.70 h 60.36 h 60.20 1 61.08 l 61.31 1 59.08 **წ**0°48 59° 17′ 0″.57 6ò.27 61.38 60.76 60.12 Means 60.40 At LXIV March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite. Seconds of Observed Angles at each Zero Probabilities and General Means. Angles. 180° 0′ 12° 0′ 192° 0' 24° 0' 204° 0' 000 LXVI & h 43.26 h 43.38 l 44.15 1 42.88 l 42.96 1 42.64 Probability = 0.15 l 42.60 1 43.94 h 43.68 1 42.78 1 43.14 h 44.60

42.74

43.45

43.02

43'29

60° 21′ 43″°33

At LXIV—(Continued.) March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite. Seconds of Observed Angles at each Zero Probabilities and Angles. General Means. 192° 0′ 0° 0′ 180° 0′ 12° 0' 24° 0′ 204° 0′ LXV & h 23.64 1 23.78 l 23.26 1 23.70 h 22.26 1 22.92 Probability = 0.28 LXIII l 24.08 h 21.55 h 23.12 1 22.92 1 23.76 1 22.72 Means 23.38 23.67 22.82 62° 0' 23"·12 21.24 23.32 23.73 December 1848, observed by Mr. G. Logan with Barrow's 36-inch Theodolite. Seconds of Observed Angles at each Zero 900 0° 0′ 180° 0' 189°0′ 18° 0′ 198° 0′ 27° 0′ 207° 0' 1 56·50 1 57·56 l 55.48 l 55.28 l 56.06 1 56.12 **1** 55.68 1 53.98 1 55.66 2 55.46 LXIII & Probability = 0.32 1 56.78 1 56.20 l 57.10 LXII 1 57.92 56.16 Means 57.03 56.22 56.00 56.52 57° 34′ 55″ 93 53'99 55.38 55.20 At LXV March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite. Seconds of Observed Angles at each Zero Probabilities and General Means. Angles. 0° 0′ 180° 0′ 1290 192° 0′ 24° 0′ 204° 0′ "

1 37.88

1 37.54

37.71

1 37.64

1 37.52

37:58

LXIII &

LXIV

Means

h 36.60

h 36.92

36.76

h 36.62

h 37.04

36.83

1 36.26

1 37.66

36.96

1 37.04

1 36.28

36.66

Probability = 0.17

58° 42′ 37″ • 08

At LXV—(Continued.)

March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

		Seconds	of Observed	Angles at ea	ch Zero		Probabilities and
Angles	0° 0′	180° 0′	12° 0′	192° 0′	24° 0′	204° 0′	General Means.
LXIV &	h 32.36 h 32.32	h 33·28 h 33·36	l 33.40	" 1 33:30 1 33:74	" 1 32.54 1 32.56	" l 33.66 l 32.96	Probability = 0'19
Means	32.34	33.33	33.26	33°52	3 <b>2</b> .25	33.31	70° 41′ 33″·10
LXVI &	h 28.84 h 29.24	h 29.36 h 29.36	l 29.88 l 28.84	l 29.00 l 28.80	l 30·16 l 29·0б	l 28.58 l 29.58	Probability = 0.10
Means	29.04	29.45	29.36	28.00	29.61	29.08	57° 20′ 29″•24

At LXVI

March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

A1		Seconds	of Observed	Angles at ea	ch Zero		Probabilities and
Angles.	0° 0′	180° 0′	12°0′	192° 0′	24° 0′	204° 0′	General Means.
LXVIII &	" h 49.08 h 49.42	" l 49.02 l 48.68	h 47.70 h 47.70	" l 47 [.] 80 l 48 [.] 74	" 48.42 48.18	" l 48·84 l 47·88	Probability = 0.20
Means	49°25	48.85	47.70	48.27	48.30	48 36	70° 40′ 48″·46
LXVII &	h 3.16 h 2.14 h 1.12	l 1.34 y 1.08	h 1.72 h 1.02	l 1.38	l 1.36 l 1.34	l 1.82	Probability = 0.12
Means	2.14	1,31	1.32	1,13	1.52	1.87	57° 11′ 1″·50
LXV &	h 43.20 °	l 43'70 h 43'26	h 44.46 l 44.80	l 42.52 l 43.02	l 44 [.] 34 l 44 [.] 30	l 44.64 l 43.66	Probability = 0.25
Means	43.96	43.48	44.63	42.77	44'32	44'15	48° 56′ 43″·89

At LXVII

March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Amelea			Seconds of	Observed	Angles at	each Zero			Probabilities and General Means.
Angles.	0° 0′	180° 0′	5° 0′	189° 0′	18°0′	198°0′	27° 0′	207° 0′	
LXV &	h 30.56 h 29.56	" h 29.02 l 30.88	l 30.20 l 30.20	l 29.12 l 29.12	h 29'34 h 29'14	h 30°14 h 29°42	" h 30°14 l 28°36	" l 30.24 l 29.72	Probability = 0.15
Means	30.00	29.95	30.33	29.31	29.24	29.78	29.25	30.13	65° 28′ 29″ 74
LXVI &	h 30°90 h 29°46	h 31.16	l 32·56 l 33·22	l 31.88	h 32.50 h 32.46	h 31.32	h 30.30 l 31.34	l 33.18	Probability = 0.30
Means	30.18	31.41	32.89	32.02	32.48	31.30	30.82	32 20	46° 40′ 31″.67
LXVIII & LXIX	h 28.80 h 30.00	h 29'72 l 29'90	l 29.64 l 30.14	l 30.75	k 29.28 h 29.42	h 29'14 h 29'86	h 29.30 l 29.70	l 29.60 l 28.64	Probability = o.c8
Means	29.40	29.81	29.89	29.66	29.35	29.20	29°50	29.13	. 62° 11′ 29″·53

At LXVIII

March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.		Probabilities and							
angios.	0°0′	180° 0′	9° 0′	189°0′	18°0′	198° 0′	27° 0′	207° 0′	General Means.
LXX & LXIX	h 33.68 h 34.36	" 1 34.30 1 35.00	l 35.02 h 34.92	h 33.78 h 33.28	" 1 34:44 1 33:56	l 33.06 l 34.10	" l 34.02 l 33.48	" 1 33.52 1 34.78	Probability = 0.17
Means	33'97	34.60	34'97	33.23	34.00	33.28	33.75	34.12	58° 14′ 34″·07

At LXVIII—(Continued.)

March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.		Seconds of Observed Angles at each Zero										
	C°0′	180°0′	8° 0,	185° 6′	18° 0'	198° 0′	27°0′	207° 0′	General Means.			
LXIX &	h 17°08 h 17°22	" 1 17:80 1 16:94	l 16·58 h 17·92	h 18:42 h 18:08	l 17:46 l 18:06	1 18.34 1 18.00	l 18·24 l 17·44	l 17:32 l 17:12	Probability = 0.12			
Means	17.15	17`37	17.25	18.52	17.76	18.17	17.84	17.55	54° 0′ 17″ 63			
LXVII &	h 42.36 h 42.34	l 41°56 l 41°86	l 41°24 h 40°74	h 40.50 h 39.14	l 39.20 l 39.20	l 42.62 l 41.16	l 39.44 l 42.30	l 39°20 l 39°68	Probability = 0.39			
Means	42.30	41.41	40.00	39.67	30.31	41.89	40.87	39.44	62° 38′ 40″·77			

At LXIX

February and March 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds of	f Observed	Angles at	each Zero			Probabilities and
Angles.	0°0′	180° 0′	9° 0′	189° 0′	18° 0′	198° 0′	<b>27°</b> 0′	207°0′	General Means.
LXVII & LXVIII	" l 12.74 l 13.62	l 12.68 l 14.24	h 11.32 h 10.84 h 13.94 h 13.40	l 13°34 h 13°04 h 12°54	h 12·84 l 12·33	l 13.36	h 13°08 h 12°34	l 14.76 l 12.62	Probability = 0.15
Means	13.18	13.46	12.38	12.97	12.20	13.15	12.21	13.69	δ3° 48′ 13″·01
LXVIII & LXX	h 14.36	h 13°12 h 13°44	h 15.02 h 14.46	h 13.15 h 13.15	h 13.88	l 14.08	h 13.12 h 12.48	h 13.04	Probability = 0'20
Means	14.03	13.58	14.24	13.36	13.44	13.46	12.80	13.11	61° 57′ 13″'53
LXX & LXXI	h 29.68 h 30.20	h 28.88 h 29.10	h 28.38 h 30.68	h 28.60 h 29.74	h 29'70 h 29'40	2 30.34 2 30.26	h 29.10	h 30.18	Probability = 0'16
Means	29'94	28.99	29.23	29.17	29.55	30.42	29.21	30.03	58° 8′ 29″ 65

At LXX

February 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.			Seconds of	f Observed	Angles at	each Zero			Probabilities and General Means.
	0.0,	180°0′	9°0′	189°0′	18°0′	198° 0′	27° 0′	207°0′	
LXXII &	h 28·50 h 28·94	" l 29.74 l 28.40	l 28.78 h 28.46	h 28.98 h 29.28	" l 29:32 l 28:52	" l 28:88 l 30:14	l 29.80	l 28:40 l 30:24	Probability = 0.20
Means	28.72	29.07	28.62	29.13	28.92	29.51	30.49	29.32	52° 25′ 29″·22
LXXI &	h 9.88 h 8.56	l 8·74 l 9·90	l 8·14 l 8·54	h 8.88 h 8.36	l 10:34 l 9:44	l 9:04 l 9:88	l 9:86 l 8:64	l 9.64 l 7.96	Probability = 0.17
Means	9,55	9.32	8.34	8.62	9.89	9.46	9.25	8.80	70° 28′ 9″·11
LXIX & LXVIII	h 13.14	l 13.14	l 13.15 l 13.26	h 12.48	l 14.13 l 14.13	l 12.60 l 14.30	l 13.20	l 12.40	Probability = o'11
Means	13.26	13.10	13.34	13.13	14'24	13.45	13.38	13.39	59° 48′ 13″•46

At LXXI

February 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

A		Seconds of Observed Angles at each Zero										
Angles.	0,00	180°0′	9° 0′	189° 0′	18°0′	198°0′	27° 0′	207° 0′	General Means.			
LXIX &	h 23.74 h 22.82 h 21.22 h 21.74	# 21.06 # 20.76 # 21.06	h 24.00 h 23.40 h 24.72	h 23.22 h 22.18	" h 22.68 h 21.40	" h 22.54 h 22.42	" h 22.66 h 21.42	h 22.42 h 21.24	Probability = 0'29			
Means	22.38	20.96	24.04	22.70	22'04	22.48	22'04	21.83	51° 23′ 22″·31			

At LXXI-(Continued.)

February 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles		Seconds of Observed Angles at each Zero										
Angles.	0° 0′	180°0″	9° 0'	189° 0′	18° 0′	198°0′	27°0′	207°0°	General Means.			
LXX &	" h 25°54 h 27°22	h 26.60 h 26.66	" l 24.64 h 25.80 h 24.90	" h 24.38 h 25.08	" h 25.00 l 24.94	l 25.02 l 26.08	" l 25.80 l 25.36	" l 25°96 l 24°82	Probability = 0'22			
Means	<b>2</b> 6·38	26.63	25,11	24.73	24.97	25.22	25.28	25`39	61° 45′ 25″·54			
LXXII &	h 28.22 h 29.02 h 30.10	h 29·18 h 30·26	l 30.78 l 29.68	h 29.64 h 29.04	h 29.58	l 30°04 l 29°68	l 30°08 l 30°44	l 29.00 l 30.00	Probability = 0'14			
Means	29'11	29`72	30.53	29.34	29.36	29.86	30.52	<b>29</b> °53	60° 19′ 29″ 68			

At LXXII

# February 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

		Seconds of Observed Angles at each Zero									
Angles.	00 0،	180° 0′	9° 0′	189° 0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.		
LXXIV &	h 40.08 l 40.28	h 40.86 h 41.20	l 38.68 h 39.90	h 39.72 h 39.72	h 39.62	l 41.10	7 1 40.38 1 40.72	l 38.70 l 40.56	Probability = 0.25		
Means	40'18	41.58	39.59	39.72	38.00	40.08	40.22	39.63	55° 40′ 39″ 95		
LXXIII &	ћ 24°74 г 24°44	h 25.46 h 24.14	l 26 [.] 36 h 24'64	l 24.96 l 26.34	h 26.04 h 26.40	l 24.50 l 24.76	l 25.88 l 24.92	l 23'90 l 25'40	Probability = 0.20		
Means	24.29	24.80	25.20	25.65	26.33	24.63	25.40	24.65	50° 15′ 25″·18		

i	February	1.847, ob	served by		II—(Conting). Logan	•	arrow's 🕄	36-inch <i>1</i>	Theodolite.
		1	Seconds of	Observed	l Angles at	each Zero			Probabilities and
Angles.	0°0′	180°0′	9°0′	189°0′	18°0′	198°C′	27°0′	<b>207°</b> 0′	General Means.
LXXI &	" h 5.34 l 5.52	" h 4.96 h 8.18 h 6.28	l 6:34 l 7:76 h 7:14	l 6·14 l 5·30	h 6·26 h 5·92	l 5.90 l 7.08	l 4.72 l 5.38	" l 7:38 l 4:60	Probability = 0'2
Means	5.43	6.47	7:08	5.43	6.09	6:49	5.02	5'99	65° 49′ 6″·04
	Tebruary ]			Mr. G	At LXXIII  Logan  Angles at	with Bar	rrow's 3	6-inch T	heodolite.  Probabilities and
Angles.	0°0′	180°0′	9° 0′	189°0′	18°0′	198°0′	27° 0′	207° 0′	General Means.
LXXI &	" l 4.52 l 5.10	" l 4.80 l 4.52	" h 4.32 h 5.46	h 5.06 h 4.98	l 4.24 l 5.18	l 6.62 l 4.30	1 5.24 1 2.19	" l 5.62 l 5.16	Probability = 0.1
Means	4.66	4.66	4.89	5.03	4.86	5.46	5:35	5:39	69° 25′ 5″·04
LXXII & LXXIV	l 53.48 l 52.66	l 52.78 l 52.98	h 53°24 h 53°06	h 52°18 h 52°94	l 51.84 l 51.64	l 53.30	l 51.64 l 51.76	l 51°32 l 52°04	Probability = 0'2
Means	53.07	52.88	53.12	52.26	51.24	52.26	51.40	51.68	72° 4′ 52″·42
	May 1846, observed by Mr. G. Logan with Barrow's 36-inch The								eodolite.
			Seconds of	Observed	Angles at	each Zero			
	0°0′	' 180	0°0′	12°0′	192°0′	24°	oʻ :	204° 0′	
LXXIV &	l 14.0 l 14.0 l 14.0	io li	" 5·46 i 4·84 i	" ! 15 [.] 30 ! 14 [.] 32	l 14.50 l 13.43	l 14 l 14		" 15'70 14'26	Probability = 0.18
Means	14'9	r r	5.12	14.81	13.81	14	55	14'98	67° 25′ 14″·70

At LXXIV May 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite. Seconds of Observed Angles at each Zero Probabilities and Angles. General Mcans. 192° 0′ 24° 0′ Co O 180°0′ 12° 0' 204° 0′ 1 9.84 1 11.52 1 9.92 1 9.96 LXXVI & l 10.40 1 10.33 Probability = 0.15 l 10.98 l 10.46 1 10.94 LXXV 1 10.16 1 11.14 l. 11.06 56° 5′ 10″.56 Means 10.58 11.5 10.12 10.43 10.22 10.69 9.86 LXXV & l 9.72 l 9.76 l 8.50 1 9.22 1 10.10 l 9'94 Probability = 0'15 1 9.76 LXXIII 1 10.19 l 10.10 l 10.46 l 10.30 Means 9.69 9.81 10.58 10.13 57° 43′ 9″.82 **6.6**1 9.13 February 1847, observed by Mr. G. Logan with Barrow's 36-inch Theodolite. Seconds of Observed Angles at each Zero 180°0′ 9°0′ 189°0′ 18° 0′ 000 198°0′ 27° 0′ 207°0′ " 1 29.28 l 28.44 h 27.28 h 27.08 1 27.66 h 29.64 h 29'20 h 27.94 LXXIII l 29.88 l 27.90 h 29.10 h 27.68 y 38.10 h 26.18 Probability = 0.30 h 26.88 & LXXII l 29.56 h 28.30 27.67 28.17 28.44 27.69 52° 14′ 28″·18 Means 29.57 29'37 27.17 27.33 At LXXV May 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite. Seconds of Observed Angles at each Zero Probabilities and General Means. Angles. 0° 0′ 180°0′ 12°0′ 192°0′ 24°0′ 204°0' LXXIII 1 37.18 l 35.74 l 36.82 1 36.50 1 36.06 1 36.16 1 35.24 l 37.20 l 36.00 1 36.38 1 36.32 Probability = 0.15 1 36.10 l 37.32 LXXIV Means 36.74 36.79 35.67 36.20 36.19 36.28 54° 51′ 36″·33

At LXXV—(Continued.)

May 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

		Probabilities and					
Angles	0.0	180°0′	12°0′	192° 0′	<b>24°</b> 0′	204° 0′	General Means.
LXXIV &	l 25°04 l 25°58 l 26°26	l 27.90 l 27.62	l 26·52 l 26·62	l 27·84 l 26·84	l 27:36 l 26:64	l 26·82 l 27·02	Probability = 0.27
Means	25.63	27.76	26.57	27.34	27:00	26.92	57° 7′ 26″ 87
LXXVI & LXXVII	l 57 [.] 80 l 57 [.] 32	l 57°36 l 58°06	l 58·22 l 57·40	l 56·18 l 58·36	l 58·14 l 57·96	l 57°76 l 58°08	Probability = o'ro
Means	57.26	57.71	57.81	57.27	∫8.o2	57.92	66° 37′ 57″·72

At LXXVI

April 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.		Seconds of Observed Angles at each Zero									
Anglos.	0° 0′	180°0′	12°0′	192°0′	24° 0′	204° 0′	General Means.				
LXXVII & LXXVII	l 11.15 l 11.15	l 11.08	l 13'40 l 12'60	l 13.03 l 10.00	l 12'26 l 11'44	h 10.00 h 11.04	Probability = 0.26				
Means	11.60	10.03	13.00	11.00	11.85	11.42	54° 6′ 11″·80				
LXXVII & LXXV	l 54.04 l 53.86	l 52.40 l 53.18	l 53.70 l 53.74	l 53.26 l 52.60	l 53 [.] 7 ² l 53 [.] 8 ²	h 52.24 h 53.26	Probability = 0·18				
Means	53.95	52°79	53.72	53.08	53.77	53.02	57° 3′ 53″ 39				

At LXXVI—(Continued.)

April 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

A		Probabilities and					
Angles.  -	<b>0°</b> 0'	180° 0′	12° 0′	192°0′	24° 0′	204° 0′	General Means.
LXXV &	l 23.60 l 22.60	l 24·12 l 23·68	l 23.72 l 23.70	l 23 [.] 92 l 22 [.] 60	l 23.68 l 23.44	k 24.00 k 22.74	Probability = o'rr
Means	23'10	2330	23.41	23.56	23.26	23.37	66° 47′ 23"·48

At LXXVII

April 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

		Seconda	s of Observed	l Angles at es	ach Zero		Probabilities and
Angles.	0° 0′	180° 0′	12°0′	192° 0′	24° 0′	204° 0′	General Means.
LXXV &	7 8.78 1 10.20	" l 9.76 l 11.26 l 10.26	h 8.40 h 9.40	l 9.46 l 9.46	" l 10:52 l 10:40	l 11.08	Probability = 0'22
Means	9.49	10.43	8.90	9 ^{.8} 7	10.40	10.14	56° 18′ 9″.88
LXXVI &	l 54.86 l 53.56	l 54°94 l 55°02	h 55°24 h 56°76 l 55°86	1 53.52 1 52.88	7 56·18 7 55·82	l 56·16 l 54·32	Probability = 0.40
Means	54.31	54.08	55.95	53.50	56.00	55°24	58° 6′ 54″ 93
LXXVIII & LXXIX	l 25 [.] 24 l 27 [.] 30	l 26.88 l 25.60	l 25.46 l 26.10	l 25°98 l 27°48	l 25°26 l 26°56	l 25:44 l 26:34	Probability = 0.13
Means	26.27	26.54	25.78	26.73	25.91	25.89	б1° 2′ 26″·14

At LXXVIII

April 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

		Seconds	s of Observed	Angles at ea	ch Zero		Probabilities and
Angles.	0° 0′	180° 0′	12° 0′	192° 0′	24° 0′	204° 0′	General Means.
LXXX & LXXIX	l 17:70 l 17:56	" l 17.34 l 18.02	" h 17.78 h 18.70	" h 18·44 h 17·74	" l 18:46 l 17:28	" l 16.06 l 17.18 l 17.90	Probability = 0.16
Means	17.63	17.68	18.24	18.00	17.87	17.05	55° 52′ 17″·76
LXXVII & LXXVII	l 29.46 l 29.10	l 29 [.] 92 l 28 [.] 94	h 30.08	h 30.10	l 28·84 l 30·06	l 27.34 l 28.16 l 28.56	Probability = 0.36
Means	29.58	29.43	31.07	29.61	29.45	28.03	67° 29′ 29″·48
LXXVII & LXXVI	l 53.60 l 54.60	l 52·54 l 52·86	h 54°34 h 54°62	h 52.52 h 53.70	l 54.76 l 54.08	l 54.40 l 53.38	Probability = 0.27
Means	54.10	52.40	54.48	23.11	54 <b>·42</b>	53.89	67° 46′ 53″·78

#### At LXXIX

April 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.		Seconds of Observed Angles at each Zero								
Angles	0°0′	180° 0′	12°0′	192° 0′	24° 0′	204° 0′	General Means.			
LXXVIII	l 5.16 l 4.18	h 4.84 h 4.88	" l 3.62 h 6.08 h 7.04	" l 6·14 l 5·32	l 3:50 l 4:80	" l 4.64 l 4.78	Probability = 0.22			
Means	4.67	4.86	5.28	5.73	4.12	4.41	51° 28′ 4″.95			

At LXXIX—(Continued.)

'April 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

		Probabilities and					
Angles.	0,0,	180° 0′	12°0′	192°0′	24° 0′	204° 0′	General Means.
LXXVIII & LXXX	l 43.26 l 41.68	h 41·44 h 43·50	l 43.42 h 43.18 h 42.24	l 41.06 l 41.62	l 43°34 l 42°14	l 41.68 l 42.16	Probability = 0'22
Means	42.62	42.47	42.95	41.34	42.74	41.02	58° 59′ 42″·34
LXXX &	l 57·36 l 58·38	h 57.02 h 57.60	7 58·44 7 58·78	7 58·28 7 58·84	l 57·96 l 58·98	l 57·76 l 57·00	Probability = 0.22
Means	57.87	· 57'31	58.61	58.26	58.47	57.38	51° 56′ 58″·03

At LXXX

# April 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

		Probabilities and					
Angles	0°0′	180°0′	12*0′	192°0′	24° 0′	204° 0′	General Means.
LXXXII & LXXXI	h 52.88 h 51.74	h 52·04 h 52·12	l 53 [.] 82 l 53 [.] 86	l 52·28 l 51·74	l 53.68 l 52.92	l 51°94 l 52°48	Probability = 0.28
Means	52.31	52.08	53.84	52.01	53.30	52.51	74° 7′ 52″·63
LXXXI & LXXIX	h 16·52 h 15·78	h 16·02 h 15·02	l 14.16	l 13.98 l 14.28	l 14.10 l 13.08	l 13.96 l 13.72	Probability = 0'35
Means	16.12	15.52	14.32	14.13	14.04	13.84	71° 13′ 14″·67

' At LXXX—(Continued.)

April 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

A 3		Probabilities and					
Angles.	0° 0′	180°0′	12°0′	192° 0′	24° 0′	204° 0′	General Means.
TXXIX FXXIII	" h 3.56 h 2.34	и 1.40 у 0.00	" l 1.26 l 2.42	l 0.14 l 1.18	l 0.30	" l o·38 l o·58	Probability = 0.36
Means	2.95	1.51	1,00	0.66	0.48	0.48	65° 8′ 1″·35

At LXXXI

April 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.	•	Second	s of Observed	l Angles at e	ach Zero		Probabilities and
Angles.	0°0′	180° 0′	12° 0′	192°0′	<b>24°</b> 0′	204° 0′	General Means.
LXXIX & LXXX	" l 50°34 l 49°36	" h 47.08 h 47.36 h 47.34	" h 48:44 h 48:46	" h 48·16 h 48·84	" l 47.86 l 48.48	7 48·28 1 48·40	Probability = 0.31
Means	49.85	47.26	48.45	48.50	48.17	48.34	56° 49′ 48″·43
LXXX & LXXXII	l 27.40 l 27.50	h 28·82 h 28·88 h 29·22	h 28·46 h 28·32	h 28.00 h 27.62	l 28.68 l 27.86	l 28.72 l 28.72	Probability = 0'22
Means	27.45	28.97	28.39	27.81	28.27	28.81	56° 49′ 28″·28
LXXXIII	l 6·66 l 7·66	h 8·02 h 7·34 h 6·46	h 6.06 h 5.98	y Q.15	l 5.76 l 6.74	l 6·36 l 6·54	Probability = 0'20
Means	7:16	7:27	6.02	б·17	6.32	6.45	58° 59′ 6″·55

At LXXXII

March 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

			Seconds o	f Observed	Angles at	each Zero			Probabilities and
Angles.	0°0′	180° 0′	9°0′	189°0′	18° 0′	198° 0′	27°0′	207°0′	General Means.
LXXXIV & LXXXIII	и h 9°76 h 9°96	l 9.62 h 7.38 h 8.18	l 10:34 l 9:30	l 9°50 l 10°04	h 9:38 h 9:86	h 9.60 l 7.88 l 9.18	h 9.48 h 9.08	" h 8·46 h 8·28	Probability = 0.21
Means	9.86	8.39	9.82	9 [.] 77	9.62	8.89	9.58	8:37	61° 23′ 9″·25
LXXXIII & LXXXIII	h 21.02	h 22.86 h 23.30	l 21.18	l 23.02 l 23.22	l 21.80 l 20.62	l 22.50 h 23.22 h 23.06	h 24.26 h 22.60	h 20.90 h 21.68	Probability = 0.29
Means	22.03	23.08	21.43	23°12	21.51	22.93	23.43	31.30	45° 16′ 22″ 35
LXXXI & LXXX	h 38·26 h 39·18	h 38.54 h 37.92	l 38·84 l 39·72	1 38.60 1 38.90	l 37.66 l 38.46	l 39·48 h 41·90 h 39·54	h 40·90 h 40·38	h 39 [.] 72 h 39 [.] 86	Probability = 0.31
Means	38.72	38.23	39.58	38.75	38·o6	40.31	40.64	39.79	49° 2′ 39″·22

#### At LXXXIII

March 1846, observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Angles.			Seconds o	f Observed	l Angles a	t each Zero	)		Probabilities and
Angles.	0°0′	180°0′	9°0′	189° 0′	18°0′	198 <b>°</b> 0′	27°0′	207° 0′	General Means.
LXXXI &	l 33.02 l 32.58	l 30.68 l 30.76	l 33.15 l 31.08	l 31.64 l 30.40	l 32·90 l 32·94	l 31.24 l 31.28	l 33·14	l 31·58 l 33·02	Probability = 0.30
Means	32.80	30.43	32*40	31.03	32.02	31.26	33.18	32.30	75° 44′ 32″·11

	March	1846, obs	served by		XIII—(Co . <i>Logan</i>		errow's 36	3-inch Th	codolite.
	٠		Seconds of	Observed	Angles at	each Zero	,		Probabilities and
Angles.	0°0′	186° 0′	8 ₀ 0,	189° 0'	16° 0′	198° 0′	27°0′	207° 0′	General Mcans.
LXXXII & LXXXIV	l 54·72 l 55·18		l 55:44 l 55:38	l 55.26 l 55.26		l 55°36 l 54°44	l 54.62 l 56.40	l 54.30	Probability = 0.21
Means	54°95	56.31	55.41	55.26	54.61	54.00	22.21	54.19	63° 55′ 55″·14
LXXXIV & LXXXV	l 43:20		l 44.44 l 44.92			l 44°04 l 44°22	l 44.04 l 43.06	l 42.86 l 42.40	Probability = 0.21
Means	43*35	43.34	44.68	43.08	43.75	44*13	43.55	42.63	58° 46′ 43″°56
Janua Angles.		February ]	Seconds o	f Observed	d Angles a	Peyton we t each Zer	0		Probabilities and General Means.
LXXXVI & LXXXV	" l 12.00 µ1	3·80 l 12·70 6·90 l 13·23	" 118.77 l 12	, "	"   h12.67 h1	" " 17.07 h 17.4	3 h12·30 h	40°0′ 220°0′ " " " 12°80 h13°20 12°73 l14°37	<u> </u>
Means	12.22 1	5 35 12 97	18.63 12	90 14'22	13.89	16.50 16.8	55 13.07	12.22 13.20	, 70° 0′ 14″·39
	March	1846, obs	erved by	Mr. G.	Logan (	with Bar	rrow's 36	S-inch The	eodolite.
		<u>.</u>	Seconds of	Observed	Angles at	each Zero	)		
	0,0,	180° 0°	8 _o 0,	189°0′	18°0′	198°0′	27°0′	207°0′	
LXXXV & LXXXIII	k 20°56 k 20°24	h 22°24 h 20°04	h 21.24 h 22.28	h 20°28 h 20°62	h 20.80 h 22.26	l 20'00 l 22'02	l 19.32 l 21.36	l 20.22 l 20.34	Probability = 0.19
Means	20'40	21.14	21.01	20.45	21.23	21'01	20.20	20.43	58° 40′ 20″ 93

	March 1	18 <b>46, <i>ob</i>s</b>		At LXXX Mr. G.	`	•	rrow's 36	5-inch Th	codolite.
Annalis		• • • • • • • • • • • • • • • • • • • •	Seconds of	Observed	Angles at	each Zero	· · · · · · · · · · · · · · · · · · ·		Probabilities and
Angles.	0,00	180°0′	9°0'	189°0'	18°0′	198°0′	27° 0′	207°0'	General Means.
LXXXIII & LXXXII	h 56·72 h 56·56	h 57.42 h 57.96	h 55.44 h 55.46	h 55.56 h 56.32	l 58·90 l 58·36	l 55:48 l 56:88	l 57.30 l 55.98	l 56.58 l 57.44	Probability = 0.33
Means	56.64	, 57 [.] 69	55°45	55'94	58.63	56.18	56.64	57,01	54° 40′ 56″·77
	• • • • • •			A	t LXXX	v		•	· <u>························</u>
	March 1	.846, obs	erved by	Mr. G.	Logan t	oith Bar	row's 36	-inch Th	eodolite.
Angles.			Seconds of	Observed	Angles at	each Zero			Probabilities and
Anges	0°0'	180°0′	9° 0'	189°0'	18*0′	198°0′	27°0′	207° 0'	General Means.
LXXXIII & LXXXIV	" l 58°58 l. 58°52	h 56·36 l 56·40	h 56·70 h 56·76	" h 56·54 h 55·64	n h 56·55 h 56·52	h 57°25 h 56°36	" h 56·42 l 56·04	1 58·30 1 55·90	Probability = 0'26
			56.43	56.00		56.81	56.23	57.10	62° 32′ 56″·80

# February 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

				Second	s of Ob	served .	Angles	at each	Zero				
	0°0′	180°0′	20°0′	200°0′	40°0′	220°0′	0°0′	180°0′	20°0′	200°0'	40°0′	220°0′	
LXXXIV LXXXVI	\$57.73 \$53.50	, h53°53 h54°03	" h54*07 h52*70	h53°33 h53°73	#50·63 h52·27	h ₅₃ ·47 h49·97 h49·27	h54*93 h55*30		l 54°33 h56°63 h53°20 h58°73	)	l 54°20 l 54°57	l 56·93 l 52·73 l 54·13	Probability = 0.48
Means	55'47	53.78	53.39	53.23	51.45	20.00	55'12	54.00	55.72	57.05	54.39	54.60	51° 18′ 54″·19

	At LXXX	XV—(Continued.)	
<u> </u>	February 1849, observed by Mr. J.	Peyton with Barrow's 24-inch The	odolite.
Angles.	Seconds of Observed	Angles at each Zero	Probabilities and
ang	0°0' 180°0' 20°0' 200°0' 40°0' 220°0'	0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′	General Means.
LXXXVII & LXXXVII	h34.83 h36.77 h39.40 h40.47 h43.60 h37.93 h38.80 h40.40 h41.40 h38.27 h45.67 h40.17 h40.57	h39.87 h39.57 h38.83 h37.97 l36.43 l38.97 h37.30 h37.83 h36.83 h36.40 l34.50 l40.80 h41.50 l42.27	Probability = o.6
Means	36.82 39.25 40.40 39.37 44.64 39.05	38.20 38.40 39.02 37.10 32.44 40.68	48° 1′ 39″ 10
		LXXXVI  Peyton with Barrow's 24-inch The	odolite.
Angles	Seconds of Observed	Angles at each Zero	Probabilities and
III given	0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′	0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′	General Means.
LXXXVIII & LXXXVII	h50·30 h49·67 h49·43 h55·47 l49·10 h50·80 h49·33 h48·10 h49·37 h53·77 h48·30 h50·60 h52·03	" " " " " " " " " " " " " " " " " " "	Probability = 0.59
Means	49.82 49.03 49.40 54.62 48.70 50.20	50.84 47.77 48.92 49.82 47.80 45.75	57° 52′ 49″·51
LXXXVII & LXXXV	h20.60 h22.07 h13.77 h13.03 l22.97 h13.97 h20.33 h18.80 h21.20 h18.20 h22.30 h20.97 h17.60	l 20.83 h25.07 l24.13 l23.57 l24.47 h23.40 h20.57 h23.43 l23.33 l24.10 h22.93 h25.23 h24.33	Probability = o.6
Means	20'47 19'49 20'49 17'62 22'94 20'47	20.40 24.52 23.43 23.84 23.40 24.32	63° 41′ 21″ 84
LXXXV & LXXXIV	h51.77 h48.87 h52.37 h53.00 l49.87 h54.13 h49.30 h50.03 h51.00 h54.03 h50.10 h52.23	l47.27 h52.73 h50.87 l50.00 l48.80 l50.17 h45.63 h52.90 l50.70 l48.83 l50.00 l51.03 l50.70	Probability = 0.5
Means	50.24 40.42 21.60 23.25 40.00 23.33	46.42 22.82 20.26 40.42 40.40 20.60	58° 40′ 50″·66

At LXXXVII

February and March 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

					<del></del>				<b></b>		\\\		Amalaa		1.	7										
A 7							 	eono	18 01	· U	bserv	ea	Angles	at e	eacn	Zer	0									s and
Angles.	0°0′	,	180	0°0′	20	)°0′	20	00°0′	40°	,0,	220°	ا بی:	0°0	180	)°0′	20°	0′	200°	0′	40°(	ŭ/	220°0′	Ge	enei	rai M	eans.
	ŀ			,,		"		,,		H			"		"	"		,,		, "		,,				
LXXXV &	h58·1			1.00	155	5.90 6.20	h6.		158 157	9.00	159.2		h60.93 h55.80 h57.20	h60	73	h60°. h59°.	40 . 40 .	h58°4 h59°6	13 ( 57 (	159°. 160°.	57 M 93 l	\$58.40 156.17	Prob	abi	lity	=o:3
Means	58.6	io	57	.39	50	5·76	5	9.66	56	93	58.4	42	57.98	3 6c	95	59°	90	59.0	5	60%	25	57°29	68	°ı	6'.5	8″·60
LXXXVI & LXXXVIII	h36·6 h37·9	57 / 90 /	139°	·i7	138	7:70	h3. h3	8.60 4.53 8.73 6.63	<b>h</b> 37'	·50 ·57	135'9 136'3	<b>30</b>	h39·37 h39·37 h38·80	: h40	oʻi 7 oʻ67	l 37° l 37°	80 03	l 34°4 l 35°3	13 / 30 /	h40.4 h40.4	57 1 47 1	h40°43 h38°27	Prob	abi	lity	= 0'2
Means	37.2	9	39	:59	38	}.07	3	7.13	37	•54	, 36·1	10	30.18	3 40	°42	37.	42	34.8	37	40°.	57	39.35	69	)° 2	3′ 3	8"-13
LXXXVIII & LXXXIX	h13.2	;3 l	111 h14	1.00	hig	9.83	3 h 1	3.77 8.50 14.87	h17	.10	0 h 18·2	27 17	h17.77 h14.10	$h_{20}$	:*90 ::53	h157 l167	47 27	h19'2	00 /	h19°	53 / 00 /	h19:33 h19:50	Prob	abi	lity	= o'';
Means	13.4	0	I 2	75	17	;•83	ı	5.21	18	.20	18.7	72	15.78	21		15.	87	20'1	0	20"	27	18.92	59	° 3	o' 1	7″*42

#### At LXXXVIII

March 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

				Second	ls of C	bserved	Angles	at each	Zero				Probabilities and
Angles.	0°0′	180°0′	20°0′	200°0′	40°0′	220°0′	0.0,	180°0′	20°0′	200°0′	<b>40°</b> 6′	220°0′	General Means.
TXXXIX	h57·10 h58·77 h60·20	h58°50 h59°87	156.03 155.90	h60°27 i h62°10 i	h61·50 h61·50	h61·30 h61·30	h62·13 h62·80	h57 [.] 27 i h56 [.] 20 i	l 57°57 1658°37	160·83 161·47	h59°13 h58'87	µ63.10 µ63.10	Probability =0.66
Means	58.69	59.19	55'97	61.19	62.77	61.20	62:47	56.74	57.97	61.12	59.00	63.07	63° 22′ 59″·98

# At LXXXVIII—(Continued.)

# March 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

				Secon	ds of C	)bserved	Angles	at eac	h Zero				Probabilities and
Angles.	0°0′	180°0'	20°0′	200°0′	40°0′	220°0′	0°0′	180°0′	20°0′	200°0′	40°0′	220°0′	General Means.
LXXXIX & LXXXVII	h56·77 h54·90		1 ₅₄ .67 155.40	h49°43 h51°80	150.12 150.12	#54°00 h52°70	h53°37 h53°80	h57.00	l 53·57 h 53·70	l55.53 l54.67	h52·77 h55·40	<b>h</b> 54·87 <b>h</b> 57·47	Probability = 0.56
Means	55.84	54.24	55°04	50°62	50.24	53.35	53.20	57.35	53.64	. 55 [.] 10	54.09	56.17	63° 16′ 54″•16
LXXXVII & LXXXVI	l27:37 l29:27	134.43	l33°10 l29°97 l27°63	132.23	l 30·13 l 31·40	h31.00 h31.02	h31°13	h28.87	h33.03 h31.93	132.40	h30.70	h28.37 l31.47	Probability = 0.53
Means	28.32	34.77	30.53	32.77	30.77	31.04	30.43	28.49	32.40	31.30	32.72	29.17	52° 43′ 31″°03

#### At LXXXIX

# March 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

A J					Secon	nds of	Observed	l Angle	s at eac	h Zero				Probabilities and
Angles.	<b>0°</b> 0′	180	)°0′	<b>20°0′</b>	200°0′	40°0′	220°0′	0.04	180°0′	20°0′	200°0′	40°0′	220°0′	General Means.
LXXXVIII	" l 50°1 l 48°9	7 l 5 3 l 4	" 8·63	" l 48·67 l 50·37	"   152:07   148:23   150:63	152.37	" 0 l 51 93 7 l 54 90 l 53 13	149.86	" 7 <b>h</b> 47'3' 9 h47'40	" 7 l 50 9 7 5 l 49 1 1	" 7	" 0 l47·40 3 l46·27	" l 52·63 l 51·43	Probability = 0.53
Means	49.5.	5 5	0.10	49.52	50.31	52.64	\$ 53°32	49'94	+ 47:39	50.07	49.17	46.84	52.03	57° 12′ 50″•07
LXXXVIII & XC	y 11.0	20 1	i 8·40 i 5·83	h 5.6 h 9.5 h 6.9	7 h6.8	3 h 8·5. 0 h 7·0	3 h 7.53 7 h 5.93	h 7'17	h9.30	18.00 17.47	l 11°63	3 l 9°57 3 l 10°33	l 5°23 l 6°27	Probability = 0.46
Means	10.6	2	7.13	7:38	3 6.77	7:80	o 6 [.] 73	7.84	£ 8·7¢	7.74	4 11.53	3 9'95	5.75	54° 49′ 8″·14

#### At LXXXIX—(Continued.)

# March 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.				Secon	ds of C	)bserved	l Angle	s at eac	h Zero				Probabilities and
	0°0′	180° 0′	20° 0′	200° 0′	40° 0′	220° 0′	0°0′	180° 0′	20° 0′	200° 0′	40° 0′	220° 0′	General Means.
XC & XCI	h29.27	, h29.90 , h30.83	h31.43		# h34·37 h33·90	h30.00 h20.50	h31.70		" h31°00 h28°23	" h28.63 h27.00	#31.30 #33.12	" h30°60 h30°27	Probability = 0.48
Means	28.42	30.32	31.47	31.44	34.14	29.60	31.34	29'72	29.62	27.82	32.04	30.44	52° 18′ 30″·56

At XC

March 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

	Seconds of Observed	Probabilities and	
Angles.	0° 0′ 180° 0′ 20° 0′ 200° 0′ 40° 0′ 220° 0′	0° 0′ 180° 0′ 20° 0′ 200° 0′ 40° 0′ 220° 0′	General Means.
XCII &	h39.87 h44.10 h43.57 h41.50 l41.37 l45.00 h41.50 h47.30 h42.33 h42.40 l46.47 l42.83 h45.60 l43.27	143.27 143.67 143.90 138.27 139.47 145.30 143.70 144.67 141.70 138.67 140.63 144.47	Probability = 0.21
Means	40.69 45.64 45.65 41.82 43.40 43.85	43'49 44'17 42'80 38'47 40'05 44'89	75° 2' 42″-73
XCI &	h39'10 h43'40 l39'20 l42'50 l37'53 l39'30 h36'67 h40'97 l39'27 l41'53 l38'70 l37'83 l39'03	h36·77 h38·50 h40·50 l38·60 l36·73 l33·60 h39·33 h38·57 h39·20 l36·23 l38·63 l35·00 l35·17	Probability = 0.56
Means	37.89 42.19 39.54 45.05 38.15 38.45	38.05 38.24 39.82 37.42 37.68 34.29	69° 40′ 38″·69
LXXXIX & LXXXVIII	h53°20 h50°53 l52°67 l50°50 l49°80 l52°00 h55°27 h51°73 l53°83 l51°23 l52°57 l52°40 l51°07	h54.17 h54.20 h52.43 l53.13 l52.90 l51.57 h53.17 h53.73 l50.03 l55.20 l53.93 l51.23	Probability = 0.37
Means	54.54 21.13 23.52 20.84 21.12 25.50	53.64 23.64 21.53 24.14 23.45 21.40	61° 47′ 52″:56

At XCI

April 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

41				Secon	ds of (	bserved	Angles	at each	Zero		•		Probabilities and	
Angles.	0°0′	180°0′	20°0′	200°0′	<b>40°0′</b>	220°0′	0°0′	180°0′	20°0′	200°0′	40°0′	220°0′	General Means.	
LXXXIX & X C		l 52·53 (		153.87				h49 [.] 60 h h51 [.] 43 h					Probability = 0.38	
Means	49.65	52.13	52.67	54.65	51.08	51.64	52'10	50.2	53.5	53.67	53°27	52.73	58° o' 52"·36	
XC & XCII	h47·20 h46·53	l 43 <b>·</b> 07 l l 44 <b>·</b> 93 l	645.07 644.10	h43·73   h46·63	k44'43	h43°97 h45°17 h46°20		h45.37 l					Probability = 0.45	
Means	46 [.] 87	44.00	44`59	45.18	44'00	45'11	44.92	45.30	47:29	49.67	44.63	46.03	55° 9′ 45″ 63	
XCII &	h14.43	h20.53   h21.30					l 19'47	h13.67 l	h13·87 h11·43	y11.02 y11.23	l 13:80 l 12:47	l 12.77 l 14.20	Probability = 0.76	
Means	15.60	20.03	12.37	13.40	14.98	12.44	18.27	13.55	12.65	11.40	13.14	13.64	52° 55′ 14″·34	

At XCII

April 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

, ,		Seconds of Observed Angles at each Zero											
Angles.	0°0′	180°0′	20°0′	200°0′	40°0′	<b>220°</b> 0′	0°0′	180°0′	°0′ 20°0′ 200°0′		40°0′	<b>220°</b> 0′	Probabilities and General Means.
XCIV &	h59.67 h60.43	h61.10 h87.13	, 164·10 162·67	162·50 162·40	7 158·13 157·27	l63 [.] 17 l62 [.] 97	h63.30	h56·73 i h58·17 i	h64·70 h62·80	, h65·87 l66·57	" l62·97 l63·23	" 166·27 166·23	Probability = 0.77
Means	60.05	61.63	63.39	62.45	57.70	63.07	62.23	57.45	63.75	66.33	63.10	66 <b>·2</b> 5	70° 59′ 2″'27
XCIII &			135.87	l36·83 l37·47 l35·33			138·33 134·10 136·93	l 34·47 l l 36·00 l	832·80 834·80	l32°43 l34°43	l 30°93 l 32°60	l29 [.] 73 l31 [.] 83	Probability = 0.57
Means	32.02	32.04	34.02	36.24	36·59	36.30	36.45	35'24	33.80	33'43	31.44	30.48	49° 51′ 34″·16

# At XCII—(Continued.) April 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.		Seconds of Observed Angles at each Zero											Probabilities and	
Anglos.	0° 0°	180° 0′	20°0′	200° 0′	40° 0°	220° 0′	<b>ም</b> የ	180°0′	20°0′	200°0′	40°0′	220°0′	General Means.	
XCI & XC	n h33·53 l34·23	l 32·83 l 33·77	" l31·87 l30·47	n h30·53 l l29·90 l l28·67	" !27`77 ! 30`40	" 130:33 128:93	h29.87 h32.17 h32.83	h31.23 h30.37	" h30·13 <b>h</b> 30·80	h30.97 h28.70 h31.90	" 133 [.] 73 130 [.] 80	" 133°27 128°23 127°80	Probability = 0'42	
Means	33.88	33.30	31.12	29'70	29.09	29.63	31.00	30,02	30.47	§0.2 <b>3</b>	32.27	29.77	49° 47′ 31″·o6	

At XCIII

April 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.	Seconds of Observed Angles at each Zero	Probabilities and
8	0° 0′ 180° 0′ 20° 0′ 200° 0′ 40° 0′ 220° 0′ 0° 0′ 180° 0′ 20° 0′ 200° 0′ 40° 0′ 220° 0′	General Means.
XCI &	h11.00 h9.13 l8.82 l13.30 h12.53 h11.50 h12.12 h14.10 l2.03 l 10.50 l14.72 l10.82 h11.23 h11.23 h11.23 l9.03 l 8.02 l12.03 l11.63	Probability = 0.54
Means	10.80 0.40 0.40 13.42 13.23 13.34 11.20 13.03 8.42 0.30 14.00 11.32	77° 13′ 11″·37
XCIV	h46·80 h43·30 h43·23 l43·96 l42·63 l44·33 h45·77 h48·37 h49·13 l51·03 l43·73 l45·60 h46·60 h44·33 h44·33 l45·00 l43·47 l43·10 h48·00 h48·33 l49·03 l51·40 l45·20 l43·33	Probability = 0.72
Means	46.40 43.82 43.48 44.48 43.02 43.42 46.89 48.32 49.08 21.52 44.47 44.47	55° 16′ 45″.84
XCIV &	h30.93 h33.23 h30.23 l30.77 l30.23 l20.00 l31.10 l27.13 l31.30 l30.07 l28.80 l28.33 l28.50 h32.53 h28.87 l26.03 l23.87 l27.30 l28.70 l27.07 l30.60 l30.87 l26.60 l27.30 l28.47 l27.30	Probability = 0.48
Means	29.42 32.88 29.22 28.42 27.13 28.47 29.30 27.10 30.92 30.44 27.40 27.82	58° 6′ 29″·18

	At XCIV  May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.										
	Seconds of Observed Angles at each Zero	Probabilities and									
Angles.	0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′ 0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′	General Means.									
XCVI &	151.43 147.87 147.67 147.93 h49.43 h52.13 153.83 146.03 1.49.33 148.23 h50.50 h47.40 h49.43 149.80 152.10 151.37 151.30 156.50 149.90 149.80 147.20	Probability = 0.73									
Means	52.63 46.05 48.20 48.08 40.04 40.62 40.54 21.55 40.85 25.05 26.64 48.04	61° 43′ 50″·23									
XCV &	h27.77 h32.20 h29.30 h32.70 l29.40 l30.53   l28.63 l28.67 h27.80 h26.90 h28.20 h26.90   l28.10 l31.43 h26.10 h28.00 h27.40 h27.73	Probability = 0.50									
Means	27.32 31.82 29.82 31.80 30.12 30.42 28.32 30.02 26.82 22.42 22.80 27.32	53° 6′ 29″·12									
XCIII &	h13°07 h11°57 h12°90 h11°13 l13°63 l11°77   l16°47 l12°13 l15°20 l13°40 h16°93 h11°23   l14°50 l 9°30 l14°33 l12°20 h15°34 h 9°80	Probability = 0.55									
Means	14.20 11.42 13.44 11.18 13.28 11.15 12.40 10.25 14.22 15.49 10.25	53° 44′ 12″·99									
	At XCV  May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodo	olite.									
Angles.	Seconds of Observed Angles at each Zero	Probabilities and General Means.									
	0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′ 0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′	General means.									
XCIII &		Probability = 0.62									
Means	57.02 66.40 63.80 63.25 63.20 62.02 63.28 61.48 63.23 61.34 63.13 61.47	68° 47′ 2″·65									

At. XCV-(Continued.)

May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.				Probabilities and									
Angles.	Con	180°0′	20°0′	200°0′	40°0′	220°0″	0°0′	180°0′	20°0′	200°0′	40°0′	220°0'	General Means.
XCIV & XCVI	118·70 120·60	116.80	" l 16·47 l 19·60 l 15·70	115.43	h16.53	h17°17 h17°67	116.40	h16.23	" 117°60 116°73	" l20:33 l21:10	l 19·17 l 20·87	l 19·50 l 16·97 l 17·67	Probability = 0.41
Means	19.65	17.30	17:26	15.88	16.95	17:42	16.45	17.18	17.17	20.45	20.03	18.05	57° 4′ 17″-85
XCVI &	116.80 115.90	l17.93	113.00 113.13	l19.23	h19 [.] 27 h18 [.] 17	h19°53	115.10	h15'10 l12'70	l 14.23 l 15.23		l 19:33 l 14:37 l 11:73		Probability = 0.62
Means	16.38	19.08	12,40	18.37	18.72	19.60	15.34	13.00	15,03	15.25	15,14	15.38	60° 57′ 16″•22

At XCVI

May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.		Seconds of Observed Angles at each Zero											
Angles.	0°0′	180°0′	20°0′	200°0′	40°0′	220°0′	0°0′	180°0′	<b>20°</b> 0′	200°0′	40°0′	<b>220°0'</b>	General Means.
XCVIII &	h9·53 h9·57	l 5·30 l 3·73	<i>16</i> .60	l5·30 l4·37	10.40		ho'40	h6·67 h6·90	h7·73 h6·87	ħ8·57	h 8·10 h10·43	#8·40 #8·23	Probability = 0.52
Means	9:55	4.2	6.47	4.84	9.72	4.48	8.49	6.79	7:30	8.12	9°27	8.32	65° 39′ 7″·35
XCVII &	155.33 155.30	l61·63 l60·43	l60·37 l59·97	l60·93 l59·93	l 57·73 l 58·67	l 59·10 l 59·37	158.00 159.27	l 57 [.] 63 l 55 [.] 43	l 56:00 l 55:53	l 54:03 l 54:57	l 58·87 l 57·93	l 57·17 l 55·97	Probability = 0.59
Means	55.57	61.03	60.12	бо:43	58.30	59'24	58.64	56.23	55'77	54'30	58.40	56.22	53° 43′ 57″ [.] 9°

#### At XCVI—(Continued.)

May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.		Seconds of Observed Angles at each Zero											
mg	0°0′	180°0′	20′ 0′	200° 0′	40°0′	220° 0′	000	180° 0′	20°0′	200° 0′	40° 0′	220° 0′	General Means.
XCV & XCIV	149.50 151.77	148·57 (	l 50:30 l 48:57	149.201	, 47.43 49.67 50.03	148·80 149·60	l49°23 l48°20	l 54·97 l 52·53	149.60 150.52	l 54·30 l 54·03	7 148·87 148·50	l 52·53 l 52·73	Probability = 0.55
Means	50.64	49.84	49'44	48.79	49.04	49.30	48.72	53.75	<b>49'9</b> 4	54.12	48.69	52.63	δι° 11' 50"·40

At XCVII

May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.	Seconds of Observed Angles at each Zero	Probabilities and	
	0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′ 0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′	General Means.	
XCV & XCVI	h45.47 h44.70 l45.70 l44.10 l45.60 l43.37 l47.10 l40.27 h44.00 h45.30 h46.07 h46.60 l45.43 h44.50 l45.53 l44.50 l46.50 l45.57 l46.03 h41.53 h42.77	Probability = 0.47	
Means	45.45 44.60 42.62 44.30 46.02 44.39 47.20 41.09 44.23 44.24 46.02 42.00	65° 18′ 45″·23	
XCVI &	h16·40 h14·43 l16·60 l16·73 l14·23 l16·73 h16·20 h14·80 l15·97 l15·17 l16·10 l16·00 l12·13 h16·90 h15·73 h17·57 h17·13 h14·73 h17·37 l19·00	Probability = 0.39	
Means	16.30 14.65 16.50 12.02 12.12 19.32 13.42 18.01 12.00 12.24 12.22 14.40	58° 17′ 16″·00	
& XCVIII	l24.67 l26.83 l24.93 l25.30 l17.17 l23.17   l25.40 l25.00 h25.00 h24.37 h22.17 h23.43   l23.47 l27.13 l25.33 l25.97 l17.53 l22.63   l24.33 l24.23 h23.50 h23.63 h22.47 h22.70	Probability = 0.66	
Means	24.04 26.08 52.13 52.64 14.32 55.04 55.00 55.00 55.00 55.00 55.00	62° 13′ 23″.77	

At. XCV—(Continued.)

May :	1849.	observed	by	Mr.	J.	Peyton	with	Barrow's	24-inch	$\it The odolite.$
-------	-------	----------	----	-----	----	--------	------	----------	---------	--------------------

Angles.	Seconds of Observed Angles at each Zero	Probabilities and
ang.co.	6°17 180°07 20°07 200°07 40°07 220°07 0°07 180°07 20°07 200°07 40°07 220°07	General Means.
XCIV & XCVI	l18.70 l17.60 l16.47 l16.33 h16.23 h17.17 l16.40 h16.53 l17.60 l20.33 l19.17 l19.50 l20.60 l16.80 l19.60 l15.43 h17.67 h17.67 l17.03 l17.83 l16.73 l21.10 l20.87 l16.97 l17.67	Probability = 0'41
Means	19.02 12.30 12.38 12.88 12.02 12.45 12.15 12.15 12.12 50.05 18.02	57° 4′ 17″·85
XCVI &	l16.80 l17.93 l12.13 l17.50 h19.27 h19.67 l15.10 h12.10 l14.53 l14.33 l19.33 l14.33 l15.96 l20.23 l12.66 l19.23 h18.17 h19.53 l15.57 l12.70 l15.53 l10.17 l14.37 l16.43 l11.73	Probability = 0.62
Means	16.38 10.08 15.40 18.32 18.45 10.60 12.34 13.00 12.03 12.52 12.14 12.38	60° 57′ 16″•22

At XCVI

May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles	Seconds of Observed Angles at each Zero  Angles.												Probabilities and	
Angles.	0°0′	180°0′	20°0′	200°0′	40°0′	<b>220°</b> 0′	0°0′	180°0′	<b>2</b> 0°0′	200°0′	40°0′	<b>22</b> 0°0′	General Means.	
XCVIII &	h9·53 h9·57	15·30 13·73	16·60 16·33	15.30	,, 10.40 1 0.03		10.40 10.40 10.57	и по.до по.до	<b>h</b> 7'73	h8·57 h7·73	y 8.10	#8·40 3 #8·23	Probability = 0.52	
Means	9.22	4.2	6.47	4.84	9.72	4.78	8.49	6.49	7:30	8.12	9'27	8.32	65° 39′ 7″·35	
XCVII &	155.30 155.80	l61·63 l60·43	160·37 159·97	160.93 159.93	l 57·73 l 58·67	l 59·37	158.00 159.27	l 57 [.] 63 l 55 [.] 43	l 56:00 l 55:53	l 54:03 l 54:57	l 58·87 l 57·93	l 57·17 l 55·97	Probability = 0.59	
Means	55.27	61.03	60.17	60 [.] 43	58.20	59'24	58.64	56.23	55'77	54.30	58.40	56.22	53° 43′ 57″ 90	

#### At XCVI-(Continued.)

# May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.	Seconds of Observed Angles at each Zero  Angles.												Probabilities and
B-000	0° 0′	180°0′	20′ 0′	200°0′	40°0′	220° 0′	0,00	180° 0′	20°0′	200° 0′	40° 0′	220° 0′	General Means.
XCV &	149.50 151.77	148·57   151·10	" 150·30 148·57	149.201	47.43 49.67 50.03	148·80 149·60	l49°23 l48°20	l 54·97 l 52·53	149·60 150·27	l 54·30   l 54·03	7 48·87 148·50	l 52·53 l 52·73	Probability = 0.55
Means	50.64	49.84	49.44	48.79	49.04	49.30	48.72	53.75	49°94	54.17	48.69	52.63	61° 11′ 50″·40

# At XCVII

# May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.	Seconds of Observed Angles at each Zero	Probabilities and
	0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′ 0°0′ 180°0′ 20°0′ 200°0′ 40°0′ 220°0′	General Means.
XCV &	h45.47 h44.70 l45.70 l44.10 l45.60 l43.37 l47.10 l40.27 h44.00 h45.30 h46.07 h46.60 l45.43 h44.50 l45.53 l44.50 l46.03 l46.03 h44.77	Probability = 0.47
Means	45.45 44.60 45.62 44.30 46.02 44.39 47.20 41.09 44.22 44.24 46.32 42.00	65° 18′ 45″·23
XCVI &	h16·40 h14·43 l 16·60 l 16·73 l 14·23 l 16·73 l 14·77 l 18·77 h 16·07 h 17·90 h 18·40 h 14·06 h 16·20 h 14·80 l 15·97 l 15·17 l 16·10 l 16·00 l 12·13 h 16·90 h 15·73 h 17·57 h 17·13 h 14·73 h 17·37 l 19·00	Probability = 0.39
Means	16.30 14.65 16.50 12.02 12.12 19.32 13.42 18.01 12.00 12.24 12.22 14.40	58° 17′ 16″·00
& XCVIII	l24.67 l26.83 l24.93 l25.30 l17.17 l23.17 l25.40 l25.00 h25.00 h24.37 h22.17 h23.43 l23.47 l27.13 l25.33 l25.97 l17.53 l22.63 l24.33 l24.23 h23.50 h23.63 h22.47 h22.70	Probability = 0.66
Means	24.07 26.08 25.13 25.64 12.32 22.00 24.82 24.62 24.22 24.00 22.32 23.07	62° 13′ 23″.77

At XCVIII

May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

	Seconds of Observed Angles at each Zero												Probabilities and
Angles.	<b>0°</b> 0'	180° 0′	<b>2</b> 0° 0′	200° 0′	40° 0′	220°0′	0° 0′	180° 0′	20° 0′	200° 0′	40° 0′	220° 0'	General Means.
C & XCIX	" h57·80 h59·33	" 159 <b>-6</b> 7 158-70	" 158 <b>-6</b> 7 158-47	" 156·97 ( 158·90 (	" 158°30 157°53	" l62 [.] 13 l61.40	158·17 157·10	" 163°03 162°73	158.30	163.10 120.00 165.12	" 161.07 159.47	159·80 160·57	Probability = 0.48
Means	58.57	59,19	58.27	57°94	57'92	61.77	57.64	62.88	58.62	61.23	60:27	60.19	67° 13′ 59″·61
XCIX & XCVII	h12.03	l13.33 l13,40	l 14·13 l 12·63	l 13'40 l 14'40	l 13·87 l 13·63	l15'47 l15'60	115.43	h13.47 h13.47	l 12°73 l 12°53	l 10.12 l 13.12	l 10.23 l 11.52	l 11.40	Probability = 0.35
Means	12.35	13'37	13,38	13,00	13'75	15.24	14'77	13.24	12.63	11.24	11,00	12,33	49° 56′ 13″·19
XCVII &	135.70		138.70	136·53 133 <b>·90</b>				h37°10					Probability = 0.51
Means	34.80	35*29	37.80	35.55	38·8o	33.89	37.49	38•45	39,12	35°27	38·98	36.40	56° 3′ 36″·82

May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.				Probabilities and									
Angies.	0°0′	180°0′	20°0′	200°0′	40°0′	220°0′	0°0′	180°0′	<b>2</b> 0°0′	200°0′	<b>40°</b> 0′	220°0′	General Means.
XCVII &	l 24·20 l 23·13	" l26:07 l24:77	" l24:37 l24:77		" l26 [.] 97 l25 [.] 30	" l25 [.] 77 l23 [.] 97	l ₂₇ ·37 l ₂₆ ·13	" l24.02 l22.30	" l21.67 l22.17	" l22:57 l21:54	l26:00 l23:17	" l24.00 l21.43	Probability = 0.51
Means	23.67	25.42	<b>24</b> °57	27.73	26.14	24.87	26.75	23.49	21.03	22.06	24.20	22.72	67° 50′ 24″·49

At XCIX—(Continued.)

May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.

Angles.				Probabilities and									
Ang.co.	0°0′	180° 0′	20° 0′	200° 0′	40° 0′	<b>220°</b> 0′	0°0′	180° 0′	20°0′	200° 0′	40°0′	220°0′	General Means.
XCVIII &				" l 56·97 l 56·10			153·37 153·03	" 157:27 155:80			l 55°33 l 57°73	" 155 [.] 93 155 [.] 47	Probability = 0.43
Means	55'25	51.67	55.08	56.24	53*44	54.75	53.50	5 ⁶ ·54	54.85	56.20	56.23	55'70	51° 52′ 55″·00
C & CI	h23.40	h28.77 h26.67	l25·33 l24·97	l22.23 l22.33	l25.07 l27.10	l 26.60 l 26.50	l26.00	l25.60 l25.70	l27:70 l26:90	l24'67 l24'60	l25'77 l23'37	l24.33 l24.33	Probability = 0.45
Means	23.10	27.72	25.12	22.20	26.09	26.40	25.64	25.65	27.30	24.64	24.22	23°30	58° 10′ 25″·18

At C

May 1846, observed by Lieutenant R. Walker with Cary's 15-inch Theodolite.

A 3	Seconds of Observed Angles at each Zero											Probabilities and	
Angles.	0° 0′	180° 0	' 10° 0′	190° 0′	20° 0′	200° 0′	80° 0′	210° 0′	40° 0′	220° 0′	50° 0′	230° 0′	General Means.
CIV &	" l21°34 l23°84	" l 15:26 l 15:44	l20°00 l17°67	718.10	19.76	l 18·84 l 19·83	l12°40 h14°56 h13°66	l20'93 .	h17.70	h19.16	115.60	, 2 l22·63 2 l24·50	Probability = 0.84
Means	22.20	15.35	18-84	18.19	19,50	19.34	13,24	20.2	17.05	19.48	14.5	5 23.57	57° 39′ 18″•54
CII & CI	h54.57 h53.87	h54·57 h55·00	l 53·67 l 54·83	l 50.00 l 51.12	l 52·40 l 53·84	146°50 146°50	h57:50 h57:77	l50.40 l50.00	h53 [.] 33 h54 [.] 50	, <b>h</b> 49 <b>·</b> 20 , <b>h</b> 49 <b>·</b> 44	156·40 157·33	0 l48·10 3 l46·34	Probability = 0.99
Means	54.55	54.79	54.5	51.04	53.13	46.20	57°64	50.30	53'92	49'32	56.8	7 47:22	56° 48′ 52″·42

	At C—(Continued.)  May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theodolite.												
Angles.	Seconds of Observed Angles at each Zero	Probabilities and											
	0° 0′ 180° 0′ 20° 0′ 200° 0′ 40° 0′ 220° 0′ 0° 180° 0′ 20° 0′ 200° 0′ 40° 0′ 220° 0′	General Means.											
CI &	h13·13 h13·07 h12·67 l13·17 l10·90 l15·57   l11·40 l6·37 l11·93 l10·53 l11·10 l11·53	Probability = 0.55											
Means	13'90 13'77 12'69 12'57 11'74 15'57 11'77 7'49 11'27 11'32 10'87 11'25	46° 13′ 12″·02											
XCIX &	h65·57 h61·86 h64·53 l62·60 l65·43 l62·70 l65·20 l71·23 l67·83 l65·57 l69·93 l64·73 l66·10 h63·80 h62·60 l59·93 l68·43 l62·57 l66·23 l65·43 l67·67 l64·13 l69·83 l62·97 l64·80	Probability = 0.69											
Means	65.84 65.83 63.24 60.63 65.44 65.45 64.82 66.88 63.82	60° 53′ 5″·19											
	At CI  May 1849, observed by Mr. J. Peyton with Barrow's 24-inch Theo												
Angles.	Seconds of Observed Angles at each Zero	Probabilities and General Means.											
	0° 0′ 180° 0′ 20° 0′ 200° 0′ 40° 0′ 220° 0′ 0° 0′ 180° 0′ 20° 0′ 200° 0′ 40° 0′ 220° 0′	General Means.											
XCIX &	l22'07 l23'53 l21'40 l21'30 l23'30 l23'30 l20'63 l19'40 l24'43 l23'20 l23'63 l22'23 l21'40 l22'00 l21'20 l19'63 l24'77 l23'37 l21'23 l22'67 l23'73 l21'97 l24'70 l21'73 l19'57	Probability = 0.38											
Means	21'74 22'77 21'30 20'47 24'04 23'34 20'93 20'55 24'08 22'59 24'17 21'98	75° 36′ 22″·33											
	May 1846, observed by Lieutenant R. Walker with Cary's 15-inch The	odolite.											
	Seconds of Observed Angles at each Zero												
	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′												
C & CII		Probability = 0.81											

At CI—(Continued.)

May 1846, observed by Lieutenant R. Walker with Cary's 15-inch Theodolite.

			Probabilities and										
Angles.	0.0	180° 0′	10°0′	190°0′	20° 0′	200° 0′	30°0′	210°0′	40° 0′	220° 0′	50° 0′	230° 0′	General Means.
CIII &	h42.53 h42.83	h43°34 h44°34	748·83 49·34	l43·26 l42·43	l 50°30 l 50°33	/ 0 l42.00 144.00	" 148.5 150.5	, 140.10 0141.62	" 148·36 146·83	, 141.24 141.23	l44.67 l45.66	" 137.73 5137.00	Probability = 1'09
Means	42.68	43.84	49:09	42.85	50.32	43.00	49.2	4 40 [.] 89	47.60	41.64	45.17	37:37	64° 34′ 44″·50

At CII

May 1846, observed by Lieutenant R. Walker with Cary's 15-inch Theodolite.

Analas	Seconds of Observed Angles at each Zero	Probabilities and
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′	General Means.
C & CIV	" " " " " " " " " " " " " " " " " " "	Probability = 1.05
Means	20-22 23-50 21-08 21-17 22-17 24-75 28-07 18-25 23-00 19-50 28-35 15-25	б1° 34′ 22″-11
CIV &	l31·80 l24·90 l25·00 l27·33 l31·20 l29·00 l23·76 l31·13 l29·53 l33·00 l27·50 l39·00 l31·34 l25·00 l30·50 l28·16 l29·17 l28·33 l24·66 l31·84 l29·50 l33·67 l27·40 l35·00	Probability = 0.98
Means	31.24 24.82 22.22 32.42 30.19 38.62 34.51 31.49 50.25 33.34 52.42 32.00	57° 27′ 29″·50
CV &	l 54.00 l 61.23 l 58.84 l 54.27 l 55.90 l 50.33 l 60.54 l 50.97 l 62.33 l 48.33 l 58.90 l 48.33 l 53.33 l 55.00 l 57.50 l 52.84 l 57.66 l 50.84 l 60.00 l 50.50 l 60.67 l 48.53 l 60.43 l 47.50 l 54.00	Probability = 1°30
Means	53.67 56.44 58.17 53.26 56.48 50.29 60.27 50.44 61.20 48.43 59.67 47.92	59° 20′ 54″·84

#### At CII—(Continued.)

May 1846, observed by Lieutenant R. Walker with Cary's 15-inch Theodolite.

A 1	Seconds of Observed Angles at each Zero	Probabilities and
Angles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 220°0′ 50°0′ 230°0′	General Means.
CVI &	l21.43 l12.17 l16.34 l18.33 l12.56 l21.54 l13.80 l25.23 l16.44 l20.34 l15.60 l23.10 l21.50 l15.66 l17.16 l14.17 l21.33 l13.00 l24.00 l14.66 l20.97 l13.84 l23.00	Probability = rrr
Means	21.47 13.02 16.02 17.75 13.37 21.44 13.40 24.62 15.55 20.66 14.72 23.05	58° 51′ 18″·07
CIII &	l1.57 l 7.50 l4.33 l 9.57 l8.44 l6.46 l 9.06 l4.87 l9.73 l8.66 l9.03 l4.87 l2.67 l10.17 l4.17 l10.50 l6.83 l7.67 l10.10 l4.00 l9.50 l6.17 l9.16 l4.84	Probability = 0.71
Means	2.13 8.84 4.32 10.04 1.64 1.02 0.28 4.44 0.63 1.43 0.10 4.86	59° 31′ 7″·08
CI & C	150·77 152·87 151·34 149·8 ₃ 150·06 147·17 144·37 149·96 143·17 150·34 140·47 151·53 151·16 148·50 149·83 149·67 149·67 147·83 144·57 151·06 145·00 151·00 140·97 152·33	Probability = 0.97
Means	50'97 50'69 50'59 49'75 49'87 47'50 44'47 50'48 44'09 50'67 40'72 51'93	63° 14′ 48″•48

#### At CIII

May 1846, observed by Lieutenant R. Walker with Cary's 15-inch Theodolite.

Angles.	Seconds of Observed Angles at each Zero												Probabilities and	
Angres.	0.0,	180°0′	10°0′	190°0′	20° 0′	200° 0′	30° 0′	210°0′	40° 0'	220°0′	50° 0′	230° 0′	General Means.	
CI & EII	18.33 18.33	18:00 11:83 12:50	l 10.84 l 11.50	1 9·50 l 1 6·83 l		18·27 19·16		l 16·26 l 13·00		l 7:37 l 7:06	" l 5:73 l 7:50	l13.12 l13.12	Probability = 0.81	
Means	8.18	4.11	11.02	8.17	9.48	8.72	8.24	14.64	6.45	7:22	6.62	13.09	55° 54′ 8″·86	

At	CIII-	(Continued.)	)
210	OILL	Continued.	,

May 1846, observed by Lieutenant R. Walker with Cary's 15-inch Theodolite.

Angles.	Seconds of Observed Angles at each Zero	Probabilities and
	6° 0′ 180° 6′ 10° 6′ 196° 0′ 26° 0′ 200° 0′ 80° 0′ 210° 0′ 46° 0′ 220° 0′ 50° 0′ 280° 0′	General Means.
CII &	" " " " " " " " " " " " " " " " " " "	Probability = 1.04
Means	24.72 31.40 51.85 54.64 54.25 56.80 30.30 53.50 31.52 56.82 33.22 53.22	δ1° 9′ 27″·18
CVI &	l 7.50 l13.03 l11.03 l11.07 l 8.16 l 8.16 l 9.07 l19.83 l 8.33 l17.34 l.6.50 l16.17 l 8.50 l11.37 l 7.83 l 9.67 l10.17 l 9.16 l10.00 l20.67 l 7.00 l16.50 l 7.83 l16.67	Probability = 1'17
Means	8.00 12.50 0.88 10.32 0.12 8.60 0.24 50.52 2.62 10.05 2.12 10.45	58° 8′ 11″-35

At CIV

May 1846, observed by Lieutenant R. Walker with Cary's 15-inch Theodolite.

Angles.				Second	s of Ol	served	Angles	at eac	h Zero				Probabilities and
	0°0′	180°0′	10° 0′	190° 0′	26° 0′	200°0′	<b>3</b> 0°0′	210°0′	40°0′	220° 0′	50°0′	236° 0′	General Means.
CV &	" l65.13 l62.00	161.37	150.03	" l63·46 l64·33	164.57	l61·44	158.84	166.16	l 50.80	165.73	155.00	162.07	Probability = 0.81
Means	65.07	бо.14	61.02	63.00	63.66	60.24	58.92	65.08	59°92	64.47	55.33	61.87	64° 55′ 61″·64
CII & C	l20·74 l19·34	l17:66 l19:67	l22:90 l19:83	l14·60 l14·67	l17.93 l20.66	l19°46 l21°13	l23.23 l23.23	l11.67 l13.67	l19 [.] 80	l14 [.] 27 l16 [.] 63	l20 [.] 87 l20 [.] 84	l17 [.] 17 l18 [.] 00	Probability = 0.84
Means	20.04	18.67	21.37	14.64	19.30	20.30	22.87	12.67	20.45	15'45	20.86	17.29	60° 46′ 18″·68

At CV

May 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

		Seconds of Observed Angles at each Zero										
Angles.	0°0′ 180°0′ 9°0′ 189°0′	189° 0′	18°0′	198°0′	27°0′	207° 0′	General Means.					
CX &	h 8.50 h 6.22 h 5.98	h 8·52 h 11·40 h 6·98	h 10.42 h 9.40 h 7.62	h 9.72 h 7.64 h 7.02	h 9.76 h 9.28 h 8.02	h 11.14 h 9.50 h 7.42	h 8 ⁴ 4 h 7 ¹⁶ h 7 ⁹ 2	h 5.94 h 8.54 h 7.64	Probability = 0'30			
Means	6.90	8.97	9.12	8.13	9.03	9.32	7.84	7:37	49° 52′ 8″-34			

# May 1846, observed by Lieutenant R. Walker with Cary's 15-inch Theodolite.

A	Seconds of Observed Angles at each Zero											Probabilities and	
Angles.	0°0′	180°0′	10°0′	190° 0′	20° 0′	200° 0′	30° 0'	210° 2′	40° 0′	220°0′	50°0′	230° 0′	General Means.
CIX &	h55°33 h53°34	" h49 [.] 66 h49 [.] 23	" 149 [.] 60 151 [.] 00	" l48·24 l48·00	" l48:50 l48:83	" l47·33 l49·33	" 148·50 148·66	" 149.40 147.84	146.17	" 156·13 157·17	" l43·33 h43·30 h43·50	" \$ <b>h</b> 56·83 \$ <b>h</b> 57·50	Probability = 1.13
Means	54'34	49°45	50.30	48.12	48.67	48`33	48.58	48.77	46·12	56.65	43.38	57:17	54° 47′ 49″ 99
CVI &	h46·63 h46·66	h49·27 h48·77	l48·34 l47·33	l50.03 l51.20	l50·40 l50·83	l44·17 l44·67	l55 [.] 07 l53 [.] 17	l44°50 l45°66	l51·27 l51·27	<i>l</i> 43 [.] 67	l54·17 h54·40 h55·00	h42·17 h42·50	Probability = 1·10
Means	46.65	49.02	47.84	50.77	50.62	44'42	54.13	45.08	51.55	44.00	54.2	42.34	61° 40′ 48″•38
CIV &	l32·84 l32·00	h30°16 l24°84 l23°53	l31.84 l31.84	l27·57 ( l25·83 (	/30·50 /30·50	l33·53 (	l27·27 l29·13	l33°17 l33°84	l24·23 l25·20	<i>l</i> 36 [.] 00	126.20	l31.47 l30.66	Probability = 0.97
Means	32.42	26.18	31.87	26.70	30.5	32.43	28.20	33.21	24.72	35.84	25.81	30.41	57° 36′ 29″.89

	At CVI  May 1846, observed by Lieutenant R. Walker with Cary's 15-inch Theodolite.										
Angles.	Seconds of Observed Angles at each Zero	Probabilities and									
ingles.	0°0′ 180°0′ 10°0′ 190°0′ 20°0′ 200°0′ 30°0′ 210°0′ 40°0′ 226°6′ 50°0′ 230°0′	General Means.									
CII &	h14.57 h25.50 l18.04 l15.67 l13.00 l17.00 l15.07 l17.50 l18.66 l15.66 l24.17 l11.83 h16.40 h25.00 l17.00 l12.84 l13.83 l16.00 l17.33 l19.33 l21.00 l14.67 l27.50 l14.00	Probability = 1.17									
Means	15.49 25.52 14.52 14.52 13.45 19.50 19.50 18.45 18.83 12.12 55.84 15.65	58° 58′ 17″·57									
CV &	h36·26 h27·50 l34·73 l34·00 l35·17 l32·50 l34·43 l42·00 l37·67 l38·67 l29·00 l45·50 h37·33 h29·50 l38·00 l37·00 l37·67 l32·80 l31·67 l39·17 l38·50 l37·33 l33·33 l42·00	Probability = 1.15									
Means	36.80 28.20 36.31 35.20 36.42 35.62 33.02 40.20 38.00 38.00 31.12 43.12	64° 36′ 35″·91									
CIX &	h14.07 h8.50 l 7.43 l14.17 l11.83 l 7.94 l16.24 l 8.17 l 6.33 l11.00 l 9.33 l 2.34 h11.17 h 7.00 l 7.33 l10.33 l10.50 l 5.20 l14.00 l 8.00 l 4.34 l 8.67 l 5.17 l 7.00 l 7.17										
Means	12.62 7.75 7.38 12.25 11.17 6.57 15.12 7.78 5.34 9.84 7.25 4.67	116° 50′ 8″·98									
CVIII &	l34.10 l32.66 l29.57 l31.67 l32.50 l28.00 h29.34 l34.00 l33.00 l39.00 l33.50 l43.34 l33.50 l30.66 l30.83 l35.50 l29.66 l28.17 l30.17 l35.17 l30.17 l35.84 l32.00 l45.00 l30.50	Probability = 1.17									
Means	33.80 31.66 30.50 33.20 31.08 58.00 30.00 34.20 31.20 32.45 35.45	55° 57′ 33″ [.] 25									
CIX &	+ 72.62 + 67.75 + 67.38 + 72.25 + 71.17 + 66.57 + 75.12 + 67.78 + 65.34 + 69.84 + 67.25 + 6.33.80 - 31.66 - 30.20 - 33.59 - 31.08 - 28.09 - 30.00 - 34.59 - 31.59 - 37.42 - 32.75 - 4										
+ 116° 49′ - 55° 57′	38.85 36.00 34.18 38.60 40.00 38.48 42.15 33.10 33.42 35.45 5	o·50 60° 52′ 35″·73									
CVII &	h36·50 h46·84 l45·87 l39·96 l44·60 l44·56 l41·93 l49·67 l43·50 l36·33 l43·00 l40·33 h39·50 h49·17 l43·17 l42·33 l42·00 l46·63 l45·00 l45·83 l43·83 l40·66 l45·33 l37·67	Probability = 0.93									
Means	38.00 48.01 44.23 41.12 43.30 45.60 43.47 47.75 43.67 38.20 44.17 39.00	59° 35′ 43″•10									
CIII &	h18·60 h11·66 l13·63 l16·20 l15·40 l18·00 l12·33 l12·70 l11·50 l18·34 l14·50 l20·00 h15·60 h 9·33 l14·50 l17·50 l16·00 l19·37 l12·00 l15·67 l13·84 l18·67 l 8·67 l19·33 l12·33	Probability = 0.85									
Means	17.10 10.20 14.02 19.82 12.20 18.62 15.12 14.12 15.29 18.21 11.22 10.62	59° 59′ 15″·13									

Seconds of Observed Angles at each Zero									Probabilities and
Angles	0°0′	180°0′	9° 0'	189°0′	18°0′	198°0′	27°0′	207° 0′	General Means.
	"	"	11	"	"	"	"	"	
CV &	h 37.96	h 41.60	h 41.16	h 41.44	h 41.02	h 39.86	h 40.82	h 40.34	
R M	h 39.64 h 41.56	h 39`44 h 39`90	h 43.42 h 44.48	h 39.00	h 40.74 h 41.52	h 41°16 h 38°04	h 41'12 h 43'10	h 39.84 h 40.46	
		<i>"</i> 39 <b>90</b>			·· +- J-				
Means	39'72	40.31	43.02	39.88	41.39	39.69	41.68	40.31	8° 23′ 40″·74
Angles			Seconds o	f Observed	Angles a	t each Zei	ro	15-inch T	Probabilities and General Means.
	"	,, II	"	<i>11</i> 11	"	n n	"	0°0′ 230°0′	
CVI &	h 9.64 h 6	5·16	l 10.00 l	1·83 <i>l  7</i> ·83 4·67 <i>l</i> 10·66	l 6.00 l1 l 2.83 l1	0.67 l 2.17 2.00 l 4.34	114.20 l	5.66 <i>l</i> 11.84 4.00 <i>l</i> 14.83	Probability = o
Means	8.57	5.62 4.20	9.67	3.5 2.5	5.92 1	1.34 4.20	5 13.33	4.83 13.34	62° 16′ 7″.87
CVIII	h45.66 h46 h45.83 h45	5·17 <b>l</b> 47·20 5·33 <b>l</b> 47·17	l39·53 l4 l41·34 l4	7 [.] 67	l48·84 l3 l50·00 l3	8·17 <i>l</i> 50·6; 8·00 <i>l</i> 48·66	7 l37·17 l4 5 l41·50 l4	.2·84 <i>l</i> 38·83 .1·50 <i>l</i> 39·60	Probability = 1
Means	45'75 45	5.72 47.19	40°44 4	8.09 42.06	49'42 3	8.09 49.6	7 <b>3</b> 9°34 4	2.12 39.55	65° 12′ 43″ 93
May	and June	1846, a	bserved		At CVII		with Co	ury's 15-in	nch Theodolite.
Angles			Seconds	of Observed	Angles a	t each Zer	) 		Probabilities and General Means.
	0° 0′ 18	0°0′ 16°0′	190°0′ 2	20°0′ 200°0′	30°0′ 2	10°0′ 40°0	220°0′	50°0′ <b>23</b> 0°0′	
	"	" "	"	,, ,,	"	,, ,,	"	<i>n n</i>	

May	and June	1846, 6	bserved		III—(Cor enant R	-	with Co	ury's 15-in	nch Theodolite.
Angles.			Seconds o	of Observed	l Augles a	t each Zero	)		Probabilities and
Zingres.	0°0′ 180	°0′ 16°0′	196°0′ 20	)°0′ 200°0′	30° 0′ 21	10°0′ 40°0′	220°0′ 5	0°0′ 230°0′	General Means.
CVI &	" " l51·94 l54 l51·93 l55	83 <i>l</i> 58·13 60 <i>l</i> 56·17	l49·16 l5. l50·43 l5:	" " 4·34 l53·30 2·66 l54·50	" 0	" " 9·33 h52·83 8·84 h53·00	" 3 l50·84 l5 0 l50·17 l5	9.00 l51.20	Probability = 0.83
Means	21.04 22.	22 57.15	49.80 5	3.20 23.00	56.72 4	0.00 2 <b>3.</b> 03	50.21 2	8.37 21.20	.5.5° .34′ 53″ .39
	May 1846	, obscrve	ed by L	ieutenant	At CIX R. Was	ker with	Cary's	15-inch T	heodolite.
Angles.	000, 180	°0′ 10°0′				at each Zer		0°0′ 230°0′	Probabilities and General Means.
· · · · · · · · · · · · · · · · · · ·	0 0 100			, , ,		, "			
CVIII &	132.83 120	00 h33.44	h38·17 h2 h36·17 h2	8.40 <i>h</i> 3 5.16	i l27.00 l 3	7.00 J 31.20	133.6312	3.24 <i>l</i> 34.83 2.50 <i>l</i> 34.67 3.00	Probability = 1'08
Means	32.75 29.0	57 33.22	37.17 2	8.63 34.12	28.62 3	4.83 31.00	34'49 2	2.01 34.42	63° 32′ 31″·85
CVI &	135.50 137. 137.67 136.	16 h37·20 17 h37·34	h32·83 l3	5°77 h32°57 5°73 h31°66 7°33	l38·50 l3 l38·67 l3	4·40 <i>l</i> 39·33 2·83 <i>l</i> 39·33	130.83 14 132.00 14 131.00 14	5·50 l 26·50 4·83 l 27·67 1·66	Probability = 1.23
Means	36.20 36.6	57 37:27	32.33 30	2.58 35.15	38*59 3	3.65 39.33	31.58 4	4.00 52.00	60° 35′ 35″·43
March	1847, obse	erved.by	Lieute <b>n</b> a	t R. Wa	lker with	a Trought	on and S	Simms' 36-	inch Theodolite.
			Seconds o	of Observed	l Angles a	t each Zero	)		
	0°0′	180° 0′	9° 0′	189° 0′	18° 0′	198° 0′	27° 0′	207°0′	
CV &	" h a v 60	,,,,,,,	"	7 - 4.96	7	70	7	7 . 4.94	
CX	h 21.68	h 22.00 h 23.70	h 22.05 h 22.05	h 25.86 h 23.66	l 19.92	l 22.78 l 23.94	h 24.86 h 24.24 h 23.16	h 23.80 h 23.62	Probability = 0'42
Means	21.86	22.85	22.40	24.76	20.82	23.36	. 24'00	23.21	б9° 1′ 22″•99

#### At CIX-(Continued.)

March 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Angles	Seconds of Observed Angles at each Zero  Angles.										
Angles.	0° 0′	180° 0′	8° 0'	189°0′	18°0′	198° 0'	27° 0′	207° 0′	General Means.		
CX & CXI	h 54.82 h 55.32	h 54.62 h 55.28	h 53°26 h 53°74	h 54°94 h 56°60	l 53·46 l 54·00	l 52.06 l 51.54 l 53.54	h 49.36 h 51.48 h 52.22	h 53.20 h 53.20	Probability = 0.51		
Means	55.07	54.95	53.20	55.77	53.73	52.38	51.03	53.74	81° 46′ 53″-77		

At CX

#### March 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

			Seconds o	f Observed	d Angles a	t each Zero	)		Probabilities and
Angles.	0° 0′	180°0′	9°0′	189° 0′	18°0′	198°0′	27° 0′	207° 0′	General Means.
CXII &	h 48·42 h 49·42	h 46·78 h 47·20	l 47.00 l 48.82 l 48.54	l 46·80 l 47·42	h 48 ² 22 l 48 ⁰ 00 l 46 ⁸ 4	h 49°32 h 49°60	h 49.88 h 51.52	h 48 [.] 42 h 49 [.] 08	
Means	48.92	46.99	48.13	47.11	47.69	49.46	50.40	48.75	105° 8′ 48″·47
CXI &	h 11.30	h 14.14 h 12.66 h 11.96	h 15.32 l 13.38	h 11.60 h 10.42 h 10.92	h 12.74 h 13.38	h 12.66 h 11.94	h 15.76 h 16.34	h 12.64 h 12.02	Probability = 0.54
Means	11.49	12.02	14.40	10.08	13.00	12.30	16.02	12.33	48° 52′ 13″·02
CXII &	+ 48·92 - 11·79	+ 46.99 - 12.92	+ 48·12 - 14·70	- 10.08 - 10.08	- 13.00 + 47.60		+ 50.40 - 16.05	+ 48.75 - 12.33	Probability = 0.48
105° 8′ -48° 52′	37.13	34.07	33.42	36·13	34.63	37.19	34.65	36.42	56° 16′ 35″-45

At CX—(Continued.)

March 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

A 1	Seconds of Observed Angles at each Zero										
Angles.	0,00,	180° 0'	9°0′	189° 0′	18° 0′	198° 0′	27°0′	207° 0′	General Means.		
CIX &	h 30.20	h 28.58 h 29.66 h 29.86	h 28.92 h 27.40 h 29.50	h 34.60 h 31.90 h 31.48	h 29.32 h 29.02	h 31.62 h 30.62	h 28·12 h 27·46	h 28.82 h 30.14	Probability = 0.50		
Means	30.52	29.37	28.61	32.66	29.17	31.15	27.79	29.48	61° 6′ 29″·81		

At CXI

March 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Angles.			Seconds o	f Observed	l Angles at	each Zero	)		Probabilities and
6.000	0°0′	180°0′	9° 0′	189° 0′	18° 0′	198° 0′	27°0′	207° 0′	General Means.
CIX &	n 3.98 h 4.70 h 6.76 h 7.96 h 6.26	h 8.78 h 8.18 h 6.78 h 6.38 h 6.22	h 9°12 h 7°34 h 6°04	h 7·12 h 6·74	h 4·98 h 5·48	l 4.00 l 7.10 l 7.38	л 8·28 h 6·40	h 5:10 h 6:58	
Means	5.93	7.27	7.20	6.93	5.53	6.19	7°34	5.84	102° 47′ 6″·53
CX &	h 11°24 h 12°98 h 13°28	h 10.40 h 12.26 h 11.92	h 14.58 h 13.44 h 13.30	h 14.74 h 13.02 h 13.58	h 12:36 h 10:74 h 10:42	h 15.64 l 13.50 l 13.72	h 12.64 h 11.34	y 10.40	Probability = 0.47
Means	12.20	11.63	13.77	13.48	11.12	14.50	11.00	10.52	53° 26′ 12″·43
CIX & CX	+ 65.93 - 12.20	+ 67.27 - 11.63	+ 67.50 + 67.77	+ 66·93			- 11.99 + 67.34	+ 65 [.] 8 ₄ - 10 [.] 27	Probability = 0.44
102° 46′ -53° 26′	53*43	55.64	53'73	53.15	54.00	51.87	55:35	55 ⁻ 57	49° 20′ 54″·10

At CXI—(Continued.)

March 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Angles.		Probabilities and							
	0°0′	180° 0′	8° 0′	189°0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.
CXII &	h 43.24 l 39.18 l 40.24 h 43.18 h 44.10	h 42.42 h 44.80 h 45.06	h 45°44 h 40°46 h 42°52	h 39.72 h 40.72	h 44.68 h 41.62 l 42.90	l 43 [.] 52 l 42 [.] 56 l 42 [.] 54	h 38·92 h 39·86	h 42.06 h 43.40	Probability = 0.52
Means	41.00	44.09	42.81	40.33	43'07	· 42 [.] 87	39`39	42.73	59° 19′ 42″·15

At CXII

# March 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Angles.		Probabilities and							
migico.	0° 0′	180° 0′	9° 0′	189° 0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.
CXIV &	h 56·66 h 54·94	h 55.60 h 55.92	h 54.76 h 54.58	h 54.32 h 53.86	h 53.02 h 54.32	h 55°26 h 55°68	h 53 [.] 92 h 54 [.] 44	" h 54.06 h 54.48	Probability = 0'27
Means	55.80	55.76	54.67	54.09	53.67	55.47	54.18	54*27	54° 31′ 54″·74
CXIII &	h 37.66 h 38.72	h 40.88 h 40.36	h 41.58 h 40.46	h 39.90 h 39.64 h 41.24	h 42.00 h 41.13	h 42°56 h 41°78	h 40·48 h 39·68	h 37 [.] 86 h 38 [.] 74	Probability = 0.47
Means	38.10	40.62	40.87	40.36	41.26	42'17	40.08	38.30	бо ^о 42′ 40″·27
CXI &	h 12.25 h 12.25	k 14·18 h 13·64	h 13.78 h 14.32 h 14.12	h 14°12 h 12°84	y 13.00 y 13.00	h 11.25 h 12.18	h 12.46 h 12.40	h 14·36 h 13·68	Probability = 0.31
Means	11.84	13.01	14'07	13.48	13'41	11.85	12'43	14.03	70° 17′ 13″·13

At CXIII

March 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Angles.		Probabilities and							
	00,04	180° 0'	8°0,	189°0′	18°0′	198°0′	27° 0′	207° 0′	General Means.
CXI &	h 39°48 h 40°00	h 39.45 h 39.68	h 38·24 h 39·26 h 39·06	h 38·10 h 37·98	h 39.84 h 38.86	h 37 ³ 4 h 37 ⁸ 2	h 38·52 h 38·44 h 37·96 h 38·74	h 38·46 h 39·14	Probability = 0'25
Means	39.74	39 [.] 57	38.85	38.04	39°35	37.58	38.42	38.80	59° 57′ 38″-79
CXIV	h 50.24 h 49.92	h 49 [.] 22 h 48 [.] 94	h 49.84 h 51.30 h 51.16	h 48.08 h 48.98	h 51.04 h 49.92	h 50°22 h 49°66	h 49 [.] 72 h 49 [.] 04	h 51 36 h 48 14 h 48 18	Probability = 0.26
Means	50.53	49:08	50.77	<b>4</b> 8·53	50.48	49'94	49.38	49'23	63° 50′ 49″′71
CXIV &	h 53.38	h 53.38 h 53.66	h 52·26 h 51·94	h 54'16 h 52'62	h 54.96 h 53.18	h 51°40 h 52°58 h 53°56	h 52·36 h 51·46	h 52.22 h 54.78 h 53.04	Probability = 0.24
Means	53.49	53.2	22.10	53:39	53.87	52.21	21.01	53'35	· 63° 31′ 53″·02

At CXIV

March 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Angles.		Probabilities and							
	0°0′	180°0′	8.0,	189°0′	18°0′	198°0′	27°0′	207° 0′	General Means.
CXVI &	" h 34·14 h 33·68	" h 38·46 h 38·42	l 36.46 l 36.00	" l 36.72 l 36.86	h 36.66 h 37.94	h 40°38 h 39°78	h 39°30 h 38°58 h 39°20	и h 37·60 h 37·80	Probability = 0.62
Means	33.01	38.44	36.56	36.79	37.30	40.08	39.03	37.70	60° 19′ 37″•44

At CXIV-(Continued.)

March 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

			Seconds of	f Observed	l Angles a	t each Zero	)		Probabilities and
Angles.	0,00	180° 0′	8° 0'	189°0'	18°0′	198°0′	27° 0′	207° 0°	General Means.
CXV &	h 56·36 h 55·72	h 53°18 h 54°34	" l 55'20 l 54'98	" l 54'34 l 54'88 l 54'26	h 55°26 h 54°90	h 53.90 h 54.64	n h 56·64 h 54·56 h 53·64	h 54·82 h 55·84	Probability = 0'23
Means	56.04	53.76	55.09	54.49	55.08	54.57	54.95	55.33	60° 23′ 54″·88
CXIII &	h 14.94 h 14.44	h 17:44 h 17:10 h 17:20	l 15'38 l 14'84 l 15'78	l 18.10 l 12.38 l 18.18	h 13.86 h 14.96	h 15.94 h 15.96	h 17 [.] 24 h 16 [.] 68	h 14 [.] 92 h 16 [.] 26	Probability = 0.42
Means	14.69	17.25	15.33	18.30	14.65	15.95	16.96	12.29	61° 37′ 16″-08

At CXV

April 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Ameles			Seconds of	f Observed	Angles at	each Zero			Probabilities and
Angles.	0°0′	180°0′	9° 0′	189°0′	18°0′	198°0'	27°0′	<b>207°</b> 0′	General Means.
CXIII &	" l 11.82 l 11.46	h 12°94 h 11°54	l 10.80 l 12.24 l 12.70	n l 13:50 l 12:72	l 12.30 l 14.26 l 15.30	" l 12.12 l 12.68	h 15.16 h 14.54	h 12.58 h 14.36 h 13.92	Probability = 0.37
Means	11.64	12.34	11.01	13.11	14,03	12'40	14.85	13.62	56° 4′ 12″·98
CXIV &	h 3·38 h 3·76	h 3'20 h 3'44 h 4'50	l 4.00 l 3.62 l 3.88	l 3.48 l 3.76	l 2.74 l 2.66 l 3.84	l 5.58	h 1.86 h 2.62	h 0.84 h 1.24 h 2.18	Probability = 0.33
Means	3°57	3.41	3.83	3.62	3.08	4'77	2'24	1.29	62° 51′ 3″′30

At CXV-(Continued.)

April 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Angles.		Seconds of Observed Angles at each Zero										
mg.co.	0° 0′	180° 0′	8 _e 0,	189° 0′	18° 0′	198° 0′	27° 0′	207° 0°	General Means.			
CXVI &	h 9°34 h 9°70	" k 11'86 k 12'04	l 11.05 l 11.05	1 10.30 1 11.00 1 0.30	l 12:46 l 10:36 l 9:78	l 9.12 l 10.20	h 10.20 h 11.20	" h 12.38 h 12.62	Probability = 0.33			
Means	9.2	11.95	10.23	10.01	10.87	9.81	11.08	12.20	58° 35′ 10″.86			

At CXVI

April 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Angles.			Seconds of	Observed	Angles at	each Zero			Probabilities and
Ang.ou	0° 0′	180° 0′	8, 0,	189° 0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.
CXVIII &	h 43°04 h 43°56 h 42°56	" h 46.32 h 45.28 h 45.24	" h 41.86 h 42.54 h 42.62	" h 42°98 h 42°92	h 43°04 h 44°34 h 44°30	h 44.42 h 43.70	% 44°46 % 45°04	k 44°04 l 44°06 l 45°18	Probability = 0.35
Means	43.02	45°61	<b>42°</b> 34	42.95	43.89	44.06	44.75	44.43	63° 43′ 43″·89
CXVII &	h 46·72 h 46·06	k 44°36 k 43°68 k 43°14 k 43°36	h 43°32 h 43°78	h 43.92 h 43.44 h 43.80 h 43.44	h 40.82 h 42.36 h 45.42 h 43.40	h 43°92 h 44°44 h 43°68 h 44°10	h 42.20 h 42.20	h 42°38 h 42°94 l 43°98	Probability = 0.38
Means	46.39	43.64	43.22	43°65	43.00	44.01	<b>42</b> .61	43.10	59° 14′ 43″ 75
CXIV &	h 19.32 h 18.13 h 18.00 h 18.73	k 18·12 k 19·34	h 19'96 h 21'90 h 21'50	h 18.06 h 17.74 h 17.00 h 16.88	k 21.68	h 17:38	h 19*44 h 19*90	ћ 18·54 № 18·54	Probability = 0.47
Means	18.24	19.05	21.36	17.42	21.07	17.93	19.67	18.76	56° 49′ 19″•23 ·

At CXVII

April 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Angles.			Seconds of	Observed	Angles at	each Zero			Probabilities and	
Angres.	0° 0′	180° 0′	9° 0′	189° 0′	18° 0′	198° 0′	27° 0′	<b>207°</b> 0′	General Means.	
CXV &	" h 8.22 h 7.38 h 7.84	" 1 5°04 1 5°68	" 1 5.68 1 5.84	l 5:68 l 5:56	h 4.44 h 4.50	" h 5 [.] 84 h 6 [.] 48	l 5 [.] 20 l 4 [.] 74	l 7°14 l 6°98	Probability = 0.36	
Means	7.81	5.36	5.46	5.63	4*47	6.19	4'97	7.06	62° 10′ 5″°90	
CXVI &	h 15.70 h 16.24	l 16.40 l 16.04	l 16.70 l 15.46	l 13.08	h 16·10	l 16.20 h 15.20 h 15.10	1 13·32 1 14·04	l 14:48 l 14:20	Probability = 0.33	
Means	16.30	16.33	16.08	14.58	15.06	15.60	13.68	14.34	53° 18′ 15″-35	
& CXIX	l 1.60 l 0.4	l 2·54 l 2·46	1 1.30	l 1.44	h 1°56 h 2°68	l 1.60 h 0.48 h 1.60	l 6.68 l 5.06 l 4.26	h 2·44 l 2·20 l 2·60	Probability = 0.46	
Means	1.12	2.20	1.18	1.54	2.13	1.32	5.33	2.41	58° 33′ 2″·16	

At CXVIII

April 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Amalaa		Seconds of Observed Angles at each Zero										
Angles.	0° 0′	180° 0′	9° 0′	189° 0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.			
CXX &	" h 9.14 h 8.38	h 7·16 h 7·00 h 6·94	h 7.84 h 7.90	h 8·52 h 9·24	l 9.24 l 9.24	" l 6·18 l 7·50 l 6·92	" l 8:08 l 7:76	" 1 9.24 1 8.08	Probability = 0°29			
Means	8.76	7.03	7.87	8.88	9.53	6.87	7*92	8.66	83° 26′ 8″•15			

### At CXVIII—(Continued.)

April 1847, observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

		Seconds of Observed Angles at each Zero										
Angles.	0,00	180°0′	9°0'	189°0′	18°0′	198° 0′	27° 0′	207°0′	Probabilities and General Means.			
CXIX & CXVII	h 2.44 h 3.36	h 6·40 h 4·94 h 4·62	h 3.08	h 3.92 h 3.88	l 2.86	l 474 l 372	" l 4.78 l 4.46	7 4 46 7 3 84	Probability = 0.31			
Means	2.00	5.33	3.39	3.00	2.40	4.53	4.63	4.12	49° 49′ 3″·86			
CXVII &	h 59.06 h 59.84 h 60.42	h 61.68 h 62.94 h 62.48	h 60.28	h б1·82 h б1·32	l 58:00 l 59:44	l 61 64 l 60 70	l 61.64 l 61.68	l 57'92 l 59'76 l 59'92	Probability = 0.43			
Means	59.77	62.37	60.79	61.27	58.72	61.17	61.81	59.20	62° 57′ 60″·68			

At CXIX

March 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

		i	Seconds of	f Observe	d Angles a	t each Ze	ro		Probabilities and
Angles.	0°0′	180° 0′	9° 0′	189°0′	18°0′	198°0′	27°0′	207° 0′	General Means.
CXVII &	" l 49.32 l 49.72	" l 52.46 l 52.54	# 50.98 \$ 51.84	l 52.28 h 51 96	h 51°28 h 52°56	h 52 90 h 53 66 h 55 30 h 5+ 68	" l 49 [.] 66 l 49 96	l 53.46 h 53.04	Probability = 0.52
Means	49.52	52.20	51.41	52.13	21.02	54.14	49.81	53.5	71° 37′ 51″·83
CXVII &	l 33.42 h 33.92	h 32.98 h 36.46 h 36.16	h 32°14 h 33°34	h 36.22 h 37.50 h 37.44	h 32.98 h 30.28 l 31.26	h 35'44 h 35'38	l 31 94 h 35 32 h 33 50 h 33 60	k 34.18 k 34.98	
Means	33.67	35.50	32.24	37.05	31.21	35.41	33.29	34.28	121° 38′ 34″·22

## At CXIX-(Continued.)

March 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

A1		8	Seconds of	Observed	Angles at	t each Zero	0		Probabilities and
Angles.	0. 0,	180° 0′	<b>9</b> • 0•	189° 0′	18° 0′	198° 0′	27° 0′	207° 0′	General Means.
CXVIII &	+93 [.] 67 -49 [.] 52	+95.50 -25.20 -52.20	+92.74 -51.41	+97.05 -52.12	+91.21 -51.65	+95.41 -54.14	+93°59 -49°81	+94.58 -53.25	Probability = 0.60
121° 37′ -71° 37′	44.12	42.70	41.33	44.93	39.59	41.52	43.78	41.33	. 50° 0′ 42″ 39
CXVII &	1 17.30	l 19.68	l 17.26 l 20'26 l 16'98	l 16.98	l 18·16 l 16·26 l 17·84	h 20.72 h 18.06 h 19.58	l 17.86 l 19.32 l 17.30	l 18.14 l 18.04	
Means	17.81	19.34	18.12	17:35	17.42	19.45	18.10	18.00	178° 45′ 18″-21
CXX & CXXI	+ 77 ^{.8} 1	+79 ^{.24}	+ 78·17 -32·74	+77'35 -37'05	+77.42	+79°45 -35°41	+78·16 -33·59	+ 78 ⁻ 09 - 34 ⁻ 58	Probability = 0.56
178° 44′ -121° 38′	44.14	44.04	45.43	40.30	45.91	44.04	44.57	43.21	57° 6′ 43″'99

#### At CXX

## March 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

Angle		Circle readings, telescope being set on CXXIII											
between	0° 1′	w = Relative Weight $C = Concluded Angle$											
CXXIII &	l 50.42 h 49.04 h 50.08	h 51·38 h 50·52	" l 49.76 l 47.44 h 48.24	" 1 49'30 1 49'68	" 49°12 147°68 147°32	" l 50.44 l 49.48	h 47'90 l 53'30 l 53'88 l 53'72	l 49.10 l 49.70					
	49.85	50.02	48.48	49'49	48.04	49°96	52.30	49:40	89° 30′				

### At CXX-(Continued.)

*March 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite. †February 1855, observed by Mr. J. O. Nicolson with Barrow's 24-inch Theodolite No. 1.

Angle		C	ircle re	eadings,	telescop	e being	set on (	CXXIII	[		M = Mean of Groups w = Relative Weight
between	0° 1′	180°	1'	9° 2′	189° 2′	18°4′	198	4′ 5	27° 5.	207° 4′	C = Concluded Angle
CXXIII & CXXII	" h 48.92 h 49.88 d 48.57	h 48	84 l.	" 46 [.] 82 47 [.] 94 46 [.] 96	" l 48 26 l 49 92 l 48 26	l 47·26 l 45·94 d 45·52	l 49° l 48°	20 l l l d	" 46.38 52.72 51.16 51.20 50.23 48.09	" 1 47 [.] 28 1 48 [.] 58	
	49.12	48.7	70 4	17°24	48.81	46.24	48	76	49.96	47'93	$M = 48'' \cdot 35$ $w = 4 \cdot 23$
Lesser circle readings	0°1′	180°1′	7° 12′	187°12′	14° 25′	194° 25	21°37′	201° 37′	<b>2</b> 8°49′	208° 49′	
CXXIII & CXXII	h 47 42	h 46°52   h 46°18	44 24	h 48.68	h 46.76	l 52'98   l 49'98   l 46'80   l 50'24 h 51'00	h 46 66 h 47 04	h 49'90 h 47'16	h 45.84	h 43.86	$w = 8.27$ $\frac{1}{w} = 0.12$ $C = 56^{\circ} 14' 47''.82$
	46.95	45 83	47.01	48.39	46.65	50.50	46 [.] 40	48.47	46.77	45.66	$M = 47'' \cdot 23$ $w = 4 \cdot 04$
Lesser circle readings	56°16	· 236°	16' (	65° 17′	<b>24</b> 5° 17′	<b>74°</b> 19′	254	° 19′ 8	88° 19′	263° 19′	
CXXI &	\$61.16 \$60.8 \$59.85	1 461.	96 l	62 [.] 94 59 [.] 50 61 28	l 59:38 l 61:42 d 60:97	l 61.86 l 61.74 d 60.72	. d60	72 l d d	60·58 62·72 57·53 63·35 64·63	<i>l</i> 61.13	
	60.6	t 62 :	25	61:24	60.29	61.44	61	.50	61.76	61.47	$M = 61^{"} \cdot 32$ $w = 8 \cdot 19$
Lesser circle readings	56°15′	236° 15′	63° 27′	248° 27′	70° 40′	250° 40′	77°51′	257° 51′	85° 3′	265 8'	
CXXII & CXXI	h 60.60	h 59.80 h	h 61.44	h 62.72	y Q1.30	l 62.62 l 62.86 h 60.48	90.19 <i>h</i>	y 60.86	4 61.96	h 63 16	$w = 17.57$ $\frac{1}{w} = 0.06$ $C = 33^{\circ} 16' 1''.39$
	60.66	бо.13	62.05	62.65	61.39	61.99	60·89	61.25	60·49	62.99	$M = 61'' \cdot 47 \\ w = 9 \cdot 38$

A		Cir	cle reading	gs, telesco	pe being se	et on CXX	III		Probabilities and
Angles.	0°1′	180° 1′	9° 2′	. 189°2′	18°4′	198° 4′	27° 5′	207° 4′	General Means.
CXIX CXIX	l 31.76 l 32.58	h 30.03 h 30.03	" l 28.70 l 29.20 h 28.64	" l 30·36 l 30·18	" l 28 90 l 27 18 l 28 94	" l 29.64 l 28.32	" h 28.50 l 32.68 l 35.64 l 35.30	" 1 30.76 1 30.14	
Means	32.17	30.02	28.85	30.52	28.34	. 28.98	33.03	30.45	136° 23′
CXXI &	+92°17 -49°85	+90.07 -50.02	+88.85 -48.48	+90 ² 7	+88·34 -48·04	+88.98 -49.96	+93.03 -52.50	+90 [.] 45 -49 [.] 40	Probability = 0.3
136° 22′ -89° 30′	42.32	39.13	40.37	40.48	40.30	39.03	40.83	41.05	46° 52′ 40″·47
CXVIII &	l 40.96 l 43.68 l 41.12	l 41.32 l 41.38	h 38:46	l 41.40 l 42.52 l 40.80	l 41 90 h 42 42	l 40·92 l 40·86	h 37.24 l 40.52 l 43.82 l 42.54 l 44.66	l 40°34 l 39°62	
Means	41.03	41.32	39.31	41.27	42.16	40.89	41.46	39.98	182° 56′
CXIX &	+ 41 92 -32 17	+41.35	+39 [.] 21 -28 [.] 85	+41.22 -30.52	+42.16 -28.34	+40.89 -28.98	+41.76 -33.03	+39 98 -30 45	Probability = 0.5
182° 56′ - 136° 23′	9.75	11.58	10.36	11.30	13.82	11.01	8 73	9.23	46° 33′ 10″·84
March	1848, ol	served b	y Mr. C		At CXXI with Tro	ughton d	and Sim	ms' 36-in	ch Theodolite.
Angles.		C	ircle readir	ngs, telesco	pe being s	et on CXI	x		Probabilities and
Angles.	208°11′	28°11′	217° 11′	87°11′	<b>226°</b> 13′	46° 13′	235°14′	55°14′	General Means.
CXIX &	n h 58·26 h 57·50	" \$ 58.92 \$ 58.24	l 59.60 l 57.98	l 56.90 l 58.58	" l 60 52 l 57 84 l 58 76	l 62·68 l 62·34	" l 58 64 l 57 86	l 58·52 l 58·80	
Means	57 88	58·58	58.79	57.74	59.04	62.21	58.5	58.66	151° 51′

### At CXXI-(Continued.)

*March 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite. †February 1855, observed by Mr. J. O. Nicolson with Barrow's 24-inch Theodolite No. 1.

Angle	Ci	rcle readings, telesc	ope being set on C	XIX	M = Mean of Groups
between	208°11′ 28°11′	217° i1′ 87° 11′	226°13′ 46°13	235°14′ 55°14′	C = Relative Weight $C = Concluded Angle$
CXX & CXXII	h 22·10 h 23·52 h 23·36 h 22·70 h 22·86	l 25 28 l 21 90 l 25 76 l 24 32 l 21 92	l 2192 l 250.		
	22.77 23.11	25.25 22.41	22.11 52.45	20.78 22.21	$M = 23'' \cdot 08$ $w = 2 \cdot 82$
Lesser circle readings	284°9′ 104°9′ 291′	'21' 111 <b>°</b> 21 <b>' 2</b> 98° 33	′ 118°33′ 305°45′ 1	25°45′ 812° 57′ 132° 57′	
CXXII	h 23.74 h 21.80 h 23	48 h 20 64 h 22 58	h 25 70 h 21 50 h	21 12 h 18 88 h 26 80 21 32 h 17 58 h 25 32 22 56 h 18 90 h 24 16 h 23 28 h 22 00 h 23 92	$w = 6.28$ $\frac{1}{w} = 0.16$ $C = 75^{\circ} 51' 23'' \cdot 08$
	23.30 23.48 24	25 22'17 24'71	23.47 21.89 2	20.76 25.43	$M = 23'' \cdot 11$ $w = 3 \cdot 46$
Lesser circle readings	208° 11′ 28° 11′	217° 11′ 87° 11′	226° 13′ 46° 13′	235°14′ 55°14′	
CXIX &	+57.88 +58.58 -22.77 -23.11	+58.79 +57.74 -25.52 -22.71	+59.04 +62.21 -25.42		Probability = 0.46
151° 51' -75° 51'	35.11 35.47	33.27 35.03	36.93 37.09	37:47 36:45	76° o' 35"·85
CXXII &	h 56 50 h 56 96 h 57 50 h 56 64	h 54.84 l 59.26 h 56.64 l 56.36 l 58.42	l 54.86 l 53.04 l 55.12 l 54.24		
	57:00 56:80	55'74 58'01	54'99 53'64	59.60 58.52	$M = 56'' \cdot 79$ $w = 1 \cdot 86$
Lesser circle readings	0°1′ 180°0′ 7°1	3′ 187°12′ 14°25′	194° 24′ 21° 36′ 201	°37′ 28°49′ 208°48′	
CXXII &	l 57 58 h 57 34 h 57 l 58 08 h 56 70 h 56 l 59 96 h 54 86 h 56 h 56 04 h 55 06 h 55 84	78 h 56 66 h 54 84	h 55 94 h 56 62 h 5	8.06 h 63.50 h 54.46	$w = 5.38$ $\frac{w}{1} = 0.19$ $C = 69^{\circ} 0.56''.89$
	57.09 56.30 57.	16 56.53 54.25	56.64 56.61 5	8.14 60.18 26.01	$M = 56^{n} \cdot 89$ $w = 3 \cdot 52$

### At CXXII

*February and March 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

†January and February 1855, observed by Mr. J. O. Nicolson with Colonel Waugh's 24-inch Theodolite No. 2.

Angle		Circle	readings	, telesco _l	pe being	set on CX	ΧI		M = Mean of Groups w = Relative Weight
between	0° 2′	180° 2′	9° 4′	189° 4′	18° 5′	198° 5′	27° 5′	207° 5′	C = Concluded Angle
_	11	"	"	11	11	"	ĮI.	" .	
CXXI &	h 35.38	h 35.58	h 33.22	h 35.90	1 33.22	1 34.42	h 35.38	h 32 88	
CXX	h 35.60 d 32.40	h 36°c8		h 33 [.] 82 h 34 [.] 46	l 32.70 d 34.30	l 35·40	h 34.16	h 34.66 h 32.38	
	34:46	35.83	33.58	34.73	33.41	34.01	34.77	33.31	$M = 34'' \cdot 34$ $w = 7 \cdot 09$
Lesser circle readings	0°1′ 1	80°2′ 7°12	′ 187°13′	14° 24′	194° 25′	21°36′ 201′	° 37′ 28° 48′	208° 49′	
CXXI &	h 35.96 h	31·16 h 38·6	16 h 37.50	h 37.52	h 35.36 h	35'90 h 34	.66 h 35 94	h 32.72	$w = 9.79$ $\frac{1}{1} = 0.10$
CXX	h35'40 h3	33`54 3 <b>4`5</b> 8	h 30.72 h 37.12	h 38.12 h 37.46	n 34°02 n	37'90 135 35'74 h36	72 h 33 74 5 32 h 35 86	n 32 90	$C = 70^{\circ} 52' 34''.65$
	35'47	33.12 37.4	10 36 [.] 78	38.26	34.10	36.41 36	5·02 35·63	32.40	$M = 35^{"} \cdot 56$ $w = 2 \cdot 70$
Lesser circle readings	70° 55′	250° 55′	79° 56′	259°56′	88° 58′	268° 58′	97° 58′	277°58′	
CXX &	h 61.24 h 60.84 d 57.95	h 60·20 h 60·34	9 90.31 9 90.30 9 90.30	h 59:30 d 60:97	l 62·20 l 60·68 d 62·78		h 60°22 d 58°93	h 60·08 d 60·83	
	60.01	60.52	61.13	60.14	61.89	59.28	59.28	60.46	$M = 60^{\circ\prime} \cdot 38$ $w = 8 \cdot 82$
Lesser circle readings	70° 54′ 2	50°54′ 78°	5′ <b>2</b> 58° 5′	85° 17′	265° 17′	92° 29′ 272	2° 29′ 99° 41	. 279°41′	_
+	d 57.70 d	62.45 h 56 62.15 h 59	24 h 62.74	h 58.38	h 60.04	d 61.03 h 5	8.72 h 62.1	2 h61.38	w = 11 '36
CXX &	d 58.50 d	62.23 h 59 62.13	h 62.22 h 62.28 h 62.22		a 04 80	a 02°19 h 5	9 34 1 03 4	o nog.08	$ \frac{1}{w} = 0.09  C = 55^{\circ} 34' 0''.47 $
	58.45	62.31 58	49 61.20	58.88	63.35	61.59 2	8 80 61.7	8 61.97	$M = 60^{\circ} \cdot 68$ $w = 2 \cdot 54$

### At CXXII—(Continued.)

*February and March 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

†January and February 1855, observed by Mr. J. O. Nicolson with Colonel Waugh's 24-inch Theodolite No. 2.

Angle		Ci	rcle reading	gs, telesc	ope being	g set on CX	XI		M = Mean of Groups  w = Relative Weight
between	126° 29	oʻ 306°29′	135° 30′	315° 30′	144° 32	′ 324° 32′	153° 32′	333°32′	C = Concluded Angle
CXXIII & CXXIV	l 55.10 d 53.23			" h 54.52 d 55.44	" l 54·18 l 54·86	l 53 [.] 84 l 53 [.] 96	d 57.87 d 60.01	" d 54 [.] 49 d 54 [.] 21	
	54.1	52.87	55.96	54.98	54.2	53.90	58.94	54.35	$M = 54'' \cdot 96$ $0 = 2 \cdot 24$
Lesser circle readings	<b>126°</b> 28′	306° 28′ 13	3° 39′ 313° 39′	140° 51′	320° 51′	148° 3′ 328	° 3′ 155° 15	′ 335° 15′	_
CXXIII &CXXIV	h 52.20	h 52.64 h 5	5:46 h 53:62 3:24 h 54:98 3:18 h 54:82 h 51:56 h 54:00	h 54.20 h 54.76	d 52.76	h 53 [.] 84 d 58	3.11 y 21.0;	2 h 53 02	$w = 6.07$ $\frac{1}{w} = 0.16$ $C = 38^{\circ} 25' 54''.01$
	23.11	52.40 5	3.96 23.80	53.12	51.64	54.03 56	5.77 21.03	53.98	$M = 53'' \cdot 45 \\ w = 3 \cdot 83$
Lesser circle readings	1 <b>64</b> ° 55°	344°55′	173° 56′	353°56′	182° 58′	2° 58′	191°58′	11° 58′	
CXXIV &	l 18 [.] 36 d 17 [.] 84			d 16 [.] 36 d 17 [.] 53	l 18.68	l 15.78 l 17.62	d 14.17 d 13.59	d 17 [.] 17 d 16 [.] 94	
	18.10	18.39	16.30	16.95	17.97	16.40	13.88	17.06	$M = 16^{\prime\prime} \cdot 92$ $M = 3 \cdot 68$
Lesser circle readings	164° 54′	344° 54′ 17	2° <b>5′ 3</b> 52°5′	179° 17′	359° 17′	186° 29′ 6°	29′ 193°41	′ 13° 41′	
CXXIV & CXXVI	h 13.88 h 16.66 h 15.92 h 17.96	h 17.84 h 1 h 18.88 h 2	980 h 1720 984 h 1624	d 16.31	d 15.96 d d 17.02 d d 16.44	d 14.42 d 16 d 14.60 d 13 d 14 d 15	·83 d 17·29 ·15	h 14.80 d 15.45 d 15.84	$w = 6.74$ $\frac{1}{w} = 0.15$ $C = 66^{\circ} 31' 16''.76$
	16.11	18.36 20	0.33 16.43	12.01	16.47	14.21 14	91 17.25	15.36	$M = 16^{"} \cdot 59$ $w = 3 \cdot 06$

#### At CXXII—(Continued.)

*February and March 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

†January and February 1855, observed by Mr. J. O. Nicolson with Colonel Waugh's 24-inch Theodolite No. 2.

Angle		Ci	rcle readin	gs, telesco	pe being	set on CXX	XI		M = Mean of Groups  w = Relative Weight
between	231°26′	51° 26′	240° 28′	60° 27′	249° 29′	69° 29′	258° 29′	78° 29′	C = Concluded Angle
	"	"	"	rı	,,	n	"	n	
CXXVI&	1 20.45	d 22.52	h 20.78	l 22.58	1 23.18	l 25.00	y 51.00	h 24.16	
CXXV	d 19.46	d 21.70	d 21.27 d 20.33	l 22.64	l 22.16	\$ 23.10	d 21 93	h 24.00	
	20.00	22.11	20.79	22.61	22.67	24.02	21.92	24.08	$M = 22'' \cdot 29  w = 3 \cdot 85$
Lesser circle readings	231°25′	51°25′ 238	8°36′ 58°36	3′ 245°48′	65° 48′	253° 0′ 73°	'0' <b>26</b> 0°12	′ 80° 12′	
+	h 20.76	d 19.69. d 2	0.58 <i>d</i> 50.5	6 h 21.24	h 19.46 h	21.66 h 19	.78 h 19.36	h 23.14	w = 11 '28
CXXVI		d 21'57 d 2	1'24 d 19'0						1
æ	h 21.64 d 18.70	a 21'47		d 20.17	n	21'14 h 18	70 121.22	a 22.50	$\frac{1}{w} = 0.09$
CXXV	d 20.66								$C = 57^{\circ} 48' 21'' 19$
	d 20.46								
	20.23	20.01 5	0.46 19.0	55 19 94	. 20.86	20.52 10	78 20'2	5 23.14	$M = 20^{\prime\prime} \cdot 61$ $w = 7 \cdot 43$
Lesser circle readings	289° 14′	109° 14′	298° 16′	118° 16′	80 <b>7°</b> 17′	127° 17′	816° 18′	186° 17′	
CXXV &	l 52.78 d 52.82		h 52.34 h 52.58	h 51.48	l 50.62 l 51.16	l 50.14 l 50.14	h 50.90 h 51.46	h 51.34 h 51.34	-
	52.80	50 [.] 68	52.46	50.79	50 [.] 89	50.50	51.18	51.63	$M = 51'' \cdot 34$ $w = 9 \cdot 52$
Lesser circle readings	289°14′	109°14′ 29	6°25′ 116°2	5′ 803° 87′	123°37′	310°49′ <b>1</b> 30	°49′318°0	' 138°1′	
	h 54.62	h55'64 h5	0.76 h 53.0	8 h 52.04	h 53.86 h	51.26 h 51	1.08 y 21.8	8 h 52.90	6 154
+	h 52.66	h 53 76 h 5	1.32 h 50.8	38 h 50.74	h 51.08 h	50.68 h 52	50 h 50 6	8 h 52.78	w = 16.75
CXXV &		h 53 86 h 5					.66 y 21.5	3	- o · o 6
CXXI	d 52.56		y 21.8	34	h51.55 y	51.45			$C = 70^{\circ} 47' 51''.65$
	d 52 38 d 51 68								0 = 70 47 31 03
	5 ² .79	54.42 5	(1.48 22.	10 51.87	51.48	50 70 51	1.42 21.5	8 52.84	$M = 52'' \cdot 07$ $w = 7 \cdot 23$

### At CXXIII

*March 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

†March 1855, observed by Mr. J. O. Nicolson with Barrow's 24-inch Theodolite No. 1.

Angle		Circ	ele reading	s, telesco	pe being s	et on CXX	IV .		M = Mean of Groups  w = Relative Weight
between	275° 20′	95° 20′	284° 21′	104° 21′	293° 23′	113° 22′	302° 23′	122°23′	C = Concluded Angle
•	"	"	"	11	"		11	11	
CXXIV &	h 63 06	_ 00	l 62.10 l 63.42 l 62.10	l 65.42 l 63.10 l 63.78	l 61.42 l 59.64 l 62.36	l 61.48 l 61.24	l 62.58 l 62.88	<i>l</i> 63.48 <i>l</i> 64.00	
	62:48	64.36	62.64	64.10	61.14	61.21	62.73	63.4	$M = 62^{"} \cdot 83$ $w = 5 \cdot 24$
Lesser circle readings	œσ	180° 0′ 7°	12' 187° 12	′ 14° 24′	194° 24′ 2	21° <b>36′ 2</b> 01°	37′ 28° 49′	208° 49′	
CXXIV &CXXII	<b>й</b> б2 [.] 90	h62 12 h6 h59 76 h6 h62 50 h6 h62	5.56 l 59.08	3 h 64 06 5 h 63 20	h 63 24 h h 63 18 h	63.98 h 60.	98 16468 88 16164	h 60.74 h 63.52	$w = 12.18$ $\frac{1}{10} = 0.08$ $C = 84^{\circ} 41' 2''.71$
	62.78	61.46 6	4·19 61·0	5 63.74	63.08	62.98 62	29 63.26	61.49	$M = 62'' \cdot 63$ $w = 6 \cdot 94$
Lesser circle readings	0° 1′	180° 1′	9° 2′	189° 2′	18° 4′ ·	198° 3′	27° 4′	207° 4′	
CXXII &	y 11.88	,	l 11.18 l 10.36 l 11.18	l 11.34 l 11.34	l 12 [.] 20 l 12 [.] 02	l 13.10	l 11.20 l 13.10	l 10 22 l 10 22	
	11.87	8.57	10.03	11.81	12.11	. 12:30	12.30	10.55	$M = 11'' \cdot 26$ $w = 4 \cdot 49$
Lesser circle readings	84° 41′	264° 41′ 91°	'53' 271°53	′ 99° 5′	279°5′ 10	06° 17′ 286°	18' 113°30	′ 293° 30′	
CXXII & CXX	h 10.08	h13'54 h1: h15'32 h1: h11'88 h1:	3·88 <i>l</i> 11·46	8 y 11.80	h 12 18 h	9.02 h 9.	86 l 12 52 36 l 14 50	h 12.62	$w = 8.41$ $\frac{1}{w} = 0.12$ $C = 68^{\circ} \text{ II' II''.54}$
	10.99	13.28 12	·60 11·84	12.86	12.05	9.74 9.	40 13.21	12.07	M = 3.3

At CXXIV

*April 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite. †March 1855, observed by Mr. J. O. Nicolson with Barrow's 24-inch Theodolite No. 1.

Angle		Circle	readings,	telescop	e being se	et on CXX	VI		M = Mean of Groups w = Relative Weight
between	805°7′	125°6′	314°9′	134°8′	<b>3</b> 23°10′	143° 10′	832° 11′	152°11′	C = Concluded Angle
	n	"	"	11	n	n	"	"	
CXXVI &	l 13.12 l 13.44		_ <:	l 13.52 l 12.64	l 11.30 l 11.48	l 13.13	1 13.10 1 14.10	l 13.28	
	13.58	13:87	12.01	12.03	11.39	. 12.86	13.60	12.85	$M = 12^{\prime\prime} \cdot 96$ $w = 12 \cdot 72$
Lesser circle readings	0.00	180°1′ 7°1	2′ 187°13′	14° 25′	194° 25′	21°37′ 201°	37' 28° 48′	208° 49′	
CXXVI & CXXII	y 13.10 y 13.55	h 13'94 h 11' h 12'58 h 15' l 10'30 h 10' l 12'14 h 14' h 9' h 9'	38 h 12 64 50 h 12 64 14 88 96	h 9.84	h 12.92 h	11.18 y 10.	20 h 13 54	l 12.78	$w = 18.46$ $\frac{1}{w} = 0.05$ $0 = 54^{\circ} 55' 12''.60$
	12.11	12.54 11.	49 12.02	10.18	13.38	11,34 0.	91 12.64	11.41	$M = 11'' \cdot 79$ $w = 5 \cdot 74$
Lesser circle readings	0° 2′	.180° 2′	9° 4′	189 <b>° 4′</b>	18° 6′	198°5′	27° 7′	207° 7′	
CXXIII &	l 2.94 l 2.94		1 3·82 1 4·34	l 4.36 l 3.80	l 4.18	l 4.43	l 2.58	l 2.14 l 2.82	
·	2.92	2.14	4.08	4.08	4.08	4.61	<b>2</b> .79	2.48	$M = 3'' \cdot 44$ $w = 10 \cdot 56$
Lesser circle readings	54° 56′	234° 56′ 62°	8' 242° 8'	69° 20′	249° 20′	76° 32′ 256°	32′ 83° <b>44′</b>	263°44′	
† CXXII & CXXIII	h 60.60	h62 90 h65 h61 16 h61 l 63 46 h64 h64	04 h63 18 00 h63 26	h 62 96	h 62.86 h	59'34 h 65' 66'24 h 65' 61'16 '	48 h 61.74	l 63*84 l 62*80	$w = 15 \cdot 28$ $\frac{1}{w} = 0 \cdot 07$ $C = 56^{\circ} 53'  3'' \cdot 33$
	61.50	62.21 63.	61 63.59	63.63	63.52	62.62 65	83 61 [.] 74	63.00	$M = 63'' \cdot 09$ $w = 4 \cdot 72$

At CXXV

*April 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

†April 1855, observed by Mr. J. O. Nicolson with Barrow's 24-inch Theodolite No. 1.

Angle			M = Mean of Groups  Relative Weight						
between	319°51′	139°51′	328° 52′	148° 52′	837°54′	157°54′	846° 56′	166° 56′	C = Concluded Angle
	"	"	"	"	. 11	"	"	n	
CXXI & CXXII	l 10.82 l 11.74	l 12 [.] 20 l 11 [.] 48	l 10.04 l 9.92	1 11.19 1 10.08	l 12.08	l 10.46	l 11.03 l 10.80	\$ 10.08 \$ 11.08	
	11.58	11.84	9.98	11.07	11.88	10.01	11'21	11,03	M = 11"·11 w = 18 · 64
Lesser circle readings	819° 49′	139°49′ 32	27°1′ 147°	1′ 834°14′	154° 14′ 3	841°25′ 161°	'25' <b>348°</b> 3	7′ 168° 38′	-
CXXI &	h 12.74	h 12.64 l h 10.72 l h 10.94 l	8.68 y 0.4	6 <i>l</i> 12.76	l 12.96 h	12.38 <i>l</i> 8.	14 h 10.6	2 h 11'74	w = 23 '10 $\frac{1}{c} = 0$ '04 $C = 40^{\circ}$ II' II"'05
	12.32	11.43	8·48 9·7	1 12.60	10'12	11.39 9	.00 11.3	7 11.58	$M = 10^{\prime\prime} \cdot 78$ $w = 4 \cdot 46$
Lesser circle readings	0° 2′	180° 2′	9° 3′	189° 3′	18° 5′	198°5′	27° 8′	207° 7′	
CXXII &	l 51.34 l 50.18		l 52.08 l 51.88	1 51.20 1 51.10	l 51.24 l 50.86	l 51.86 l 52.42	l 50.78 l 51.36	l 50.76 l 50.46	
·	50:76	50.58	51.08	51.30	51.05	52.14	51.02	50.01	$M = 51'' \cdot 15$ $w = 17 \cdot 04$
Lesser circle readings	0°0′	180°1′ 7	°12′ 187°18	3′ 1 <b>4°</b> 25′	19 <b>4°25′</b>	21°36′ 201°	36′ <b>28°4</b> 8	208°49′	
CXXII &	h 50.26	h51.32 l5 l52.88 l5 l51.68 l5 l51.58	0.78 148.4	6 1 53 22	h 49 44 h h 50 16 l	50.52 1 51	·82 h52·1 ·64 h51·6	2 h 50.70	$w = 22 .70$ $\frac{1}{w} = 0 .04$ $C = 72^{\circ} 22' 51'' .15$
	50.73	51.87 5	0.21 48.4	.7 52 [.] 61	49 [.] 86	51.26 21	.73 52·2	б 51 [.] 64	$M = 51'' \cdot 14$ $w = 5 \cdot 66$

### At CXXVI

*April 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

†March and April 1855, observed by Mr. J. O. Nicolson with Barrow's 24-inch Theodolite No. 1.

Angle		Cia	cle reading	s, telesco	pe being s	et on CXX	v		M = Mean of Groups w = Relative Weight
between	310°13′	130° 12′	819° 14′	139° 13′	328° 12′	148° 12′	337° 16′	157° 16′	C = Concluded Angle
CXXV &	" l 47 ⁻ 56 l 47 ⁻ 26	l 49.66 l 50.18	l 48.66 l 48.18	" l 48.72 l 48.80	" l 47.30 l 48 32	l 47.44 .l 46.88	" l 47.36 l 46.78	" l 46·54 l 46·96	
	47.41	49'92	.48.42	48.76	47 81	47.16	47.07	46 [.] 75	$M = 47'' \cdot 91$ $w = 6 \cdot 80$
Lesser circle readings	139° 36′	819°86′ 146	°48′ 326°44	8′ 153° 59′	334° 0′ 1	61°12′ 341°	°12′ 168° 2	4′ 348° 24′	
CXXV &	l 49 84 l 49 72 l 50 26	h 44 02 l 4. h 44 76 l 4. h 43 64 l 4. l 46 92 l 46 86	1.64 1 45.10	6 h 46 28	h48.70 l h49.06 l	48.94 h 51	'30 <b>l</b> 50'7	8 1 50.50	$w = 8.84$ $\frac{1}{w} = 0.11$ $C = 49^{\circ} 48' 47''.85$
	49.09	45.54 44	1.00 42.50	0 46.11	48.65	48.00 49	'44 50'0	1 49.91	$M = 47^{\prime\prime} \cdot 63$ $w = 2 \cdot 04$
Lesser circle readings	0° 2′	180°1′	9° 2′	189° 2′	18°1′	198°1′	27° 5′	207°5′	
CXXII &	l 31.80	l 31.74 l 30.92	l 30.18	l 31.26	l 30.14 l 31.66	l 31.82 l 32.66	l 31'90 l 32'04	l 30.44 l 30.26	
	31.69	31.33	30.55	32.00	30.40	32.54	31.97	30.32	$M = 31'' \cdot 31$ $w = 11 \cdot 60$
Lesser circle readings	189° 24′	9°24′ 196	° 36′ 16° 37	′ 203° 48′	23° 48′	211°1′ 31°	1' 218° 15	2′ 88°13′	
CXXII &	h 32'42 l 34'56 l 33'60	h 32.78 h 33 h 32.62 h 36 h 36 44 l 3 l 33.44 l 3 l 33.24 l 32	5 68	h 30.12	h 30.92 l	28.26 h 33	.74 <i>l</i> 29.3:	2 <i>l</i> 32 [.] 20	$w = 14.19$ $\frac{1}{w} = 0.07$ $G = 58^{\circ} 33' 31''.48$
	33.01	33'70 34	1.03 34.30	31.01	30.60	29 [.] 61 32	.48 30.1	8 31.40	$M = 32'' \cdot 25$ $w = 2 \cdot 59$

April 1877.

J. B. N. HENNESSEY,

In charge of Computing Office

## NORTH-EAST LONGITUDINAL SERIES

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 1.

	Observed Angles					Fixed data	t				
		ral = (ty) ²		Log. R		A to side B (see gles 3 and $5 = 1$	49° 53′ 5		361139	,5	
No.	Value	Reciprocal Weight = (Probability) ²			E	quations to be sa					Factor
		H A	i	x ₁	+ x ₂	+ x ₈	=	$e_1 =$	- 0.	<b>4</b> I,	$\lambda_1$
				$\mathbf{x_4}$	+ x ₅	+x ₆	==				λ
	0 / "			<b>x</b> ₇	+ x ₈	+ x ₉	===	$e_3 = e_4 =$	_ O	70, 20.	λ₃ λ₄
1	73 55 28.91	•09		<b>x</b> ₁₀	+ x ₁₁ + x ₁₄	+ x ₁₉ + x ₁₆	_	$e_5 = 0$	<del>-</del> 0.	20 <b>,</b> 07 <b>,</b>	$\lambda_{5}$
	,,,	-		X ₁₃ X ₁₆	$+x_{17}$	+ x ₁₈	=	-			$\lambda_6^*$
2	39 29 27.25	•25	İ	X ₃	+ x ₅	10	_	: e ₇ =			$\lambda_7$
3	66 <b>3</b> 5 5 [.] 94	• 12		x ₁	+ x ₄	+ x ₇ .	} =	: e ₈ =	<b>-</b> 0·	21,	$\lambda_8$
4	65 23 38.79	•14	1 +	- x ₁₀	+ x ₁₈	+ x ₁₆ , 46x ₄ +1 · 645x ₆	J	: e ₉ =			λ
		•14	-1·21		$+ 29x_1 - 43x_8$	$-12 x_5$	า _	- <b>Cg</b> —	, •	~- <b>-</b> ,	
5	,	•	+1.6	45×6	$88x_8$	+ ·53 x ₉	L _	e ₁₀ =	- 0.	200.	λ ₁₀
6	31 17 37.11	•05	- '20	6 x ₁₁	$+.49x_{19}$	$-1.028x_{14}$		· C ₁₀ —	·	3771	2-10
7	69 12 52.72	•07	+ '1	7 x ₁₅	$33x_{17}$	+ '73 x ₁₈	J				
8	48 41 20.88	•14			73	41 h.4	ha fasts				
	• •	•11			Equa	tions between t	ne lactors				
9	62 5 50.90					C	o-efficient	s of			
10	40 44 14.38	.14	No. of	Value of							
11	75 35 13.68	•03	е	е	$\lambda_1$ $\lambda_2$	$\lambda_8$ $\lambda_4$ $\lambda$	δ λ6	$\lambda_7$	$\lambda_8$	$\lambda_9$	$\lambda_{10}$
12	63 40 36.52	.12	<b> </b>		<u> </u>						
			I	- 0.41	+ • 46			+ 12 +			
13	56 21 23.19	•04	2	+ 1.61	+ .33	3	•		⊦'I4 - ⊦'07	+ .0179	- · o6
14	43 22 56.90	•03	3	+ 1·20		+·32 +·29			- °14		+ .02
15	80 15 43.09	.07	5	- 0.07		+ · -7	14	4	1.04		010
16	54 22 21.80	.05	3 4 5 6 7 8	+ 0.07	t		+:37		⊦ <b>∙</b> 05		+ .12
	<b>3</b> ·	_	7	+ 1.29		*	•	+ • 26		.0086	+ .03
17	71 54 3.34	.07	1	- 0.31				٦		- · 0383 - · • 6408	; ; + · 5°
18	53 43 37.53	• 25	9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						1 3403	+ .87
			-		1	1					
	Values of the Factor	rs 				Angular errors in					
	$\lambda_1 = -0.431$			$x_1 = -$	- '14	$x_7 = -$	42	<b>x</b> ₁₈	,= -	•14	
	$\lambda_2 = +5.811$			x ₂ = -	- '24	$x_8 = +$	·34	<b>x</b> ₁₄	<b>,</b> = +	•18	
	$\lambda_8 = -2.958$ $\lambda_4 = +6.676$		İ	<b>x</b> ₈ = ·	03	$x_9 = -$	•68	<b>x</b> 10	₅ = -	.11	
	$\lambda_5 = -0.504$			x ₄ =	03	$x_{10} = +$	.21	x ₁	6 = +	.01	
	$\lambda_6 = + 3.241$			$x_6 =$	+ 1.32	$x_{11} = +$	•25	<b>x</b> 13	₇ = +	•37	
	$\lambda_7 = + 2.852$			$x_6 =$	+ '32	$x_{12} = +$	•44	<b>x</b> 1	₈ = -	.31	
	$\lambda_8 = -3.022$		1			r 07					
	$\lambda_9 = + 6.587$	9				$[wx^3] = 32$	.17				
	$\lambda_{10} = -6.136$	o	1		-						

[†] The fixed data here given are obtained from Figure No. 8 of the Great Arc Meridional Series, Section 24° to 30°, which was previously reduced. They diffused the final values shewn in Vol. IV of the Operations of the Great Trigonometrical Survey of India, Figure No. 1 of this Series having been calculated prior to the reduction of the North-West Quadrilateral.

* In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the platerm in the qth line being always the same as the co-efficient of the qth term in the pth line.

Figure No. 2.

	Obs	ervec	l Angles				Equation	as to be s	atisfied		Factor
No.		Va	lue	Reciprocal Weight= (Probability) ²		<b>x</b> ₈	+ x ₄	+ x ₈ + x ₅ + x ₇	+ x ₄ + x ₆ + x ₈	$= e_1 = +0.71$ $= e_2 = -0.02$ $= e_3 = -1.92$	, λ ₃
. <b>I</b>	0 17	, 19	,, 60·86	•21		3·202 - ·86			-1.631x ₈	$= e_4 = +1.81$	, λ ₄
3	8 ₇ 5 ⁶	8	_	•10		0.00.0.00	Equat	ions betw	veen the fact	ors	
5	18 52	35 o	7.48	•10	No. of	Value of			Co-effic	ients of	
6 7 8	53 43 31	15 13 30	36·18 22·46 55·76	·03 ·15	е `	<b>e</b>	λ ₁		λ ₃	λ ₈	λ4
	J	3			1 2 3 4	+0.71 -0.02 -1.92 +1.81	+0*48		+0·17 +0·27 *	+0.36	+0.954 +0.118 -0.222 +2.957
٧	alues	of t	he Facto	ors			Ang	gular erro	ors in seconds	3	
	λ ₃ λ ₈	=	+2.596 +0.821 -5.998 -0.708				$x_1 = + .07$ $x_2 = + .16$ $x_3 = + .14$ $x_4 = + .34$	·	x ₆	= -·36 = -·14 = -·89 = -·53	

Figure No. 3.

	Observed	Angles				Equa	tions to	be satisfied		Factor
No.	Valt	ıe	Reciprocal Weight = (Probability) ²		x ₈	+ x ₂ + x ₄ + x ₆	+ x ₅ + x ₇	+ x ₆ + x ₈	$= e_3 = + 1.71$ $= e_3 = + 1.71$ $= e_3 = + 1.71$	λ,
ī	o , 54 51	,, 43:55	.30			70x ₁ -	- · 10x ₃	$+1.507x_{8}$ $-2.840x_{8}$	$= e_4 = -1.45$	
3	52 10 31 53	58·69 28·66	·06			Eq	uations b	etween the fact	ors	
<b>4</b> 5	29 I	55°55 2°94	•14	No. of	Value of			Co-effici	ients of	
7	78 I 53 33	36.98	•21	e	е	7	\ <u>'</u>	$\lambda_{g}$	λ ₈	λ4
8	19 23	46.65	•13	I 2	- 0·96	+0.	49	+0·23 +0·56	+0.33	+0.270
				3	+ 1.71			*	+0.69	-0·805 +1·788
-	Values of	the Fact	ors				Angular	errors in second	is '	
	λ ₁ =	-2.713	<b>,</b>			$x_1 = -$	32	<b>X</b> ₅	= +:51	
	$\lambda_2 = \lambda_3 =$					$x_2 = -1$ $x_3 = -1$	-		= +·51 = +·70	
	λ, =	+1.593	3			x ₄ = -		_	=01	
								]=7.78		

Figure No. 4.

	Obs	erve	l Angles				E	quations	to be satis	fied			Factor
No.		Va	lue	Reciprocal Weight = (Probability) ²		x ₄ .	+ x ₂ + x ₅ - x ₈ + x ₁₁	$+ x_{8} + x_{6} + x_{9} + x_{19}$			= e ₃ =	= + 0.4	$\lambda_3$ $\lambda_3$ $\lambda_3$
1 2 3 4	0 78 36 64 54	39 50 29 59	7 47·21 39·72 37·07 32·72	·35 ·13 ·26 ·44	+ '4 ·8	x ₁₈ x ₁ 8x ₈ -1·33	+ x ₁₄ + x ₄ 35x ₂ +	$+x_{15}$ $+x_{7}$ $\cdot 60x_{6}$	+ x ₁₀ - '44		$= e_{5} :$ $= e_{6} :$ $e_{6} :$ $e_{7} :$	= - 0.9	$\lambda_5$ , $\lambda_5$
5 6	66 58	1 59	9·51	·66 ·07		1		Equation	s between	the factors	, 		
<b>7</b> 8	59 49	1 31	59·98 10·84	·52 ·08	No. of	Value of	λ ₁	λ ₃	λ ₈	Co-efficient	s of $\lambda_5$	$\lambda_6$	λ
9 10 11 12 13 14	71 52 52 75 115 45	26 13 12 33 4 34 20	51·70 52·00 33·70 34·51 48·09 40·22 32·87	· 24 · 36 · 34 · 18 · 21 · 35 · 23	1 2 3 4 5 6	+0.69 -2.81 +0.77 -0.85 -0.95 0.00 +0.27	+0.74	+1.14	+o·84 *	+0.88	+0.49	+0·35 +0·44 +0·52 +0·36 +0·21 +1·88	-0.049 -0.248 +0.014 -0.218 +0.312
	Values	of	the Facto	rs				Angula	r errors in	seconds			
	$\lambda_{3}$ $\lambda_{3}$ $\lambda_{4}$ $\lambda_{5}$ $\lambda_{6}$	= = = =	+ 0.528 - 2.737 + 0.396 - 1.332 - 1.394 + 0.843 - 0.083			$x_3 = +$ $x_8 = +$	·08 ·13 ·83	x x . x	-	65 04 08 18		- ·24 - ·12 - ·46	

Figure No. 5.

	Obs	erve	d Angles					Equat	ions to	be satis	fied			Factor
No.		Va	llue	Reciprocal Weight = (Probability) ²		X ₁ X ₄ X ₇ X ₁₀ X ₁₃	+ x ₂ + x ₅ + x ₈ + x ₁₁ + x ₁₄	-	+ + +	- x ₈ - x ₆ - x ₉ - x ₁₂ - x ₁₅	= = =	$e_1 = -e_3 = -e_3 = -e_4 = +e_5 = -$	0.00, 0.11, 1.01,	$egin{array}{c} \lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4 \end{array}$
1 2 3 4	52 52 74 57	32 47 39 50	29.77 45.59 45.31 55.92	·42 ·10 ·06 ·14	- ·6 + ·7	$x_{16} + x_4 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x$	$+x_{17}$	· + x	18 + + ·51 - ·65 + ·71	x ₁₈ x ₁₆ x ₆	=	$e_{6}^{6} = +$ $e_{7}^{7} = +$ $e_{8}^{7} = +$	o·30,	λ ₅ λ ₄ λ ₇ λ ₈
5 6	59 63	6	32.63	·14 ·03			Eq	luations	betwee	en the	factors			
7 8	68 56	<b>33 59</b>	26·25 40·04	·20	No. of	Value of				Co-e	fficients	of		
9 10	54 67	26 42	54·24 30·49	·21 ·26	е	е	$\lambda_1$	λ	λ ₃	λ,	$\lambda_{5}$	$\lambda_6$	λ ₇	λ
1 I 12	57 55	15	58·66 32·53	·07 ·08	1 2	0.00	+0.58	+o.31					-0.43	-0.069 -0.069
13	60 ~	58 30	24·55 27·18	•13	3 4	+ 1.01			+0.42	+0.41			+0.30	+0.011
15 16 17	54 48 72	31 22 32	7·90 13·82 28·88	·04	5 6 7	+ 0.30				*	+0.46	+0.36	+0.11	-0.010 -0.132
18	59	5	18.31	•04	8	+ 4.77								+0.438
v	alues	of t	he Factor	*8				Angul	ar error	s in sec	conds			
	$\lambda_{9} = \lambda_{3} = \lambda_{4} = \lambda_{5} = \lambda_{6} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7} = \lambda_{7$	= = = =	+ 1.597 + 3.174 - 4.731 + 2.290 + 1.780 + 1.804 - 0.303 + 13.649			$x_3 = \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	+ ·54 - ·88 + ·32 + ·40 - ·70 + ·30	х к х х	$x_{17} = -x_{18} = -x_{19} = +x_{11} = -x_{12} = +x_{12} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{13} = +x_{1$	·14 1·04 ·51 ·45 ·95		$x_{18} = +$ $x_{14} =  x_{16} = +$ $x_{16} = +$ $x_{17} =  x_{18} = +$	- 1·74 - ·46 - ·17 - ·27	

Figure No. 6.

			·			O	bserve	d Angles						
No.		Value		Reciprocal Weight = (Probability) ²	No.		Val	ue	Reciprocal Weight — (Probability)?	No.		Val	ue	Reciprocal Weight = (Probability)
1	° 63	, 14	" 48·48	•94	11	 58	, 58	" 17·57	1.37	21	° 62	, 16	" 7·87	•94
2,	56	_	52.42	.98	12	61	40	48.38	1.31	22	55	57	33.25	1.37
3	<b>5</b> 9	-	19.87	.66	13	57	27	29:50	.96	23	55 65	12	43.93	1.35
4	59	31	7.08	.50	14	57	36	29.89	•94	24	58	49	41.22	•90
5	64		44.20	1.19	15	64	56	1.64	•66	25	60	52	35.73	2.72
6	55	5 <del>4</del>	8.86	.66	16	61	34	22.11	1.10	26	55	34	53.39	•69
7	. 58		18.07	1.3	17	60	46	18.68	.71	27	63	32	31.85	1.17
8	61	_	27 · 18	1.08	18	57	39	18.54	.71	28	64	36	35.91	1.32
9	59	-	15.13	.72	19	59	35	43.10	·86	29	60	35	35.43	1.2
10	59		54.84	1.69	20	58	8	11.32	1.37	30	54	47	49.99	1.38
					Equ	ations t	o be s	atisfied						Factor
	x ₁	+ x ₂	+ x ₃	••		••	•	•	••	••	$= e_1$	= +	0.17,	$\lambda_1$
	<b>x</b> ₄ .	+ <b>x</b> ₅	+ x ₆	• •		••	•	•	••	••	= e ₂	= -	0.17,	λ
	<b>x</b> ₇	+ x ₈	+ x ₉	• •		••	•	•	••	• •	= e ₈	= -	0.29,	λ ₈
	<b>x</b> ₁₀	+ x ₁₁				••		•	••	• •		, = + 		λ,
	x ₁₃ x ₁₆	+ x ₁₄ + x ₁₇	+ x ₁₅			••		•	••	••		= +		入 ₅ 入 ₆
•	-16 X ₁₉	+ x ₂₀	+x ₉₁			••		•	••	••		= +		λ ₇
	x ₉₃	+ x ₂₈	+ x ₂₄	••		••			••	• •		= -		λ ₈
	X ₂₅	+ x ₂₆	+ x ₂₇	••		••	•	•	••	••	= e ₉	= +	0.34,	$\lambda_9$
	<b>x</b> ₂₈	+ x ₂₉	+ x ₈₀	••		••	•	•	••	••	= e ₁₀	0 = +	0.69,	$\lambda_{10}$
	$\mathbf{x_1}$	+ x4	+ x ₇	+ x ₁		+ x ₁₃		+ x ₁₆	• •	•••		1 = +		$\lambda_{11}$
	X ₉	+ x ₁₁	+ x ₁₉	+ x ₂		+ x ₂₅		+ x ₂₈	• •	••	$= e_1$	s = +	0.69,	λ ₁₉
+·	58x ₈ 54x ₁₂	$-\cdot 65x_{2}$ $-\cdot 60x_{11}$	+ ·68x ₆ + ·47x ₁₅		4 +	· · 58x ₉ · · 63x ₁₈	<b>-</b> ·5	$\left\{5x_{8}\right\}$	••	••	= e ₁ ;	_s = -	1.62,	$\lambda_{18}$
+•	55x ₈ 60x ₉₄	- · 60x ₇ - · 46x ₂₃	$+ \cdot 59x_{10} + \cdot 50x_{27}$	$54x_1$	s +		6	$\{6x_{29}\}$	••	••	= e ₁ .	<u> </u>	3.24	λ ₁₄

Figure No. 6—(Continued).

					E	Equation	ıs betw	een the	factor	rs					
No. of	Value of							Со-е	efficien	ts of					
е	е	λ	$\lambda_2$	$\lambda_3$	λ4	$\lambda_{5}$	$\lambda_6$	λη	λ ₈	λ	λ ₁₀	λ ₁₁	λ ₁₃	λ ₁₈	λ ₁ ,
I	+ 0.12	+2.28	}									+0.94		-c·254	
2	- 0.17		+2.35									+0.20		-0.122	
3	- 0.39			+3.03	3		•					+1.53	+0.45	-0.176	-0.1
4	+ 0.13				+4-27	,					•	+1.69	+1.37	-0.169	+0.3
5	+ 0.44					+2.56						+0.96		-0.383	
6	- 1.27						+2.22	,				+1.10		+0.020	
7	+ 1.69							+3.17	,				+0.86	•	-0.3
8	- 2.31					*			+3.6	2			+1.37		-0.08
9	+ 0.34									+4.58			+2.72		+0.10
10	+ 0.69										+4.11		+1.32		+0.00
11	+ 0.08											+6.42			+0.25
12	+ 0.69												+8.36	-0.404	
13	- 1.62													+3.654	-o·68
14	+ 3.24													•	+4.85
Values	of the Fact	cors						Angul	ar erro	rs in sec	onds				
λ	= -0:	020													
λ	= -0.	1			<b>x</b> ₁ =	=+ 12	;		$\mathbf{x}_{11} = -$	+ • 23	•	<b>x</b> ₂₁ =	+ .89		
_	= -0.	ŀ		,	<b>x</b> ₂ =	= + • 17	•		x ₁₂ =-	- · 83		x ₂₂ =	69		
_		150			<b>x</b> ₈ =	= - 12	,		<b>x</b> ₁₈ = -	+ • 23		x ₂₈ =	-1.32		
_	= +0				<b>x</b> ₄ =	= + .03			<b>x</b> ₁₄ = -	+ · 24		X ₂₄ =	- '20		
_	= -0.	1			<b>x</b> ₆ =	= + .03	;		X ₁₆ =-	03		<b>x</b> ₉₅ =	+ '32		
	= +0.				<b>x</b> ₆ =	=21			$x_{16} = -$	- `45	,	x ₉₆ =	36		
_	= -0:	E .			<b>x</b> ₇ =	= · 56			x ₁₇ =-	- • 29		x ₂₇ =	+ •38		
_	= -o·	1		, ,	<b>x</b> ₈ =	= + .40	)		x ₁₈ =-	53	•	x ₉₈ =	+ '34		
_	= +0.	1			<b>x</b> ₉ =	=13			x ₁₉ = -	· 62	4 · 1	x ₂₉ =	- '44		
_	= +0.	I I		2	<b>x</b> ₁₀ =	= + · 72			x ₂₀ = -	F • 18		x ₈₀ =	+ .79		
_	= +o·														
_	= -0.			·					[wx ² ] =	=6.41					
_	= +0.									•					

Figure No. 7.

	Ob	serve	ed Angles	3			E	quatio	ns to be	satisfie	ì				Factor
					-	x ₁	+:	X ₂		+ x ₃	=	= e, :	= -	1.412,	$\lambda_1$
				t 33		X4	+;			$+x_6$				0.845,	$\lambda_{2}$
No.		$\mathbf{v}$	alue	ipro eigh		<b>x</b> ₇ .	+:	<b>x</b> ₈		$+x_9$				0.514,	$\lambda_3$
				Reciprocal Weight		<b>x</b> ₁₀	+:			+ x ₁₉	=	= e ₄ :	= -	0.152,	$\lambda_4$
						<b>x</b> ₁₈	+:			$+x_{15}$	=	-		0.540,	$\lambda_{s}$
					1 .	1 ₁₆	+: 			+ x ₁₈		-		0.905,	$\lambda_6$
	0	•	*		x ₁	+ x ₄ + x 6x ₈	47 + 2 - 32		+ x ₁₅ +	$+x_{16}$ $25x_6$	`	= e ₇ :	= -	1.27,	λη
I	70	52	34.65	•10	_	8x ₅	+ 18:	~g X₀	_	7X ₈					
2	33	16	1.39	•06	+	15x ₁₂	- 13:		+	2x ₁₅		= e ₈	= +	25.1,	$\lambda_8$
3	75	51	23.08	•16	_	13x ₁₄	+ 14		_	8x ₁₇	)				
4	70	47	51.65	•06											
5	, 69	۰,	56.89	•19	l		·								
5 6	-		11.02	-				Equat	ious betw	reen th	e factor	8			
	40	11	_	•04											
7	57	48	21.19	•69			]			Co	-efficien	ts of			
8	72	22	51.12	•04	No. of	Value of									
9	49	<b>4</b> 8	47.85	.11	e	e	λ ₁	λ	$\lambda_3$	λ,	, λ	<b>E</b>	$\lambda_6$	λη	λ ₈
10	66	31	16.76	.12								• 		7	8
11	58	33	31.48	.07	1	- 1.412	+ .33							+ .10	-0.9
12	54	55	12.60	.02	2	- o·845		+ '2	19					+ .00	-o·5
13	38	25	54.01	•16	3	- o·514			+ •2.	4				+ .09	+1.7
14	56	53	3.33	•07	4	- 0.123				+ •	27			+ .12	-0.1
15	84	41	2.71	•08	5	- o·540						31		+ .19	-0.7
16	55	34	0.47	•09	6	- 0.905			*		•	+	.33	+ .09	+0.7
17	68	11	11.54	.12								•	33	•	+0 /
18	<b>56</b>	14	47.82		7	- 1.27								+ .65	
	<b>3</b> 0		4/ 04		8	+ 25 · 1									- 208 - 39
V	alues	of t	he Factor	rs			•	Ang	ular erroi	s in se	conds			•	
;	λ ₁ :	=	<b>-</b> 4·153	8		$x_1 = -$	.378		x ₇ = -	251		<b>x</b> ₁₃	= -	•201	
7	λ ₃ =	= -	- 2.766	6		$x_2 = -$	•489		$x_8 = -$	- •162		<b>x</b> ₁₄	= -	.228	
7	λ ₈ =	=	- 3.167	9		$x_s = -$	545		x ₉ = -	101		X _{1e}	= -	.111	
;	λ, :	= .	- 0.696	3		x ₄ = -									
7	λ ₆ =	= .	- 1.6319	,					$x_{10} = -$					• 247	
7	λ ₆ =	≃ .	- 3.1173	3		$x_5 = -$	.412		x ₁₁ = -	• •162		<b>x</b> ₁₇	= -	<b>.</b> 494	
7	٦ =	= .	+ 0.3732	2		$x_6 = +$	.014		x ₁₃ = +	•059		<b>x</b> ₁₈	= -	•164	
			+ 0.1221	1					$[wx^2] =$	16.01					
	•		, J-	1					.[ v ]	31					

December 1877.

J. B. N. HENNESSEY,

In charge of Computing Office.

### At CXXVI

*April 1848, observed by Mr. C. Lane with Troughton and Simms' 36-inch Theodolite.

†March and April 1855, observed by Mr. J. O. Nicolson with Barrow's 24-inch Theodolite No. 1.

Angle		Cir	cle reading	s, telesco	pe being s	set on CXX	V		M = Mean of Groups w = Relative Weight
between	310°13′	130° 12′	819° 14′	139° 13′	328° 12′	148° 12′	837° 16′	157° 16′	C = Concluded Angle
CXXV & CXXII	l 47.56 l 47.26	" l 49 [.] 66 l 50 [.] 18	l 48·66 l 48·18	" l 48:72 l 48:80	" l 47:30 l 48:32	" l 47.44 l 46.88	" l 47.36 l 46.78	" l 46:54 l 46:96	
	47.41	49 ⁻ 92	.48'42	48.76	47.81	47.16	47.07	46 [.] 75	$M = 47'' \cdot 91$ $w = 6 \cdot 80$
Lesser circle readings	139°36′	319°36′ 146′	°48′ 826° 48	′ 158° 59′	834° 0′ 1	161°12′ 341°	12' 168° 24	/ 348° 24/	
CXXV &	l 49.84 l 49.72 l 50.26	h 44.76	.64 l 45 16	h46.28	h48.70 l	47.28 l 51. 48.94 h 51. 47.78 h 47. h 47.	30 1 50.78 14 1 49.42	1 50.50	$w = 8.84$ $\frac{1}{w} = 0.11$ $C = 49^{\circ} 48' 47''.85$
	49.09	45'24 44	:60 45:20	46.11	48.65	48.00 49	44 50.01	49.91	$M = 47'' \cdot 63$ $w = 2 \cdot 04$
Lesser circle readings	0° 2′	180°1′	9° 2′	189° 2′	18°1′	198°1′	27° 5′	207°5′	·
CXXII &	l 31.58 l 31.80	l 31.74 l 30.92		l 32.44 l 31.26	l 30.14 l 31.66	l 31.82 l 32.66	l 31'90 l 32'04	l 30 ⁻ 44 l 30 ⁻ 26	
	31.69	31.33	30.55	32'00	30.40	32.24	31.97	30.32	$M = 31'' \cdot 31$ $0 = 11 \cdot 60$
Lesser circle readings	189° 24′	9°24′ 196′	36′ 16° 37′	203° 48′	23° 48′	211°1′ 81°	ı' 218°12'	38° 13′	
CXXII &	h 32'42 l 34'56 l 33'60	h 32.62 h 36	68 <i>l</i> 34 10 58 <i>l</i> 35 08 36 <i>l</i> 33 58	h 30.12	h 30.92 l	30.68 l 32. 28.26 h 33. 29.90 h 32.	74 l 29 [.] 32	1 32.20	$w = 14.19$ $\frac{1}{0} = 0.07$ $G = 58^{\circ} 33' 31''.48$
	33.01	33'70 34	92 34.30	31.01	30.60	29.61 32	78 30.18	31.40	$M = 32'' \cdot 25$ $w = 2 \cdot 59$

April 1877.

J. B. N. HENNESSEY,

In charge of Computing Office

### NORTH-EAST LONGITUDINAL SERIES

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 1.

	Observed Angles					Fixed d	ata†				
		Reciprocal Weight = (Probability)		Log. R	atio of side 2 Sum of an	A to side $B$ (gles 3 and 5	=149°			39 <b>,5</b>	
No.	Value	Recipr Weigh Trobab			E	quations to b	e satisfie	o <b>d</b>			Factor
İ		T. E	]	x ₁	$+x_2$	+:		= e ₁ :	= - 0	0.41,	$\lambda_1$
			1	$\mathbf{x_4}$	+ x ₅	+:			= + 1		$\lambda_{2}$
1	0 , "			<b>x</b> ₇	+ x ₈	+		= e ₈ :			$\lambda_8$
1	73 55 28.91	•09		x ₁₀ x ₁₈	+ x ₁₁ + x ₁₄		x ₁₉ x ₁₅	$= e_4 :$ $= e_5 :$	= + · = - (		$\lambda_{4}$ $\lambda_{5}$
2	39 29 27.25	•25		x ₁₆	+ x ₁₇	÷	15 X ₁₈		= + 0		λ
ł			1	<b>x</b> ₈	$+x_5$				= + .		$\lambda_7$
3	66 35 5.94	.12	<b>!</b>	x ₁	+ x ₄	+	x ₇ . }	= e ₈ :	= - (	0.21,	λ ₈
4	65 23 38.79	•14	-1.3	+ x ₁₀	$+x_{18}$	+ 46x ₄ +1·645	x ₁₆ }	= e ₉ :		_	λ
5	83 18 48.86	•14	-1.5	13x2	+ '43x ₈	- 12		<b>o</b> g .	- , `	- 012,	, cg
6	31 17 37.11	•05	+1.6	45×6	$88x^8$	+ .53	x ₉	= e ₁₀ :	= - 0	0.300	λ ₁₀
1		-		6 x ₁₁	+ .49x13	-1.028		— ° ₁₀ ·	_ `	2333	7010
7	69 12 52.72	•07	+ .1	7 X ₁₅	$33x_{17}$	+ .73	x ₁₈ J				
8	48 41 20.88	•14			Fanat	tions betwee	n the for	otoma .			
9	62 5 50.90	•11		· · · · · · · · · · · · · · · · · · ·		nons betwee	ii tiie iat	:.Urs			
10	40 44 14.38	•14	No. of	Value of			Co-effic	cients of			
10	• • • • • •	-	No. or	Value of e				<del></del>			
11	75 35 13.68	•03	1		$\lambda_1  \lambda_2$	$\lambda_3$ $\lambda_4$	$\lambda_5$	$\lambda_6 \lambda_7$	$\lambda_8$	$\lambda_{9}$	$\lambda_{10}$
12	63 40 36.52	. 1 2								<del></del>	
13	56 21 23.19	•04	I	- 0.41	+ • 46						- 2517
	_	-	2	+ 1·61   + 0·76	+ .33	+ .32		+ 14	+ 14	+.0179	+ ·0655 - ·0649
14		.03	3 4	+ 1.30		+ • 20			+ 14		+ .0210
15	80 15 43.09	•07	5	- 0.07		. ,	+ • 14		+ .04		0198
16	54 22 21.80	.05		+ 0.07		*	+	37	+ .02		+ 1594
17	71 54 3.34	.07	7 8	- 0.31 + 1.39		*		+ . 26	1,50		+ .0348
1		•	9	+ 0.813					<b>⊤</b> 53	- · 0383	
18	53 43 37.53	•25	10	- 0.399						, 24-2	+ .8739
v	alues of the Factor	s			A	ngular error	s in seco	nds			
,	$v_1 = -0.4318$			$x_1 = -$	- •14	$x_7 = -$	- '42	х	x ₁₈ = -	- '14	
)	$V_3 = +5.8112$			<b>-</b> -					, 1	0	]
1	$\lambda_8 = -2.9583$			$x_3 = -$	- 24	$x_8 = -$	г 34	X	14 = +	- 10	
	$k_4 = + 6.6760$			$x_8 = -$	03	$x_9 = -$	- •68	2	115 = -	11	
	$\lambda_5 = -0.5043$			x ₄ = -	03	<b>x</b> ₁₀ = ·	+ .21	,	r ₁₆ = -	10. 1	
,	$\lambda_6 = + 3.2411$			$x_6 = +$	- 1.32	$x_{11} = -$	+ •25	2	x ₁₇ = +	F ·37	
,	$\lambda_7 = + 2.8529$		]	<b>-</b> _ (		<b>-</b> -					
1	$\lambda_8 = -3.0222$	;		$x_6 = -1$	- 32	$x_{12} = -$	τ 144	3	c ₁₈ = -	31	
,	$\lambda_9 = + 6.5879$	)				$[wx^3] =$	32.17	•			
,	$\lambda_{10} = -6.1360$	)		·	-						

[†] The fixed data here given are obtained from Figure No. 8 of the Great Arc Meridional Series, Section 24° to 30°, which was previously reduced. They differ slightly from the final values shown in Vol. IV of the Operations of the Great Trigonometrical Survey of India, Figure No. 1 of this Series having been calculated prior to the reduction of the North-West Quadrilateral.

* In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth term in the qth line being always the same as the co-efficient of the qth term in the pth line.

Figure No. 2.

	Obs	erve	d Angles				Eq	quations to	be satisfied		Facto
No,		Va	llue	Reciprocal Weight = (Probability) ³		x ₈	+ x ₂ + x ₄ + x ₆	+ x ₅ + x ₇	+ x ₄ + x ₆ + x ₈	$= e_1 = +0.71$ $= e_3 = -0.02$ $= e_3 = -1.92$	, λ ₂
. <b>I</b>	° 17	, 19	,, 60·86	•21		3·20. - ·86		- ·11 x ₇	$+2.050x_{8}$	= e ₄ = + 1 · 8 r	
3	87 56	55 8	42.71	.10			,	Equations b	etween the fact	ors	
5	18 52	35 o	7.48	•10	No. of	Value of			Co-effic	ients of	
6 7 8	53 43 31	15 13	36·18 22·46 55·76	·03	е `	e		λ ₁	λ	λ ₃	λ ₄
					1 · 2	+0·71 -0·02	4	+o·48	+0.17	+0.10	+0.118
					3 4	-1·92			*	+0.36	-0·222 +2·957
7	Values	of	the Facto	rs				Angular	errors in second	s	
			+2.596				•	+ · • • • • • • • • • • • • • • • • • •		= -·36 = -·14	
	λ	=	-5.998				-	+ 14		=89	
	λ4	=	<b>-0.408</b>				x ₄ =	+ · 34	x ₈ ⁹ ] = 12.06	=53	

Figure No. 8.

	Obs	erved	l Angles				Equations to	be satisfied		Factor
No.		Val	ue	Reciprocal Weight = (Probability) ²		x ₃ -	+ x ₅ + x ₆ + x ₇	+ x ₄ + x ₆ + x ₈	$= e_1 = -0.96,$ $= e_3 = +0.55,$ $= e_8 = +1.71,$	$\lambda_{g}$
1	° 54	, 51	,, 43:55	•20		+·7		$+1.507x_{8}$ $-2.840x_{8}$	$= e_4 = -1.45$	λ,
3	5 ²	10 53	58·69 28·66	·06			Equations 1	petween the fact	ors	
5	41 29	1	55°55 2°94	.14	No. of	Value of		Co-effici	ients of	
6 7 8	78 53	33	38·10 36·98 46·65	·21 ·23 ·13	c	е	λ ₁ .	λ2	$\lambda_8$	λ
	-9	-3	40 00	- 3	1	- 0.96	+0.49	+0.33		+0.270
					3	+ 1.71		+o·56 *	+0.93	-0·095 -0·805
					4	- 1.45				+1.788
	Value	s of	the Facto	ors			Angular	errors in second	<b>s</b> '	-
	$\lambda_1$	=	-2.313	;		:	$\mathbf{x}_1 = -32$	$\mathbf{x}_{5}$	= +.21	
			-0·261				$\mathbf{x}_{3} =17$ $\mathbf{x}_{3} =05$		$= + \cdot 51$ $= + \cdot 70$	
			+1.293				$\mathbf{x_4} =42$	·	=01	
							[wx²	]=7·78		

Figure No. 4.

	Obs	erve	d Angles				E	quations	to be satis	fied			Factor
						<b>x</b> ₁ -	+ x ₂	+ x ₃			$= e_1 :$	= + 0.6	ίο, λ ₁
			_	Reciprocal Weight = (Probability) ²		<b>x</b> ₄	+ <b>x</b> ₅ .	+ x ₆			= e ₉ :	= - 2.8	ίι, λ ₂
No.		Va	lue	Recipi Weigl robab		<b>x</b> ₇ -	+ x ₈	+ x ₉		·	= e ₈ :	= + 0.4	7, λ ₈
				&	ļ.	<b>x</b> ₁₀	+ x ₁₁	+ x ₁₃			= e ₄ :	= <b>-</b> 0.8	35, λ4
	0	,	n			<b>x</b> ₁₈ -	+ x ₁₄	+ x ₁₅			== e ₅ :	= - 0.0	5, λ _δ
I	78	<b>3</b> 9	47.21	.35		<b>x</b> ₁ .	+ x ₄	+ x ₇	+ x ₁₀	+x	₁₃ = e ₆ :	= 0.0	ο, λ ₆
2,	36	50	39.72	.13	+ .4	8 <b>x</b> ₈ -1·33	35x ₂ +	·60x ₆ -	- '44 X ₅		٠ ٦		
3	64	29	37.07	• 26	<b>-</b> ·8	-			_	- ·98x	$\rangle = \mathbf{e}_{\tau}$ :	= + 0.3	i7, λ ₇
4	54	<b>5</b> 9	32.72	•44				, 11					
5	66	1	16.92	•66			:	Equations	s between	the factors	• !		
6	58	<b>5</b> 9	9.21	.07			1		<del></del>	· · · ·	•		
7	<b>5</b> 9	1	59.98	•52	No. of	Value of			·	Co-efficient	s of		
8	49	31	10.84	.08	е	е	$\lambda_1$	$\lambda_2$	$\lambda_3$	λ ₄	$\lambda_{5}$	$\lambda_6$	$\lambda_7$
9	71	26	51.40	• 24									
10	52	13	52.00	•36	1	+0.69	+0.74					+0.35	-0.046
11	52	12	33.40	•34	2	-2.81		+1.17				+0.44	-0.248
12	75	33	34.21	.18	3	+0.77			+0.84			+0.2	+0.014
13	115	4	48.09	.31	4	-0.85			•	+0.88		+0.36	-o·218
14	45	34	40.22	•35	5	-0.92			*	, 0 00	+0.49	+0.31	+0.313
15	19	20	32.87	•23	6	0.00					+0 /9	+1.88	+0 312
												₸1.00	
					7	+0.27							+2.952
	Value	s of	the Facto	rs			•	Angula	r errors in	seconds			
	$\lambda_1$	=	+ 0.28			$x_1 = +$	•48	X,	, = <i>-</i> ·	20	<b>x</b> ₁₁ =	<b>-</b> ·43	
	$\lambda_{2}$	=	<b>–</b> 2·737	,		$x_3 = +$			, = + ·			- ·24	
	λ ₈	=	+ 0.396	;		$x_8 = +$			; = + ·		x ₁₃ =		
	$\lambda_4$	=	- 1.332	}		-	-			08			
	$\lambda_{5}$	=	<b>–</b> 1·394	•		$x_5 = -$	_	-		18			
	$\lambda_6$	=	+ 0.843			A ₅ — —	- /0	<b>A</b> 1	10 —	<b>.</b> .	-16 -	3/	
	λ,	=	- o·o83	}				[-	$\mathbf{x}_{\mathbf{z}}] = 10.$	79			

Figure No. 5.

	Observed	l Angles			<del></del>		T	. ,				·····	
No.	Va	lue	Reciprocal Weight = (Probability)*		x ₁ x ₄ x ₇ x ₁₀ x ₁₃	$+ x_{2} + x_{5} + x_{8} + x_{11} + x_{12}$	ı	ન ન ન	be satis  - x ₃ - x ₆ - x ₉ - x ₁₂ - x ₁₅	= = = =	$e_1 =  e_3 =  e_3 =  e_4 = +$ $e_5 = -$	0.00'	Factor $\lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \\ \lambda_5$
1 2 3 4		29.77 45.59 45.31 55.92	.42 .10 .06	- ·6 + ·7	$x_{16} + x_4 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x$	$+\mathbf{x}_{\mathbf{i}'}$	7 0 + x	+ ·51 - ·65 + ·71	⊦x ₁₈ -x ₁₆	=	$e_{6}^{b} = + e_{7}^{c} = + e_{8}^{c} = + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} = + e_{8}^{c} $	0.30,	λ ₈ λ ₇ λ ₈
5 6	59 6 63 2	32·63 32·03	·14 ·03			E	quations	betwe	en the i	factors			
7 8 9		26·25 40·04 54·24	· 20 · 01 · 21	No. of	Value of	$\lambda_1$	λ	λ ₃	Co-ei	fficients	of λ _δ		
10 11 12		3°·49 58·66 32·53	· 26 · 07 · 08	I 2	- 0·02 0·00	+0.28	+0.31					-0·42	-0.000
13	64 58	24·55 27·18	·13	3	+ 1.01 - 0.11			+0.42	+0.41			+0.14 +0.20 +0.26	-0.069 +0.142 +0.011
15 16 17		7·90 13·82 28·88	·04 ·11	5 6 7	- 1.09 + 0.30 + 0.80				*	+0.46	+0.36	+0.11	-0.010 -0.132
18	59 5	18.31	.04	8	+ 4.77							+1.36	+0.438
Va	alues of th	e Factor	8				Angula	ar erroi	s in sec	onds			
7	$\lambda_3 = -\lambda_3 = -\lambda_4 = -\lambda_5 = -\lambda_6 = -\lambda_6 = -\lambda_6$	+ 1.597 + 3.174 - 4.731 + 2.290 + 1.780 + 1.804 - 0.303 + 13.649			$x_1 = -1$ $x_2 = -1$ $x_3 = -1$ $x_4 = -1$ $x_5 = -1$	+ ·32 + ·40 - ·70	x ₀ x ₁ x ₁ x ₁	$y_{1} = -1$ $y_{2} = -1$ $y_{3} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{4} = -1$ $y_{$	·14 1·04 ·51 ·45 ·95		$x_{13} = +$ $x_{14} =  x_{15} = +$ $x_{16} = +$ $x_{17} =  x_{18} = +$	1·74 ·46 ·17 ·27	

Figure No. 6.

						Observe	d Angles						
No	) <b>.</b>	Value		Reciprocal Weight = (Probability) ²	No.	Va	lue	Reciprocal Weight = (Probability)	No.		Val	ue	Reciprocal Weight = (Probability)*
	0	,	"		0	,	"			0	,	<i>"</i>	
	t 63	14	48.48	.94	11 58	58	17.57	1.37	21	62	16	7.87	<b>'</b> 94
1	2 56	48	52.42	•98	12 61	40	48.38	1.31	22	55	57	33.25	1.37
:	3 59	56	19.87	•66	13 57	27	29.50	•96	23	65	12	43.93	1.35
1	1 59	31	7.08	•50	14 57	36	29.89	•94	24	58	49	41.22	•90
	5 64	34	44.20	1.10	15 64	56	1.64	•66	25	60	52	35.73	2.72
'	5 55	54	8.86	.66	16 61	34	22.11	1.10	26	55	34	53:39	•69
	7 58	51	18.07	1.53	17 60	46	18.68	.71	27	63	32	31.85	1.12
	8 61	9	27 · 18	1.08	18 57	39	18.54	.71	28	64	36	35.91	1.33
	59	59	15.13	.72	19 59	35	43.10	•86	29	60	35	35.43	1.21
10	59	20	54.84	1.69	20 58	8	11.35	1.37	30	54	47	49.99	1 · 28
					Equations	s to be s	atisfied						Factor
	$\mathbf{x}_1$	+ x2	+ x ₃	••	••		• •	••	••	$= e_1$	= +	0.17,	$\lambda_1$
	X4	+ <b>x</b> ₅	+ x ₆	••	• •		• •	••	••	= e ₂		0.17,	$\lambda_2$
	x ₇	+ x ₈	+ x ₉	••	••	•	• •	••	••	$= e_3$		0.29,	$\lambda_{3}$
	<b>x</b> ₁₀	+ x ₁₁		••	• •	,	•	••	••		= +		λ,
	<b>x</b> ₁₃	+ x ₁₄		• •	• •	1	••	• •	••		= +		$\lambda_5$
/	<b>x</b> ₁₆	+ x ₁₇			••	•	•	••	••		= -		λ ₆
	<b>x</b> ₁₉	+ x ₂₀		• •	• •	•	•	••	• •		= +		$\lambda_7$
	X ₂₂	+ x ₂₈		••	• •		• •	• •	••		= -	•	λ ₈
	X ₂₅	+ x ₂₆		••	• •		• •	••	• •		+ = + = ,		λ ₉
1	x ₂₈ x ₁	$+x_{29} + x_4$	+ x ₃₀ + x ₇	+ x ₁₀	·· · + x ₁		+ x ₁₆	••	••		) — T 1 = +		$egin{array}{c} egin{array}{c} egin{array}{c} eta_{10} \end{array} \end{array}$
	x ₉	+ x ₁₁	+ x ₁₉	+ x ₂ ;			+ x ₂₈	••	••		· = +		λ ₁₉
	+ · 58x ₈ + · 54x ₁₂	$65x^{8}$ $60x^{11}$	+ ·68x.	$48x_{5}$ $63x_{1}$	+ · 58x9	<u> </u>	55x ₈ 56x ₁₇ }				, = -		λ ₁₈
	+ · 55x ₈ + · 60x ₂₄	- · 60x ₇ - · 46x ₉₃	+ .20x10	- · 54x ₁₉ - · 69x ₂₀	+ · 53×9	·	52x ₉₀ } 56x ₂₉ }	••	••	= e ₁₄	= +	3.24,	λ ₁₄

### NORTH-EAST LONGITUDINAL SERIES.

Figure No. 6—(Continued).

					E	quation	s betw	een the	factors	3					
No. of	Value of							Co-e	efficient	s of					
е	е	$\lambda_1$	λ	λ ₃	λ4	$\lambda_{5}$	λ,	λη	λ ₈	λ	λ ₁₀	λ ₁₁	λ ₁₉	λ ₁₈	λ ₁₄
I	+ 0.12	+2.58	3									+0.94		-0.254	
2	- 0.17		+2.35									+0.20		-0.122	
3	- 0.39			+3.03			٠					+1.53	+0.45	-0.176	-0.144
4	+ 0.13				+4-27						•	+1.69	+1.37	-0.169	+0.344
5	+ 0.44					+2.56			•			+0.96		-o·282	
6	- 1.27						+2.52	}				+1.10		+0.020	
7	+ 1.69							+3.17	,				+0.86	•	-0.351
8	- 2.31					*			+3.62	<b>;</b>			+1.37		-0.081
9	+ 0.34									+4.58			+2.72		+0.109
10	+ 0.69										+4.11		+1.32		+0.063
11	+ 0.08											+6.42			+0.259
I 2	+ 0.69												+8.36	-0.404	
13	- 1.62													+3.654	-0.680
14	+ 3.24													•	+4.851
Value	s of the Fac	tors						Angu	ar erro	rs in se	conds				
λ ₁	= -0	.020									,				
λ ₂	= -0	121			<b>x</b> ₁ =	= + .12			<b>x</b> ₁₁ = -1	_		<b>x</b> ₂₁ =	=+ .89		
$\lambda_8$		177		. ,	xg =	= + 17	7		x ₁₃ =-	- · 83		x ₂₂ =	= <b>-</b> .69	)	
λ4		.150			<b>x</b> ₈ =	=-12	2		$x_{18} = -$	+ • 23		x ₂₈ =	=-1.32	•	
$\lambda_{\delta}$		.081		·	x4 :	= + .03	<b>.</b>		x ₁₄ = -	F • 24		X ₉₄ =	=30	•	
λ ₆		.565			<b>x</b> ₅ =	= + .03	2		x ₁₅ =-	03		<b>x</b> ₂₅ =	=+ :32	ı	
$\lambda_7$		.572		• •	<b>x</b> ₆ =	= - · 21	I.		x ₁₆ = -	- • 45		x ₂₆ =	=36		
λ ₈		.651		• •	<b>x</b> ₇ =	= <b></b> · 56	5		x ₁₇ =-	- • 29		<b>x</b> ₂₇ =	=+ .38	;	
λ ₉		.031		•	<b>x</b> ₈ =	= + .40	>		x ₁₈ =-	23		x ₂₈ =	=+ :34	•	
$\lambda_{10}$		. 109		•	x ₉ =	=13	3		x ₁₉ = -	⊦·62		x ₂₉ =	= - •44		
λ ₁₀		154		1.5	<b>x</b> ₁₀ =	= + . 72	દ		x ₉₀ = -	F·18		X ₈₀ =	=+ '79	)	
		134													
λ ₁₈ λ		301		,					[wx ⁹ ] =	=6.41					
λ ₁₈										•					
$\lambda_{14}$	= +0	715				•									

Figure No. 7.

	Observed Angles		Equations to be satisfied							
No.	Value	Reciprocal Weight	$x_1$ $+x_2$ $+x_3$ $= e_1 = -1.412,$ $x_4$ $+x_5$ $+x_6$ $= e_3 = -0.845,$ $x_7$ $+x_8$ $+x_9$ $= e_3 = -0.514,$ $x_{10}$ $+x_{11}$ $+x_{12}$ $= e_4 = -0.152,$ $x_{13}$ $+x_{14}$ $+x_{15}$ $= e_5 = -0.540,$	$egin{array}{c} \lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4 \ \lambda_5 \end{array}$						
1 2 3 4	0 , 7 70 52 34.65 33 16 1.39 75 51 23.08 70 47 51.65	·16 ·06	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ኢ ₆ ኢ ₇ ኢ ₈						
5 6	69 o 56·89 40 II II·05	·19	Equations between the factors							
7 8 9	57 48 21·19 72 22 51·15 49 48 47·85	·09 ·04 ·11	No. of Value of e							
10	66 31 16·76 58 33 31·48	·15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	λ ₈ -0·96						
12 13	54       55       12.60         38       25       54.01	·05 ·	2 - 0.845 + .29 + .06 3 - 0.514 + .24 + .09	-						
_	56 53 3·33 84 41 2·71 55 34 0·47	•67 •68 •69	4 - 0·152 + ·27 + ·15 5 - 0·540 + ·31 + ·16	-0.75						
17	55 34 °·47 68 11 11·54 56 14 47·82	•12	6   -0.905   * + .33 + .09 7   -1.27   + .65 8   +25.1	+0.72						
Va	alues of the Factor	·s	Angular errors in seconds							
λ λ λ λ	$ \begin{array}{rcl} a_1 & = & -4 \cdot 1538 \\ a_2 & = & -2 \cdot 7666 \\ a_3 & = & -3 \cdot 1679 \\ a_4 & = & -0 \cdot 6968 \\ a_5 & = & -1 \cdot 6319 \\ a_6 & = & -3 \cdot 1173 \\ a_7 & = & +0 \cdot 3732 \\ a_8 & = & +0 \cdot 1251 \end{array} $	5 9 3 9 3	$x_1 =378$ $x_7 =251$ $x_{13} =201$ $x_2 =489$ $x_8 =162$ $x_{14} =228$ $x_5 =545$ $x_9 =101$ $x_{15} =111$ $x_4 =144$ $x_{10} =049$ $x_{16} =247$ $x_5 =715$ $x_{11} =162$ $x_{17} =494$ $x_6 = +.014$ $x_{18} = +.059$ $x_{18} =164$ $[wx^2] = 16.31$							

December 1877.

J. B. N. HENNESSEY,

In charge of Computing Office.

### NORTH-EAST LONGITUDINAL SERIES.

# PRINCIPAL TRIANGULATION. TRIANGLES.

No. of triangle			rical	Corrections to Observed Angle				Corrected Plane	Distance		
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
44		LIV LVI I	" •84 •83 •84	" + '03 + '24 + '14	" + '11 - '02 - '09	"	" + '14 + '22 + '05	66 35 5.24 39 29 26.64 73 55 28.12	5·1012759,8 4·9420246,4 5·1212764,1	126262°96 87503°35 132213°68	23.013 16.223 25.040
43		LVI I II	2.21 -86 -87 -87	+ '31	- ·14 - ·04 + ·18		+ '41 + '49 - '05 - '51	53 43 37 16 54 22 20 88 71 54 1 96	5.0297618,7 5.0333102,2 5.1012759,8	107093°19 107971°77 126262°96	20°283 20°449 23°913
42		I II IV	1,08 1,08 1,08	+ '14	+ '07 + '15 - '22		+ '21   + '26   - '40	56 21 22 32 80 15 42 26 43 22 55 42	5 1132768,0 5 1865902,5 5 0297618,7	129800.63 129800.63	24.283 20.104 20.283
41		I IV III	3.52 1.13 1.13	- '51 - '44 - '25	+ '29 - '12 - '17		+ '07 - '22 - '56 - '42	40 44 13 04 63 40 34 83 75 35 12 13	5.0151177,8 5.1529342,1 5.1865902,5	103542°29 142211°34 153670°41	19.010 26.034 10.010
	579	LIV I LII	3.38	- (°32 + °03 - °32		+ ·11 - ·08	-1.61 -00 -1.51 -1.50	83 18 46.60 65 23 37.74 31 17 35.66	5'2235428,1 5'1851626,7 4'9420246,4	167318°04 153166°10 87503°35	31.689 29.009 16.573

Notes.—1. The values of the side are given in the same line with the opposite angle.

2. Stations LII, LIV and LVI appertain to the Great Arc Meridional Series, Section 24° to 30°.

No. of triangle			ical 386	Corrections to Observed Angle				Corrected Plane	Distance		
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
	578	LII I III	1.75 1.76 1.75	- '34 + '42 + '68	"	+ '33 - '20 - '13	- '01 + '22 + '55	62 5 49 70	5.1529342,0 5.2479887,1 5.2235428,1	142211·34 177006·29 167318·04	26°934 33°524 31°689
40		IV III V	5·26 ·77 ·77 ·77	+ '14 + '02 - '14	+ '03 + '22 - '25		+ '76 + '17 + '24 - '39 + '02	53 15 35 58 70 36 4 43 56 8 19 99	4 [.] 9996613,2 5 [.] 0704527.9 5 [.] 0151177,8	99922.05 112015.35 103245.59	18.022 19.010
39		IV V VI	.99 1.00 .99	+ ·89 - ·16 + ·46	+ '49 - '04 - '45		+1.10	43 13 22.85 87 55 41.51 48 50 55.64	5.0292610,0 5.1933879,4 5.0204527,9	106969°75 156094°62 117612°32	20°259 29°563 22°275
	577	III V VI	2 · 98 · 50 · 50 · 49	- '34 - '30 - '07		+ '31 - '29 - '02	- '03 - '59 - '71	18 35 56 95 144 4 2 77 17 20 0 28	5.0292610,1 5.2940590,0 4.9996613,2	106969°76 196815°40	20°259 37°276 18°925
38		V VI VII	1.49 1.24 1.24 1.26 4.40	- :09 - :51 + :05	+ '56 + '28 - '84		+ '47 - '23 - '79	70. 4 57 39 78 1 36 30 31 53 26 31	5.2795938.6 5.2968281.0 5.0292610.0	190367.96 198074.59 106969.75	36°055 37°514 20°259
37		VI VII VIII	1.89 1.89 1.89	- '70 + '17 + '33	+ '43 - '12 - '31		- ·27 + ·05 + ·02	53 33 34 82 52 10 56 85 74 15 28 33	5 ²⁰¹⁷ 094,9 5 ¹ 938056,1 5 ² 795938,6	159114°39 156244°82 190367°96	30°135 29°552 36°655
	576	V VII VIII	2.47 2.47 2.47 7.41	+ '42 + '22 + '32		+ '65 - '96 + '31	+ 1.07 74 + .63 + .96	41 3 54 15 84 4 24 14 54 51 41 71	5 ² 2017095.1 5 ³ 818725.6 5 ² 968281,0	159114.40 240919.81 198074.59	30°135 45°629 37°514
36		VII VIII IX	1,11 1,10 1,10	- '13 - '08 - '48	- ·53 + · · ·26 - · ·73		66 +1.18 -1.51	64 29 35 31 36 50 39 80 78 39 44 89	5.1657314.4 4.9881613.7 5.2017094.9	146464.19 97310.88 159114.39	27.739 18.430 30.132
35		VII IX X	3·31 ·65 ·65	+ 1 · 78 + · 83 + · 20	+ ·67 + ·08 - ·75		+2.45 + .91 55 +2.81	66 t 18.71 54 59 32.98 58 59 8.31	5.0159650.8 4.9684858.4 4.9881613,7	93744°51 93000°63 97310°88	19.649 17.614 18.430
34		IX X XI	.58 .58 .59	- ·65 - ·04 - ·08	- '16 + '85 - '69		- ·81 + ·81 - ·77	59 1 58°59 49 31 11°07 71 26 50°34	4 9723578.5 4 9203155.7 5 0159650,8	93833°49 83230°84 J03744°51	17.771 15.765 19.649
92		IX XI XII	1.75 35 35 36 1.06	+ '18 + '43 + '24	- ·98 - ·81 - ·98		+1.97 38 74 + .85	52 13 53.62 52 12 32.97 75 33 33.41	4 ⁸ 321557,7 4 ⁸ 320241.7 4 ⁹ 203155,7	67944.73 67924.14 832,6.84	12·868 12·864 15·765
	575	VIII IX XII	·71 ·71 ·71	+ ·37 + ·12 + ·46		15 08 +1.10	+ 1.47 86 + .34 + .95	19 20 33.63 115 4 46.52 45 34 39.85	4 ⁸ 320241,3 5 ² 689050,3 5 ¹ 657314,4	67924°13 185739°84 146464°19	12·864 35·178 27·739

No. of	triangle	gasti	rical	Con	rrections to	Observed A	ingle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circui <b>t</b>	Total	Angle	Log. feet	Feet	Miles
91		XI XII XIII	"	- '46 - '31 - '11	" + '82 + '18 -1'00	"	" + '36 - '13 - 1'11	0 , " 55 25 44.12 48 59 59.49 75 34 16.39	4.7616979,1 4.7238538,7 4.8321557,7	57769·41 52948·52 67944·73	10.041
90		XII XIII XIV	· 19 · 20 · 20	+ .10	+ '25 - '04 - '21		+ '36	47 16 15 78 67 35 25 50 65 8 18 72	4.6699683,7 4.7698326,9 4.7616979,1	46770°10 58861°69 57769°41	8·8 ₅ 8 11·1 ₄ 8 10·941
89	·	XIII XIV XV		+ '03 + '01 + '02	+ '16 + '08 - '24		+ ·26 + ·19 + ·09 - ·22	59 0 38 28 72 0 24 33 48 58 57 39	4 ⁻ 7254172,1 4 ⁻ 7705261,0 4 ⁻ 6699683,7	53139°46 58955°74 46770°10	10°064 11°166 8°858
88		XIV XV XVI	.56 .20 .19 .19	- '21 - '06 - '17	+ '24 - '01 - '23		+ '06 + '03 - '07 - '40	62 17 32.56 58 6 42.45 59 35 44.99	4.7367757,4 4.7186185,1 4.7254172,1	54547.61 52314.07 53139.46	10.331 0.004
87	•	XV XVI XVII	· 58 · 24 · 24 · 23	+ ·30 + ·25 + ·23	12 + .10 + .02		+ ·35 + ·35 + ·08	66 32 52:39 61 10 57:99 52 16 9:62	4 [.] 8012117,0 4 [.] 7812405,4 4 [.] 73 ⁶ 7757,4	63272°01 60428°33 54547°61	11.083
86		XVI XVII XVIII	·71 ·24 ·25	+ '12 + '10 + '13	+ '07 + '04 - '11		+ '78 + '19 + '14 + '02	58 39 24 04 55 30 30 66 65 49 56 30	4.7725410,5 4.7571007,9 4.8012117,0	59229.01 57101.13 63529.01	11.383
85		XVII XVIII XIX	·73 ·20 ·20 ·20	+ '02 + '03 + '06	00 + .01 + .02		+ '35	58 11 27 33 53 6 55 22 68 41 37 45	4.7326090,2 4.7062936,4 4.7725410,5	54026-77 50850-31 59229-91	11.318 0.031 10.335
84		XVIII XIX XX	· 60 · 18 · 18	- ·o6 - ·o3 - ·o9	+ ·o ₄ + ·o ₅ - ·o ₉		- '02 + '02 - '18	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.7352991,6 4.6764613,6 4.7326090,2	54362°47 47474°60 54026°77	10.535 8.801 10.580
83	,	XIX XX XXI	. 19 . 18 . 18	- ·o ₄	+ '03 - '02 - '01		- ·18 - ·01 - ·09 - ·17	65 36 3:47 51 19 58:49 63 3 58:04	4 [.] 7445340,9 4 [.] 6776971,5 4 [.] 7352991,6	55530°82 47609°88 54362°47	10.296
82		XX XXI XXII	· 55 · 24 · 23 · 23	+ '02 + '05 + '07	- '06 - '06		+ '01 + '11 + '01	72 41 15.60 53 55 39.09 53 23 5.31	4.8198682,5 4.7475607,3 4.7445340,9	66049°31 55919°17 55919°17	10.214
81		XXI XXII XXIII	· 70 · 25 · 25 · 26	+ ·o5 + ·o7 + ·17	.00 10, — 10. +		+ '14 + '06 + '06 + '17	59 0 49°31 52 52 34°36 68 6 36°33	4.7854941,6 4.7540061,7 4.8198682,5	61023°08 56755°27 66049°31	11.220
80		XXII XXIII XXIV	· 76 · 28 · 28 · 27	11 12 10	- ·14 + ·19 - ·05		+ ·29 - ·24 + ·04 - ·16	180 0 0.00 61 34 1.76 62 47 18.84 55 38 39.40	4.8129253,7 4.8178114,0 4.7854941,6	65001.80 65737.23 61023.08	12°311 12°450

No. of	triangle		ical ess	Cor	rections to	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- Circuit	Total	Angle	Log. feet	Feet	Miles
79		XXIII XXIV XXV	" 35 34 34	02 11	+ '17' - '16 - '01	"	+ '12 - '27 - '07	64 42 58·78 63 29 3·27 51 47 57·95	4.8738518,3 4.8693168,5 4.8129253,7	74791°44 74014°51 65001°80	14.1018 14.102
138		XXIV XXV XXVI	1 ° 03   • 28   • 28   • 28	+ '04 + '10 + '07	+ ·15 - ·05 + ·15		+ ·19 + ·05 - ·03	180 0 0.00 44 55 44.34 60 29 25.49 74 34 50.17	4.7387183,4 4.8294280,2 4.8738518,3	54792°14 67519°32 74791°44	10°377 12°788 14°165
137		XXV XXVI XXVII	·84 ·23 ·23 ·23	- '08 - '10 - '03	+ '05 + '02 - '07		- '03 - '08 - '10	68 17 48 61 57 39 38 08 54 2 33 31	4 7985945,2 4 7573285,7 4 7387183,4	62891°87 57191°11 54792°14	11.011 10.835 10.324
136		XXVI XXVII XXVIII	·69 ·22 ·22 ·23	+ '02 + '03 + '07	- '01 - '01		+ ·07 + ·02 + ·03	55 25 44 56 55 14 24 47 69 19 50 97	4'7431121,2 4'7421218,5 4'7985945,2	55349°30 55223°23 62891°87	10.483
135		XXVII XXVIII XXIX	·67	+ '01 + '02 + '01	+ '01 + '05		+ ·12 + ·05 + ·03 - ·04	58 43 1 29 63 51 48 86 57 25 9 85	4 7492423,1 4 7706269.9 4 7431121,2	56136°11 58969°44 55349°30	10.632 11.168 10.483
134		XXVIII XXIX XXX	·66 ·23 ·22 ·23	+ ·o5 + ·o5 + ·o7	+ '07 + '01 - '08		+ '04	68 22 39 28 55 6 41 67 56 30 39 05	4'7963925,6 4'7420368.5 4'7492423,1	62573°81 56136°11	11.821
133		XXIX XXX XXXI	· 68 · 28 · 27 · 28	+ '02 + '05 + '02	+ '01 + '01		+ ·17 + ·05 + ·06 - ·02	65 3 2.87 57 8 13.74 57 48 43.39	4·8263206,2 4·7931302.9 4·7963925,6	67037°94 62105°53 62573°81	12.697 11.821
132		XXX · XXXI XXXII	·8 ₃ ·25 ·25 ·25	- · · · · · · · · · · · · · · · · · · ·	- ·o6 + ·o7		+ '04 - '08 - '12	57 33 6.95 52 7 28.30 70 19 24.75	4 [.] 7787297.5 4 [.] 7497180,0 4 [.] 8263206,2	60079°98 56197°63 67037°94	11°379 10°643 12°697
131		XXXI XXXII XXXIII		+ '02 + '03 + '03	+ :01 + :04		+ ·03 + ·07 - ·02	180 0 0.00 52 34 45.48 65 28 59.05 61 56 15.47	4.7329737.5 4.7920109.8 4.7787297.5	54072°17 61945°67 60079°98	10.341
130		XXXI XXXIII XXXIV	· 70 · 28 · 27 · 28	- ·09 - ·08	+ '06 + '01 - '07		03 08 15	67 31 55.61 56 1 15.68 56 26 48.71	4·8368873,8 4·7898529.4 4 7920109,8	68689°03 61638°63 61945°67	13.000 11.235
. 129		XXXIII XXXIV XXXV	·83 ·31 ·30 ·31	+ ·o1 + ·o2 + ·o3	- ·o ₁ + ·o ₄		- '26   + '02   + '06   - '02	69 55 44.68 49 47 9.33 60 17 5.99	4·8709064,7 4·7810038,8 4·8368873,8	74285°91 60395°40 68689°03	13.000
180		XXXIII XXXV XXXVI	.92 .25 .26 .26	+ '02 + '04 + '10	+ '04 + '08 - '12		+ '06 + '12 - '02 + '16	180 0 0.00 56 28 16.03 65 9 16.32 58 22 27.65 180 0 0.00	4 [.] 7717847,7 4 [.] 8086431.5 4 [.] 7810038,8	59126.86 64364.02 60395.40	11.138

No. of	triangle		ical ess	Cor	rections to	Observed A	ingle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circui <b>t</b>	Total	Angle	Log. feet	Feet	Miles
179		XXXV XXXVI XXXVII	** -30 -30 -30 -00	- '31 - '20 - '27	+ ·13 - ·04 - ·09	•	- ·18 - ·24 - ·36	61 13 2 48 69 49 46 04 48 57 11 48	4°8370420,4 4°8668267,4 4°7717847,7	68713°50 73591°35 59126°86	11.108 13.038 13.014
178		XXXVII XXXVII XXXVIII	·27 ·27 ·27	+ '02 + '03 + '07	+ ·10 + ·03 - ·13		+ '12 + '06 - '06	180 0 0.00 69 21 6.14 62 19 9.81	4·7268298,4 4·8512206,4 4·8370420,4	53312.60 70993.84 68713.50	10°097 13°446 13°014
177		XXXVII XXXVIII XXXIX	*81 *23 *23 *23	- ·36 - ·95 - ·07	+ '07 - '02 - '05		+ '12 - '29 - '97 - '12	71 20 52 90 57 36 10 02 51 2 57 08	4.8125950,3 4.7625501,3 4.7268298,4	64952°38 .57882°88 53312°60	10.001
176		XXXVIII XXXIX XL	·69 ·26 ·27 ·27	00 00	+ '21 + '15 - '36		+ '07 + '09 - '42	180 0 0.00 52 49 40.31 64 13 8.50 62 57 11.49	4.7642573,9 4.8173607,9 4.8125950,3	58110.88 65669.06 64952.38	11.000 12.432 13.432
175		XXXIX XL XLI	·80 ·26 ·26 ·25	+ '03	+ :15		+ '18 '00 - '06	70 35 17 39 55 57 29 57 53 27 13 04	4 ⁸ 339216,4 4 ⁷⁷⁷⁶ 994,3 4 ⁷ 7642573,9	68221.56 59937.62 58110.88	11.000
174		XL XII XLII	.77 .29 .28 .29	+ '05 + '10 + '20	+ '09 + '12 - '21		+ '12 + '14 + '22 - '01	61 0 1.32 54 4 4.26 64 55 54.42	4 [.] 8187082,0 4 [.] 7852182,4 4 [.] 8339216,4	65873°12 60984°33 68221°56	12.476 11.220
173		XLII XLII	·86	+ '07	+ '14 - '10		+ '35 + '21 - '07 + '06	60 15 42 46 45 55 22 55 73 48 54 99	4 [.] 7749407,6 4 [.] 6926397,1 4 8187082,0	59558°09 49276°48 65873°12	11.280 9.333 12.476
172		XLII XLIII XLIV	·66	+ '01 + '04 + '10	+ .00 + .10		+ ·20 + ·07 + ·14 - ·06	180 0 0.00 66 13 53.47 55 26 14.02 58 19 52.51	4·8064686,2 4·7606277,3 4·7749407,6	64042°55 57627°23 59558°09	11.580
171		XLIII XLIV XLV	.74 .25 .26 .26	- '11 - '16 - '23	+ '28 - '08 - '20		+ '15 + '17 - '24 - '43	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.7578241,6 4.8031377,9 4.8064686,2	57256°42 63553°25 64042°55	10.844 12.032 12.139
220		XLIV XLV XLVI	·77 ·24 ·23 ·23	01 01 01	+ '17 + '01 - '18		+ '16 '00 - '22	65 14 15:33 57 22 27:76 57 23 16:91	4.7904477,2 4.7577578,8 4.7578241,6	61723°10 57247°68 57256°42	11.690 10.845
219		XLVI XLVI XLVII	·70 ·28 ·28 ·27	02 01 03	+ '17 - '01 - '16		- '06 - '14 - '02 - '21	56 50 29:36 67 8 3:71 56 1 26:93	4'7945589,2 4'8362070,9 4'7904477,2	62310°16 68581°52 61723°16	11.60c 13.080 11.801
218		XLVIII XLVII XLVI	·8 ₃ ·24 ·24 ·25	01 03 01	+ '12 + '01 - '13		01 01 01	180 0 0 00 54 33 4 50 61 48 44 90 63 38 10 60	4'7532171,1 4'7874304,4 4'7945589,2	56652°25 61295°77 62310°16	10.230 11.80i

No. of	riangle	<b>6</b> 04 - 42	Spherical Excess	Cor	rections to	Observed A	Angle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Sphe	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
217		XLVIII XLVIII XLVII	"24 '24 '23	**************************************	+ '01 + '01 - '02		+ ·16 + ·06 + ·06	65 3 14.24 59 5 47.38 55 50 58.38	4.7928805,0 4.7689185,4 4.7532171,1	62069·83 58737·91 56652·25	11.750
216		XLVIII XLIX L	·71 ·21 ·20 ·21	+ '11 + '26 + '36	+ '07 + '01 + '07		+ '18 + '27 + '28	59 24 36 96 49 2 50 59 71 32 32 45	4 [.] 75°7357,3 4 [.] 6939°85,4 4 [.] 79288°5,0	56329°48 49420°66 62069°83	11.426 9.360 10.668
215		XLIX L . LI	·62 ·25 ·25 ·25	.00 10, + 00,	+ ·o ₇ + ·o ₂ - ·o ₉		+ ·73 + ·07 + ·03 - ·09	74 44 19°31 53 59 40°14 51 16 0°55	4.8430113,8 4.7665304,1 4.7507357,3	69664°48 58415°81 56329°48	13.104 11.004
214		ī, LI LII	.75 .26 .27 .27	09 18 02	10 + .03 + .10		+ '01 + '07 - '15 - '24	180 0 0 0 0 0 0 53 7 40 59 55 47 36 58 71 4 42 83	4 [.] 7702144,4 4 [.] 7846510,1 4 [.] 8430113,8	58913°45 60904°73 69664°48	13.194 11.232 11.128
213		LI LII LIII	·80 ·27 ·27 ·27	+ ·02 + ·12 + ·05	10 .00 + .10		+ ·12 + ·12 - ·05	70 9 55 48 57 13 28 89 52 36 35 63	4·8435499,1 4·7948024,9 4·7702144,4	69750°92 62345°13 58913°45	11,128
212		LII LIII	·81 ·23 ·23 ·24	+ '12 + '08 + '12	+ '07 '00 - '07		+ .10	50 41 23 13 50 25 15 00 78 53 21 87	4·7403548,8 4·7386778,6 4·8435499,1	54999°01 54787°05 69750°01	10.410 10.310
211		riu riv Lv	· 70 · 23 · 23 · 23	- '32 + '88 - '54	+ '08 - '03 - '05		+ '32   - '24   + '85   - '59	74 39 44 84 52 47 46 21 52 32 28 95	4 [.] 8248978,6 4 [.] 7418278,0 4 [.] 7403548,8	66818:67 55185:86 54999:01	12.655 10.452 10.416
262		LVII LV	·69 ·24 ·23 ·24	- '40 - '17 + '27	11 + .01 + .10		+ '02   - '30   - '16   + '16	180 0 0 0 0 0 0 59 5 17 77 48 23 13 43 72 32 28 80	4.7788466,0 4.7189647,2 4.8248978,6	60096°14 52355°79 66818°67	12.022 9.019 11.385
261		LV LVII LIX	·71 ·24 ·24 ·24	- '19 - '46 + 1'74	+ ·o3		- ·16 - ·48 + 1 · 73	180 0 0.00 64 58 24.15 54 31 7.18 60 30 28.67	4.7962972,5 4.7499025,7 4.7788466,0	60096 · 14	11.383 10.648
210		LTII LV LVI	·72 ·19 ·19 ·20	+ '70 - '40 - '30	- ·o ₄ + ·o ₁ + ·o ₃		+ 1.09 + .66 39 27	180 0 0.00 59 6 33.10 57 50 55.34 63 2 31.56	4:7253463,1 4:7194862,6 4:7418278,0	53130.79 52418.71 55185.86	10.063 9.058 10.425
209		LVIII I.V I.V	· 58	-1.04 + .14 +1.01	- ·03 - ·01 + ·03		-1.01 + .13 + .13	180 0 0.00 68 33 27.02 56 59 39.96 54 26 53.02	4:7837907,0 4:7385054,2 4:7253463,1	60784·20 54765·29 53130·79	11.215 10.325 10.003
	593	LV I.VIII LIX	·64 ·23 ·22 ·22	- '51 + '45 - '95	-	+ '02 + '15 - '17	- '49 + '60 - 1'12	180 0 0.00 67 42 29.77 57 15 59.04 55 1 31.19	4.7912724,2 4.7499025,8 4.7385054.2	61840°42 56221°52 54765°29	11.215

No. of t	riangle		rical	Cor	rections to	Observed A	ingle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
260		LVII LIX LX	"	" '02 '30 '52	- '02 + '01 + '01		" - '01 - '29 - '54	9 7 58.47 67 6 3.38 63 45 58.15	4.7221596,3 4.8078561,2 4.7962972,5	52742°37 64247°48 62560°08	11.848 15.198 0.080
259		LIX LX LXI	· 19 · 19	+ '25 + '22 + '23	+ '09 - '06 - '03		- ·84   + ·34   + ·16   + ·20	180 0 0.00 57 35 2.01 62 27 38.23 59 57 19.76	4.7112575,5 4.7325973,7 4.7221596,3	51434.86 54025.32 52742.37	9.41 9.989
258		LXI LXI LXI	*57 *22 *22 *22	.00 01 01	+ .08 + .08		+ '70 + '02 + '07 - '11	61 27 46 87 67 59 8 13 50 33 5 00	4.7672768,1 4.7906523,7 4.7112575,5	58516·29 61752·19 51434·86	9.241 11.692
257		LXII LXII LXI	.66 .21 .21	+ '11 + '24 + '13	+ '05 - '04 - '01		+ '16 + '20 + '12	180 0 0.00 54 1 33.94 60 48 36.59 65 9 49.47	4 ⁻ 7175258,4 4 7504430,5 4 7672768,1	52182.62 56291.53 58516.29	0.883 0.883
256		LXII LXIII LXIV	·63	60 40	+ '03 + '08 - '11		+ ·48 - ·57 - ·63 - ·51	59 40 26.75 62 44 38.02 57 34 55.23	4 ⁻ 7271962,4 4 ⁻ 7399875,6 4 ⁻ 7175258,4	53183.40 24925.21 23324.40	9.883 10.100
255		LXIII LXIV LXV	· 58 · 20 · 20 · 20	- ·04 - ·10	+ '03		03 01 01	59 17 0.36 62 0 22.79 58 42 36.85	4.7298072,0 4.7414184,0 4.7271962,4	53679°35 55133°86 53357°60	10.162
254		LXIV LXV LXVI	.60 .25 .25 .24	+ '07 + '14 + '21	- · oc + · o3 - · o3		+ ·o ₇ + ·1 ₇ + ·1 ₈	60 21 43 15 70 41 33 02 48 56 43 83	4.7914900,0 4.8272472,3 4.7298072,0	61871.41 67181.11 53679.35	11.218
253		LXV LXVI LXVII		+ .00	.00 10. – 10. +		+ '42 + '05 + '08 + '09	57 20 29 06 57 11 1 35 65 28 29 59	4.7578148,9 4.7570464,0 4.7914900,0	57255°20 57153°97 61871°41	10.844
252		LXVI LXVII LXVIII	'70 '20 '20 '20	19 10 01	.00 + .05 05		- '04 - '05 - '21	70 40 48.22 46 40 31.42 62 38 40.36	4.7841448,4 4.6711373,3 4.7578148,9	60833.78 46896.16 57255.20	11.222 8.882 10.844
251		LXVII LXVIII LXIX	·60 ·23 ·23 ·23	+ '10	+ '02 - '02 '00		+ '12 + '19 + '21	62 11 29 42 54 0 17 59 63 48 12 99	4 ⁻ 7779175,1 4 ⁻ 7391983,9 4 ⁻ 7841448,4	59967.71 54852.75 60833.78	11.223
250		LXVIII LXIX LXX	·69 ·24 ·25 ·24	- '12 - '17 - '04	.00 + .02 02		+ ·52   - ·12   - ·15   - ·06	58 14 33.71 61 57 13.13 59 48 13.16	4·7708141,4 4·7869974,6 4·7779175,1	58994·86 61234·68 59967·71	11.123
249		LXIX LXX LXXI		- ·o5 - ·o5 - ·13	+ '06 - '04 - '02		- ·33 - ·09 - ·15	180 0 0 0 0 0 58 8 29 38 70 28 8 74 51 23 21 88	4.8070266,3 4.8522013,6 4.7708141,4	64124°89 71154°34 58994°86	12°145 13°476 11°173

No. of	triangle		ical	Cor	rections to (	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- Circuit	Total	Angle	Log. feet	Feet	Miles
302		LXX LXXI LXXII	"	" - '02 - '02 - '02	+ ·22 - ·37 + ·15	H	+ '20 - '39 + '13	0 / " 52 25 29 18 61 45 24 90 65 49 5 92	4'7459407,0 4'7918624,0 4'8070266,3	55710·96 61924·49 64124·89	10.221
301		LXXI LXXII LXXIII	·74 ·17 ·17 ·18	+ '18 + '35 + '09	- ·12 + ·18 - ·06		+ '06 + '53 + '03	60 19 29 57 50 15 25 54 69 25 4 89	4'7135289,7 4'6604676,1 4'7459407,0	51704°58 45758°06 55710°96	9°793 8°666 10°551
300		LXXII LXXIII LXXIV	·52 ·21 ·21	+ '02 + '02 + '04	+ '26 - '28 + '02		+ '62 + '28 - '26 + '06	55 40 40 02 72 4 51 95 52 14 28 03	4.7324919,5 4.7939806,9 4.7135289,7	54012°21 62227°26 51704°58	10°230 11°785 9°793
299		LXXIII LXXIV	·63 ·22 ·22 ·22	- ·os	+ '11 - '08 - '03		+ '08	67 25 14.51 57 43 9.46 54 51 36.03	4.7852382,6 4.7469561,0 4.7324919,5	60987°14 55841°37 54012°21	11.230 10.230
298		LXXIV LXXV LXXVI	·66	- ·o5 - ·17 - ·o3	+ ·17 - ·08 - ·09		- '19 + '12 - '25 - '12	56 5 10.46 57 7 26.40 66 47 23.14	4·7409064,7 4·7460923,9 4·7852382,6	55068°91 55730°43 60987°14	10.430
297		i.XXV LXXVI LXXVI	·66	18 04 04	+ '22 - '21 - '01		+ · 18 - · 32 - · 19	66 37 57.68 57 3 52.85 56 18 9.47	4·7836275,2 4·7447032,0 4·7409064,7	60761°36 55552°45 55068°91	10.430
296		LXXVI LXXVII LXXVIII	·66 ·21 ·22 ·22	+ ·o ₃ + ·o ₈ + ·o ₃	+ ·23 + ·05 - ·28		- '33 + '26 + '13 - '25	54 6 11.85 58 6 54.84 67 46 53.31	4'7256599,2 4'7460996,3 4'7836275,2	53169°17 55731°36 60761°36	10.222
295		TXXAII TXXAII TXXAII	·65 ·23 ·23 ·23	+ '01 + '08 + '03	+ '41 - '34 - '07		+ '14 + '42 - '26 - '04	61 2 26.33 67 29 28.99 51 28 4.68	4.7742986,6 4.7978970,5 4.7256599,2	59470°10 62790°95 53169°17	11.563 11.803
294		LXXVIII LXXIX I.XXX	·69 ·22 ·22 ·23	- ·11 - ·19 - ·48	- ·oo - ·o3		- ·11 - ·16 - ·15	55 52 17.43 58 59 41.96 65 8 0.61	4·7344682,1 4·7495952,6 4·7742986,6	59470°10 54258°55	10°276 10°640 11°263
293		LXXIX LXXX LXXXI	·67	- :09 - :23 - :19	+ :05 - :04 - :05		- '78 - '04 - '27 - '20	51 56 57.79 71 13 14.19 56 49 48.02	4·7079484,2 4·7879585,1 4·7344682,1	51044°44 61370°34 54258°55	9.668 11.653
292		LXXX LXXXI LXXXII	·62 ·22 ·21	+ '18 + '11 + '23	01 + .02 01		+ · · · · · · · · · · · · · · · · · · ·	74 7 52 58 56 49 28 22 49 2 39 20	4.8130031,1 4.7526019,7 4.7079484,2	65013°43 56572°06 51044°44	6.908 10.214 15.313
291		IXXXI IXXXII IXXXIII	·65	- ·o ₇ - ·15 - ·17	+ '02		+ '52 - '05 - '18 - '16	180 0 0.00 58 59 6.29 45 16 21.97 75 44 31.74	4.7595886.2 4.6781337.1 4.8130031,1	57489°51 47657°77 65013°43	15.313 6.050 10.888

No. of t	riangle	a	rical	Cor	rections to (	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
290		LXXXII LXXXIII LXXXIV	"	" - '08 - '09 - '24	" - 'ot + 'o3 - 'o2	"	" - '09 - '06 - '26	61 23 8 91 63 55 54 83 54 40 56 26	4'7913477,3 4'8013283,6 4'7595886,2	61851·15 63289·02 57489	11.4 11.984 10.888
289		LXXXIII LXXXIV LXXXV	75 25 24 25	- ·15 - ·14 - ·26	+ .02 01 01		- '41 - '16 - '18 - '21	58 46 43 15 58 40 20 51 62 32 56 34	4.7752788,4 4.7747894,7 4.7913477,3	59604°47 59537°35 61851°15	11.289 11.526 11.529
330		LXXXIV LXXXV LXXXVI	· 74 · 24 · 24 · 24	+ '51 + '42 + '55	- ·17 + ·18		+ '34 + '60 + '54	70 0 14.49 51 18 54.55 58 40 50.96	4.8166729,8 4.7361022,3 4.7752788,4	59604.47 54463.08 54604.47	11.580
329		LXXXV LXXXVI LXXXVII	· 72 · 24 · 24 · 25	+ ·52 + ·49 + ·18	+ '07 - '21 + '14		+ 1.48 + .59 + .28 + .32	180 0 0 0 0 0 0 48 I 39 45 63 41 21 88 68 16 58 67	4.7199085,9 4.8011507,5 4.8166729,8	524 <b>6</b> 9°70 63263°14 65565°13	9°937 11°982 12°418
328		LXXXVI LXXXVII LXXXVIII	· 73 · 22 · 22 · 21	+ '81 + '53 + '64	- ·18 + ·25 - ·07		+ · · · · · · · · · · · · · · · · · · ·	57 52 49 92 69 23 38 69 52 43 31 39	4'7469896,7 4'7904229,5 4'7199085,9	55845.69 61719.58 52469.70	10.277 11.689 9.937
327		LXXX <b>V</b> II LXXXVIII LXXXIX	·65 ·22 ·23 ·22	- '48 - '26 - '24	+ '09 - '31 + '22		+1.98 39 57 02	59 30 16 81 63 16 53 36 57 12 49 83	4.7576911,6 4.7733113,7 4.7469896,7	57238.89 59335.06 55845.69	10.841 11.538 10.224
326		LXXXVIII LXXXIX XC	·67	01 01	- ·13 + ·18		- · · · · · · · · · · · · · · · · · · ·	63 22 59.61 54 49 8.10 61 47 52.29	4.7639231,8 4.7249745,6 4.7576911,6	58066°17 53085°34 57238°89	10°997 10°841
325		LXXXIX XC XCI	·64 ·23 ·23 ·23	- '31 - '42 - '19	- 17		- '04 - '27 - '59 - '06	52 18 30.06 69 40 37.87 58 0 52.07	4.7337822.9 4.8075215,9 4.7639231,8	54172°92 54172°92	10.360
324		XC XCI XCII	·69 ·24 ·24 ·24	+ '53 + '41 + '36	- ·13 + ·16 - ·03		+ '40 + '57 + '33	75 2 42 89 55 9 45 96 49 47 31 15	4.8358917,5 4.7650820,6 4.7337822,9	68531.4 58231.32 5412.63	12.024 11.054 10.500
323		XCI XCII XCIII	· 72 · 23 · 23 · 23	+ '40 + '22 + '20	+ '01 - '23 + '22		+ '41 - '01 + '42	52 55 14 52 49 51 33 92 77 13 11 56	4.7486814,0 4.7301440,3 4.8358917,5	56063.65 53720.99 68531.4	10.018 10.124 12.979
361		XCII XCIII XCIV	·69 ·24 ·24 ·23	- ·16 - ·15 - ·08	- '36 + '59 - '23		+ ·8 ₂ + ·4 ₄ - ·3 ₁	70 59 1.51 55 16 46.04 53 44 12.45	4.8178079,4 4.7570203,4 4.7486814,0	65736°70 57150°54 56063°65	10.018
360		XCIU XCIV XCV	·71 ·25 ·24 ·25	00 00 00	+ ·23 - ·47 + ·24		+ ·17 - ·53 + ·15	58 6 29 10 53 6 28 35 68 47 2 55	4.7772194,3 4.7512516,6 4.81 <b>7</b> 80,79,4	59871°40 56396°44 65736°70	11.339 10.681 12.450

No. of	triangle		rical	Con	rrections to	Observed A	Angle	Corrected Plane		Distance	
Dircuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
359		XCIV XCV XCVI	" -24 -23 -24	" + 1.18 + .38 + .67	" - '20 + '22 - '02	"	" + '98 + '60 + '65	0 , " 61 43 50'97 57 4 18'22 61 11 50'81	4.7794179,2 4.7585179,7 4.7772194.3	60175°25 57347°96 59871°40	11.339
		xcv	.71	+ .23	+ .02		+2.58	180 0 0.00	4.7626733,8	57899*30	10.000
358		XCVI XCVII	·22 ·22 ·66	+ '48 + '30	- ·22 + ·17		+ '26 + '47 + 1'31	53 43 57 94 _ 65 18 45 48 180 0 0 00	4 [.] 7 ² 75 ² 37,4 4 [.] 7794 ¹ 79, ²	53397.84	11.397
357		XCVII XCVIII	·25 ·25 ·24	+ '23 + '12 + '22	- '12 + '13 - '01		+ '11 + '25 + '21	65 39 7 21 58 17 16 00 56 3 36 79	4·8033377,8 4·7735 ⁶ 75,7 4·7626733,8	63582°53 59370°08 57899°30	10.966
356		XCVII XCVIII XCIX	·74 ·23 ·23 ·24	- '40 - '11 - '24	+ .10		+ ·57 - ·37 - ·24 - ·14	180 0 0:00 62 13 23:17 49 56 12:72 67 50 24:11	4 [.] 7834936,7 4 [.] 7295157,8 4 [.] 8033377,8	.60742°64 52543°11 63582°53	11.204 9.921 12.043
355		XCVIII XCIX C	· 70 · 24 · 24 · 24	+ '24 + '18 + '50	- '01 + '15 - '14		+ ·10 + ·33 + ·49	67 13 59 47 51 52 55 09 60 53 5 44	4·80693 r5,r 4·73799 r0,4 4·7834936,7	64110·84 54700·47 60742·64	12°142 10°360 11°504
354		XCIX C CI	·72 ·20 ·20 ·21	+ '34 + '51 + '23	+ '08 - '11 + '08		+ '92 + '37 + '40 + '31	180 0 0.00 58 10 25.35 46 13 12.22 75 36 22.43	4.7500229,5 4.6793212,3 4.8069315,1	56237°11 47788°26 64110°84	10.621 9.021
353		CII CII	·61 ·20 ·20 ·20	- '17 + '12 - '12	- ·12 - ·05 + ·17		+ 1 · 08 - · 29 + · 07 + · 05	56 48 51.93 59 56 19.74 63 14 48.33	4.7218688,2 4.7364566,8 4.7500229,5	52707°06 54507°55 56237°11	9.982 10.823
352		CIII CII CI	·60	- '02 - '02 + '21	- ·28 + ·25 + ·03		- ·17 - ·30 + ·23 + ·24	64 34 43 99 59 31 7 11 55 54 8 90	4.7595671,5 4.7391977,9 4.7218688,2	57486°67 54852°67 <b>52</b> 707°06	0.383 10.388 10.888
351		CII CIII CVI	·61	+ '56	- ·17 + ·05 + ·12		+ '17 + '39 - '35 + '25	180 0 0.00 58 51 18.24 61 9 26.60 59 59 15.16	4·7544946,7 4·7645694,8 4·7595671,5	56819°14 58152°65 57486°67	10.888 11.014 10.401
<b>4</b> 23		CV CVI CII	·67	- ·72 - ·23 + ·83	- · 18 + · 37 - · 19		+ '29 - '90 + '14 + '64	180 0 0.00 59 20 53.72 58 58 17.49 61 40 48.79	4:7545728,7 4:7528678,7 4:7645694,8	56829°37 56606°71 58152°65	10.421
422		CVI CV CVI	·67	- '34 - '79 + '44	+ '20 - '36 + '16		- ·12 - ·14 -1·15 + ·60	180 0 0 0 0 0 0 64 36 35 55 54 47 48 63 60 35 35 82	4.7703613,4 4.7267589,4 4.7545728,7	58933°38 53303°89 56829°37	10.203
350		CIII CVI CVII	·64 ·21 ·21 ·21	- ·18 - ·62 - ·89	- ·08 + ·05		- ·69 - ·26 - ·59 - ·84	180 0 0.00 58 8 10.88 59 35 42.30 62 16 6.82	4·7365481,1 4·7432275,6 4·7544946,7	54519°03 55364°01 56819°14	10.480

No. of	triangle	<b>64.</b> 4°	rical	Cor	rections to	Observed A	ingle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
349		CVI CVII CVIII	°20 °21 · °20	+ '69 + 1'32 + '20	- '06 - '03 + '09		+ '63 + 1'29 + '29	55 57 33 68 65 12 45 01 58 49 41 31	4·7226341,6 4·7622911,2 4·7365481,1	52800°03 57848°37 54519°03	10.326
	618	C CII CIV	·61	+ '53 + '45 + '29		+ '07 - '04 - '03	+ .90 + .41 + .50	57 39 18·94 61 34 22·32 60 46 18·74	4 [.] 72 ² 3771,1 4 [.] 73979 ⁸ 3,4 4 [.] 7364566,8	52768·78 54928·57 545°7·55	9°994 10°403 10°323
	біђ	CII CIV CV	·60 ·19 ·20 ·20	- ·23 + ·03 - ·24		- ·03 + ·05 - ·02	+1·27   - ·26   + ·08   - ·26	180 0 0.00 57 27 29.05 64 56 1.52 57 36 29.43	4.7216532,2 4.7528678,7 4.7223771,1	52680°90 56606°71 52768°78	9°977 10°721 9°994
	616	CVI CVIII CIX	·59 ·21 ·21 ·21	- '32 + '36 - '38		- '66 + '20 + '46	- '44 - '98 + '56 + '08	60 52 34 54 55 34 53 74 63 32 31 72	4.7516388,5 4.7267589,4 4.7622911,2	56446·73 53303·89 57848·37	10.022 10.021
421		CX CIX CX	·63 ·22 ·23 ·22	- '08 - '16 - '23	- ·14 + ·32 - ·18		- '34 - '22 + '16 - '41	180 0 0.00 49 52 7.90 69 1 22.92 61 6 29.18	4 [.] 7115067,6 4 [.] 7983075,8 4 [.] 7703613,4	51464°38 62850°33 58933°38	9°747 11°162
420		CIX CX CXI	·67	- '10 - '11 - '07	+ '22 - '36 + '14		+ ·12 - ·47 + ·07 - ·28	81 46 53 68 48 52 12 35 49 20 53 97	4·8269627,1 4·7083677,8 4·7115067,6	67137·12 51093·75 51464·38	9.677 9.747
419		CXI CXI	·61 ·25 ·25 ·25	02 10 11	- '01 + '07 - '06		- ·11 - ·26	56 16 35.08 53 26 12.15 70 17 12.77	4.7731717,0 4.7580149,2 4.8269627,1	59315°97 57281°57 67137°12	11.534
418	·	CXII CXIII		- '24 - '20 - '05	+ ·o6 - ·o6		- '18 - '26 - '05	59 19 41 73 60 42 39 77 59 57 38 50	4.7703641,5 4.7764111,5 4.7731717,0	58933°76 59760°08 59315°97	11.167
417		CXII CXIII CXIV	· 72 · 22 · 23 · 23	+ '03 + '03 + '09	+ '01 + '02 - '03		+ · · · · · · · · · · · · · · · · · · ·	180 0 0.00 54 31 54.26 63 50 49.53 61 37 15.91	4.7368265,0 4.7790615,4 4.7703641,5	54553°99 60125°89 58933°76	10.332
4ì6	٠	CXIII CXIV CXV	·68	- ·05 - ·05	+ '03 - '02 - '01		- ·02 - ·07 - ·13	63 31 52.78 60 23 54.59 56 4 12.63	4.7698035,0 4.7571546,3 4.7368265,0	58857.73 57168.21 54553.99	11°147 10°827 10°332
415		CXIV CXV CXVI	·66 ·25 ·25 ·25	+ '42 + '12 + '24	+ '02 + '04 - '06		+ '44 + '16 + '18	60 19 37 63 62 51 3 21 56 49 19 16	4.7860440,5 4.7963944,2 4.7698035,0	61100.40 62574.07 58857.73	11°572 11°147
414		CXV CXVI CXVII	-7.5 -24 -24 -25	+ '06 + '08 + '08	+ ·o ₅ - ·o ₃ - ·o ₂		+ ·78 + ·11 + ·05 + ·06	58 35 10.73 59 14 43.56 62 10 5.71	4.7705994,5 4.7736113,7 4.7860440,5	58965.40 59376.06 61100.40	11.168

No. of	triangle		[8] S	Cor	rections to	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station -	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
413		CXVI CXVII CXVIII	" '22 '22 '22	+ '22 + '20 + '32	" + '02 + '02 - '04	"	" + '24 + '22 + '28	63 43 43 91 53 18 15 35 62 58 0 74	4.7734984,1 4.7249235.7 4.7705994.5	59360°62 53079°11 58965°70	11°243 10°053 11°168
412		CXVII CXVIII CXIX	·19 ·19 ·19	+ '98 + '47 +1'27	+ :06 - :03 - :03		+ '74 + 1'04 + '44 + 1'24	58 33 3 01 49 49 4 11 71 37 52 88	4.7272117,0 4.6793013,9 4.7734984,1	53359°49 47786°08 59360°62	10°106 9°050 11°243
411		CXVIII CXIX CXX	· 57 · 24 · 23 · 23	- '08 - '34 - '26	+ :13		+2·72 + ·05 - ·47 - ·26	180 0 0.00 83 26 7.96 50 0 41.69 46 33 10.35	4 [.] 8634127,9 4 [.] 75°5971,4 4 [.] 7272117,0	73015°12 56311°51 53359°49	13.829 10.100
410		CXIX CXX CXXI	·70 ·27 ·26 ·27	+ '24 + '09 + '16	- '20 - '20		+ ·24 + ·29 - ·04	180 0 0.00 57 6 43.96 46 52 40.50 76 0 35.54	4 [.] 8006325,7 4 [.] 7397527,2 4 [.] 8634127,9	63187°71 54922°80 73015°12	11.967 10.402 13.829
409		CXX CXXI CXXII	·80 ·17 ·18 ·18	+ '49 + '54 + '38	+ ·22 - ·35 + ·13		+ '49 + '71 + '19 + '51	33 16 1 93 75 51 23 09 70 52 34 98	4 [.] 5644979,6 4 [.] 8119176,3 4 [.] 8006325,7	36685°79 64851°14 63187°71	6.948 15.585
408		CXXI CXXII CXXV		+ '72 + '14 - '01	+ .10 .00 10		+ 1.41 + .62 + .14 + .09	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4'7249503,5 4'7298912,1 4'5644979,6	53082°37 53689°73 36685°79	10.023 10.023
407		CXXII CXXV CXXVI	·44 ·23 ·24 ·23	+ '16 + '10	+ .oi og + .o2		+ .10 + .10 + .11	57 48 21 26 72 22 51 01 49 48 47 73	4.7693857,8 4.8210217,5 4.7249503,5	58801°15 66224°96 53082°37	11.134
424		CXXII CXXVI CXXIV	.33 .33 .33	06 + .16 06	- '07 - '01 + '08		+ '51 - '02 + '15 + '02	66 31 16.41 58 33 31.30 54 55 12.29	4·8705496,8 4·8391201,0 4·8210217,5	74224°91 69043°06 66224°96	14.058 13.076 12.243
	620	CXX CXXII CXXIII	- '99 - '24 - '24 - '25	+ '16 + '25 + '49		+ ·16 - ·09 - ·07	+ '15 + '32 + '16 + '42	56 14 47 90 55 34 0 39 68 11 11 71	4 7640124,2 4 7605242,1 4 8119176,3	58078°10 57613°49 64851°14	11,000
	619	CXXII CXXIII CXXIV	·73 ·19 ·20 ·20 ·59	+ '20		- :02 + :10 - :08	+ '90 + '18 + '21 + '15 + '54	180 0 0.00 38 25 54.00 84 41 2.72 56 53 3.28 180 0 0.00	4.6344896,6 4.8391201,0 4.7640124,2	43101°23 69043°06 58078°10	8·163 13·076 11·000

February 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.



# PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

	Station A				Side AB	_	Station B
Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
		0 , "	0 / "	0 , "		0 , "	, — <u>, —, —, —, —, —, —</u>
LII	Mehesari	29 30 18.21	78 11 18.88	184 33 18.10	5.1851626,7	4 34 26.63	LIV
"	,,	"	<b>"</b>				I
"	,,	"	<b>,,</b>	264 32 15.68	5.2479887,1	84 48 39.04	III
LlV	Chándípahár	29 55 29.73	78 13 37 13	214 40 32.90	5.1212764,1	34 47 42.61	LVI
"	,,	"	"	281 15 38.98	4.9420246,4	101 23 45.01	I
LVI	Ghandiál	30 13 25.32	78 27 54.61	355 18 15-14	5.1012759,8	175 19 13.97	I
"	,,	,,	,,	301 34 37.12	5.0333102,2	121 43 22.90	II
I	Mábegarh	29 52 39.58	78 29 52.04	229 41 35.72	5.0297618,7	49 49 20.07	II
,,	"	,,	,,	326 47 13.28	5.1529342,1	146 54 30.49	III
"	,,	"	"	286 2 59.12	5.1865902,5	106 16 52.34	ΙV
II	Ránígarh	30 4 4.47	78 45 21 . 56	329 33 36.72	5.1132768,0	149 39 48.84	IV
III	Girjwála	1 -					IV
,,	,,	,,	, ,,		1	1	
,,	•		,,		1		VI
IV	Ghungti	<b>I</b>	1			· ·	V
	LII	Series No.  Name  LII Mehesari  """  """  LIV Chándípahár  ""  LVI Ghandiál  """  Mábegarh  """  """  II Ránígarh  III Girjwála  """  """  """	Series No.   Name   Latitude North	Series No.   Name   Latitude North   Longitude East of Greenwich	Series No.   Name   Latitude North   Longitude East of Greenwich   Azimuth at A	Series No.         Name         Latitude North of Greenwich         Longitude East of Greenwich         Azimuth at A         Log. Feet           LIII         Mehesari         29 30 18 21         78 11 18 88         184 33 18 10         5 1851626,7           """"""""""""""""""""""""""""""""""""	Reries No.   Name   Latitude North   Longitude East of Greenwich   Azimuth at A   Log. Feet   Azimuth at B

Note.—Stations LII, LIV and LVI appertain to the Great Arc Meridional Series, Section 24° to 30°.

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Asimuth at A	Log. Feet	Azimuth at B	Series No.
			0 / //	0 / 11	0 1 #		0 / #	
21	IV	Ghungti	29 45 36.02	78 57 47 74	306 7 16.19	5.1933879,4	126 19 1.83	VI
	V	Dhela	29 26 31 . 67	79 1 53 73	257 18 24.11	5.0292610,0	77 28 5.20	VI
	"	,,	,,,	,,	327 23 23.07	5.2968281,0	147 33 9.73	VII
l	,,	,,	,,	,,	286 19 26.45	5.3818725,6	106 40 45.81	VIII
20	VI	Sáonchália	29 30 22.91	79 21 34.86	359 26 27.33	5.2795938,6	179 26 37.60	VII
,,	. ·	,,	,,	,,	305 52 50.62	5.1938056,1	126 4 31.85	VIII
	VII	Bagwára	28 58 58 24	79 21 55.78	231 37 36.34	5.2017094,9	51 49 1.63	VIII
	"	,,	,,	,,		4.9881613,7	116 15 8.00	IX
•	,,	,,	,,	,,	2 8 32.12	4.9684858,4	182 8 13.28	x
19	VIII	Birond	29 15 14.15	79 45 24 18	14 58 20.73	5.1657314,4	194 54 54.00	IX
,,	,,	,,,	,,	,,	355 37 46·39	5.2680050.3	175 39 3.49	XII
18	IX	Beheri	28 51 53.07	1		5.0159650,8		x
,,	"	,,	,,	,,		4.9203155,7	182 13 17.74	ХI
,,	"	,,	,,	,,			130 4 22.93	XII
	X	Sísgarh .	28 43 38.07	1				XI
17	ΧI	Atária	28 38 9.53	70 27 42:26	234 25 51.06	4.8221557.7	54 30 49.16	XII
,,	"	"	,,	,,	289 51 35.33		109 56 2.86	XIII
46	XI <b>I</b>	Donáo	28 44 40 46	1			185 30 19.49	XIII
,,	,,	,,	,,	,,	318 14 33.47		138 18 4.63	XIV
	XIII	Kalíánpúr	28 35 11.10	1		4.6699683,7		XIV
	,,			- <b></b>	312 6 23.66	4.7705261.0	132 10 17.80	xv
45	XIV	Káimkhera	28 37 25.50	70 55 23:12	1 9 21 19		i - ' i	XV
,,	,,	,,	, ,	79 00 -0 -0			118 55 54.30	XVI
	XV	Umra	1	i i	239 15 58.01			xvı
	"	,,	"	"			125 53 11.84	XVII
44	XVI	Shágarh	28 22 17:19	80 0 56.04	358 9 10.89	4.8010117.0	178 0 01.60	XVII
			i		299 29 46·6i			XVIII
"	" XVII	,, Semráo	28 22 40:01	% A 10:77	233 40 1.29			XVIII
		1	1		291 51 29.12			XIX
43	XVIII	',' Udepúr	28 28 36.19	% 3 14·50	0 37 20.82			XIX
					206 74 227	1.686.6		xx
"	" XIX	"," Dinama	» 28 TO 47 26	»	296 14 2.21			XX
		Piparía	i		232 34 23.86			XXI
1 40	,, XX	,, Sultánpúr	08 05 8:16	% or 11:48	1 18 15.08			XXI
42		_			288 36 59.24			XXII
"			"	,,,	200 30 39 24	+ /4/500/,3	100 41 41 3/	AAH
	·				l			

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude Enst of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
			0 , "	0 , "	0 / //			
	XXI	Karái	28 15 58.44	1	235 13 47.58	4.8198682,5	0 / "	XXII
						1 '	55 18 35.83	XXIII
41	" XXII	Rámuápúr	28 22 11 04	80 31 4.77			182 25 47.39	XXIII
-		-	· ·				120 56 58.64	XXIV
"	XXIII	,, Kokra	28 12 7.34	80 30 35·80			65 18 18 97	XXIV
			7 54	3- 35	773 -3 - 3 -	4 0129233,7	03 10 10 9/	21.22.1 V
- 1	,,	,,	. ,,	,,	309 56 5.64	4.8603168.5	130 1 4.54	XXV
40	XXIV	Rámnagar ·	28 16 36 69	1			181 49 2.83	XXV
,,	,,	,,	,,	,,			136 57 34.41	XXVI
39	XXV	Dahlelnagar	28 4 16.46	\$	242 18 28.60			XXVI
"	,,	"	7)	,,			130 40 5.06	XXVII
69	XXVI	Hilgi	28 8 28 31	80 50 11.42	4 43 5.65	4.7985945,2	184 42 38.60	XXVII
,,	,,	"	,,	,,	309 17 20.87	4.7421218,5	129 21 5.52	XXVIII
	XXVII	Saidara	27 58 7.64	80 49 13.72	239 57 3.29	4.7431121,2	60 1 14.32	XXVIII
f	,,	,,	,,	,,	298 40 4.80	4.7706269,9	118 44 34.92	XXIX
68	XXVIII	Kutía.	28 2 41 . 80	80 58 8.48	356 9 25.24	4.7492423,1	176 9 44.99	XXIX
"	XXIX	,,	,,	,,			107 51 21.32	XXX
į	AAIA	Asogápúr	27 53 27.16	80 58 50.41	-	'' - ' ''	51 20 42.04	XXX
6-	XXX	n Desertes	"	"	296 19 30.03			XXXI
67	İ	Daorár <b>a</b>	27 59 54.21	81 7 55.06	354 12 28.03	-	1	XXXI
"	,,	)) ·	"	"	296 39 20.83	4.7497180,0	116 43 43.42	XXXII
	XXXI	Lákún	27 48 54:04	81 9 10.41	226 20 31 92	1.008000	46 24 18.42	XXXII
į	"				, ,	I	99 0 35.39	XXXIII
İ	,,	"	,,	,,		1	166 28 28 24	XXXIV
66	XXXII	"Chelú <b>a</b>	²⁷ 55 44 53	81 17 15.05			160 56 51.09	XXXIII
65	XXXIII	Bela		81 20 31.86			222 55 17.23	XXXIV
-	,		' '' ''		1 07 -7 -7	1 - 3 7 3,0	35 -7 43	<del></del>
,,	"	<b>,,</b>	,,	,,	333 3 34 45	4.7810038,8	153 5 55.97	xxxv
,,	"	"	,,	,,	276 35 18.17			XXXVI
	VIXXX	Kháñpúr	1				92 48 49.67	
64	XXXV	Mási			218 15 12.55			XXXVI
,,	,,	12	"	"	279 28 15.33	i e		XXXVII
.	XXXVI	A thomas	a. 460-	0	0 .0	0		<b>47 49 40 40 4</b>
91		Atkonawa	27 40 4'81				148 31 41.33	
"	,, XXXVII	,, Anárkali	»	) <u>,</u>			103 44 48.78	XXXVIII
			27 30 24.00	01 39 3.11			38 25 38.70	
90	" XXXVIII	,, Dadaora	,,	»,			109 48 21.16	
90	7777 4 111	Danaolg	47 43 10.33	01 45 11.47	340 49 28.45	4.9125950,3	100 21 18.47	XIXXX

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
			0 / #	0 , 11	0 1 #		0 , "	
90	XXXVIII	Dadaora	27 43 18.33	81 45 11 . 47	287 59 47.88	4.8173607,9	108 5 10.73	$\mathbf{XL}$
	XXXIX	Tilakpúr	27 33 10.74	81 49 8.53	225 4 26.94	4.7642573,9	45 7 58.97	$\mathbf{XL}$
	"	•	,,	,,	• -		115 44 21.77	XLI
89	XL	Newáda	27 39 56.93	81 56 46 16	349 10 29.14	4.8339216,4	169 11 35.06	XLI
"	,,	22	"	"	288 10 27.53	4.7852182,4	108 15 26.37	XLII
	XLI	Isrápú <b>r</b>	27 28 53.33	81 59 8.44	223 15 39.60	4.8187082,0	43 19 31.66	XLII
	,,	,,	,,	,,	283 31 22.28		103 35 27.58	XLIII
88	XLII	Mánícháok	27 36 48.14	82 7 30.34	357 24 8.89	4.7749407,6	177 24 22.79	XLIII
,,	,,	,,	,,	,,	291 10 15.17	4.7606277,3	111 14 51 67	XLIV.
	XLIII	Saibara	27 26 58.94	82 8 0.31	232 50 37.05	4.8064686,2	52 54 58.91	XLIV
	"	,,	,,	,,	286 10 0.50	1.8031377.0	106 15 12.51	XLV
87	XLIV	Lohápánia	27 33 21 . 68	I .			170 1 46.41	XLV
,,	<b>,,</b> .	,,	, 33	,, "	284 46 40.01	1	1 ' ' '	XLVI
86	XLV	Bansídíla	27 24 3 24	82 19 17.62	227 24 14.40			XLVI
"	,,	"	, , ,	,,	284 14 44 04		1	XLVII
112	XLVI	Tulsípú <b>r</b>	27 30 56.70	82 27 42.33	340 20 3.13	4.7045580.2	160 21 50.40	XLVII
"	"	,,	,,	, -7 -7 - 55	285 46 58.39		1 .	XLVIII
"	XLVI <b>I</b>	Majháwa	27 21 15.57	82 31 34.92				XLVIII
	"	,,	, , ,	,,	287 13 50.02			XLIX
111	XLVIII	Ganespúr	27 28 11.17			1	163 9 34.20	XLIX
					282 42 25:00	4.6030085.4	103 47 30.77	L
"	" XLIX	Pip <b>ári</b>	27 18 22 87	82 41 56:01	212 12 24·99		1	L
	"	,,,				I .	107 1 28.41	LI
110	L "	Pathardi	27 26 14.77	82 47 30.15	338 15 17.72	I .	1	LI
"	,,	<b>&gt;&gt;</b>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	1	1	105 12 37.24	LII
	•							
İ	LI	Bankata	27 15 33.87	82 52 16.18	214 5 6.06			LII
	,,	,,	,,	,,		1	104 20 8.19	LIII
109	LII	Paragawa	27 23 36.95	82 58 22.51			156 56 44.09	THI
"	"	,,	,,	"		1	106 17 29.89	LIV
	LIII	Bángra	27 13 1.44	83 3 25.59	207 21 59.32	4.7403548,8	27 24 7.78	LIV
		<b>,,</b>	,,	,,	282 1 44.39	4.7418278,0	102 6 17.56	LV
	,,	,,	,,	,,	341 8 17.68	4.7194862,6	161 9 43.24	. LVI
108	LIV	Gháos	27 21 5.08	83 8 5.99	334 36 21.34	4.8248978,6	154 38 46.74	ľA
,,	"	,,	,,	,,	275 31 3.33	4.7189647,2	95 35 28.80	LVII
107	LV	Púrena	27 11 7.18	83 13 23.34	44 15 22.03	4.7253463,1	224 12 15.00	LVI
					1			

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
			0 , "	0 / //	0 / //		. , ,	
107	LV	Púrena	27 11 7.18	83 13 23.34	_	4.7788466,0	23 2 59.76	LVII
,,	"	,,	,,,	,,	335 41 54.79			LVIII
,,	"	,,	) ,,	"	267 59 24.79		88 4 9.25	LIX
	LVI	Dharamsingua	27 4 50.15	83 6 33.09	281 11 55.17	l .	101 16 55.19	LVIII
135	LVII	Bharmi	27 20 14.90	83 17 43 93	328 31 52.34	4.7962972,5	148 34 38.16	LIX
,,	,,	2)	,,	,,	279 23 53.64	4.8078561,2	99 29 16.21	LX
106	LVIII	Gharbaria		83 17 32 64	212 59 47.68		33 2 37.84	LIX
	LIX	Sáonbarsa			215 40 41.77		35 43 17.83	LX
1	"	,,	,,	,,	273 15 43.97	1	93 20 16.89	LXI
134	LX	Bánarsi	27 18 30.21	83 29 26.69			153 17 36.84	LXI
,,	,,	,,		,,	271 47 52.32	4.70065227	91 53 6.23	LXII
"	ŁXI	Bágápár	27 10 55·53	83 33 42.97	221 16 45.19		41 20 1.01	LXII
	,,	,,	,,	-3 33 <del>1</del> - 77	275 18 19.34		95 23 2.80	LXIII
133	LXII	Súpúr	27 18 10.85	83 40 50.97	340 31 34.51	I .	160 32 52.48	LXIII
"	,,	"	, , ,	"	280 50 57.27	!	100 55 31.22	LXIV
	LXIII	Morairi	07 10 0:60:	83 44 3.62	223 17 30.70	4.5051060	43 20 36.10	LXIV
	,,	,,			282 34 31.26	1	1	LXV
132	LXIV	Chanda	27 16 28.06	" 83 50 49·16	341 20 13.11			LXV
"	,,	,,	1	03 30 49 20	280 58 29.71			LXVI
"	LXV	Mathia	27 8 4.37	83 53 59.31	232 3 13.41		52 7 20.32	LXVI
					20a aa .a.ma		a ⁰	LXVII
131	LXVI	Balúa	"	»,	289 23 42 70			LXVII
				0 <del>4</del>	354 56 18.74	1	104 19 20.64	LXVIII
"	LXVII	Upasai	27 4 56:05	)) 84 0 EE 81			41 40 40.08	LXVIII
		_	i i			1	103 53 13.69	LXIX
l	"	,,	"	"	203 40 43 01	4 /39-9039	103 33 13 09	
130	LXVIII	Bájra	27 12 26 23	84 11 23.30	347 40 22.26	4.7770175.I	167 41 26.01	LXIX
,,	"	,,	,,	, ,	289 25 48.31			LXX
	LXIX	Bakwa			229 38 40.29			LXX
l	,,	,,	,,	"	287 47 9.95			LX <b>XI</b>
129	LXX	Rámnagar	1	84 22 2.74	339 14 17 93			LXXI
,,	,,	,,	,,	,,	286 48 48 51	4.7018624.0	106 53 47.62	lxxII
128	LXXI	Naonangarhi			221 1 37.43			LXXII
,,	"	"	,,	»,		l	101 24 52.18	LXXIII
155	LXXII	Tarharwa			350 49 15.74			LXXIII
,,	2)	,,	,,,	"			115 13 18.98	LXXIV

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
			0 / "	0 , "	o , "		o , "	
	LXXIII	Sathwári <b>a</b>	26 57 40.75	84 34 29 91	242 54 49.41			LXXIV
	,,	<b>)</b> )	,,	,,	1 ' '		130 23 36.90	LXXV
154	LXXIV	Sikta	27 1 44.04	84 43 21 . 74			185 15 13.15	LXXV
,,	>>	, ,,	,,	"			129 14 6.96	LXXVI
	LXXV	`Bíarwa	26 51 42.57	84 42 19.98	242 22 39.77	4.7409064,7	62 26 43.60	LXXVI
!	"	, ,,	,,	"	309 0 37.67	4.7447032,0	129 4 12.52	LXXVII
153	LXXVI	Harnáhi	26 55 55.15	84 51 19.14	5 22 50.53	4.7836275,2	185 22 22.21	LXXVII
"	"	"	,,	,,			131 20 7.55	LXXVIII
	LXXVII	Bigoía	26 45 56.02	84 50 16.27			1	LXXVIII
	· 33	23	,,	"	304 31 43.83	4.7978970,5	124 36 0.22	LXXIX
152	LXXVIII	Batwaia	26 49 50.81	84 59 1.54	356 3 44.80	4.7742986,6	176 4 5.13	LXXIX
"	,,	,,	,,	,,	300 11 27.15	4.7495952,6	120 15 28.64	LXXX
	LXXIX	Rúpdi	26 40 3.20	84 59 46 . 56	235 3 47.31	4.7344682,1	55 7 27.80	LXXX
	,,	,,	,,	,,	287 0 45.30	4.7879585,1	107 5 35.29	LXXXI
151	LXXX	Dip <b>ái</b>	26 45 10.41	85 7 57.29	343 54 13.40	4.7079484,2	163 55 23.52	LXXXI
,,	,,	,,	,,	,,	269 46 20·60	4.7526019,7	89 51 1.55	LXXXII
"	LXXXI	Masáh <b>a</b>	26 37 4.95		220 44 51.96	4.8130031,1	40 48 22.14	LXXXII
	"	,,	,,	,,	279 43 58.46	4.6781337,1	99 47 50.24	LXXXIII
150	LXXXII	Sinaría	26 45 12.55	85 18 21 43	355 31 59.97	4.7595886,2	175 32 22.19	LXXXIII
"	"	"	"	"	294 8 50.81	4.8013283,6	114 13 37.10	LXXXIV
	LXXXIII	Amúa	26 35 44.89	85 19 10.76	239 28 17.27	4.7913477,3	59 32 40.59	LXXXIV
	,,	,,	,,	,,			118 19 18.77	LXXXV
149	LXXXIV	Bulákípúr	26 40 55.73	85 28 58.19			180 52 15.36	TXXXA
,,	"	,,	,,	,,			110 56 16.71	
148	LXXXV	Madanpúr	26 31 5.45	85 28 48 20	232 11 10.15	4.8166729,8	52 15 25.51	LXXXVI
	<b>&gt;</b> 9	,,	,,	,,	280 12 40.84	4.8011507,5	100 17 55.71	LXXXVII
170	LXXXVI	Sundai		85 38 19.03	348 34 3.39			LXXXVII
,,	,,	,,	,,	,,			110 45 58.02	LXXXVIII
"	LXXXVII	Himáonpúr	26 29 13.89	85.40 13.50			58 2 26.42	
	"	"	,,	,,			117 33 8.48	
169	LXXXVIII	Pargáwa	26 24 6:02	85 48 55.04	354 45 32.83	4.7576011.6	174 45 58.52	LXXXIX
1				ļ		1	111 26 36.30	<b>X</b> C
"	LXXXIX	», Shápú <b>r</b>	,, 26 24 42·37	85 49 52 55	229 35 6.84			XC
		, ,,	,,	""		1	101 58 44.31	XCI
168	xo"	Jirol	L	85 57 59 29	339 58 5.60			XCI
1								

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
168	ХC	Jirol	26 30 55.00	85 57 59 29	° ' " 264 55 22°47	4.7650820.6	0 / # 85 0 7·62	XCII
	XCI	Chandarsanpúr		86 1 23.35	215 9 22.71	4.8358917,5	35 12 36.23	XCII
167	XCII	,, Narhar	26 31 45.64	86 8 37 · 86	345 21 2.08	1	88 8 59°76 165 22 11°55	XCIII
"	"	"	"	"	274 22 0.33	4.7570203,4	94 26 40.50	XCIV
166	XCIII	Bhería Bisanpúr	26 22 48.38		220 38 57·83 278 45 27·18		40 42 27·82 98 49 59·44	XCIV XCV
186	xciv	Mirzápúr	26 31 2.15	86 19 5.27	347 35 59:23	4.7772194,3	167 37 2.24	XCVI
"	xcv	Barsám	26 21 22.96	86 21 26 63	285 52 8·02 224 41 20·69	1	105 56 38·88 44 44 47·83	XCVI
185	" XCVI	,, Janjpati	,, 26 28 26·48	% 86 29 12·38	285 38 37.49		105 42 48.22	X CVII
"	XCVII	Bhela	26 19 0°04	"	285 21 42.21 285 28 50.17	4.7735675,7	105 26 22.77	XCVIII XCVIII
	,,	Difera	20 19 0 04	"	291 32 13.57			XCIX
184	XCVIII	Ladnía	26 25 50.32	86 39 42 22			179 26 35.74	XCIX
"	XCIX	,, Semráha	26 15 48 71	86 30 48 72	231 19 31·07 292 12 33·08			C C
	"	,,	,,	,,	289 29 56.62			CI
183	C	Harpúr	26 22 25.23	86 48 59.10	5 10 22.61	4.7500229,5	185 9 58.00	CI
,,	"	"	,,	<b>,</b>		1	128 24 58.76	CIV
"	" CI	Barháta	26 12 10:47	86 48 2:42		1	65 10 10.23	CII
	,,	"	,,	,,			129 44 26.43	CIII
182	CII	Dewánganj	N Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp	1		ľ	185 38 35.53	CIII
,,	"	"	,,	,,	1	1	10 0 5.97	CI∇
"	"	"	"	,,	247 26 50.52			CVI
"	CIII	Latona	26 7 23 33	86 == 46.60	1	1	126 51 30·43 66 52 15·05	CVI
	"	Datona ,,	20 7 23 33	"	-		124 59 52.23	CVII
	CI₹	Baisi	26 25 24.70	86 58 29.43	305 4 4.25	4.7216532,2	125 7 34.87	CV
218	C♥	Minai	26 20 24.69	87 6 23.44		1	185 49 48.14	CVI
"	23	"	,,	"			131 6 3.67	CIX
" 181	c <b>vi</b>	", Chúni	26 11 4.42	87 5 19.98		I.	81 15 22·40 187 15 59·26	CVII CX

		Station A		·		Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
			0 ' "	0 * W	0 , ,,		o , "	
181	CVI	Chúni	26 11 4.72	87 5 19.98	311 18 58.66	4.7622911,2	131 22 28.57	CVIII
,,	,,	<b>,</b> , .	,,	,,	250 26 23.91	4.7267589,4	70 30 27.64	CIX.
	CVII	Rámnagar	26 2 9.05	87 4 4.27	252 28 44.48	4.7226341,6	72 32 47.06	CVIII
180	CVIII	Manúla	26 4 46 20	87 13 16.55	186 57 22.52	4.7516388,5	6 57 55.71	CIX
	CIX	Ghíba	26 14 1.19	87 14 31 . 65	200 7 26.82	4.7115067,6	20 8 53.00	CX
	,,	,,	,,,	,,,	281 54 20.71	4.7083677,8	101 58 23.24	CXI
217	CX	Nirpúr	26 21 59.77	87 17 46.33	331 16 40.45	4.8269627,1	151 19 17.41	CXI
,,	"	,,,	"	,,	275 0 5.12	4.7580149,2	95 4 43.68	CXII
	CXI	Mánikpúr	26 12 16.49	87 23 40.61	204 45 29.81	4.7731717,0	24 47 30.66	CXII
	"	"	,,,	,,	264 5 11.78	4.7764111,5	84 10 0.34	CXIII
216	CXII	Kamaldáha	26 21 9.93	87 28 12:71	324 4 50·65	4.7702641.5	144 7 38.98	CXIII
				1	269 32 55.87		89 37 49 31	CXIV
"	CXIII	Bánghora	26 13 17.06	% 87 34 33·41	207 58 28.74		28 0 33.17	CXIV
			,,	,,	271 30 21.74		91 34 59.01	CXV
215	CXIV	), Dipnagar		87 39 14.75			147 39 11.86	CXV
					267 17 0.48	4:7062044.2	87 22 5.60	CXVI
"	cxv	,, Músaldanga	26.12.1.80	87 45 0.99			30 32 46.19	CXVI
					269 2 26.29	1	89 10 14.33	CXVII
214	,, CXVI	,, Lachmípúr	26 21 43 11	87 50 42.00		4.7705994,5	151 20 20.29	CXVII
"	"	,,	,,	,,	267 34 18.26	1	87 38 37.22	CXVIII
								CXVIII
	CXVII	Tagría	26 13 10.72	87 55 52.97	204 38 35.86			CXVIII
	)) (1777.117	"	,,,	,,			83 15 29.38	CXIX
213	CXVIII	Bandarjúla	20 22 5.00	88 0 25.12		li e	154 53 22.45	CXX
"	CXIX	77	"	,,	251 25 23.76		1	CXX
	CAIA	Kharkhari	20 14 0.55	00 4 34 12	204 54 4 37	4 0034127,9	24 56 34.19	OAA
	"	,,	,,	,,	262 0 48.60	4.7397527,2	82 5 12.82	CXXI
212	CXX	Thákúrganj	26 25 2.41	88 10 12.31	338 3 53.43	4.8006325,7	158 5 48.63	CXXI
,,	"	,,	,,	,,	304 47 51.33	1	124 52 11.27	CXXII
,,	"	"	,,	,,	248 33 3.19	4.7605242,1	68 37 26.03	CXXIII
	CXXI	Sonákhoda	26 15 21 . 79	88 14 31 . 61	233 57 11.90	4.5644979,6	53 59 36.11	CXXII
	,,	,,	"	<b>,</b> ,	302 58 9.41	4.7298912,1	123 1 47.85	CXXV
211	CXXII	Rámganj	26 18 55.51	1		1	0 26 14.07	CXXIII
,,	,,	,,	,,	,,			38 55 38.02	CXXIV
"	"	"	,,	,,			163 12 58.99	CXXV
,,	"	"	, ,,	,,			105 28 33.54	CXXVI
			'					

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
210	CXXVI CXXIV CXXVI	Dúmdángi Kanchábári Chotáki Newáni	26 27 47·73 26 10 32·16	88 27 54.42	344 0 25·40 235 35 50·24	4.8705496,8	95 48 41·50 164 2 5·17 55 39 45·58	

November 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.

#### PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument, &c., in pairs of horizontal lines, the first line of which gives the data for the 1st or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction, and the height of the 2nd station above or below the 1st, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results". The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the printil leveling operations, whenever a junction between the two has been effected. The spirit leveled determinations, are adjusted—usually by simple proportion—to accord with the latter. In the table the spirit leveled values are printed thus 628'34, &c., to distinguish them from the adjusted trigonometrical values. The column in which the mean trigonometrical heights are given is barred across where necessary, as after deduction of Stn. XI from Stn. IX, page 165—1, to indicate that one set of adjustment ends and another begins. The trigonometrical heights always refer to the upper mark-stone, or to the upper surface of the pillar on which the theodolite stood; when a spirit leveled height does not refer to either of these surfaces, it is given in combination with a correction, thus  $\begin{cases} 619.32 \\ +37.8 \end{cases}$  and the sum of these two quantities, in this case 657'1, represents the value with which the corresponding trigonometrical mean height 665'6 is comparable. Descriptions follow these tables, exactly indicating the

When the pillar of the station is perforated, the height given in the last column, is that between the upper surface of pillar and ground level mark-stone in floor of passage; otherwise it is the approximate height of the structure, above the ground at the base of the station.

The heights of the initial stations, are taken from the Great Arc Meridional Series, section 24° to 30°, of the North-West Quadrilateral, page 42___, Vol. IV, and are as follows:—

Astronomical	Date			rations	Height	in feet	Årο		estrial action	Station		n feet of 2n		'Tower
1850	Mean of Times of obser-	Station	Observed Vertical Angle	er of observ	Signal	Instrument	Contained A	seconds	Decimals of Contained Arc	Height of Station - 1st in feet		metric <b>al</b>	Final	of Pillar or
	vation			Number		In		In	Conf	S pug	By each deduction	Mean	Result	Height of
(1) (2)	h. m. 3 ° 2 3	LII I	0 , " E 1 27 44 9 D 1 50 56 2	8	1.24	3·87 5·43	" 1652	135	.083	+4835.8	5656· <b>3</b>			feet
Nov.16,17,20 ,, 30,Dec. 4	1	LIV I	E 2 20 29.5	12 8	1.38	5°40 5°37	864	65	.075	+3738.6	5621.3	5653.8	5653	6.9

^{(1).} The means of observations taken on 27 January 1843, and 2, 3 January 1851.
(2). " " November 1842, and 3, 4 December 1850.

Astronomical	Date			tions	Heigh	t in feet			estrial action	Station		n feet of 2n		or Tower
	Mean of	Station	Observed	observations		1	ed Are	•	of Are	ht of -1st S eet	above	Mean Sea	revel	lar or
1850	Times of obser-	Station	Vertical Angle	Number of c	Signal	Instrument	Contained	In seconds	Decimals Contained	Height of 2nd Station – 1st S in feet		ometrical ults	Final	t of Pillar
	vation			Num		I I		Ä	G	2nd S	By each deduction	Mean	Result	Height
Nov. 1,2 ,, 30, Dec. 4	h. m. 3 50 3 33	LVI I	D o 55 7.7 E o 37 12.3	8	1.40	5°43 5°37	1247	92	*074	- 1696.3	5653.8			fee
" 3 Dec. 10,11	3 13 2 40	LVI II	D o 16 59.8	6 8	1.42	5°43 5°38	1066	78	.073	- 291.9	7058.2			
" 1 " 10	3 8 3 22	I II	E o 37 23.2 D o 52 43.0	4	1.30	5·37 5·38	1058	77	.073	+1404.0	7057:8	7058.0	7055	2.2
1851 Jan. 2,3 Dec. 26	2 30 I 41	LII III	E o 24 29.6 D o 49 34.6	· 8	\$0.18 0.88	3.81	1748	126	.072	+1905.8	2726.3			
" 1,4 " 24,25	3 23 3 4	I III	D 1 20 52.8	8 8	1.38	5°37 5°39	1404	104	.074	-2930.2	2723.3	2723.9	2721	2
" 19 " 25	2 43 2 45	III IV	D 2 26 52.0	4	1.32	5.40	1022	74	.072	-4203·1	2722.1			
" 1,4 " 16,19	2 33 2 18	I IV	E o 17 30.7 D o 39 22.0	12	1,40	5°37 5°40	1517	801	.071	+1271.6	6925.4			
" 10,11 " 16,19	2 30 2 35	II IV	D o 13 1.9 D o 559.8	8 8	1.40	5.38	1282	77	•060	- 133.1	6924.9	6926.1	6922	3
" 25 " 19	2 45 2 43	III IV	E 2 12 1.4 D 2 26 52.0	4	1.32	5°39	1022	74	.072	+4203.1	6927.9			
" 25 1851 Jan. 11.15,18	3 58 2 16	III V	D o 23 53.5 E o 9 28.4	4	1.20	5.42 5.39	987	69	•070	- 485.1	2238.8			
1850 Dec. 19 1851 Jun. 16	3 3 2 15	IV V	D 2 25 28 6 E 2 8 17 2	4	1.22	5°40	1161	72	062	-4686·6	2239.5	2239.8	2235	2
May 23,27 June 3	3 51 4 33	VI V	D 3 28 56.0	8	1.12	5°40	1056	65	.003	-6265.7	2241.0			
• ,	3 24 22 0	III VI	E 1 27 7.5	4	1.08	5°39	1944	137	.070	+5791.8	8515.74			
1851 1	21 21 20 41	IV VI	E o 23 26.3	10	1.67 0.32	5°40	1541	94	.001	+1580.6	8506.7	8505.8	8501	4
June 3 May 23,27	4 33 3 51	v vi	E 3 13 14.6 D 3 28 56.0	4 8	1.32	5.46 5.46	1056	65	.062	+6265.7	8504.9			
Jan. 13,15,18 Mar. 1,2	2 37 2 25	v vii	D o 40 19.2	12 8	1,31	5°42 5°24	1956	130	.066	-1504.4	735° <del>4</del>			
May 18,23 Feb. 28 Mar. 1,2,3	3 23 2 55	VI VII	D 2 34 25.9 E 2 6 52.9	16 8	0.90	5°40	1882	118	•063	<b>-7794</b> .7	711.14	735.9	730	0

^{*} This height is to be combined with a negative sign, because the pillar at LII, Mahesari, had a permanent addition made to it of 15 feet by a subsequent observer. † Rejected.

Astronomical	Date		,	tions	Height	in feet			estrial action	tation		n feet of 2r		Tower
	Mean of	Station	Observed	observations		į	Contained Arc	gg.	of Are	Height of Station—1st Station in feet	above	Mean Sea	Level	6
1851	Times of obser-		Vertical Angle	Number of	Signal	Instrument	Contai	In seconds	Decimals Contained	Heig Station in	Trigono Res	metrical sults	Final	Height of Pillar
	vation			Num		- H		II.	Con	2nd	By each deduction	Mean	Result	Heigh
Apr. 29,30 Feb. 28 Mar. 1,2,4	2.0	VIII VII	D 2 26 1.1 E 2 3 20.3	8 16	0.83	5°40 5°24	1571	110	.070	-6237·4	736.4			feet
Jan. 16 Apr. 80	1 3	V VIII	E o 50 11.9	4	1.148	5.42	2379	153	.064	+4734.0	6973 · 8			
May 23 Apr. 29,80 May 1		VI VIII	D o 45 32 4 E o 22 30 3	4	1.40	5°40	1543	86	.056	-1546.7	6959.14	6973.3	6967	§
Feb. 28 Mar. 1,2,4 Apr. 29,30	2 58 2 57	VII VIII	E 2 3 20.3 D 2 26 1.1	16 8	0.83	5°40	1571	110	.070	+6237.4	6972.8			
Feb. 27,28 Mar. 26	4 27 4 25	VII IX	D o 7 5 0 D o 5 40 3	8 4	5°35 5°28	5°24 5°37	961	98	.103	- 20.1	715.8	716.0	708	38
Apr. <b>29,3</b> 0 Mar. <b>3</b> 0	2 45 2 6	VIII IX	D 2 37 12.9 E 2 16 18.2	8 4	0.42	5°40 5°37	1446	102	.070	-6257.1	716.5	710 0	700	30
Mar. 1,2,4 ,, 10,11,12, 18,14,18	2 51	VII X	D o 8 59.4	12	5°34 5°28	5°24 5°35	918	46	.050	- 57.2	678.7			
Mar. 26	19 30	IX X	Do 7 52.6 Do 5 38.9	2	5.28 2.28	5°37 5°35	1025	106	.103	- 33.8	682.5	680.4	670	38
" 30 Apr. 3,9	5 15 5 13	IX XI	Do 7 5.9	4	5.38	5°37 5°33	822	108	.131	- 49.3	666.7		619:32	2
(8) (4)		X XI	Do 5 7 5 Do 4 3 6	20 14	8·45 5·85	5°30	927	184	. 198	- 15.9	664.2	665.6	{ 619:32   { +37:8 	37.8
Apr. 8,9 ,, 11,12	2 40 2 53	XI XIII	Do 5 58 2 Do 2 51 3	8 8	5°35	5°33	523	- 4	.008	- 23.8	633.3	633.3	628'84	20
1843 Feb. 24 1850 Mar.29,80, 1843 Mar. 1 1850 ,, 23,24	*3 49 *3 47	XIII XV	D o 3 31.3	8 8	5.02 2.60	5°14	582	8	.014	- 20.6	613.7	612.2	609'97	20
Apr. 29, May 1 ,, 15,20	3 12 3 53	VIII XII	D 2 10 7.7 E 1 43 26.4	8 8	1.04 1.44	5°40	1834	121	.066	-6313.0	654.0			
Mar. 25,26 Apr. 14,16	4 6 4 23	IX XII	Do 8 11.4 Do 2 37.4	<b>8</b> 6	5°42	5°37 5°34	671	11	.017	- 55.1	652.9			
" 2,3,4,9 " 13,14	3 6	XI XII	D o 6 15'1	81	5°42 5°33	5°33	671	- 24	.030	- 5.3	651.9	651.6	652	24
(1) (2)	*3 27 *3 29	XIII XII	Do 3 57.3	12 16	5.20 5.20	5°20	571	- 20	.035	+ 18.8	647.6			
1843 Feb. 20 1850 Mar. 28 1843 Feb. 26,27 1850 Mar. 25,26	*3 59 *4 4	XII XIV	Do 5 12.5	4 8	5·64 5·63	5°46	581	36	.063	<b>–</b> 16·8	634.8			

In some instances, the dates and mean of times of observation taken at two different hours either of the same day or on different days could not be entered in their proper places in columns 1 and 2 from want of space, this information is as follows:—(3) 13h 53m of 28th March 1839 and 3h 47m of 17th, 18th and 21st March 1851; (4) 18h 58m of 28th March 1839 and 3h 49m of 8th April 1851.

† Rejected. § Not forthcoming. (1) The mean of observations taken on 24th February 1843, 29th March 1850, 11th and 12th April 1851. (2) 20th February 1843, 28th March 1850, 13th 14th and 15th April 1851.

* In these instances, the chronometer error not having been recorded, the times here given are mere chronometer readings.



Astronomical	Date			tions	Height	in feet	v		estrial action		tation		feet of 2n		a de la
	Mean of Times	Station	Observed Vertical Angle	of observations	7	ıent	Contained Arc	nds.	ls of	ight of	1 Station — 1st Station in feet		Mean Sea	Level	8
1843-50	of obser-		Totalam Englis	Number o	Signal	Instrument	Conta	In seconds	Decimals Contained	Ë	Statio ii	Trigonor Res		Final	Hoight of Pillor
	vation			Nun		<b>4</b>			Con		2nd	By each deduction	Mean	Result	Heig
1843 Feb. 25 1850 Mar. 29,30 1843 Feb. 26 1850 Mar. 25,26	h. m. 3 28 3 30	XIII	Do 3 27.8	†8 †8	2.76	5°14 5°23	# 462	16	*034	+	4· I	632.9	633.6	634	foot
Mar. 23,24 ,, 25,26	3 48 3 48	XV XIV	Do 226.6	8 8	5.23 2.3	2.03 2.02	525	26	.049	+	23.1	633.1			
" 25,26 " 20,21,22	3 40 3 40	XIV XVI	Do 3 16.8 Do 4 28.3	8	5°50	5.08 2.03	517	25	.048	+	8.9	642.9			
" 23,24 " 20,21,22	3 39 3 34	xv xvi	Do 6 7.9	6	5°50	2.08	539	17	.031	+	30.4	640.4	641.8	641	30
" 23,24 " 18,19	4 15 4 16	XV XVII	Do 3 25.3	8 8	5.20	5.08 2.02	597	35	.059	_	16.4	593.3			
" 20,21,22 " 19	3 46 3 45	XVI XVII	Do 221.9	12	2.20	5.08 2.08	625	24	-038	_	44.6	597.2	595°3	593	27
" 20,21,22 " 14,16,17	3 30 3 29	XVI XVIII	Do 7 5.2 Do 2 28.5	I 2 I 2	5.60	5.08	565	- 6	.011	_	38.4	603.4			
" 18,19 " 16,17	4 55 4 55	XVII XVIII	Do 3 21.7	8	5.60	5.08	585	114	194	+	7.0	602.3	602.8	599	22
" 18,19 " 13	3 40 3 41	XVII XIX	Do 3 8.5	8	5.40	5.02	502	-15	.030	_	18.4	576.6			
" 14 " 12,13	3 33 3 33	XVIII XIX	Do 6 28.8	4 8	5·40 5·60	5.02 2.08	534	-24	*045	_	25.9	576.9	576.7	572	25
, 14,15,16 , 8,11		XVIII XX	Do 4 42.7	16 8	5.90 2.30	5.02 2.08	469	14	.031	_	14.6	588.3			
" 12,13 " 11	3 28 3 28	XIX XX	Do 3 50.7	8	5.30	2.02 2.02	537	8	.012	+	7.7	584.4	586.3	581	28
" 12,13 " 5,6,7		XIX	Do 4 33.4 Do 2 57.6	8	5°50	5.08	470	8	.017	_	11.1	565.6			
" 8,11 " 5,6,7	1 - 1	XX XXI	Do 5 0.4 Do 234.1	6	2.20 2.20	5.08	548	45	.083	_	19.9	566.4	566.0	559	26
" 8,11 Feb. 28, Mar. 1	• •	XX XXII	Do 6 52.1	8	5°75	2.02 2.02	552	- 3	.002	_	36.6	549.7			
Mar. 5,6 Feb. 28, Mar. 1	4 49 4 50	XXI XXII	Do 3 49.7	8 8	5°75	5.02 2.08	652	147	. 225	_	16.9	549.1	549 <b>°4</b> -	541	28
Mar. 5,6 Feb. 23,24	1	XXI XXIII	Do 523.8	8	5.20 2.20	5.08 2.08	561	90	.191	_	37.1	528.9	528.3	519	26

[†] Exclusive of the number of observations taken in 1843 which information is not forthcoming; the observations themselves are however all included. 

The chronometer error not having been recorded, the times given in this column are mere chronometer readings.



Astronomical	Date			ations	Height	in feet	ပ္	Terre Refra		tation	Height in	n feet of 2n Meun Sea	d Station	Tower
1850	Mean of Times	Station	Observed Vertical Angle	er of observations	Signal	Instrument	Contained Arc	seconds	Decimals of Contained Arc	Height of 2nd Station — 1st Station in feet	Trigono	metrical		of Pillar or Tower
•	vation			Number	<b>20</b> .	Inst	. 8	n.	Dec Contu	2nd St	By each deduction	Mean	Final Result	Height of
Feb.28, Mar.1,2	h. m. 4 18 4 18	XXII XXIII	0 , " Do 5 31 · 2 Do 3 2 · 6	12	5°50 5°75	5.08	603	43	.071	- 21.9	527.5			feet
Feb.28, Mar.1,2	4 44	XXII XXIV	D o 2 50.4	12 8	4 · 58 5 · 75	5.06	649	80	123	- 23.0	526.44		504:50	27:
,, 23,24 ,, 22	4 48	XXIII XXI <b>V</b>	D o 3 15.5 D o 3 12.5	8	4.28 2.20	5.06 2.08	642	148	.531	+ 7.5	535.7	536	524'62	27 9
1839 Jan. 5	6 2 6 0	XXIII XXV	Do 114.1	8 8	1.52 0.52	3·42 4·88	731	314	.430	- 5.9	213.1		F. 7.2	28
1850 Feb. 21,22 ,, 19	4 28 4 28	XXIV XXV	Do 5 25.6 Do 4 24.3	8 4	5.46	5.06 2.06	739	75	.101	- 11.6	213.0	213.1	512	20
,, 21,22 ,, 13,14	3 9 3 9	XXIV XXVI	Do 3 52.9	8 8	5°37 4°58	5.04 5.04	667	7	.011	- 31.1	493.2			.0
,, 17,19 ,, 14	2 46 2 48	XXV XXVI	Do 2 41.6	8	5°37 5°46	5.06 5.06	541	4	.008	- 11.2	201.6	497.5	499	38
" 17,19 " 10,11,12	2 57 2 52	XXV XXVII	D o 3 50.3	8	5:40 5:46	5.03 2.06	565	17	.030	- 9.3	503.8			
" 13,14,15 "9,10,11,12	3 5 3	XXVI XXVII	Do 4 24'1	12	5°40 5°37	5.03	621	31	.050	+ 4.3	201.8	202.8	504	23
" 13,14 " 6,7,8	3 I 3 I	XXVI XXVIII	Do 3 5.5	8	5°75 5°38	2.12 2.02	545	-13	.023	<b>– 26</b> ·6	470.9			
" 9,10,12 " 6,7,8	2 57 2 57	XXVII XXVIII	Do 213.2	12	5°75 5°40	2.03	547	26	.047	- 30.2	472.3	471.6	474'61	22.
"9,10,11,12 "2,3,4	1	XXVII XXIX	Do 143.4	16 12	5°35 5°40	5.02 2.03	582	27	.047	- 43.4	458.6			
,, 6,7,8 ,, 2,3,4	-	XXVIII XXIX	Do 3 38.4	12	5°35 5°75	2.12	554	_ 2	.004	- 15.8	458.8	458.7	457	24
,, 6,7,8 Jan. 29,30,31 Feb. 1	2 46 2 45	XXVIII XXX	Do 449.3	12	5·6 ₅	2,12	<b>5</b> 45	8	.014	- 7.0	467.6			
,, 2,3,4 Jan. 31, Feb. 1		XXIX XXX	Do 4426 Do 5485	12	5°35 5°35	2.02	618	- 7	.013	+ 10.0	468.7	468.2	466	22
Feb. 2,3,4 Jan. 23,24,25	2 56	XXIX	Do 2 35.3	I 2	5.20	2.02	613	-14	.022	- 4·1	454.6			
Feb. 1 Jan. 23,24,25	2 41	XXX XXXI	Do 6 18.6	4 12	5.63	2.12	662	- 3	.004	- 15.1	453.1	453.8	448.62	24

^{*} The chronometer error not having been recorded, the times given in this column are mere chronometer readings. † Rejected.

Astronomical	Date			observations	Height	in feet	γω		estrial action	if t Station		n feet of 2: Mean Se		1
1850	Mean of Times of obser-	Station	Observed Vertical Angle	<b>~</b>	Signal	Instrument	Contained	seconds	Decimals of Contained Arc	Height of 2nd Station – 1st Station in feet	Trigono Res	metrical ults	Final	-
	vation			Number		ed.		H	Cont	25 Bnd Sp	By each deduction	Mean	Result	
	h. m.		• , ,,				"							
Jan. 28,29,30 ,, 26,27	*2 52 *2 52	XXX XXXII	D o 3 o.4 D o 9 10.3	12 8	5.20 2.20	2.03	555	- 4.	.008	- 26.9	441.3			
	*2 43 *2 44	XXXI XXXII	Do 5 47.3	8 8	5.20	5.03 5.02	593	— з	.004	- 14.5	439`3	440.3	436'62	2
" 23,24,25 " 13,14,17		XXXI XXXIII	Do 6 17.0	12	5.20	5.03 2.05	613	8	.013	- 24'1	424.2			
" 26,27	*3 12 *3 12	XXXII XXXIII	D o 5 30.2 D o 3 46.0	8	2.20	2.03	534	-13	.024	- 13.7	422.0	423.7	425	
,, 23,24,25		XXXI XXXIV	Do 258.2	12	5.30	2.08	609	20	.032	<b>— 13.</b> 6	435.0			
" 14,17	*3 21 *3 21	XXXIII XXXIV	Do 449.7 Do 559.3	8 8	5.35	2.08	678	14	.020	+ 11.7	435*4	435.3	439	
,, 13,14,15,17 ,, 1849 Dec. 26,27,28,30	•3 0	XXXIII XXXV	Do 2 3.1	16	5.20	5.03	596	2	.003	- 2.3	421'4			
1850 fan. 20,21	*3 <b>3</b>	XXXIV XXXV	Do 6 16.3	8	5.20	5.08	734	28	.037	— 13·7	421.5	421.2	425'89	1
0ec.26,27,28,30 1850 Jan. 14,15,17 ,, 3,5,7,8	*2 33	XXXIII XXXVI	Do 3 24.2	12	5.30	5.03	636	6	.010	+ 32.7	457.7			
1849 Dec.26,27,28,30 1850	3 6	xxxv	Do 654.6	16	5.35	5.07	584	21	.035	+ 35.4	461.3	459°5	460	
Tan. 5,6,7,8 1849 Dec. 26,27,28	3 13	XXXV	Do 231.0	12	5.45	5.07	727	19	.026	+ 8.0	433.9			
,, 22,23,24 1850 (an. 5,7,8	2 50	XXXVI	D o 6 58.4	12	5°45	4.90	679	3	.004	- 27.7	431.8	432.8	434	
Dec.21,22,23,24 1850 [an. 5,6,8	3 19	XXXVII XXXVI	Do 2415.0	16	5.35 5.75	5°07	701	31	.044	- 10.6	448.0			
)ec. 10,11,12 ,, 21,22,23,24		xxxviii xxxvii	Do 3 8.0	16	5·35 5·75	5·07		14	.027	+ 12.1	447.9	448.4	450	
" 10,11,12 " 21,22,23,24	ł	XXXVIII	Do 2 9.2	12	5°45 5°58	5.18	527							
Apr. 16,17 Dec. 10,11,12	4 45	XXXIX XXXVIII	D o 4 10.0	8	5.20	2.20	572	-15	.025	- 11.4	421.4	423.0	42570	
Apr. 16,17	4 19	XXXIX	D o 4 18.2	8	5.65	5.20	642	-13	'021	- 23.8	424.6			
ec. 7,8,9,10,11,12 Apr. 11,12.13	1	XXXVIII XL	D o 6 45.2		5.42 5.62	2.23	649	34	.025	- 37.0	413.0	413.9	415	

^{*} In these instances, the chronometer error not having been recorded, the times here given are mere chronometer readings.





### PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

Astronomical	Date			observations	Height	in feet	J.	Terre Refra		:	Station		n feet of 2nd Mean Sea		r Tower
1849	Mesn of Times of obser- vation	Station	Observed Vertical Angle	Number of observ	Signal	Instrument	Contained Arc	In seconds	Decimals of Contained Arc	Height of	Ind Station — 1st Station in feet	Trigonot Res		Final Result	Height of Pillar or Tower
Apr. 16,17	# h. m. + 39	XXXIX	Do 5 16.7	8	2.21	2.20	" 574	7	'012		10.3	deduction			feet
" 11,12,13 " 16,17 Mar. 28,30,31	4 40 4 33 3 53	XLI XXXIX XLI	Do 4 4.3	8	2.81 2.98	5°53 5°59 5°53	592	•	*000	-	20.4	404.4	403.6	406	
Apr. 11,12,13 Mar. 28,30,31	4 54 4 13	XL XLI	Do 534'4 Do 427'8	12	5.21 2.98	5°53	674	36	.053	-	11,1	402.8	403 0	400	27
Apr. 11,13 Mar. 26,27	4 3 ¹ 3 55	XL XLII	D o 2 58.0	8 6	5.21 2.60	5°55	бо2	52	•086	-	31.1	392.8			
" 28,29,30,31 " 25,26,27	3 40 3 39	XLI XLII	Do 4 16.3	16 12	5.60	5°55	651	35	.054	-	13.9	389.7	391.3	395	28
" 28,29,30 " 22,23,24	3 15 3 17	XLI XLIII	Do 2 46.0	12	5.80	5.65 5.65	487	6	.013	-	17.2	386.4			
" 25,26,27 " 22,23	3 6 3 5	XLII XLIII	Do 532.6	12	5.80	5. 65 5. 22	588	-11	.010	-	8.1	383.1	384.8	389.30	24
" <b>2</b> 5,26 " 19	4 47 4 47	XLII XLIV	Do 341,5	8	5.60 5.60	5°53	569	99	.173	_	10.0	385.0			
" 22,23 " 21	3 10 3 8	XLIII XLIV	D o 2 18.2	8 6	5.80	5·65 5·65	633	9	.012	-	3.6	386.3	385.7	386	24
(1) (2)	4 34	XLIII XLV	Do 2 3 1.3	16	8·49 8·65	5·64 5·59	628	52	.083	_	15.2	374°4			
Mar. 18,19,20 ,, 16,17		XLIV XLV	Do 3 43.4	6 8	5°31	5.20 2.23	566	21	.037	-	10.4	375.3	374.8	377	20
" 19 " 13	1 - •	XLIV XLVI	Do 4 42.0	+	5°43 5°75	5.20 2.23	565	47	.083	-	13.0	372.7			
" 15,16,17 " 12,13	3 20	XLVI	D o 4 42.5 D o 4 38.5	12	2,31	2.20	610	25	.041	-	<b>o</b> .6	374.5	373 4	376	25
" 15,16,17 " 10,11	3 4 3 3	XLVII	Do 638.2 Do 428.5	12	2.20	2.20	677	5	.008	_	31.0	353.5			
" 12,13,14 " 9,10,11		XLVII	D o 5 57 7 D o 3 46 5	10	5.43	5.20	615	16	.022	-	19.9	353.2	353.4	356	30
" 12,13,14 " 3,5,7,8	1	XLVI XLVIII	Do 3 29.5	12	2.21	2.20	605	29	.047	-	19.3	354.3			
" 9,10,11 " 5,7	3 25 3 25	XLVII XLVIII	Do 412.1	12 8	5.20	2.20	560	18	.032	+	1.9	355.3	354.7	358	25

^{*} The chronometer error not having been recorded, the times given in this column are mere chronometer readings.

(1) The mean of observations taken on 16th March 1847, and 22nd, 23rd, 23rd, 23rd, 1849.

(2) The mean of observations taken on 15th March 1847, and 15th, 16th, 17th March 1849.



Astronomical	Date			ations	Height	in feet	Aro		estrial action		Station		n feet of 2n Mean Sea		1
1849	Mean of Times of obser- vation	Station	Observed Vertical Angle	Number of observations	Signal	Instrament	Contained An	In seconds	Decimals of Contained Arc	Height of	2nd Station—1st S in feet	Trigonor Res	metrical ults	Final Result	
			·	Ž						ļ 	<b>&amp;</b>	deduction	Mean		_
Mar. 9,10 Feb. 24,25	* h. m. 2 52 2 51	XLVII XLIX	0 / " Do 5 17.7 Do 4 15.8	12	5°43 5°50	5.20	" 580	3	.009	_	8.8	344.6			
Mar. 3,4,5,7 Feb. 21,22,23, 24,25	3 4 3 4	XLVIII XLIX	Do 250.5 Do 419.9	16 20	5°43 5°44	2,20	біз	18	•030	_	9.6	345 1	344.8	349	
Mar. 8,4,5,7 Feb. 18,19	3 20 3 20	XLVIII L	Do 2 8.0 Do 2 8.0	16 8	5°75 5°44	5.20 2.20	488	14	.029	_	24.3	330.4	331.5	336	
, 21,22,23, 24,25 ,, 18,19	3 I3 3 I3	XLIX L	Do 3 38.7	20 8	5°31	2.20	556	13	.023	-	13.9	331.0			
" 21,22,24 " 15,16,17	2 36 2 35	LI LI	Do 3 9.4	12	2.31 2.43	5.20	577	2	.004	-	27.6	317.5	310.0	322	
" 18,19 " 15,16,17	4 I 4 0	r ·	D o 4 9.4	12	5°43 5°75	5.29	688	143	•208	-	16.4	314.8	_		
" 18,19 " 11,12,13	2 39 2 41	L LII	Do 5 5.7 Do 4 47.3	8	5·58 5·75	2.20 2.20	бо2	4	.007	_	2.2	328.2	327.3	334	
" 14,15,16,17 " 11,12,13	2 58 3 0	LI LII	Do 4 0.0	16 12	5·58 4·70	5.23 2.23	582	15	.026	+	10.5	326.3			
, 14,15,16 , 6,7,8	3 10	LIII LIII	Do 23.6	12	5°43 4°7°	2.20 2.23	616	24	.038	-	11.8	304.3	303.7	311	
" 10,11,12 " 6,7,8	3 53 3 48	LIII .	Do 3 8.2	12	5°43 5°58	2.20 2.23	689	85	. 123	-	24.1	303.3	- <b>-</b> •		
, 10,11,12,18 ,, 2,4,5	2 44 2 50	LII	Do 441.9	20 12	5°44 5°58	5°53	541	16	•030	-	7.3	320.0	310.0	327	
,, 6,7,8 ,, 4,5	2 28 2 28	LIII _.	Do 3 22.9	12 8	5°44 5°75	5.20 2.20	543	15	.028	+	14.3	317.9			
,, 6,7,8 Jan. 21,22,23,25	2 52 2 52	LV	D o 3 25.7	12 16	5°43 5°75	2.21	<b>54</b> 5	14	.036	_	13.9	289.8	289.5	299.3	5
Feb. 4,5 Jan. 21,22,24	3 2 3 2	LIV LV	D o 9 44.1	8	5°43 5°58	2,21 2,21	660	11	.017	-	29.7	289.3			
Feb. 6,7,8 Jan. 30,31	3 2 3	LVI LVI	Do 3 39.5	12 8	5°43 5°75	5.20	518	28	.055	-	2.1	301.0	300.4	309	
,, 21,22,23,24 ,, 30,31	2 42 2 43	LV LVI	Do 4 41.3	16 8	5°43 5°43	5°51	525	22	.041	+	10.3	299.8	-		
Feb. 3,4,5 Jan. 17,18,20	2 46 2 45	LIV LVII	Do 4 26.9	12	5°44 5°58	5.20 2.23	517	23	·044	-	7.9	311.1	312.2	297'3 + 26	35

^{*} The chronometer error not having been recorded, the times given in this column are mere chronometer readings.

Astronomical	Date			observations	Height	in feet	Δro		estrial action		Station		n feet of 21		Pillar or Tower
1849	Mean of Times of obser- vation	Station	Observed Vertical Angle	Number of observ	Signal	Instrument	Contained A	In seconds	Decimals of Contained Arc	Height of	2nd Station — 1st Station in feet	Trigonor Res	metrical ults Mean	Final Result	Height of Pillar o
	<u> </u>					l			<u>                                      </u>			deduction		<u></u>	
Jan. 21,22,23,25	h. m. 3 26 3 26	LV LVII	0 1 " Do 255.6 Do 545.6	16 12	5°44 5°75	2.25	594	36	.001	+	24.0	314.4			feet
" 21,22,23,24 " 27,28	3 12	LVIII	Do 3 42.4	16	4.20 2.44	2.21	541	30	.026	+	5.6	295.1	295.2	∫ 279 [.] 60	25
(1) (2)	5 18 5 (1	TAIII TAI	Do 5 2.9	16	5.32	5°48 5°47	боо	14	.023	-	4.2	295.9	293 3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Jan. 21,22,23,25	2 33 2 32	LV LIX	Do 3 27.8 Do 4 52.3	16 16	5°43 5°75	5.43	555	27	.040	+	11.7	311,0			
" 19,20 "9,10,11,13	2 40 2 38	LVII LIX	D o 4 46.8	16 8	5°43 5°43	5°50 5°43	819	- I	.003	_	7.1	316.3	313.8	315	30
" 27,28 " 10,12,13	3 2 3 2	LVIII LIX	Do 2 11.2	8	5°43 4°70	5.21 2.43	611	28	.042	+	9.4	314.0			
" . 19,20 " 3,4,6,7,8	3 55 3 13	LVII LX	D o 4 49.3	8 20	5°44 4°23	5.62	635	51	.080	+	5.6	329.0	327.1	329	16
" 10,11,12,13 " 4,5,6,7,8	3 I3 3 I3	LIX LX	Do 238.8	16 20	5°44 5°45	5.43 5.62	521	57	.100	+	11.4	325.5			
" 10,11,12,13 (3)	2 28	LIX LXI	D o 3 37 1 D o 3 54 8	16 12	5°33 5°45	5°46	534	41	.077	+	2.4	316.3	318.3	322	25
Jan. 3,4,5,6,7 1848-49 Dec. 28,30,31 Jan. 1	2 47 2 47	LXI	Do 3 0.9	20 16	5°33 5°53	5.62 5.46	508	38	.074	-	<b>6</b> ·6	320.2			
Jan. 3,4,5,6,7 Dec. 24,25,26		LX LXII	D o 2 44.8	20	5.23 2.20	5.62 5.48	610	145	•238	_	1.2	325.6	324.2	329	26
Dec. 28,30,31, Jan. 1 ,, 23,24,25,26 1848	1	LXI LXII	D o 3 40.2	16 16	5.42	5°46 5°48	578	88	.125	+	5.4	323.4			
, 28,30,31 , 14,15,16		LXIII	Do 225.0	12 12	5°27 5°46	5·46 5·48	556	•	.000	+	20.3	338.24	328.7	334	15
" 28,24,25,26 " 15,16		LXII LXIII	Do 2 36.4	16 8	5°27 5°50	5·48 5·48	515	86	. 167	+	4.0	328.7	•		
" 25,26 " 19	_	LXII LXI <b>V</b>	Do 028.6 Eo 057.4	8 4	5°44 5°42	5.48 5.2	543	257	473	_	11.2	313.54	331.6	338	26
Mar. 19		LXIII LXIV	Do 4 3.6	4	4.64	5°48 5°48	527	12	.023	+	2.0	331.6	-		
" 19 " 16	5 32 5 33	LXIII LXV	D o 4 30.2	4	4.67	5·48 5·47	545	18	.033	_	3.2	325.2	326.1	334	27

The chronometer error not having been recorded, the times given in this column are more chronometer readings. † Rejected.

(1). The mean of observations taken on 22nd April 1847, and 30th, 31st January 1849. (2) The mean of observations taken on 19th April 1847, and 27th, 28th January 1849. (3) The mean of observations taken on 28th, 30th December 1848, and 1st January 1849.

A	stronomical	Date	٠		ations	Heigh	t in feet	6		estrial action	tation		feet of 21		
		Mean of	Station	Observed Vertical Angle	of observations		nent	Contained Are	nds	le of d Arc	Height of ation - 1st Station in feet		Mean Sea	Level	
	1847	of obser- vation			Number o	Signal	Instrument	Contr	In seconds	Decimals Contained	Heigl 2nd Station- in f	Trigonor Res		Final	
		Vacion			Nur		H		<b>"</b>	F &	2nd	By each deduction	Mean	Result	
Mar	. 17	* h. m. 5 37	LXIV	Do 4 26.0	8	4.67	5.48	•							f
"	15,16	5 37	LXV	Do 3 50.8	8	4.64	5.47	530	20	.037	- 4.6	327.0			
<b>"</b>	17 13	6 8 6 6	LXIV LXVI	Do 5 28.0	4	4.79 1.64	5·48 5·46	664	14	.031	- 2·5	329.1	220:0		
"	15,16 12,13	5 5 ² 5 47	LXVI	Do 5 9.2	8 6	4°79 4°67	5°47 5°46	611	20	.033	+ 6.2	332.6	330.9	339	
"	15,16 9,10	6 o	LXVII	Do 5 36.4 Do 2.57.5	8 8	4·76 4·67	5°47 5°48	565	28	.021	- 22.1	304 0			
"	12,13 9,10	5 53 5 53	LXVI LXVII	Do 5 49 4	8 8	4·63 4·62	5·46 5·48	566	36	•063	- 27.5	303.4	303.7	313	
"	12,13 5,6,7	5 34 5 34	LXVI LXVIII	Do 3 21.6	8	4.79 4.62	5°46 5°48	463	3	.007	+ 8.3	339.1			<b> </b>
"	9,10 5,6,7	5 40 5 36	LXVII LXVIII	Do 6 59.7	8	4·79 4·63	5·48 5·48	601	8	.013	+ 36.4	340.4	339°7	350	2
"	9,10 3,4	5 47 5 47	LXVII LXIX	Do 3 54.4	8 8	4·63 2·88	5°48 5°47	542	14	.025	- 8.6	295 1		( 285·60	
"	6,7 3,4	5 43 5 45	LXVIII LXIX	Do 7 44.5 Do 2 20.5	8 8	4·63 4·64	5·48 5·47	592	- 4	.006	- 47°I	292.6	293.8	{+20.0	20
	(1) (2)	5 <b>22</b> 5 <b>28</b>	LXIX LXXI	Do 3 26.7 Do 6 56.6	12 16	4·96	5.41 2.69	703	42	.059	+ 36.4	342.0	342.0	344	
	5,6,7 25,26,27		LXVIII LXX	Do 4 35' I Do 3 34' 2	I 2 I 2	4.79 4.64	5·48 5·48	605	60	.100	- 6.1	340.9			
"2	8, Mar. 1 26, 27	- 1	LXIX LXX	Do 6 36.8	8 8	4·79 4·63	5°47 5°48	583	20	.034	+ 35.0	340.6	341.6	342	
	21,22,23,24 25,26,27		LXXI LXX	Do 443.2 Do 439.6	16	4·63	5°47 5°48	633	38	•060	- o.e	343.4			
	25,26,27 18,19,20		LXX LXXII	Do 6 57.0	I 2	4·79 4·65	5·48 5·46	612	20	.032	- 38.6	303.0			
	21,22,23 18,19,20		LXXI LXXII	D o 6 30.5	I 2 I 2	4.79 4.63	5°47 5°46	550	36	.066	- 40.3	303.8	303.4	304	
"		5 21 5 24	LXXI LXXIII	Do 8 45.2	8 8	4·63 4·63	5°47 5°45	452	25	.026	- 71.3	272.8	a 0		
"		5 23 5 24	LXXII	Do 6 7.9	8	4·63 4·62	5°46	511	21	.041	- 32.6	270.8	271.8	272	2

^{*} The chronometer error not having been recorded, the times given in this column are mere chronometer readings.

(1). The mean of observations taken on 28th February, 1st March 1847, and 11th June 1852.

(2). The mean of observations taken on 21st, 22nd, 23rd February 1847, and 16th June 1852.

Astronomical	Date			ations	Height	in feet	9		estrial action	Station		n feet of 2n Mean Sea		or Tower
1847	Mean of Times of obser- vation	Station	Observed Vertical Angle	Number of observations	Signal	Instrument	Contained Are	In seconds	Decimals of Contained Arc	Height of 2nd Station – 1st S in feet	Trigon	ometrical sults	Final Result	Height of Pillar or
		Angeles and the second second second second second second second second second second second second second sec		Nu					<b>.</b>	Š.	By each deduction	Mean		H
Feb. 18,19 ,, 15,16 1846		LXXII LXXIV	o , , , , D o 5 39 o D o 3 59 7	8.	4°79 4°62	5°46 5°47	615	21	.034	_ 15	.1 588.3	288.4	289	feet
May 6,7	4 56 5 57	LXXIII LXXIV	Do 3 4.3	16 8	4·63 4·63	5°49 5°49	534	22	.041	+ 16	7 288.5			
,, 6,7 ,, 2,3	5 19 5 22	LXXIII LXXV	D o 3 35.4	6 8	4.63	5°49 5°48	552	25	.044	- 10	6 261.3	260.0	261	26
,, 4,5 ,, 2,3	4 48 4 48	LXXIV LXXV	Do 3 9.9	8	4·63 4·63	5°49 5°48	602	20	.033	- 27	260.6			
,, 4,5 Apr. 30	4 47 4 50	LXXIV LXXVI	Do 3 27.9	8 4	4·83 4·63	5°49 5°48	550	7	.013	- 17	2 271.3	272.0	273	24
May 2,3 Apr.30,Mayl	4 35 4 41	LXXV LXXVI	Do 340.8	8	4·83 4·63	5·48 5·48	544	9	.010	+ 11	9 272.8	2/2 0	2/3	
May 2,3 Apr. 28,29	4 33 4 34	LXXV LXXVII	Do 458.4 Do 357.5	6 6	4.63	5·48 5·48	549	10	.017	- 8	2 252.7	0.50.0		28
May 1 Apr. 28,29	4 47 4 44	LXXVI LXXVII	Do 221.0	8	4·63	5·48 5·48	600	22	.036	- 20	7 251.3	252.0	253	20
,, 30, May 1 ,, 24,25,26	4 25 4 34	LXXVI LXXVIII	Do 625.1	8	4.83	5·48 5·48	550	7	.013	<b>–</b> 31	240.0			-0
" 28,29 " 24	4 36 4 39	LXXVII LXXVIII	Do 424.2	8	4·83 4·56	5·48 5·48	525	34	.065	- 8	6 243.4	242.3	243	18
" 28 " 20,21,22,23	4 55 5 °	LXXVII LXXIX	Do 5 29 2 Do 4 4.5	18 8	4·69 4·54	5°48	620	26	.043	<b>—</b> 13	239.0	0	( 214'64	
" 24 " 20,22,23	4 31 4 34	LXXVIII LXXIX	Do 5 19.1	4	4·69 4·67	5°48 5°45	587	-10	.012	— з	8 238.4	238.7	+25	25
, 24,25 , 17,18	4 32	LXXVIII LXXX	Do 3 38.5 Do 5 30.2	8 8	4.83	5·48 5·48	555	6	.011	+ 15	258.1			
" 20,21,22,23 " 17,18	4 23	LXXIX LXXX	Do 3 0.0 Do 5 32.9	16	4.83	5°45 5°48	536	14	.027	+ 20	259.6	258.9	260	24
" 20,21,22,23 " 12	4 51 4 52	LXXIX LXXXI	D o 4 51.2	18 4	4.63	5°45 5°48	606	34	.020	- 5	9 233.7			
" 16,17 " 14,15	1	LXXX LXXXI	Do 540.4	8	4.63	5.48	504	16	.031	- 24	9 234.0	233.8	235	29
" 16,17 Mar.19,20,21	4 13	LXXX LXXXII	Do 348.6	10	4.83	5°48 5°47	559	34	•043	+ 8	.0 266.0			
												266.3	269	30

^{*} In these instances, the chronometer error not having been recorded, the times here given are mere chronometer readings.

Astronomical	Date			tions	Height	in feet		Terre Refra	strial ection	ation		feet of 2		,
1000	Mean of Times	Station	Observed Vertical Angle	Number of observations	lar.	ment	Contained Are	onds	als of ed Are	Height of 2nd Station—1st Station in feet	above Trigonor	Mean Sea	Level	_
1846	of obser- vation			mber o	Signal	Instrument	Cont	In seconds	Decimals Contained	H 1 Stati	Res	ults	Final Result	
				Na Na					0	200	By each deduction	Mean		_
	h. m.		0 f #				"				·			
Apr. 13,15 Mar. 19,2I	4 4 4 5	LXXXI LXXXII	Do 659.7	10 8	4.64 4.83	5°48 5°47	642	5	*008	+ 31.8	265.6			
Apr. 12,15	4 31 4 31	LXXXII	Do 3 15.6	8 4	4.63	5·48 5·48	47I	23	•048	+ 4.8	238.6			
Mar. 19,20,21	3 59 3 57	LXXXII LXXXIII	Do 6 7.6 Do 235.8	12	4·61 4·61	5°47 5°48	568	25	•044	- 29.4	236.0	237.7	241	
" 16,17 " 29,31	4 34 4 3 ²	LXXXIII LXXXV	Do 5 27.3 Do 3 9.8	8 8	4·63	5°48	588	38	.065	- 19.8	221.3	231.3	226	
" 19,21 " 23,26	4 I4 4 I3	LXXXII LXXXIV	Do 5 36.8	8 8	4.63	5°47 5°44	625	25	.039	- 14.1	254.9			
" 17 " 23	3 27 3 28	LXXXIII LXXXIV	D o 6 o 6	4	4·63 4·67	5·48 5·44	би	13	.022	+ 19.7	260.7	258.5	258	
(1) (2) 1849	3 43 3 44	LXXXV	Do 630.5	22 16	4.80 2.14	5°28	589	22	•038	+ 33.8	259.8			
Feb. 1,2,3,5 ,, 16,17,18	3 47 4 12	LXXXIV LXXXVI	D o 5 54.9	14 12	5.21 2.28	5.08	538	25	.046	- 29.8	228.7	227.5	227	
,, 7,8,9,11,12 ,, 15,16,17,18	4 20 4 37	LXXXVI LXXXVI	Do 4 14.8	16 14	5.63	5.08	648	68	.102	+ 0.3	226.3	22/3	•	
,, 7,8,11,12 ,, 21,22,24,25	3 58 4 17	LXXXV LXXXVII	Do 3 57.3	16 14	5.63 5.63	5.10 2.08	625	33	.052	- 12.0	313.1	213.4	213	
,, 16,18 ,,22,23, Mar.5	3 17 3 17	LXXXVI LXXXVII	Do 3 34.5	8 10	5.41 5.50	2.10 2.08	518	-12	.023	- 13.8	213.7	2-3 7		
" 16,17,18 Mar. 11	3 50 4 37	LXXXVI LXXXVIII	Do 553.2	12	5.41 2.5	2.10 2.08	610	- 5	.008	- 13.3	214.3	213.6	213	
Feb. 21,25 Mar. 9,10,11	3 37 4 9	LXXXVII LXXXVIII	D o 4 38 · 3 D o 4 37 · 7	8	5.63 5.63	2,10 2,10	552	— з	.000	- 0.3	213.1	213		
Feb. 21,22,25 Mar. 15,19	4 33 4 5 ²	LXXXVII LXXXIX	Do 440'5	12 8	5°25	2.10 2.10	586	64	.100	- 15.0	198.4	198.3	198	
" 13 " 15,19,20	4 30	LXXXVIII LXXXIX	Do 3 17.9		10.65 9.42	2.10	565	14	.024	- 15.4	198.3	290 3		
,, 9,10,11 ,, 25,31	3 57 4 13	LXXXVIII XC	D o 4 46.0	12 8	5.71 5.71	2.10	524	- 4	.007	+ 5.8	219'4	220.8	220	
,, 16,20,21,22 ,, 25,31		LXXXIX XC	Do 910.7	12 8	5.4 2.34	2.10	574	ı	1001	+ 23.9	323.3	220 0		

In some instances, the dates of observations could not be entered in their proper places in column 1 from want of space, this information is as follows:—(1) 2014 March 1846, and 7th, 8th, 9th, 11th, 12th February 1849; (2) 23rd, 24th, 26th March 1846, and 3rd, 5th February 1849.



Astronomical	Date			ations	Height	in feet	Ð		estrial action		tation		n feet of 2n		Tower
1849	Mean of Times of obser-	Station	Observed Vertical Angle	ber of observations	Signal	Instrument	Contained Arc	1 seconds	Decimals of Contained Arc	Height of	2nd Station — 1st Station in feet	Trigono	metrical	Level Final	Height of Pillar or
	vation			Number		———		H.	S P		8 pu <b>3</b>	By each deduction	Mean	Result	Heigl
Mar. 22,23 Apr. 5,6	h. m. 4 36 5 6	LXXXIX XCI	Do 4 58.5 Do 2 21.9	8	4·77 5·34	2.10	" 634	7	.011	+	4.0	202.3	202.6	202	feet
Mar. 25,27,31 Apr. 3,4,6	4 I2 4 7	XCI	D o 2 3 3.5 D o 2 5 5 5 5 5	12 12	4.11 2.11	2,10	535	8	.012	-	17.9	202.0			
(1) (2)	4 11 4 14	XCI XCIII	D o 4 11.5 D o 4 35.4	12 12	4 [.] 99 5 [.] 74	2.09 2.09	531	1	.002	+	3.2	205.2	205.2	206	26
Mar. 31 Apr. 8,9	4 36 4 42	XC XCII	Do 2 3.9	4 8	5.21	2.10 2.10	575	6	.010	+	6.8	226.8			
" 5,6 " 8	4 56 5 3	XCII	D o 9 40.1	8 4	5.4 ₀	2.10 2.10	677	20	.029	+	27.2	229.3	229.0	229	26
Apr. 18,20,21, 22,23,29 ,, 8,9,14,15	4 21 4 43	XCIII XCII	D o 9 8.8	24 16	5 7 I 4 77	2.10 2.10	554	2	.003	+	25.0	231.0			
,, 14,15 May 1,5	4 25 4 24	XCII XCIV	Do 351.0	8 8	4 90 5 7 I	2.10 2.10	565	- 7	.013	+	16.1	245 1	245.5	245	26
Apr.20,22,28,24 May 1,5	4 55 5 13	XCIII XCIV	Do 242.4	14 6	2.40 4.80	2,10 2,10	649	39	.001	+	39°3	245.3	-43 -	-43	
Apr. 29 May 7	4 35 5 1	XCIII XCV	D o 4 11.9	6 4	5°33	2.10 2.10	557	16	.029	+	2.6	208.6	209.2	200	26
,, 1,3,5 ,, 7	4 49 4 53	XCIV XCV	D o 6 56.1	12 4	5.41 2.33	2,10 2,10	591	ı	1001	_	35°4	209.8			
" 5 " 9,12	5 6 5 10	XCIV XCVI	Do 417.8 Do 526.8	4 8	4·83 5·71	2,10	566	-10	.018	+	10.0	255.3	254.9	255	25
,, 7 ,, 12	4 30 4 47	XCVI	Do 218.7	4	4·92 5·40	2.10	594	4	.000	+	45.3	254.2	0.5	33	
" 7 " 16	4 20 4 26	XCV XCVII	Do 2 44.5	4 4	5°33	2.10	527	- 1	1001	-	10.1	199.1	199.0	200	26
" 9,12 " 15,16,17	4 37 4 50	XCVII	Do 136.4	8 10	5.33 2.31	2.10 2.10	572	-12	.020	_	55.9	199.0			
" 14 " 19	4 48 4 42	XCVIII	D o 9 2 28.4	4	4·83 5·71	5.10	586	-13	'022	_	19.3	235.4	234.8	235	25
" 15,16,17 " 18,19	5 17 5 18	XCVIII	Do 3 30.9	12 8	4·83 5·40	5°40	628	<b>–</b> 9	410.	+	34'9	233.0	<b>3</b> , -	- 00	-3
" 17 " 20,21	4 40 4 I	XCVII XCIX	Do 3 40.0	4 8	5°33 5°40	2.10 2.10	519	1	*002	-	9.3	189.7	191.4	192	24

(1) The mean of observations taken on 4th, 6th April 1849, and 19th May 1852. (2) The mean of observation May 1852.

(2) The mean of observations taken on 22nd, 23rd April 1849, and 22nd

Astronomical	Date			tions	Height	in feet			estrial action	tation		n feet of 2m		
1846	Mean of Times of obser-	Station	Observed Vertical Angle	er of observations	Signal	Instrument	Contained Are	seconds	Decimals of Contained Are	Height of 1 Station – 1st Station in feet	Trigono	Mean Sea	Final	
	vation			Number of		Ins		됩	Cont	2nd 8	By each deduction	Mean	Result	- 1
4 10.15	h. m.		0 1 11				"							į
Apr. 13,15 Mar. 19,21	4 4 4	LXXXI	Do 923.1	10	4.64 4.83	5°48 5°47	642	5	.008	+ 31	8 265.6			
Apr. 12,15 " 11	4 3 ¹ 4 3 ¹	LXXXI LXXXIII	Do 3 15.6	8 4	4·63	5°48 5°48	47 I	23	•048	+ 4	8 238.6	227.7		
Mar. 19,20,21 ,, 17	3 59 3 57	LXXXII LXXXIII	Do 6 7.6	12	4·61 4·83	5°47 5°48	568	25	•044	- 29	4 236.9	237.7	241	
" 16,17 " 29,31	4 34 4 32	LXXXIII LXXXV	Do 5 27.3 Do 3 9.8	<b>8</b> 8	4·63 4·67	5·48 5·48	588	38	.062	- 19	8 221.3	331.3	226	
" 19,21 " 23,26	4 I4 4 I3	LXXXII LXXXIV	D o 4 4.0	8 8	4·63 4·83	5°47 5°44	625	25	.039	- 14	254.9			
" 17 " 23	3 27 3 28	LXXXIII LXXXIV	Do 6 0.6	4	4·63 4·67	5°48 5°44	611	13	.022	+ 19	7 260.7	258.2	258	
(1) (2)	3 43 3 44	LXXXV LXXXIV	Do 630.2	22 16	5°17	5°28	589	22	•038	+ 33	8 259.8			
1849 Feb. 1,2,3,5 ,, 16,17,18	3 47 4 12	LXXXIV LXXXVI	Do 554'9	14	5·58	5.08	538	25	•046	- 29	8 228.7			
,, 7,8,9,11,12 ,, 15,16,17,18	4 20 4 37	LXXXV LXXXVI	Do 414.3	16 14	5°25 5°63	5·08	648	68	.102	+ 0	3 226.3	227.5	227	
,, 7,8,11,12 ,, 21,22,24,25	3 58 4 17	LXXXV LXXXVII	Do 3 57.3	16 14	5.63	5.08	625	33	.052	- 12	9 313.1			
" 16,18 "22,23, Mar.5	- '	LXXXVI LXXXVII	Do 3 34.5	8	5.52 5.41	2.10 2.08	518	-12	.023	<b>–</b> 13	8 213.7	213.4	213	
,, 16,17,18 Mar. 11		LXXXVI LXXXVIII	Do 553.5	l .	5.52	2.08	610	- 5	.008	- 13	3 214.3			
Feb. 21,25 Mar. 9,10,11	3 37 4 9	LXXXVII LXXXVIII	Do 438.3	8	5.63 5.29	2,10	552	— з	.006	- 0	3 213.1	213.6	213	
Feb. 21,22,25 Mar. 15,19	4 33 4 5 ²	LXXXVII LXXXIX	Do 440'5 Do 256'3	12 8	5°25	2,10	586	64	.100	- 15	0 198.4			
" 13 " 15,19,20	4 30	LXXXVIII LXXXIX	Do 3 17.9	1 1	10.65 9.42	2,10	565	14	*024	- 15	4 198.2	198.3	198	
" 9,10,11 " 25,31	3 57	LXXXVIII XC	Do 4 46.0	12 8	5.41	2.10	524	- 4	.007	+ 5	8 219.4			
,, 16,20,21,22 ,, 25,31		LXXXIX XC	Do 910.7	12	5.21	2,10	574	1	.001	+ 23	.0 555.5	220.8	220	

In some instances, the dates of observations could not be entered in their proper places in column 1 from want of space, this information is as follows:—(1) 29th March 1846, and 7th, 8th, 9th, 11th, 12th February 1849; (2) 23rd, 24th, 26th March 1846, and 3rd, 5th February 1849.



Astronomical	Date			ations	Height	in feet	9		estrial action		Station		n feet of 2n		Tower
1849	Mean of Times of obser-	Station	Observed Vertical Angle	er of observations	Signal	Instrument	Contained Arc	seconds	Decimals of Contained Arc	Height of	2nd Station — 1st Station in feet	Trigono			Height of Pillar or Tower
	vation .			Number		Ins	0	ų	Contr		Sud Str	By each deduction	Mean	Final Result	Height
Mar. 22,23 Apr. 5,6	h. m. 4 36 5 6	LXXXIX XCI	Do 458.2 Do 521.9	8 8	4·77 5·34	2,10	" 634	7	.011	+	4.0	202.3	202.6		feet
Mar. 25,27,31 Apr. 3,4,6	4 12 4 7	XC XCI	D o 2 3 3.5 D o 2 5 20.5	12 12	4.22 2.21	2,10	535	8	.012	-	17.9	202.0	202 0	202	25
(1) (2)	4 1I 4 I4	XCI XCIII	Do 411.5	12 12	4°99 5°74	2.00 2.00	531	1	.002	+	3.2	205.2	205.2	206	26
Mar. 31 Apr. 8,9	4 36 4 42	XC XCII	Do 4 15.8	<del>4</del> 8	5.21 2.21	2,10	575	6	.010	+	6.8	226.8			
" 5,6 " 8	4 56 5 3	XCII	D o 9 40.1	8 4	5.40 2.40	2.10 2.10	677	20	.029	+	27.2	229.3	229.0	229	26
Apr. 18,20,21, 22,23,29 ,, 8,9,14,15	4 21 4 43	XCIII XCII	Do 9 8.8	24 16	5.21 4.22	2.10 2.10	554	2	.003	+	25.0	231.0			
" 14,15 May 1,5	4 25 4 24	XCII XCIV	Do 351.0	8 8	4·90	2.10 2.10	565	- 7	,013	+	16.1	245 1	245.5		26
Apr.20,22,23,24 May 1,5	4 55 5 13	XCIV	Do 2 42.4	14 6	4.90	2.10 2.10	649	39	.901	+	39.3	245.3	245.5	245	20
Apr. 29 May 7	4 35 5 1	XCIII XCV	Do 411.9	6 4	5°33	2.10 2.10	557	16	.029	+	2.6	208.6	200.3	200	26
,, 1,3,5 ,, 7	4 49 4 53	XCIV XCV	D o 6 56.1	12	5.33 2.33	2,10 2,10	591	I	1001	_	35.4	209.8	209 2	209	20
,, 5 ,, 9,12	5 6 5 10	XCIV XCVI	Do 4 17 8 Do 5 26 8	<del>4</del> 8	4·83 5·71	2,10 2,10	566	-10	.018	+	10.0	255.3	254.9	255	25
,, 7 ,, 12	4 30 4 47	XCVI	Do 218.4	+ 4	4·92 5·40	2,10 2,10	594	4	.000	+	45.3	254.2	*34 Y	200	25
,, 7 ,, 16	4 20 4 26	XCV XCVII	Do 3 44.5	4	5°40	2.10 2.10	527	- ı	1001	_	10.1	199.1	199.0	200	26
,, 9,12 ,, 15,16,17	4 37 4 50	XCVI XCVII	Do 136.4	8	5.33 2.33	2.10	572	-12	·020	_	<b>5</b> 5°9	199.0	-39 0	200	
" 14 " 19	4 48 4 42	XCVIII	Do 3 58.4	4	4·83 5·71	5.40 2.10	586	-13	.022	_	19.3	235.7	234.8	235	25
" 15,16,17 " 18,19	5 17 5 18	XCVIII	D o 3 30.6	12 8	4·8 ₃ 5·40	5.40 2.10	628	<b>–</b> 9	·014	+	34.9	233.0	-54	-33	-3
,, 17 ,, 20,21	4 40 4 I	XCVII XCIX	Do 340.9	8	5°33 5°40	2.10	519	I	*002	-	9.3	189.7	191.4	192	24

⁽¹⁾ The mean of observations taken on 4th, 6th April 1849, and 19th May 1852.

⁽²⁾ The mean of observations taken on 22nd, 23rd April 1849, and 22nd

Astrono	nical	Date			observations	Height	in feet	Δro		estrial action		Station		feet of 2 Mean Sea		
1849		Mean of Times of obser-	Station	Observed Vertical Angle	Number of obser	Signal	Instrument	Contained A	a seconds	Decimals of Contained Are	Height of	2nd Station—1st Station in feet	Trigonor Res	netrical ults	Final	
		vation			Nam		- I		둽	S A		2nd 8	By each deduction	Mean	Result	
May 18	3,19	h. m. 4 5 I	XCVIII	Do 7 25.7	8	5.33	5.40	600	- 4	.007		41.1	193.1			
" 18	21 3,19 22	4 15 4 35 4 17	XCIX XCVIII C	Do 240.3 Do 324.9	8 4	5·69 5·69	5°40 5°40	540	4	.008	_	15.8	319.0			
	),21 22	5 9 4 58	XCIX.	Do 2 52.2 Do 2 38.0	8	4.83	5°25	633	62	.097	+	25.9	217.3	318.1	219	
" "	21 23	3 55 4 3	XCIX CI	Do 3 26.1	4 4	5°33 *o°00	5°25	472	27	.026	+	o ့ 6	192.0	194'5	195	
(1) (2)` Dec. 22,28,24,	05.04	3 41	CI	Do 3 20.0	10	5°41 2°82	5·32 5·37	556	10	.018	_	31.3	196.9			
reb. 1846	28 19,21	4 7 4 25	CII	Do 3 14.0	8	12.21	5·26 5·27	538	21	.039	-	6.4	211.4	211.2	£ 192.03	3
May "	23 21	3 26 3 32	CI	Do 242'4	4 4	5.96	5.48	521	30	.057	+	17.0	211.2		1+20	
"	23 20 21	1 58	CIII	Do 450.3	8 8	6·75 5·54	5.48	542	-36	.067	+	3.3	197.8	197.8	173°39 { + 26	,
"	20 19	3 5 3 4 1 41	CIII	Do 233.5  Do 233.5	8 6 8	5.38	5°23 5°27	568	-14	.024	-	13.6	197'9			
"	14 21	2 39 3 51	CVII	Do 320.2	6	5.33	5·27 5·56 5·23	547	- 8	.014	-	13.9	185.2	185.2	160 ³⁰ +20	1
"	16 19	3 6	CVI	Do 3 20.7	6	5.92	5°44 5°27	574	40	.069	-	12.7	199.3		197	
"	16 14	2 3 2 58	CVI	Do 3 27'1	6	2.13 9.00	5°44 5°56	561 539	- 9	.030	+	3.1	194.4	196.7	191	
" 1850 Apr. May	16 9 8,4	2 56 5 0 5 6	CVI CVIII	Do 5 10.5 Do 3 10.0		11.00	5°44 5°20 5°14	571	23	.040	_	11.3	185.4			
" June	14		CVIII	Do 434.2 Do 433.4	6	3.45	5·56 3·72	522	-14	.027	+	2.0	183.3	183.8	185	
1846 May "	16 29	2 44 2 42	CVI CIX	Do 3 39.2	6 8	3·65 5·54	5°44 3°48	527	16	.031	+	<b>6.</b> 0	205.4		( 184'94	
une May	1 29	3 20 3 30	CVIII CIX	D o 2 45.2 D o 5 24.3	6	4°75 3°43	3·48	558	32	.028	+	21.3	205.0	205.4	{ +22	

⁽¹⁾ The mean of observations taken on 24th May 1846, and 22nd May 1849. (2) The mean of observations taken on 28rd May 1846, and 28rd May 1849.

* Summit of tower observed to.



Astr	ronomical	Date	_		tions	Heigh	t in feet			estrial action	tation		n feet of 2n		Tower
71	849	Mean o	f Station	Observed Vertical Angle	of observations	lar	ment	Contained Aro	onds	als of ed Arc	Height of 2nd Station – 1st Station in feet	Trigono	Mean Sea	Level	Height of Pillar or
10	0:50	of obser	-		Number of	Signal	Instrument	Con	In seconds	Decimals Contained	H Stati		eults	Final Result	ight of
					N.						2 Snd	By each deduction	Mean		Hei
Dec.	28,31	h, m.	C	Do 3 1.0	8	10.80	5.26	"							feet
Jan.	850 3,6 8 <b>46</b>	4 6	CIV	Do 215.0	8	12.20	5.08	543	I	.001	+ 18.3	237.3			
May ``	21 26	3 40 3 38	CIV	Do 2 6.0 Do 4 47.1	4 6	2.81	5°23 5°25	521	52	.100	+ 20.7	232.4	234.3	234	20
>> >P	28 26	1 58 1 45	CIV	Do 3 19.3 Do 4 42.1	6 8	2.31 2.31	*0.75 5.25.	520	17	.032	+ 5.5	233.0			
"	21 28	3 48 3 19	CII	Do 4 22.5	<b>4</b> 6	o°50 5°94	5·23	559	55	.097	+ 16.9	228.9			
" " 18	16 28 347	I 5I I 42	CVI	D o 6 342.4	6 <b>6</b>	0°25 5°42	5°44 *0°75	561	-30	.053	+ 29.3	226.3	227.8	228	32
Mar. "	16 <b>4,</b> 6	3 58 4 0	CIX CV	Do 248.2 Do 527.4	<b>4</b> 8	8·08 4·98	5°40	582	39	.067	+ 21.3	228.1			
"	<b>5</b> ,6 10	4 II 4 I4	CV CX	Do 4 28 6 Do 4 48 8	8 4	5°23	5°40	621	28	.045	+ 4.6	232.6	231.2	231	28
"	16 10,12	3 5 ¹ 3 4 ¹	CIX	Do 2 34.3	<b>4</b> 8	5°04	5·40 5·40	508	6	.011	+ 23.6	230.2	231 )	231	20
"	17 18,19	3 53 3 53	CIX	D o 4 14.0	<b>4</b> 8	5.04 2.04	5°40	505	-15	.029	- 3.6	203.3	205.1	204	20
"	13 18	3 39 4 I	CX CXI	Do 9 14.0	4	5°23	5°40 5°40	663	2	.003	- 24.7	206.8	205 1	204	29
"	12 22	3 II 3 I3	CXII	Do 2 17.2	4	5°00 5°23	5°40	566	- 2	.003	- 8:7	222.8	221.3	220	28
"	19 <b>2</b> 3	3 2 3 12	CXI	Do 2 23.3	4	2.13 2.00	5°40	586	12	.020	+ 14.7	219.8	3		
"	18,19 26	3 <b>3</b> 9 3 40	CXIII	Do 5 34.3	8 6	2.04 2.00	5.40	590	4	.006	- 12.1	193.0	194.6	193	25
"	23 26	3 · 27 3 · 29		Do 9 18.6	6	6.83 6.83	5·60	582	ī	.001	- 25.0	196.3	194 0	193	25
"	22 30	3 3° 3 37	CXIV	Do 4 28.3 Do 5 9.9	4 4	5°04 6°75	5°40	594	6	.010	+ 6.9	228.3	228.0	226	28
"	26 80	3 6 3 13	CXIII	Do 2 26.7 Do 6 37.4	6	5°17	5.40 5.40	539	- I	.002	+ 33.5	227.8	2200	-20	20
" Apr.	27 2	3 23 3 56	CXIII	Do 5 3.6 Do 4 43.5	<b>4</b> 6	5°25	5.40 5.40	565	-10	.017	- 2.8	191.8	192.8	191	28

[•] This height is to be combined with a negative sign because the pillar at CV, Minai, had a permanent addition made to it of 6 feet by a subsequent observer.

Astı	ronomical	Date				observations	Height	in feet	Aro	Terre Refra		Station	, -	feet of 2		or Tower
1	847	Mean Tin of ob	ıes	Station	Observed Vertical Angle	<b>5</b>	Signal	Instrument	Contained A	seconds	Decimals of Contained Arc	Height of 1 Station — 1st Station in feet	Trigono Res	netrical ults	Final	t of Pillar
		vati	ion			Number		I		In	De	2 pug	By each deduction	Mean	Result	ITeigh
Mar. Apr.	<b>3</b> 0		m. 49	CXIV	0 1 " D 0 6 59 9 D 0 2 58 8	4 4	5.0c	5°40	, 581	<b>–</b> 8	·014	- 34.5	193.8			fee
Mar. Apr.	31 3		35 59	CXIV CXVI	Do 5 6.0	4	6·63	5°40 5°35	618	3	.003	- 0.1	227.3	227.0	224	26
"	1 8		30 52	CXVI	Do 9 2 1.4	4	6·29 4·68	5°40 5°35	604	3	.002	+ 33.0	226.7	2270		
"	2 10	4	27 4	CXVII	Do 5 8.6	4 4	5°04 7°92	5°40 5°44	587	- 5	.008	- 2.6	190.3	101.4	189	23
"	4 10	5 5	7 9	CXVII	Do 6 19.7	6	6·79	5°35 5°44	582	21	.035	- 33.8	193.3	-90 /		
"	4 12	•	55	CXVIII CXVIII	Do 3 27 8	6	8·63 8·58	5°35 5°40	524	- 7	.013	+ 12.2	239.2	241.4	238	18
" " 1	11 12 848	t	25 11	CXVIII	Do 2 9.3	4 4	5.00 2.00	5°44 5°40	586	-14	.024	+ 51.6	243.3			
Mar. "	20 9,10	1	39 43	CXIX	Do 247.5	10	4.08 2.03	5.10	472	-24	.021	+ 21.6	213.3	211.0	207	30
"	<b>2</b> 1 9	4	10	CXIX	Do 6 21.3	i i	4.08 2.48	5.11	527	9	.012	- 32.7	208.7			
"	<b>21</b> 19	1	40 42	CXVIII CXX	Do 9 9.2		3.51	5°11	556	I	.002	+ 27.9	269.3	267.7	264	13
"	9,11,12 22,24	t	44 45	CXIX CXX	Do 236.7		3·77 5·24	5°43 2°41	721	53	.074	+ 55.3	266.5			
"	11 5		13	CXXI	Do 3 38.5 Do 5 47.6		6.31 1.48	5°43 5°23	543	- 6	.011	+ 19.7	230.7	232.8	208'16	21.6
	(1) (2)	1	58 59	CXXI	Do 9 2 11.5		6·46 4·79	3·86 5·25	624	15	.024	- 32.8	234.9	<b>J</b> - 3	{ + 21.6	
	(3) (4)	ı	48 47	CXX CXXII	D o 5 43.4	1	4.09	3·86 5·27	641	13	.021	- 11.7	256.0	255.1	231'49	18
	(5) (6)	:	40 41	CXXII	Do 125.6	ī	1.38 5.19	5°25 5°27	362	- 8	.022	+ 21.2	254.3	-55 -	{ + 18	
	(7) (8)	1	50 29	CXXI CXXV	D o 4 43.7 D o 3 49.4	j	5°35	5°25 5°37	530	6	.011	- 7.8	222.0	223.3	224	23

Note.—In some instances, the dates of observations could not be entered in their proper places in column 1 from want of space, this information is as follows:

(1) 19th March 1848, and 26th, 27th February 1855; (2) 4th March 1848, and 20th, 22nd February 1855; (3) 27th March 1848, and 26th, 27th February 1855; (4) 29th February 1848, and 21st January, 4th February 1855; (5) 4th March 1848, and 18th February 1855; (6) 22nd February 1848, and 5th February 1856; (7) 4th March 1848, and 18th, 21st February 1855; (8) 8th April 1848, and 6th, 11th April 1856.

Astronomica	al Date			observations	Height	in feet	Are		estrial action	of st Station		n feet of 2r Mean Sea		or Tower
	Mean of Times of obser-	Station	Observed Vertical Angle	Number of obse	Signal	Instrument	Contained	In seconds	Decimals of Contained Arc	Height of 2nd Station - 1st S in feet	Trigono Res	ometrical sults	Final	Height of Pillar or
	vation			Num		ď		Į,	Con	2nd E	By each deduction	Mean	Result	Heigl
(9) (10)	h. m. 3 58 4 6	CXXII	0 / " D 0 6 2 0 D 0 2 57 4	8	6·65 4·26	5°27 5°37	" 524	- 8	.010	- 25.0	224.5			feet
(11) (12)	4 22 4 58	CXXII CXXVI	Do 421.9	8	1.24 2.49	5.59	654	21	.032	+ 18.0	267.5			
(13) (14)	*4 3 ²	CXXV CXXVI	Do 237.0	12	6.64	2.19	581	<b>-</b> 9	.012	+ 43°5	267.5	267.5	267	29
(15) (16)	3 28 3 31	CXXII CXXIII	Do 059.5 Do 756.3	16 10	6·60 4·28	5·32 5·32	574	19	.033	+ 57.5	307.0			
(17) (18)	3 44 3 48	CXX CXXIII	Do 6 58.6	16 8	6·53	3·86 5·32	569	23	'041	+ 42.8	306.8	306.8	307	10
(19) (20)	4 17 4 20	CXXIV	Do 2 6.0	12	4·23 6·38	5·32	426	- 8	.018	- 18.7	306.6			
(21) (22)	4 8 3 49	CXXII	Do 151.7	8 8	6·50 5·64	5°27 5°27	682	1	100.	+ 75.3	324.8			
(23) (24)	4 9	CXXVI CXXIV	D o 3 13.0	8	6.27	2·81 5·27	733	0.	.000	+ 58.7	325.7	325.4	325	20
(25) (26)	4 20	CXXIII CXXIV	Do 2 6.0	8	6·38 4·23	5.32 2.33	426	- 8	.018	+ 18.7	325.6		•	

Note.—In some instances, the dates of observations could not be entered in their proper places in column 1 from want of space, this information is as follows:—
(9) 20th February 1848, and 6th February 1855; (10) 8th April 1848, and 6th April 1855; (11) 22nd February 1848, and 25th March 1854; (12) 18th April 1848, and 6th April 1855; (14) 18th April, 15th May 1848, and 25th March 18th April 1855; (15) 20th February 1848, and 14th January, 3rd, 6th February 1855; (16) 16th April 1848, and 3rd March 1855; (17) 19th, 20th March 1848, and 26th, 27th February 1855; (18) 16th April 1848, and 3rd March 1855; (19) 15th April 1848, and 13th, 15th March 1855; (20) 16th April 1848, and 3rd March 1855; (21) 29th February 1818, and 6th February 1855; (22) 15th April 1848, and 21st March 1854; (23) 10th April 1848, and 25th March 1855; (24) 15th April 1848, and 18th, 20th March 1854; (25) 16th April 1848, and 3rd March 1855; (26) 15th April 1848, and 18th, 15th March 1855. In these instances, the chronometer error not having been recorded, the times here given are mere chronometer readings.

### Descriptions of Spirit-leveled Points.

The spirit-leveled heights given on pages 165—_I to 178—_I, were determined by the operations either of the G. T. Survey or the Revenue Survey; these connections are hereafter indicated in the former case by the letters (G. T. S.), and in the latter by (R. S.) immediately following the name of each station; the surface on which the leveling staff stood is also described.

XI or Atária Tower Station, (G. T. S.); On the mark-stone imbedded at 2 feet above the level of the ground, over which the perforated masonry pillar has been built.

XIII ,, Kaliánpúr Tower Station, ,, XV ,, Umra Tower Station, ,, } On the mark-stone let into the upper surface of the pillar.

# Descriptions of Spirit-leveled Points—(Continued).

		-	• •	•
XXIV	or	Rámnagar Tower Station,	(R. S.);	On the 2nd step of a flight of 32 steps leading to the summit of the tower, height = 498.82 feet. To this value, 25.80 feet (the height of the upper mark-stone of tower above this step) being added, the height of the upper mark-stone is found to be 524.62 feet.
XXVIII	"	Kutía Tower Station,	<b>33</b>	On a peg imbedded in the ruins of the earthen tower, height = 460.61 feet. To this value, 14.00 feet (the height of the upper mark-stone of tower above this peg) being added, the height of the <i>upper</i> mark-stone is found to be 4.74.61 feet.
XXXI	"	Lákún Tower Station,	<b>33</b>	· ·
XXXII	,,	Chelúa Tower Station,	99	On the upper surface of the pillar.
XXXV	,,	Mási Tower Station,	,,	·
XXXIX	,,	Tilakpúr Tower Station,	<b>&gt;&gt;</b>	j
XLIII	,,	Saibara Tower Station,	**	On the mark-stone let at $1\frac{1}{2}$ inches below the upper surface of the pillar.
LV	,,	Púrena Tower Station, (G	ł. T. S.) ;	At foot of the tower, height = 274.33 feet. To this value, 24.92 feet (the height of the upper mark above this spot determined by subtense angles) being added, the height of the upper mark-stone is found to be 299.25 feet.
LVII	, ,,	Bharmi Tower Station,	,,	}
LVIII	,,	Gharbaria Tower Station,	,,	
LXIX	,,	Bakwa Tower Station,	,,	On the mark-stone let into the ground floor of the tower.
LXXIX	"	Rúpdi Tower Station,	"	
CII	,,	Dewánganj Tower Station,	<b>&gt;&gt;</b> .	J
CIII	,,	Latona Tower Station,	<b>))</b>	On the mark-stone imbedded at 2 feet below the level of the ground, over which the masonry pillar has been built.
CVII	,,	Rámnagar Tower Station,	99	On the mark-stone imbedded at 1 foot below the level of the ground, over which the masonry pillar has been built.
CIX	,,	Ghiba Tower Station,	,,	On the mark-stone imbedded at 1; feet below the level of the ground, over which the masonry pillar has been built.
CXXI	>>	Sonákhoda Tower Station,	,,	On the mark-stone, in floor of vaulted passage, which carries the small piece of brass on which the mark denoting the
CXXII	,,	Rámganj Tower Station,	**	end of the base-line is cut.

For further particulars of these stations, see pages 7_1. to 23_1.

November 1878.

J. B. N. HENNESSEY,

In charge of Computing Office.



### NORTH-EAST LONGITUDINAL SERIES.

### PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

### At XIII (Kalíánpúr)

Lat. N. 28° 35′ 11″·10; Long. E. 79° 47′ 0″·93 = 5 19 8·1; Height above Mean Sea Level, 629 feet. March and April 1850; observed by Mr. G. Logan with Troughton and Simms' 24-inch Theodolite No. 2.

Star observed
Mean Right Ascension 1850.0
Mean North Polar Distance 1850.0
Local Mean Times of Elongation, Mar. 29

a Ursæ Minoris (West and East).

1h 5m Is
1e 29' 24'' 72

{ Western 6h 35m
Eastern 18 39

ţ			8 of k)		FACE LEFT			FACE RIGHT	CE RIGHT				
Astronomical Date		Elongation	Zeros (Circle Rendings of Referring Murk)	Observed Horizontal Angle: Diff. of Readings Ref. Mark-Star	Angle: Arc to Time of Ref. Mark – Stur		Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Star at Elongation				
Mar.	29	w.	0 2 & 180 2	+ 4 39 27 73 39 26 97 39 32 43 39 28 07	5 40 + 0 1.86 4 21 0 1.10 5 31 0 1.10 5 31 0 2.47	+ + 39 29 59 28 07 34 20 30 54	+ 4 39 29 50 0 39 27 87 1 39 24 70 10 39 20 93 11	0 6.14					
"	29	<b>E</b> .	0 2 & 180 2	+ 116 44.13 16 37.76 15 59.86 15 57.00 15 46.60 15 52.87	30 34 - 0 54°13 29 24 0 50°07 13 53 0 11°20 12 44 0 0°09 4 53 0 1°38	+ 11550.00 47.69 48.66 47.58 46.51 51.49	+ 1 16 28 83 21 16 20 90 16 1 63 7 16 0 33 6	0 24.28	56.62 57.08				
n	30	w.	20 4 & 200 4	+ 4 38 59.84 39 5.10 39 33.13	22 17 + 0 28 90 20 36 0 24 69 6 11 0 2 22 0 17 0 0 00	+ 4 39 28 74 29 79 31 95 33 13	+ 4 39 16.50 14 39 23:97 10 39 22.67 6 39 19.77 9	8 0 2.19	30.98				
,,	31	E.	20 4 & 200 4	+ 1 16 11.70 16 9.27 15 55.63 15 51.93 15 54.83 15 57.30	19 28 - 0 21'98 18 8 5 58 0 2'06 4 38 0 1'25 10 5 0 5'91 0 8'76	+ 1 15 49 72 50 20 53 57 50 68 48 92 48 54	+ 1 16 2.77 11 15 59.50 9 15 56.00 0	8 0 0.01 25 0 2.00	55.99				

3			's of 'k)		FACE LEFT		FACE RIGHT							
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star  Reduction in Arc to Time of Elongation Ref. Murk—Star at Elongation Ref. Mark—Star		Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Interval in Time from Elongation	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Sternation					
Apr.	4	W.	0 / 10 3 & 190 3	+ 4.39 22 97 12 39 21 27 10 39 26 50 0	n 8 , n 2 5 + 0 8.50 0 34 0 6.49 0 2 0 0.00 4 3 0 0.96	+ 4 39 31 47 27 76 26 50 25 73	+ 4 39 31 07 39 28 77 39 33 14 39 32 57	m 8 5 53 4 51 7 25 8 19	+ 0 2 01 0 1 37 0 3 20 0 4 02	+ 4 39 33 ° ° 30 ° 14 ° 36 ° 34 ° 36 ° 39				
<b>,</b>	4	E.	10 3 & 190 3	16 6.63 18 15 49.17 5	0 12 - 0 23.67 8 50 0 20.57 5 41 0 1.88 7 0 2.84	+ 115 47.49 46.06 47.29 47.36	+ 1 15 47 43 15 49 30 15 58 56 16 0 66	0 9 1 14 11 36 12 35	- 0 0.00 0 0.09 0 7.84 0 9.22	+ 1 15 47 43 49 21 50 72 51 44				

# Abstract of Astronomical Azimuth observed at XIII (Kalíánpúr) 1850.

# 1. By Eastern Elongation of a Ursæ Minoris.

Face Zero	L o°	R 180°	L 10°	R 190°	L 20°	R 200°	
Date	Mar	ch 29	Apı	ril 4	March 81		
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	50.00 47.69 48.66 47.58 46.51 51.49	61 · 83 56 · 62 57 · 98 57 · 96	47 49 46 06 47 29 47 36	47°43 49°21 50°72 51°44	49°72 50°20 53°57 50°68 •48°92 48°54	55.56 53.84 55.99 56.∞	
Means ,	48.66	58.60	47.05	49.70	50127	55.35	
Means of both faces Az. of Star fr. S., by W. Az. of Ref. M. "	+ 1 15 53° 181 41 49° 182 57 43°	40	•5 ¹	* 3°38 1°45 9°83			

# Abstract of Astronomical Azimuth observed at XIII (Kalíánpúr) 1850—(Continued).

# 2. By Western Elongation of a Ursæ Minoris.

Face	L	${f R}$	L	R	L	${f R}$
Zero	0°	180°	10°	190°	20°	200°
Date	March	29	A	oril 4	M	arch 30
	"	n	"	"	"	"
Observed difference of Circle-Readings, Ref. M.—Star	29°59 28°07 34°20	29°50 27°96 30°84	31°47 27°76 26°50	33°08 30°14 36°34	28·74 29·79 31·95	29°13 30°98 24°86
reduced to Elongation	30.24	28.66	25.73	36.29	33.13	24.79
Means	30 <b>·60</b>	29.24	27.87	34.04	30.00	27.44
	0 1 11			n		"
Means of both faces Az. of Star fr. S., by W. Az. of Ref. M. "	+ 4 39 29 9: 178 18 10 7: 182 57 40 7:	3	8	· 96 · 73 · 69	10	0°17 °°44 0°61
						0 , ,,
		(by Easter	rn Elongation		•••	182 57 41.92
stronomical Azimuth o	of Referring Mar	$\mathbf{k} \stackrel{>}{\mathbf{c}} \mathbf{b} \mathbf{y} \mathbf{W} \mathbf{e} \mathbf{s} \mathbf{t} \mathbf{c}$	ern "	•••	•••	,, 40.00
			Mean	•••	•••	,, 40.90
ngle Referring Mark a	nd XII (Donáo)	see page 41.	<del></del>	•••	•••	+ .2 32 37 1
stronomical Azimuth o			•••	•••	•••	.0
leodetical Azimuth o	•		that adopted	(Vol. II. nage	e 141) at	,
	page 155 an		•••			185 30 19.49

Astronomical - Geodetical Azimuth at XIII (Kaliánpúr)

1,38

### At Rámuápúr Azimuth Station*.

Lat. N. 28° 22′ 38″.72; Long. E. 80° 31′ 5″.51 = 5 22 4.4; Height above Mean Sea Level, 546 feet. December 1838; observed by Mr. C. Murphy, with Troughton and Simms' 18-inch Theodolite No. 2.

Star observed
Mean Right Ascension 1838:0
Mean North Polar Distance 1838:0
Local Mean Times of Elongation, Dec. 23

δ Ursæ Minoris (West and East).

18^h 24^m 35^s
3° 24′ 35″ 43

{ Western 6^h 10^m
Eastern 18 23

1 :	916		re of		PA	CE LEFT		FACE BIGHT						
	Astronomical Date	Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Interval in Time from Elongation	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark — Star at Elongation				
Dec	. 23	w.	220 0 & 40 I	+ 6 11·45·50 , 12 8·17 13 19·50 13 14·50	m s 26 10 23 28 1 8 6 49	+ 131°00 113°17 0 0°17 0 6°15	+ 6 13 16·50 21·34 19·67 20·65	+ 6 12 54 33 13 9 00 12 56 00 12 40 67	m 8 , v 13 10 + 0 23.04 7 53 0 8.26 13 42 0 24.82 16 54 0 37.79	+ 6 13 17 37 17 26 20 82 18 46				
33	23	Е.	220 I & 40 I	- 1 31 28.50 31 38.17 31 25.00 31 17.67	14 11 11 47 15 41 17 33	- 0 26 62 0 18 37 0 32 70 0 40 97	- 1 31 55°12 56°54 57°70 58°64	- 1 30 47.00 30 59.33 31 59.17 31 54.33	24 13 - 1 17·39 21 50 1 2·96 1 15 0 0·21 7 32 0 7·53	- 1 31 64·39 62·29 59·38 61·86				
"	24	W.	230 I & 50 I	+ 6 12 8·67	22 50 18 21	+ 1 9.33 0 44.79	+ 6 13 18 00 20 96	+ 6 13 11.50	7 48 + 0 8.08 5 12 0 3.58 8 6 0 8.70	+ 6 13 19.28 20.30				
"	24	E.	230 I & 50 I	- 1 31 33 50 31 40 67 31 58 50 31 55 83	13 38 11 29 1 24 4 49	- 0 24·58 0 17·48 0 0·26 0 3·08	- 1 31 58 08 58 15 58 76 58 91	- 1 30 56.67 31 6.00 31 41.17 31 32.17	22 31 — 1 6·97 20 15 0 54·17 11 50 0 18·59 14 2 0 26·18	— 1 31 63 64 60 17 59 76 58 35				
"	25	W.	210 I & 30 I	+ 6 13 2.83 13 7.67 13 11.83 13 0.83	9 19 6 30 1 23 9 32	+ 0 11.52 0 5.62 0 0.25 0 12.03	+ 6 13 14·35 13·29 12·08 12·86	+ 6 12 23.83 12 36.17 12 41.67 12 26.17	19 32 + 0 50·74 16 32 0 36·31 17 5 0 38·59 19 37 0 50·88	+ 6 13 14 57 12 48 20 26 17 05				
,,	27	w.	200 I & 20 I	+ 6 13 8 50 13 13 33 13 21 17 13 17 83	9 41 8 7 1 30 3 53	+ 0 12.46 0 8.76 0 0.30 0 2.00	+ 6 13 20 96 22 09 21 47 19 83	+ 6 12 35.67 12 44.17 11 56.33 11 33.50	16 45 + 0 37 · 25 15 12 0 30 · 72 24 41 1 20 · 40 27 38 1 40 · 73	+ 6 13 12 92 14 89 16 73 14 23				
"	27	E.	200 0 & 20 I	- 1 31 54.00 31 56.33 32 2.33 31 57.17	7 3 ² 4 43 1 2 4 4 ²	- 0 7.51 0 2.95 0 0.14 0 2.93	- 13161.51 59.28 62.47 60.10	- 1 31 15.00 31 30.00 31 43.67 31 25.17	19 21 - 0 49.52 16 33 0 36.22 12 27 0 20.60 17 2 0 38.52	- 1 31 64 52 66 22 64 27 63 69				

^{*} See Addendum on page 186_I.

		ŀ	k) of		FACE LEFT	FACE BIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark – Star	Reduction in Arc to Time of Elongation  Reduced Observation  Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star  II I I I I I I I I I I I I I I I I I	Reduced Observation Ref. Mark — Star at Elongation
Dec.	28	w.	190 0 &	0 ' " m s + 6 13 16 83 7 1 13 17 67 5 14 13 23 33 2 9 13 16 07 5 36	+ 0 6.53 0 3.64 0 0.61 0 4.14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 6 13 16 43 15 62 18 35 17 91
"	28	Е.	190 I	- 1 31 51 83 6 9 31 55 67 2 29 31 59 67 1 52 31 58 00 4 16	- 0 5.01 - 131 56.84 0 0.46 0 0.46 60.13 60.42	- 1 31 28 50 15 38 - 0 32 36 0 22 25 31 33 50 14 26 0 27 67 0 34 45	— 13160.86 62.25 61.17 61.78
,,	29	E.	0 I sp. 180 I	- 1 31 12 · ∞ 18 13 16 4		- 1 31 52 17 9 19 - 0 11 50 31 56 83 7 19 0 7 09 32 2 00 1 46 0 0 42 31 57 83 4 15 0 2 39	- 1 31 63 67 63 92 62 42 60 22
<b>n</b>	30	W.	0 1 & 0 1	+ 6 12 50 50 16 1 12 55 50 14 41 12 57 83 13 47 12 46 50 16 36	+ 0 34 10	+ 6 13 8 33 8 12 + 0 8 93 13 8 67 5 36 0 4 16 13 15 00 3 46 0 1 87 13 9 83 6 14 0 5 15	+ 6 13 17 26 12 83 16 87 14 98
"	30	Е.	210 I & 30 I	- 1 30 47 33 23 20 31 4 33 20 56 31 26 00 16 21 31 16 83 18 42	- 1 11'94 - 1 31 59'27 0 57'90 62'23 0 35'55 0 46'45 63'28	- 1 31 51 50	- 1 31 67 92 66 47 66 82 64 72

# Abstract of Astronomical Azimuth observed at Rámuápúr Azimuth Station 1838.

# 1. By Eastern Elongation of $\delta$ Ursæ Minoris.

Face	$\mathbf{L}$	${f R}$	${f L}$	${f R}$	${f L}$	R	${f L}$	${f R}$	${f L}$	${f R}$	${f L}$	${f R}$
Zero	180°	0°	190°	10°	200°	20°	210°	30°	<b>220</b> °	<b>4</b> 0°	230°	50°
Date	Decem	ber 29	Decem	ber 28	Decem	ber 27	Decem	ber 30	Decen	aber 23	Decem	ber 24
	*	*	*	*	"	n	•	*	*	"	*	*
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	55°90 53°49	63.67 63.92 62.42 60.22	56.84 56.48 60.13 60.42	60.86 62.25 61.17 61.78	61.21 59.38 62.47 60.10	64.52 66.22 64.27 63.69	59°27 62°23 61°55 63°28	67·92 66·47 66·82 64·72	55.12 56.54 57.70 58.64	64·39 62·29 59·38 61·86	58.08 58.15 58.26 58.01	63.64 60.17 59.76 58.35
Means	54.70	62.56	58.47	61.22	60.84	64.68	61.28	66.48	57.00	61.08	58.48	60.48
	0 1 1				,	1		<b>y</b>		*		ii
Means of both faces Az. of Star fr. S., by W. 18 Az. of Ref. M. , 18		13	41. 41.	79	62° 41° 38°	45	64° 42° 38°	•	39	*49 *97 *48	40	*48 *31 *83

### Abstract of Astronomical Azimuth observed at Rámuápúr Azimuth Station 1838—(Continued).

### 2. By Western Elongation of δ Ursæ Minoris.

Face	${f L}$	${f R}$	${f L}$	${f R}$	L	${f R}$	${f L}$	${f R}$	${f L}$	${f R}$	${f L}$	$\mathbf{R}$
Zero	180°	0°	190°	10°	200°	20°	210°	80°	220°	40°	230°	50°
Date	Decem	ber 30	Decem	ber 28	Decem	ber 27	Decem	ber 25	Decem	ber 23	Decem	ber 24
	"	"	"	"	"	"	"	"	"	"	"	"
Observed difference	24.60	17.26	23:36	16.43	20.96	12.02	14.35	14.22	16.20	17:37	18.00	19:58
of Circle-Readings,	24 15	12.83	21.31	15.02	22.00	14.89	13.50	12.48	21.34	17.26	20.96	19.08
Ref. M Star	22.98	16.87	23.94	18.32	21.47	16.43	12.08	20.26	19.67	20.82	, -	20.30
reduced to Elongation	22.97	14.08	20.81	17.91	19.83	14.53	12.86	17.05	20.65	18.46		
Means	23.68	15.49	22.36	17:08	31.09	14.69	13.12	16.09	19.54	18.48	19.48	19.62
•	,	,	,	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		"		"		"
Means of both faces + 6	13 19	50	19.	72	17	·8 ₉	14	62	19	10	10	·55
Az. of Star fr. S., by W. 176	7 17		18.			· 77	•	· 57		. 26		.03
Az. of Ref. M. ,, 182	20 37		38			.66	_	.10	30	. 27	-	·47

					,	• •	•••
,	(by Eastern Elongation	•••	•••	•••	•••	182 20	40.62
Astronomical Azimuth of Referring Mark	d by Western ,,	•••	•••	•••	•••	99	37.21
		•••	•••	•••	•••	99	39°07
Angle Referring Mark and XXIV (Rámna	gar) see following page	•••	•••	•••	•••	+120 35	54°35
Astronomical Azimuth of Rámnagar by obse	ervation	•••	•••	•••	•••	302 56	33'42
Geodetical Azimuth of ,, by calc	ulation from that adopted	l ( <i>Vol</i> .	II, pa	ge 141	) at		
Kaliánpur, see following page	• • • • • • • • • • • • • • • • • • • •	•••	•••	•••	•••	302 56	33.29
Astronomical—Geodetical Azimuth at Rámu	lápúr Azimuth Station		414	•••	•••	_	0'17

### Addendum to the Astronomical Azimuth observed at Rámuápúr Azimuth Station.

The station herein designated Rámuápúr Azimuth Station was selected and fixed at the termination of the operations of the Amua Meridional Series in 1838, when the Astronomical Azimuth which precedes this note and the angles of the triangle as well as the connecting angle to the Referring Mark which follow hereafter were measured. The tower marking the station stood in an open plain, 300 yards from the southern bank of the Chauka river and about 2 miles N.W. of the large village of Bhira; but in time the whole structure was washed away by the river, so that when Rámuápúr village was revisited in 1850, in course of the

### Addendum to the Astronomical Azimuth observed at Rámuápúr Azimuth Station—(Continued).

operations of the North-East Longitudinal Series, a new station, designated Rámuápúr XXII, was selected and fixed instead of the one destroyed. No Astronomical azimuth however was observed on the latter occasion and hence the comparison between Astronomical and Geodetical Azimuths in this locality is necessarily made at the station of 1838 or Rámuápúr Azimuth Station. It will be seen from what follows that the two points were nearly on the same meridian and about 2,796 feet apart.

GLA*	D 1 1 22	Spherical	Correction to Observed	Corrected Plane		1)istance	
Station	Probability	Excess	Angle	Angle	Log. Feet	Feet	Milea
XXIV XXIII Rámuápúr Azimuth Station	0·60 1·03 ·88	" 0·29 ·29 ·29	+ · · · · · · · · · · · · · · · · · · ·	62 50 7·17 59 26 39·36	4·8049431 4·8270967 4·8129254	63817·99 67157·83 65001·80	12·087 12·719 12·311

Proceeding in the usual manner, we find,

#### At XXIV, Rámnagar

Azimuth of Rámuápúr Azimuth Station 123° 1' 32".73

#### At Rámuápúr Azimuth Station

Latitude N. 28° 22′ 38"·72

Longitude East of Greenwich 80 31 5 ·51

Azimuth of XXIV, Rámnagar 302 56 33 ·59

Also from above data and those given on page 156___, the following are deduced:—

At Rámuápúr or XXII, Azimuth of Rámuápúr Azimuth Station, 181° 21' 16"

Rámuápúr or XXII to Rámuápúr Azimuth Station, Log. feet 3.4465695, feet 2796.21, mile 0.530.

The observed values of the angle at Rámuápúr Azimuth Station, connecting the Referring Mark with XXIV, Rámnagar, are as follows:--

### At Rámuápúr Azimuth Station.

December 1838; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circl	e-reading	s, telesco	pe being	set on R	г. <b>м.</b>				
between.	289° 25′	59° 25′	249° 25′	69° 25′	259° 25′	79° 25′	269° 25′	89° 25′	279° 25′	99° 25′	<b>2</b> 89° 25′	109°25′	General Mean
R. M. & XXIV	l54·50 l54·50	" l52·50 l53·00	" l52·67 l53·67	" l50·67 l50·33	156·83 156·00	" l54:17 l55:50	" l51.83 l52.17	155.00 155.33	l ₅₇ ·00 l ₅₇ ·33	" l54:00 l55:83	156.00 157.17	l54·17 l54·33	
	54.20	52.75	53.17	20.20	56.42	54.83	23.00	55.17	57.16	54.63	56.28	54.52	120° 35′ 54″ · 35

### At XXXV (Mási)

Lat. N. 27° 38′ 25″·17; Long. E. 81° 25′ 36″·15=5 25 42·4; Height above Mean Sea Level, 426 feet.

December 1849 and January 1850; observed by Mr. G. Logan, with Troughton and Simms' 24-inch Theodolite No. 2.

Star observed

Mean Right Ascension 1850.0

Mean North Polar Distance 1850.0

Local Mean Times of Elongation, Dec. 26

δ Ursæ Minoris (West and East).

18^h 20^m 44^s

3° 24′ 9″ 99

{ Western 5^h 54^m
Eastern 18^h 6^m

-	3		is of		FACE LEFT		PA	CE RIGHT	
Aetronominal Dete		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	u u u u u u u u u u u u u u u u u u u	Reduced Observation Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark – Star		educed Observation Ref. Mark - Star at Rlongation
Dec.	26	w.	0 3 & 3	* ' ''  + 4 8 19 67  8 9 23  8 6 80  7 28 44  6 38 20	m s , " 7 51 + 0 8 08 10 17 0 13 88 11 34 0 17 52 21 0 0 57 72 28 32 1 46 40	+ 4 8 27.75 23.11 24.32 26.16 24.60	+ 4 8 30·27 3 3 3 8 27·80 5 20 8 0·00 16 2	+ o 1.23 o 3.72 o 33.70	+ 4 8 31·50 31·52 33·70
,,	26	E.	0 3 & 180 3	- 3 30 38.40 30 56.20 32 1.66 32 2.97 32 2.00 31 53.64	26 48 — 1 33.85 24 12	- 3 32 12.25 12.82 14.00 10.02 13.29 10.15	- 3 31 34 40 17 27 31 36 40 15 47 32 13 67 1 35 32 16 67 0 47 31 31 66 17 55 31 24 56 19 39	- 0 39 90 - 0 32 64 0 0 33 0 0 0 0 8 0 42 27 0 50 77	- 3 32 14 30 9 04 14 00 16 75 13 93 15 33
***	27	w.	20 4 & 200 4	+ 4 7 17 56 7 30 50 8 25 60 8 28 74 8 13 27 8 8 53	23 2 + 1 9.85 21 23 1 0.17 5 32 0 4.03 3 52 0 1.97 10 55 0 15.63 12 22 0 20.02	+ 4 8 27 41 30 67 29 63 30 71 28 90 28 55	+ 4 7 52 90 15 29 8 2 40 13 18 8 26 03 0 19 8 22 90 3 34	+ 0 31 · 53	+ 4 8 24 43 25 65 26 04 24 57
"	27	Е.	20 4 & 200 4	- 3 31 17 20 31 37 77 32 12 33 32 9 90	19 8 - 0 47 92 15 42 0 32 25 2 21 0 0 73 0 21 0 0 02	- 3 32 5.12 10.02 13.06 9.92	- 3 31 58.73 9 7 33 32 6.10 6 55 31 59.60 9 8	- 0 10.91 0 7.48 0 6.29 0 10.95	- 3 32 9.64 14.51 12.39 10.55
"	28	W.	30 5 & 210 5	+ 4 7 38 56 7 51 97 8 31 20 .8 31 93	19 56 + 0 52°31 17 57 0 42°39 3 7 0 1°27 0 29 0 0°03	+ 4 8 30.87 34.36 32.47 31.96	+ 4 8 4.73 12 32 8 12.94 10 29 8 22.17 7 2 8 15.26 10 6	+ 0 20.66 0 14.44 0 6.49 0 13.35	+ 4 8 25 39 27 38 28 66 28 61
"	28	E.	30 5 & 210 5	- 3 31 47.67 31 57.97 32 16.40 32 9.97	13 54 - 0 25:30 11 36 0 17:66 1 26 0 0:27 4 26 0 2:59	- 3 32 12 97 15 63 16 67 12 56	- 3 32 11.64 5 27 32 15.37 3 45 31 56.10 12 7 31 49.93 14 12	- 0 3.91 - 0 19.33 0 26.50	- 3 32 15 55 17 22 15 43 16 43
,,	29	w.	50 2 & 230 2	+ 4 7 58·20 8 5·43 8 31·17 8 30·26	15 43 + 0 32.50 13 55 0 25.46 0 0 0.00 1 51 0 0.45	+ 4 8 30.70 30.89 31.17 30.71	+ 4 8 20°37 8 54 7 21 8 16°70 7 50 8 13°50 9 35	+ 0 10°41 0 7°09 0 8°04 0 12°04	+ 4 8 30.78 32.76 24.74 25.54

ate			• of	1	ACE LEFT	PACE RIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation  Reduced Observation  Ref. Mark – Star at Elongation	Diff. of Poodium   E & Arc to Time of   Ref.	d Observation Mark — Star Clongation
Dec.	29	E.	0 / 50 2 & 230 2	- 3 31 56 36 9 29 32 1 83 7 43 32 2 40 7 31 31 49 37 13 17	0 7.80 9.81		12.55 13.49 13.64
"	81	w.	40 5 & 220 5	+ 4 8 33 54 0 27 8 31 37 1 28 7 49 60 17 40 7 42 83 19 24	0 '0'28 31'65 0 41'34 30'94	8 26·80 4 54 0 3·16 8 17·13 9 5 0 10·82	8 28 91 29 96 27 95 27 82
,,	31	E.	40 5 & 220 5	- 3 31 40 80 15 43 32 49 40 12 13 32 8 56 6 18 32 5 17 7 48	0 19.28 8.98	- 3 32 13.87	17.62 17.49 18.47
Jan.	1	w.	10 2 & 190 2	+ 4 8 38 96 0 46 8 33 63 1 48 8 15 83 11 44 8 10 43 13 1 6 43 80 28 39	0 0 42 34 05 0 18 02 33 85 0 22 19 32 62	8 21.83   7 14   0 6.86	8 28.74 28.69 26.30 26.86
n	1	Е.	10 2 & 190 3	- 3 31 58 00 8 56 7 33 31 56 50 10 13 31 57 70	0. 7.55 13.09 0.13.71 10.21	- 3 32 17.03	3 32 17 06 17 54 14 16

### Abstract of Astronomical Azimuth observed at XXXV (Mási) 1849-50.

1. By Eastern Elongation of δ Ursæ Minoris.

Face	L	R	L	R	L	R	L	R	L	R	L	R
<b>Z</b> ero	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°
Date	Decen	nber 26	Janu	ary 1	Decem	ber 27	Decem	ber <b>2</b> 8	Decem	ber 31	Decem	ber 29
	"	"	"	"	11	11	"	"	"	"	r	"
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	12.25 14.00 10.02 13.29 10.15	14.30 9.04 14.00 16.75 13.93 15.33	8:45 13:09 10:21 15:23	14.10 12.24 14.10	5°12 10°02 13°06 9°92	9.64 14.51 12.39 10.55	12.97 15.63 16.67 12.56	15.55 17.22 15.43 16.43	13.16 8.98 13.16	16.83 17.62 17.49 18.47	8·16 9·63 9·81 12·55	10°32 12°55 13°64
Means	12.09	13.89	11.75	16.52	9.23	11.44	14.46	19.19	12.52	17.60	10.01	12.20
	, ,		'n			1				#		W
Means of both faces — 3 Az. of Star fr. S., by W. 183 Az. of Ref. M. , 180	32 12°		14° 23°		21	. 65 . 70 . 05	22	· 31 · 10 · 79	23	`94 `30 `36	22	· 27 · 50 · 23

#### NORTH-EAST LONGITUDINAL SERIES..

# Abstract of Astronomical Azimuth observed at XXXV (Mási) 1849-50—(Continued).

2. By Western Elongation of δ Ursæ Minoris.

Face	${f L}$	${f R}$	${f L}$	${f R}$	${f L}$	${f R}$	${f L}$	R	L	${f R}$	${f L}$	${f R}$
Zero	0°	180°	10°	190°	<b>2</b> 0°	200°	30°	210°	40°	220°	50°	230°
Date	Decen	aber 26	Janu	ary 1	Decen	ber 27	Decer	nber 28	Decen	ber 31	Decem	ber 29
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	27.75 23.11 24.32 26.16 24.60	31.50 31.52 33.70	39 [*] ·02 34 · 05 33 · 85 32 · 62 30 · 55	28.74 28.69 26.30 26.86	27.41 30.67 29.63 30.71 28.90 28.55	24.43 25.65 26.04 24.57	30.87 34.36 32.47 31.96	25.39 27.38 28.66 28.61	33.57 31.65 30.94 32.05	28 ° 91 29 ° 96 27 ° 95 27 ° 82	30.41 30.41 30.40	30"78 32:76 24:74 25:54
Means	25.19	32.54	34.03	27.65	29.31	25.17	32.42	27.21	32.02	28.66	30.84	28.46
Means of both faces + 4 Az. of Star fr. S., by W. 176 Az. of Ref. M. " 180	8' 28. ⁴ 9 38. 18 7.		30.° 36. 7.	49	27 ² 38 · 5 ·	74 50 74	29. 38. 8.		30° 36°		29°	
stronomical Azimuth of F	? a farrin	o Mark		Easter Weste		gation	•••		•••	•••	180 1	8 9.2

	(by Easte	ern Elong	ation	•••	•••	•••	180 18	9.24
Astronomical Azimuth of Referring Mark	} by West	ern ,	,	•••	•••	•••	,,	7.23
	(	Mean	•••	•••	•••	•••	"	8.24
Angle Referring mark and XXXIII (Bela	a) <i>see</i> page	57	•••	•••	•••	•••	<b>—</b> 27 12	18.07
Astronomical Azimuth of Bela by observati	on	•••	•••	•••	•••	•••	153 5	50.17
Geodetical Azimuth of ,, by calculation	on from the	it adopted	(Vol	. II, page	141)		•	
at Kaliánpur, see page 156 _—	ante	•••	•••	•••	•••	•••	153 5	55.97
Astronomical—Geodetical Azimuth at XXX	XV (Mási)	•••	•••	•••	•••	•••	-	5.80

### At XLV (Bansídíla)

Lat. N. 27° 24′ 3″·24; Long. E. 82° 19′ 17″·62 = 5 29 17·2; Height above Mean Sea Level, 377 feet.

April 1849; observed by Mr. G. Logan with Barrow's 36-inch Theodolite.

Star observed Mean Right Ascension 1849 0 Mean North Polar Distance 1849 0 Local Mean Times of Elongation, Apr. 4 a Ursæ Minoris (West and East).

1h 4m 43s
1° 29' 43".99

Western 6h 10m
Eastern 18 15

ate		s of ·k)		FACE LEFT			FACE RIGHT	
Astronomical Date	Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark – Star	u le from Elongation in Elongation	Reduced Observation Ref. Mark - Star at Elongation
Apr. 4	w.	9 3 & 189 3	- 2 40 49 56 2 40 40 22 1 40 22 98 40 42 42 1	m & , , , , , , , , , , , , , , , , , ,	- 2 40 19.62 20.65 24.19 22.98 25.76 27.04	- 2 40 31 · 88 40 27 · 90 40 27 · 26 40 29 · 24	m & , , , , , , , , , , , , , , , , , ,	22·70 25·20

)ate			s of		FACE	LEFT			FACE RIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Ar Su Ar	Reduction in arc to Time of Elongation	Reduced Observation Ref. Mark — Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark – Star	in The Part of Time of Elongation  Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Star at Elongation
Apr.	4	Е.	9 3 & 189 3	- 6 0 46.52 1 0.56 2 5.20 2 9.34 2 31.36 2 33.00	m 8 43 18 40 32 22 44 20 24 3 9 0 20	- 1 47.61 1 34.32 0 29.75 0 23.96 0 0.57	- 6 2 34 13 34 88 34 95 33 30 31 93 33 01	- 6 1 34.28 1 41.26 2 23.28 2 26.24 2 25.74 2 21.16	m 8 , 7 31 51 — 0 58:35 29 46 . 0 50:97 12 30 . 0 9:01 10 29 . 0 6:34 8 3 . 0 3:74 10 24 . 0 6:25	- 6 2 32 63 32 23 32 29 32 58 29 48 27 41
23	5	Е.	18 3 & 198 3	- 6 1 1.06 1 10.86 2 11.84 2 15.14 2 34.84 2 36.46	40 7 - 37 59 20 56 18 54 4 14 0 1	- I 32'43 I 22'87 O 25'25 O 20'57 O I'03 O O'00	- 6 2 33 49 33 73 37 09 35 71 35 87 36 46	- 6 1 37.40 1 45.12 2 24.74 2 27.64 2 33.48 2 31.02	31 30 - 0 57.06 29 33 0 50.21 13 14 0 10.10 11 16 0 7.31 5 50 0 1.96 8 10 0 3.86	- 6 2 34 46 35 33 34 84 34 95 35 44 34 88
"	6	w.	²⁷ 3 & ²⁰⁷ 3	- 2 41 10 32 41 5 34 40 30 06 40 28 02 40 29 30 40 29 78	27 49 + 25 29 8 44 7 24 5 0 6 30	+ 0 44.69 0 37.49 0 4.41 0 3.16 0 1.44 0 2.44	- 2 40 25 63 27 85 25 65 24 86 27 86 27 34	- 2 40 43 92 40 37 24 40 27 36 40 26 46 40 34 88 40 36 80	18 3 + 0 18 · 81 14 · 27	- 2 40 25 11 25 18 27 00 26 46 26 90 26 37
"	6	Е.	²⁷ 3 & ²⁰ 7 3	2 7.90	39 0 36 43 21 49 19 40 4 21 0 5	- I 27'40 I 17'47 O 27'40 O 22'30 O I'09 O O'00	- 6 2 34 96 31 57 35 30 32 94 33 25 34 70	- 6 1 40.94 1 47.12 2 26.76 2 28.32 2 33.46 2 27.90	30 6 - 0 52·12 28 12 0 45·75 12 26 0 8·92 10 0 0 5·77 6 14 0 2·24 8 44 0 4·41	- 6 2 33 06 32 87 35 68 34 09 35 70 32 31
13.	7	<b>w</b> .	18 3 & 198 3	40 44 02 40 26 30 40 24 24 40 36 02	26 48 20 52 2 53 0 14 14 2 15 35	+ 0 41.49 0 25.16 0 0.48 0 0.00 0 11.36 0 14.01	- 2 40 22 · 21 18 · 86 25 · 82 24 · 24 24 · 66 26 · 33	- 2 40 41 72 40 37 86 40 29 68 40 32 02 40 52 62 40 57 12	14 10 + 0 11.60 11 56 0 8.22 7 7 0 2.92 8 53 0 4.56 21 7 0 25.69 22 37 0 29.48	- 2 40 30°12 29°64 26°76 27°46 26°93 27°64
"	7	Е.	0 3 & 180 3	2 5 36	38 37 36 12 21 26 20 2 5 31 0 1	- 1 25.68 1 15.30 0 26.44 0 23.13 0 1.76 0 0.00	- 6 2 27.46 31.70 31.80 34.59 36.32 34.98	- 6 1 44 90 1 52 34 2 23 98 2 25 58 2 30 50 2 27 30	29 22 - 0 49.60 0 41.98 14 44 0 12.50 12 58 0 9.70 7 57 0 3.65 10 17 0 5.96	- 6 2 34 50 34 32 36 48 35 28 34 15 33 26
<b>"</b>	8	w.	0 3 & 180 3	40 52 10 40 26 14 40 23 48 40 29 94	29 17 + 24 35 8 59 5 51 9 0 10 41	- 0 49 52 0 34 92 0 4 66 0 1 97 0 4 67 0 6 58	- 2 40 18.78 17.18 21.48 21.51 25.27 24.06	- 2 40 39 70 40 35 28 40 28 96 40 22 72 40 37 98 40 39 88	16 52 + 0 16 43 14 52 0 12 76 0 12 0 0 00 1 39 0 0 16 15 46 0 14 32 17 13 0 17 08	- 2 40 23 27 22 52 28 96 22 56 23 66 22 80

# Abstract of Astronomical Azimuth observed at XLV (Bansídíla) 1849.

1	. By	Eastern	Elongation	$\mathbf{of}$	a	$\mathbf{Urs}_{\mathbf{z}}$	Minoris.
---	------	---------	------------	---------------	---	-----------------------------	----------

Face	${f L}$	${f R}$	${f r}$	${f R}$	L	R	L	R
Zero		180°	9°	189°	18°	198°	27°	207°
Date	$\mathbf{A}$ p	ril 7	A	oril 4		 ril 5	A	pril 6
	7	•	•	•	7	•	"	, ii
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	27.46 31.70 31.80 34.59 36.32 34.98	34 50 34 32 36 48 35 28 54 15 33 26	34 13 34 88 34 95 33 30 31 93 33 01	32.63 32.23 32.29 32.58 29.48 27.41	33.49 33.73 37.09 35.71 35.87 36.46	34.46 35.33 34.84 34.95 35.44 34.88	34 96 31 57 35 30 32 94 33 25 34 70	33 ° 06 32 ° 87 35 ° 68 34 ° 09 35 ° 70 32 ° 31
Means	32.81	34.67	33.40	31.10	35.39	34.08	33.79	33'95
Means of both faces Az. of Star fr. S., by W. Az. of Ref. M.	- 6 2 33° 181 41 5° 175 38 32°	74 74	32 4 32	740 71	.5	• • 19 • 06 • 87	33 5	" *87 *39 *52

# 2. By Western Elongation of a Ursæ Minoris.

Face	L	R	L	${f R}$	${f L}$	R	${f L}$	R
Zero	0°	180°	9°	189°	18°	198°	27°	207°
Date	· Apr	ril 8			Ap	ril 7	A	oril 6
*	"	"	,,	11	v	"	"	" 15 11
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	18·78 17·18 21·48 21·51 25·27 24·06	23.27 22.52 28.96 22.56 23.66 22.80	19.62 20.65 24.19 22.98 25.76 27.04	24°21 22°70 25°20 25°41	22.21 18.86 25.82 24.24 24.66 26.33	30°12 29°64 26°76 27°46 26°93 27°64	25 · 63 27 · 85 25 · 65 24 · 86 27 · 86 27 · 34	25'18 27'00 26'37 26'37
Means	21.38	23.96	23:37	24.38	23.69	28.09	26.23	26'17
Means of both faces Az. of Star fr. S., by W. Az. of Ref. M. "	0 ' "  - 2 40 22° 178 18 54° 175 38 31°	67 08	23° 55° 31°	88 45	<b>2</b> 5	"   * 89   * 42   * 53	26	,, 135 176 141

			•		175 38 31'43
	(by Eastern Elongation	•••	•••	•••	,, 29 ^{.98}
Astronomical Azimuth of Referring Mark	by Western "	•••	•••	•••	<b>3</b> 0.21
Astronomical Azimuth of Recorring	Mean	•••	•••	•••	- 69 ²³ ^{21 28}
Angle Referring Mark and XLIII (Saibara	) see page 64	•••	•••	•••	106 15 8:43
Angle Referring Mark and Allii (Saloura	tion		•••	•••	100 -2
Astronomical Azimuth of Saibara by observe	ation from that adopted (	Vol.	II, page 141)	at	106 15 12.51
Occurred.	toton from over 1	•••	•••	•••	4'08
Kaliánpur, see page 157 ante			•••		_
Astronomical—Geodetical Azimuth at XLV	(Ваняшна)	• • •			

### At LXXI (Naonangarhi)

Lat. N. 26° 59′ 10″·19; Long. E. 84° 26′ 14″·04=5 37 44·9; Height above Mean Sea Level, 344 feet. June 1852; observed by Mr. J. W. Armstrong with Barrow's 24-inch Theodolite No. 2.

Star observed
Mean Right Ascension 1852.0
Mean North Polar Distance 1852.0
Local Mean Time of Elongation, June 13

λ Ursæ Minoris (East).

20^h 11^m 15^t

1° 7′ 59" 94

Eastern 8^h 46^m

3		78 of		PACE LEFT		PACE BIGHT	
Astronomical Dat	Elongation	Zeros (Circle Rendings of Referring Mark)	Observed Horizontal Angle: Diff: of Readings Ref. Mark-Star	Reduction in Arc to Time of Elongation  Reduced Obser Ref. Mark— at Elongat	Star Diff of Rendings	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark-Star at Elongation
June 13	E.	0 I &	- 1 16 11 10 32 0 16 16 52 50 16 50 56 3 1. 16 35 60 20 1	0 37.89 52 0 1.45 53 0 0.46 51 0 13.67 52	"  '69 — I 16 38 76  '66 I 6 44 80  '95 I 6 51 26  '02 I 6 52 00  '97 I 6 14 60  '52 I 6 8 40	m s , " 17 52 - 0 13 92 14 31 0 9 20 5 58 0 1 56 9 0 0 3 54 29 40 0 38 42 31 45 0 44 02	- 1 16 52 68 54 00 52 82 55 54 53 02 52 42
, 14	E.	10 1 & 190 1	- 1 16 23 60 25 43 16 28 50 77 2 38 16 50 20 0 11 16 32 73 20 2 16 28 27 22 35	0 0.30 20 20	- 1 16 47 07 16 48 03 10 47 13 16 47 13 16 45 94 15 49 66 15 47 10	13 17 - 0 7.70 10 49 0 5.11 9 46 0 4.17 12 12 0 6.51 36 56 0 59.53 38 57 1 6.19	- 1 16 54.77 53.14 51.30 52.45 49.19 53.29
" 16	E.	20 21 & 200 20	- 1 16 24 00 25 37 16 29 74 23 23	- 0 28 · 61 - 1 16 52 53	- 61 - 1 16 50·30 - 16 53·80	11 47 - 0 6.05 9 21 - 0 6.05	- 1 16 56·35
" 22 	E.	50 55 & 230 55	- 1 16 24 46 24 16 16 31 07 21 55 16 48 70 4 57 16 50 14 2 41 16 37 50 17 46 16 33 76 19 47	0 1.07 49 0 0.31 50 0 13.79 51	-10 - 1 16 38 36 16 43 03 16 44 67 16 48 10 16 13 03 16 7 83	14 14 - 0 8.84 12 29 0 6.80 5 55 0 1.53 7 53 0 2.71 27 15 0 32.41 28 49 0 36.23	- 1 16 47 20 49 83 46 20 50 81 45 44 44 06
,, 24.	E.	40 44 & 220 44	- 1 16 26 07 25 6 16 28 93 22 48 16 52 84 1 52 16 52 23 0 27 16 33 07 21 23 14 23 80 57 59 14 5 97 60 39	0 0 15 52 52 0 16 59 51 0 19 98 53 2 26 39 50	59 16 44 90 99 16 41 74 16 45 27 53 16 3 40 05 15 59 30 19 15 18 36	13 58 - 0 8·50 11 30 0 5·78 8 46 0 3·35 10 48 0 5·10 31 46 0 44·02 34 9 0 50·86 45 35 1 30·57	- 1 16 48 · 40 50 · 68 45 · 09 50 · 37 47 · 42 50 · 16 48 · 93
,, 25	E.	30 33 & 210 33	- 1 16 38 37 16 39 12 41 16 42 90 16 44 77 7 19 16 22 50 23 33 16 19 44	- 0 12 09 - 1 16 50 46 0 1 32 44 47	46 - 1 16 40 83 88 16 46 60 22 16 34 57 11 16 35 07 69 15 34 30	47 22	47.27 - 1 16 41.65 46.87 44.08 46.93 43.86 45.69

Date		ck)		7	ACE LEFT			PA	CE RIGHT	
Astronomical I	Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Interval in Time from Elongation	Florestien et Florestien		Observed Horizontal Angle : Diff. of Readings Ref. Mark—Star	Interval in Time from Elongation	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark — Star at Elongation
June 26	E.	20 24 & 200 24	- 1 16 26 80 16 24 37 15 24 23 15 14 23 13 36 53 13 21 30 11 26 60 11 9 20	m s 21 57 23 53 42 59 46 40 66 12 68 37 86 8 88 17	7	49°26 44°80	- 1 16 41.56 16 36.86 15 53.43 15 48.30 14 33.87 14 27.13 12 25.50 12 7.93	m s 11 26 13 36 33 39 35 41 54 46 56 28 77 9 80 9	, , , , , , , , , , , , , , , , , , ,	- 1 16 47 27 44 93 42 83 43 86 44 49 45 90 43 77 46 51

# Abstract of Astronomical Azimuth observed at LXXI (Naonangarhi) 1852.

### By Eastern Elongation of \( \lambda \) Ursæ Minoris.

Face	${f L}$	${f R}$	L	${f R}$	${f L}$	${f R}$	${f L}$	${f R}$	${f L}$	${f R}$	${f L}$	${f R}$
Zero	0°	180°	10°	190°	20°	200°	31°	211°	41°	<b>221°</b>	51°	231°
Date	Jun	e 13	Jun	e 14	Ju	ne <b>26</b>	Jun	e 25	Jun	e 24	Jun	e 22
	*	*	*	"	. "	"	•	*	*	*	*	•
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	55.69 54.66 53.95 51.02 52.97 53.52	52.68 54.00 52.82 55.54 53.02 52.42	52·37 51·68 51·07 50·20 50·28 50·55	54°77 53°14 51°30 52°45 49°19 53°29	*49.29 *50.24 47.85 49.26 44.80 49.11 47.05 45.84 47.91 46.50	*53.03 *54.29 47.27 44.93 42.83 43.86 44.49 45.90 43.77 46.51	50°46 46°88 44°22 47°11 46°69 47°61	41.65 46.87 44.08 46.93 43.86 45.69	53°52°51°59°52°24°51°53°55°55°59°46°02	48·40 50·68 45·09 50·37 47·42 50·16 48·93 47·27	50°10 52°00 49°77 50°45 51°29 50°84	47°20 49°83 46°20 50°81 45°44 44°06
Means	53.64	53°41	51.03	52.36	47.79	46.69	47.16	44.85	21.39	48.24	50.14	47.26
	0 / 1	•	*	•		"	-	,		*		*
Means of both faces — I Az. of Star fr. S., by W. 181			51.			°24 °54	46°	88. 101	49° 26°	97	49 26	•oo •88
Az. of Ref. M. " 179			37		<b>3</b> 8	.30	39	87		25		·88

•		• , ,,
Astronomical Azimuth of Referring Mark by Eastern Elongation	•••	179 59 37.73
Angle Referring Mark and LXIX (Bakwa) see following page	•••	<b>-</b> 72 6 54.97
Astronomical Azimuth of Bakwa by observation	•••	107 52 42.76
Geodetical Azimuth of ,, by calculation from that adopted (Vol. II, page 141) at		
Kaliánpur, see page 158 ante	•••	107 52 50.12
Astronomical—Geodetical Azimuth at LXXI (Naonangarhi)	•••	<b>–</b> 7:36

Note.—Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date—the most convenient—by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.

### At LXXI (Naonangarhi)

June 1852; observed by Mr. J. W. Armstrong with Barrow's 24-inch Theodolite No. 2.

Angle	Seconds of Observed Angles at each Zero									_			
between	0° 2′	0° 2′ 180° 2′		190° 1′	20° 21′	200° 21′	30° 32′	210° 33′	210° 33′ 40° 43′		50° 55′	230° 55′	General Mean
LXIX & R. M.	" \$56.67 \$56.97 \$56.17	h55.83 h53.07 h50.30 h51.46	" h57:17 h57:30 h53:56	#54°90 #54°46	h52.00 h53.84	h59°93 h55°64 h57°03 h49°86 h50°16	h56°14 h53°14 h51°60 h56°10 h58°80	" h57·80 h57·83	" h53·44 h53·07	" h56·27 h56·76	h54.90 h56.43 h53.36	h53:33 h56:46 h53:90	
	56.60	52.67	26.01	54.68	52.92	54.2	55.16	57.82	53.50	56.2	54.90	54.26	72° 6′ 54″ 97

### At CVI (Chúni)

Lat. N. 26° 11′ 4″·72; Long. E. 87° 5′ 19″·98 = 5 48 21·3; Height above Mean Sea Level, 197 feet. December 1846; observed by Lieutenant R. Walker with Troughton and Simms' 36-inch Theodolite.

Star observed
Mean Right Ascension 1846.0
Mean North Polar Distance 1846.0
Local Mean Times of Elongation, Dec. 27

şţ			s of		FACE LEFT	FACE RIG	<b>GHT</b>
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation  Reduced Observation  Ref. Mark—Star at Elongation	Diff of Parlings   Fig. 80 Arc t	duction in to Time of Ref. Mark—Star ongation at Elongation
Dec.	27	w.	8 5 &	0 / 4 m 8 + 1 13 14 38 9 39 13 19 96 7 19 12 58 64 14 18 12 44 44 17 56	0 0 6,04 36,00 0 0 6,04 36,00	12 39 52 20 50 13 33 64 1 23	, , , , , , , , , , , , , , , , , , ,
79	28	w.	27 6 & 207 5	+ 1 12 14 18 22 53 12 35 40 19 39 13 25 08 1 29 13 23 96 4 30	0 0 0 27 25.35	13 22 24   7 28   12 46 98   19 14	0 12'31 + 1 13 32'37 0 7'24 29'48 0 47'80 34'78 0 59'65 33'17
"	28	E.	27 6 & 207 5	- 6 21 13.78 12 18 21 23.66 9 22 21 13.72 12 38	0 7.48 33.82 0 11.40 35.06	19 18 64 32 11 21 31 48 3 40	2 35.85 — 6 21 30.01 32.11 0 1.74 0 4.41 33.22 31.77

			rk)		FACE LEFT	PACE BIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horisontal Angle: Diff. of Readings Ref. Mark-Star	Reduction in Arc to Time of Elongation  Reduced Observation Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star    I	tar
Dec.	29	E.	0 / 18 6 & 198 5	- 6 18 30 82 37 5 19 10 96 33 2 21 25 58 8 3 21 29 18 6 3 20 47 28 18 5 20 34 26 21 2	- 3 4'24 - 6 21 35'06 2 23'95 0 9'57 0 5'48 0 46'59 33'87	- 6 20 20.72	· 82 · 57 · 50
"	80	w.	9 2 & 189 1	+ 1 12 50°12 15 4 13 3°18 12 4 12 40°96 18 3 12 21°20 22 1	2 0 20 92 24 10 0 0 44 96 25 92	+ 1 13 33.78	71
,,	30	E.	9 2 & 189 1	- 6 21 17.54 10 5 21 25.78 8 5 21 26.78 9 5	35.89 0 6.60 37.22	- 6 19 49 34 27 24 - 1 36 88 - 6 21 26 26 28 28 26 21 27 92 1 34 0 0 32 28 28 28 26 26 28 28 28 28 28 28 28 28 28 28 28 28 28	°08 '85
"	81	W.	0 5 & 180 4	+ 1 13 21 12 0 13 23 56 2 2 12 24 42 22 1 12 1 78 24 4	4 0 0.75 24.31 5 1 3.98 28.40	+ 1 13 18·24	19
"	81	E.	O 5 & 180 4	- 6 18 31 20 37 3 18 56 80 35 21 19 56 11 2 21 26 40 9 1	3 2 38.45 35.25 0 16.76 36.32	- 6 20 15.66	74 59

# Abstract of Astronomical Azimuth observed at CVI (Chúni) 1846.

# 1. By Eastern Elongation of $\delta$ Ursæ Minoris.

Face	L	· <b>R</b>	L	R	L	R	L	R
Zero	0°	180°	<b>9°</b>	189°	18°	198°	27°	20 <b>7°</b>
Date	Decem	ber 81	December 30		December 29		December 28	
	•	•	•	*	•	•	•	"
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	32·51 35·25 36·32 37·54	30°73 30°74 30°59 30°69	32.81 35.89 37.22 39.48	26°22 26°08 28°85 28°24	35.06 34.91 35.15 34.66 33.87 33.35	30.82 31.57 32.50 32.05	33°34 33°82 35°06 34°44	30°01 32°11 33°22 31°77
Means	35.41	30.69	36.32	27.35	34.20	31.4	34.17	31.48
Means of both faces Az. of Star fr. S., by W. Az. of Ref. M. "	- 6 21 33° 183 47 30° 177 25 57°	05 24	31 · 29 · 58 ·	88	29	* 12 52 40	<b>32</b> 29	" • 98 • 17

### Abstract of Astronomical Azimuth observed at CVI (Chúni) 1846—(Continued).

### 2. By Western Elongation of δ Ursæ Minoris.

Face Zero	L 0°	к 180°	L 9°	R 189°	L 18°	R 198°	L 27°	R 207°
' Date	Decem	iber 31	Decer	nber 30	Decen	nber 27	Decen	nber 28
	"	"	"	"	"	"	11	"
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	21 · 12 28 · 40 21 · 26	35.89 35.22 29.19 32.97	22.47 24.10 25.01	34.39 32.71 33.34 34.69	26.48 26.00 25.11 26.48	33.61 35.89 33.89 32.39	22.25 25.55 25.35 26.58	32·37 29·48 34·78 33·17
Means	23.77	33.32	24.38	33.78	26.13	33.92	24.93	32.45
Means of both faces Az. of Star fr. S., by W. Az. of Ref. M. ,,	0 , " + 1 13 28. 176 12 29. 177 25 58.	55 94	29 30 59	· 08 · 30	3°	" 0.04 1.37 1.41	28 3 I	" ·69 ·01 ·70

	by Eastern	-	•••	•••	•••	177 25	56.95
Astronomical Azimuth of Referring Mark	} by Westerr		•••	•••	•••	,,	59.75
	(	Mean	•••	•••	•••	,,	58.35
Angle Referring Mark and CV (Minai)	see page 112.		•••	•••	•••	+ 8 23	40'74
Astronomical Azimuth of Minai by observa	ition	•••	•••	•••	•••	185 49	39.09
Geodetical Azimuth of " by calcu	lation from tha	t adopted (?	Vol. II	, page 141	.) at		
Kaliánpur, see page 160—, ante	•••	•••	•••	•••	•••	185 49	48.14
Astronomical—Geodetical Azimuth at CVI	(Chúni)	•••	•••	•••	•••	-	9.05

### At CXXII (Rámganj)

Lat. N. 26° 18′ 55″ 51; Long. E. 88° 19′ 57″ 61 = 5 53 19 8; Height above Mean Sea Level, 249 feet. December 1852 and January 1853; observed by Mr. J. O. Nicolson with Barrow's 24-inch Theodolite No. 2.

at e		Zeros Readings of rring Mark)		FA	CE LEFT		PAOR BIGHT					
Astronomical D	Astronomical D.  Elongation Zeros		Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Iorizontal Angle: Act of Time of Readings		Reduced Observation Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Interval in Time from Elongation	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Star at Elongation		
Dec. 27	w.	180 I & 0 0	0 , " + 165 41 9 60 41 12 83 40 53 30 40 50 00	m & 11 47 10 1 14 53 16 27	, " + 0 18.04 0 13.06 0 28.68 0 35.04	0 , " +165 41 27.64 25.89 21.98 25.04	0 , " +165 41 6.87 41 6.97 41 7.40 41 4.67	m & 2 21 0 41 4 58 6 25	, " + 0 0'72 0 0'06 0 3'20 0 5'35	0 , " + 165 41 7 59 7 03 10 60 10 02		

3		F. 0	1	ACE LEFT	PACE BIGHT
Astronomical Date	Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark – Star	Reduction in Arc to Time of Elongation  Reduced Observation Ref. Mark — Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star  Reduction in Arc to Time of Elongation  Ref. Ma at Elon
Dec. 28	s w.	20 0 & 200 I	+ 165 41 25 40 6 26 41 29 10 4 54 41 32 33 0 24 41 34 47 1 42	+ 0 5.37 0 3.11 0 0.02 0 0.37 32.31 32.35 34.84	*** *** *** *** *** *** *** *** *** **
" 28	8 E.	20 0 & 200 0	+158 6 8 \cdot \infty 6 23 4 47 6 48 \cdot \infty 6 56 \cdot \infty 20 43 7 50 \cdot \infty 27 53 8 4 \cdot 33 30 32	- 0 5 29 + 158 5 62 71 60 34 60 09 60 21 141 14 68 86 62 98	+158 5 46°50 2 2 2 - 0 0°54 5 56°77 10 13 0 13°56 0 18°31
" 29	w.	40 0 & 220 I	+165 41 1.23 12 14 41 2.80 10 38 41 3.77 10 58 41 1.13 12 23 40 42.23 17 52 40 31.47 19 18	+ 0 19.45 0 14.68 0 15.59 0 19.89 0 41.35 0 48.17 + 165 41 20.68 17.48 19.36 21.02 23.58 0 48.17 19.64	+165 41 8 · 17
" 21	9 E.	40 0 & 220 0	+158 5 52°30	- 0 0'33 +158 5 51'97 0 0'00 51'00 0 7'70 46'23 0 12'28 49'45	+158 6 0.00 11 9 - 0.16.13 +158 1 6 4.10 9 20 0.11.30 6 28.00 17 46 0.41.02 6 39.10 19 53 0.51.42
" 80	o W.	236 59 & 56 59	+165 41 24 33 3 4 41 21 80 4 27 41 2 13 11 37 41 0 37 13 42	+ 0 1'22	+165 41 12 00 5 43 + 0 4 24 + 165 41 4
,, 80	0 E.	236 59 & 56 59	+158 6 4.03 9 27 6 7.57 7 58 6 52.43 20 1 7 3.10 21 43 7 9.50 23 13 7 18.60 24 27	- 0 11.56 0 8.24 0 52.07 1 1.34 1 10.14 1 17.81 - 0 11.56 59.33 60.36 61.76 59.36 60.79	+158 5 44.00 0 53 -0 0.10 +158 1 5 46.23 0 7 0 0.00 5 51.97 6 33 0 5.58 5 55.73 8 6 0 8.51
,, 8.	w.	256 59 76 59	+ 165 41 15.80 6 26 41 20.93 4 49 40 43.40 16 14 40 38.53 17 36 39 58.37 25 8 39 47.67 26 21	+ 0 5'37 0 3'02 0 34'13 0 40'13 1 21'62 1 29'72 + 165 41 21'17 23'95 17'53 18'66 19'99 17'39	+165 41 12.83
<b>"</b> 8:	1 E.	256 59 & 76 59	+158 5 58·80 5 27 5 55·63 4 17 5 54·47 0 35 5 54·43 2 24	- 0 3.84 +158 5 54.96 53.26 0 0.05 54.42 53.69	+158 6 15.70

8			, of k)	7	ACE LEFT	PACE RIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation Ref. Mark — Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star  Reduction is Arc to Time Elongation	of Ref. Mark - Star
Jan.	1	w.	276 59 & 96 59	0 , "	+ 0 2 92 0 5 17 0 21 84 0 27 31 1 44 26 1 54 53	0 1 1 m 2 1 10 10 10 10 10 10 10 10 10 10 10 10 1	8 10.32 9 11.36
"	1	E.	276 59 & 96 59	+158 6 10.90 14 11 6 3.53 12 19 6 10.20 14 23 6 20.43 16 8 6 26.90 17 39	- 0 26.06 0 19.64 0 26.89 0 33.86 0 40.47 +158 5 44.84 43.89 46.57 46.43	+158 5 52.27	2 47.58 5 43.48
,,	2	E.	0 0 & 180 0	+158 5 54 23 5 37 5 48 00 4 10 5 51 23 1 11 5 46 27 2 49 5 52 43 4 26	- o 4'09 +158 5 50'14 45'75 o o'18 51'05 45'24 49'88	+ 158 6 7.57   13 46   - 0 24.5 6 0.60   11 53   0 18.3 6 1.73   13 14   0 22.7	1 42°29 1 43°32

# Abstract of Astronomical Azimuth observed at CXXII (Rámganj) 1852-53.

1. By Eastern Elongation of δ Ursæ Minoris.

Face	L	R	L	R	L	R	L	R	${f L}$	R	L	R
Zero	0•	180°	20°	200°	<b>4</b> 0°	<b>220°</b>	237°	57°	257°	77°	277°	97°
Date	Janu	ary 2	Decem	ber 28	Decem	ber 29	Decem	ber 80	Decen	aber 31	Janu	ary 1
	"	"	#	"	'n	"	"	"	"	"	n	"
Observed difference	50.14	43.05	62.41	45.96	51.97	43.87	52.47	43.00	54.96	43.61	44'84	
of Circle-Readings,	45°75 51°05	42°29	60.00 60.34	45.16	51.∞ 46.33	52.80 46.98	59°33	46·23 46·39	53°26	48°06	43.89	47.58 43.48
Ref. M.—Star	45.34	44.52	60.31	49.53	49.45	47 . 68	61.16	47.33	23.60	44'40	45.57	44.00
reduced to Elongation	49.88		62·98				59·36 60·79				46.43	
Means	48.41	43.53	62.23	45.89	49.66	47.83	20.01	45°94	54.08	45.31	45.01	46.30
	) 1 1	,	,	1	,	,	,	,		n		fi.
Means of both faces + 158			54°		48.	75	53.		49	70		·61
Az. of Star fr. S., by W. 183 Az. of Ref. M. 341	47 45		43		43		44.		44	76	45	. 12
Az. of Ref. M. ,, 341	23 31.	31	37.	09	32.	02	36.	90	34	·46	30	. 76

### NORTH-EAST LONGITUDINAL SERIES.

# Abstract of Astronomical Azimuth observed at CXXII (Rámganj) 1852-53—(Continued). 2. By Western Elongation of δ Ursæ Minoris.

Face	${f L}$	${f R}$	${f L}$	${f R}$	${f L}$	${f R}$	${f L}$	${f R}$	L	${f R}$	Ľ	${f R}$
Zero	0° .	180°	20°	200°	40°	220°	237°	57°	257°	77°	277°	97°
Date	Decem	ber 27	Decen	nber 28	Decem	ber 29	Decer	nber 30	Decer	nber 31	Janu	ary 1
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	•	<b>&gt;</b>	*	•	•			"	•	<b>4</b> .	n	"
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	27.64 25.89 21.98 25.04	7.59 7.03 10.60 10.02	30°77 32°21 32°35 34°84	12.68 17.70 19.84 18.52	20.68 17.48 19.36 21.02 23.58 19.64	10'42 11'75 12'93 14'84	25.55 24.37 19.64 24.67	16.34 17.70 20.27 18.98	21.17 23.95 17.53 18.66 19.99 17.39	12.89 14.33 14.65 9.51	21.59 25.04 21.47 23.04 36.19 29.66	10°29 11°35 10°35
Means	25.14	8.81	32.24	17.19	20.59	12.49	23.26	18.30	19.48	12.85	26.14	11.83
•	,	7		"	•	,		"		,		u c
Means of both faces + 165	•	. 98		.87	16	39	20	, -		32		<b>100</b>
Az. of Star fr. S., by W. 176 Az. of Ref. M. , 341		'02 '00 ·		·69 ·56	16 · 32 ·		36		-	· 46 · 78	_	10°

(by Eastern Elongation	•••	••• ;	•••	341 53 33:94
Astronomical Azimuth of Referring Mark   by Western ,,	•••	• • •	•••	_
Mean	•••	•••	•••	<b>"</b> 34.55
Angle Referring Mark and CXXIV (Kanchábári) see below	•••	•••	•••	-123 I 38·62
Astronomical Azimuth of Kanchábári by observation	•••	•••	•••	218 51 55.93
Geodetical Azimuth of ,, by calculation from that adopted	l (Vol. I	I, page 14		
at Kaliánpur, see page 161 ante		•••	•••	218 52 6.09
Astronomical—Geodetical Azimuth at CXXII (Rámganj)	•••	•••	•••	- 10.19

# At CXXII (Rámganj)

December 1852 and January 1853; observed by Mr. J. O. Nicolson with Barrow's 24-inch Theodolite No. 2.

Angle		Seconds of Observed Angles at each Zero												
between	0° 1′	180° 1′	20° 1′	200° 1′	40° 1′	<b>220° 1′</b>	220° 1′ 236° 59′	56° 59 256	256° 59′	256° 59′ 76° 59′	276° 59′	96° 59′	General Mean	
CXXIV & R. M.	h34·87	h36·93 h35·67	h40°50 h39°63	h39.60 h37.97	h36.33	h40.63 h38.23	h36.83 h40.70 h41.70	h40.03	h37°37 h39°07	h41·33 h39·43	h38:10 h37:17	h40·70 h40·83		
	34.69	36.30	40.06	38.79	37.53	39.28	39.74	40.10	38.22	40.38	37.63	40.22	123° 1′ 38″ • 6:	

November 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.

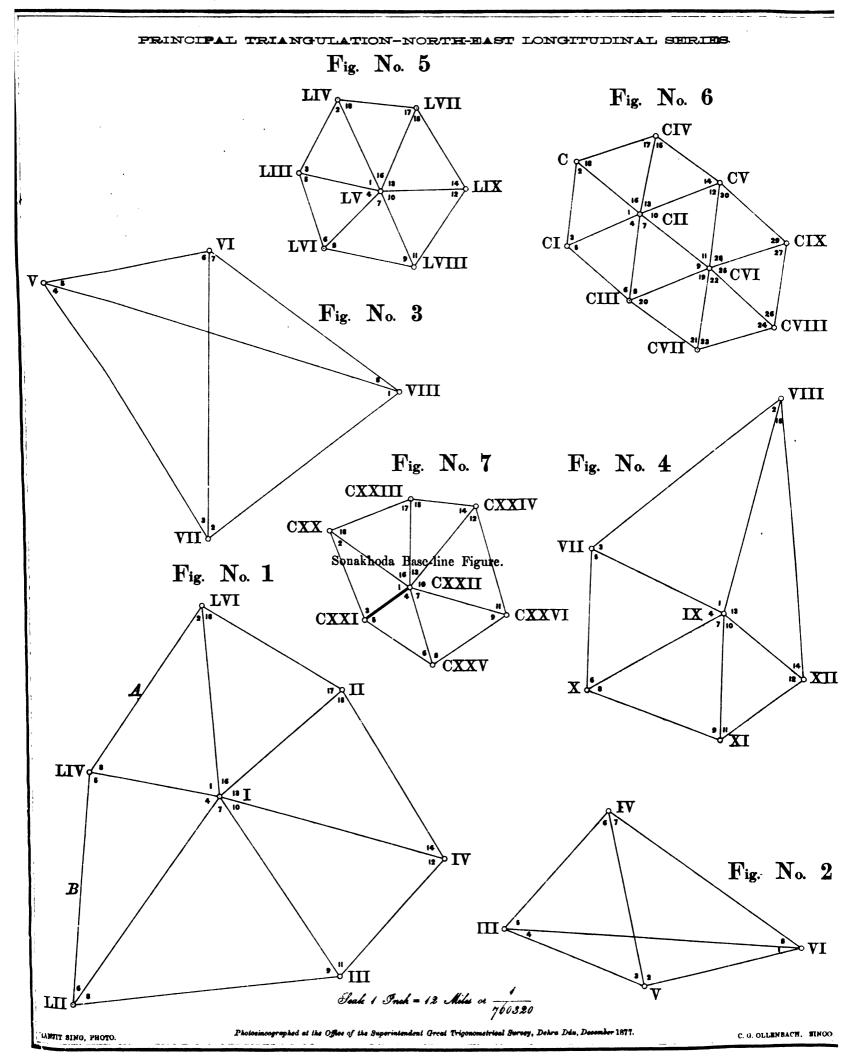


### NORTH-EAST LONGITUDINAL SERIES.

# ALPHABETICAL LIST OF PROPER NAMES SHOWING LATEST AUTHORISED SPELLINGS.

A portion of the text of this Series in which Indian proper names occur having been printed prior to 1871, the spelling of such names was necessarily in accordance with the rules introduced by Colonel Everest for use in the Survey Department. Subsequently the Government issued a modification of these rules, but as it was not desirable to introduce a change of system in the middle of the publication, Colonel Everest's method was adopted throughout the Series, excepting in the Addendum, beginning with page 25*_____, which, being printed only recently, is in accordance with the Government method. Now that the publication of the series is finished, it appears desirable to give the proper names in question by both systems of spelling; this is accordingly done in the following table, where the first column of each pair states the spelling adopted and the second column gives the corrected orthography as required by Government rules. Where the methods are identical the second column is left blank.

Овтно	OGRAPH <b>Y</b>	ORTH	OGRAPHY	ORTHOGRAPHY		
By old or Survey rules	By new or Government rules	By old or Survey	By new or Government- rules	By old or Survey rules	By new or Government rules	
Adwani	Adwáni	Bagwára		Baori	Bauri	
Ahlapúr	Álápur	Báhádúrganj	Bahádurganj	Bára	Bara	
Ahti -	Háti	Baigul	Bahgul	Baráich	Bahraich	
Ajítpúr	Ajítpur	Bailawa		Bára Manjilia	Bara Manjilia	
Ajmere	Ajmir	Bailw <b>a</b>	Belwa	Barápúra	Barhapura	
Akaona	Ikauna	Baingra		Baraseo	_	
Alíganj	Aliganj	Bairchawa		Bare		
Almora		Baisi		Bareilly		
Amdar		Bájra		Bargonia		
Amúa	Amua	Bakwa		Barhámpúr	Barhampur	
Anárkali		Bálápúr	Bálapur	Barháta	_	
Asangáwa	Asangawa	Balchentha	1 -	Baríkankai	Barikankai	
Asogápúr	Asogapur	Báligarh		Barri Patesri		
Asogi		Baloia		Barsám		
Atária		Balrámpúr	Balrámpur	Barwára		
Athari		Balúa -	Balua -	Barwás		
Atkonawa		Bánarsi	Banarsi	Basaola	Basaula	
Baber .		Bandarjúla		Basotara	Basotra	
Bábra	Babr <b>a</b>	Bánghora		Basua		
Bachaor	Bachhaur	Bangra		Batnáha		
Bádhar		Bángra	Bangra	Batráha		
Bágápár		Banjaría	Banjaria	Batwaia	•	
Bágha	Bagaha	Bankata		Begni	Bagni	
Baghaia		Báñsi	Bánsi	Beheri	Baheri	
Bagotipúr	Bagotipur	Bansídíla		Bela		


Овтно	GBAPHY	Овтно	GBAPHY	Овтное	BAPHY
By old or Survey rules	By new or Government rules	By old or Survey rules	By new or Government rules	By old or Survey rules	By new or Government rules
Belwa		Chilkia		Gharáwa	
Belwanía	Belwania	Chotáki	·	Gharbaria	
Benaikpúr	Bináyakpur	Chota Parsoni		Ghiba	•
Beraor	Beraur	Chúni		Ghogochodi	
Betia	Bettiah	Dadaora	Dadaura	Ghona	•
Bhágalpúr	Bhágalpur	Dahlelnagar		Ghungti	
Bhagarati	Bhágirathi	Daka	Dháka	Ghungtigarh	Ghungtigarh
Bhagwánpúr	Bhagwánpur	Dakária		Gidhuraia	Gidhraia
Bhaispára		Dálibhát		Gilaolia	Gilaulia
Bhála		Dánar		Giráháwa	Girawa
Bhaonipúr	Bhaunipur	Dáñría	Dánria	Girjwála	
Bharmi	•	Daorára	Dhaurahra	Gonália	
Bhataora	Bhataura	Daparka	,	Gonda Baráich	Gonda Bahraich
Bhattábári	Bhattabári	Deopúr	Deopur	Goruckpúr	Gorakhpur
Bháwára	Bharwára	Dewánganj	Diwanganj	Guluria	Gularia
Bhela		Dhakdhía	Dhakdhia	Gumti	
Bhería	Bheria	Dhanga		Gúñghi	Gúnghi
Bhería Bisanpúr	Bheria Bisanpur	Dhántola		Gunsíai	J
Bhikaolia	Bhikaulia -	Dharamnagar		Haidarábád	Haidarabad
Bhinga		Dharampúr	Dharampur	Haiúl	
Bhogpúr	Bhogpur	Dharamsingua	_	Haldikora	
Bíarwa	Biarwa	Dhárára		Haldwáni	
Biarwa		Dhasowar	Duhosuho	Halsan	Halsán
Bigoía	Bigoia	Dhela	,	Haraot	Haraut
Bijnor		Dhoadni	Dhaudni	Harmandil	
Birádi	Biradi	Dholakar	Dhalokar	Harmoa	Harmuw <b>a</b>
Birda		Dhunka		Harnáhi	
Birdpúr	Birdpu <b>r</b>	Dhúrwa	<b>.</b>	Harpúr	Harpur
Birond	Tr. 1	Díánirao	Dhianirau	Hasuadol	Hanswadol
Bisalpúr	Bisalpur	Dinájpore	Dinagepore	Hátgáon	Hátgaon
Bisambharpúr	Bisambharpur	Dipái Dipai		Hátihaol	Hátihaul
Bisanpúr Boda	Bisanpur	Dipnagar Doab		Haveli Goruckpúr	Haveli Gorakhpu
Boudi-tola	Baudi-tola	Donáo	Donau	Hilgi Himéannén	TT:
Budholi	Badholi	Donk	Donk	Himáonpúr Hurdwar	Himaunpur Hardwár
Bulákípúr	Bulákipur	Dúmdángi	DOUR	Inarwa Inarwa	naruwar
Bunágáon	Bunagaon	Dúngápára	Dúngapára	Intai	
Burwa	Dunagaon	Durgaoti	Durgauti	Iríagarh	Iriagarh
Chakla		Fatepúr Singhía	Fatehpur Singhia		III again
Chalári	Chalari	Gandak	Gunduk	Isrápúr	Isrápur
Champáran	Chumparun	Ganespúr	Ganespur	Jabdi	zorupuz
Chanda		Ganges	G.G. G. G. G. G. G. G. G. G. G. G. G. G.	Jádupati	
Chandarsána	•	Gangi Sáhibganj	Gangi Sáhebganj	Jagarchi	
Chandarsanpúr	Chandarsanpur	Gaoria	Gauria	Jákub Itwa	Jakúb Intwa
Chándípahár		Gaori-Rái	Gauri-Rai	Jampta	
Chaoka	Chauka	Garhwal	Garhwál	Janjpati	
Chápin		Gernábári	Gernabári	Jarel	
Chaprári	ļ	Ghágra	Gogra	Jehánábád	Jahánabad .
Chedarmi		Ghamaria		Jehángírpúr	Jahángírpur
Chelú <b>a</b>	Chelua	Ghandiál		Jhál <b>a</b>	Jála
Chetaona	Chetauna	Gháos	Ghaus ·	Jholai	

Овтн	OGBAPHŤ	Овтно	<b>ОВАРНУ</b>	Овтно	GRAPHY
By old or Survey rules	By new or Government rules	By old or Survey rules	By new or Government rules	By old or Survey rules	By new or Government rules
Jirol		Kothíbhár	Kothibhár	Masoa	Masuwa
Jítpúr	Jitpur	Kowálpúr	Kewalpur	Mathi	Máthi
Juknía.	Jakania	Kúlri	Kulri	Mathia.	
Juktia-atsára	3 4123425	Kúlúganj		Mehesari	Mahesari
Juráwandi	Jurawandi	Kumaon	Kumaun	Mehesi	Mehsi
Kabiai		Kusha Balrámpúr	Kusha Balrámpur	Mehnd	Mahind
Káimkhera		Kusmai	•	Míásambar	Miasambar
Kakuruha		Kutía	Kutia	Míla	
Kalíáganj	Káliaganj	Lachmípúr	Lachmipur	Minai	
Kaliánpúr	Kaliánpur	Ladnía -	Ladnia	Mírápati	Mirapati
Kalíánpúr	Kaliánpur	Lakima		Mirzápúr	Mirzapur
Kálidongi	Káladhúngi	Lákún		Misaraolia	Misraulia
Kálúsaiud	Kálusayyid	Lálpúr	Lálpur	Modára	
Kamaldáha		Lambákhera	Lambakhera	Moradabad	
Kamálpúr	Kamálpur	Langari		Morairi	
Kamaría	Khamaria	Laoríh <b>a</b>	Lauria	Motihári	Motiharee
Kanamajot		Largápati	Largapati	Mulápúr	Mulapur
Kanchábári	Kanchabári	Latona		Mundawar	Mandáwar
Kanjaoli	Khajauli	Latona-Gádi-Hát		Músaldanga	Músaldánga
Kankíra		Lohápánia	Lohápania	Nadúa	Nadua
Kanont	Khanaut	Mábegarh	Mabegarh	Nágal	
Kaolda	Kaulda	Madanpúr	Madanpur	Nahli	
Kaonrikot	Kaunrikot	Madárganj		Naiáthána Namasta	Missanta
Karái Karala		Madnagar	36/3b	Nanaota Nanaota	Nánaut <b>a</b>
Karela Kárídia		Mádopúr Madura	Mádhopur	Nándpára Nannán	Námmun
Karimábád	Karimabad	Madura Máhádeoa	Mahádewa	Nanpúr Napúř Kaliforio	Nánpur
Karmáhi	Karimabau	Mahamdi Mahamdi	Muhamdi	Naogáoñ-Kalíánpúr Naonangarhi	Naugaon-Kaliánpu Naunangarhi
Karmeni Ghat	Karmeni Ghát	Máhánada	Mahánada	Naosera	Nausera
Kasaka	Raiment Ghav	Máháwáganj	Mahawaganj	Nárádigar	Náridigar
Kashípúr	Káshipur	Maiásiri	mana waganj	Narhar	210220.502
Katgarhoa	Katgarhwa	Maisaora	Maisaura	Naringa	
Katna	Kathna	Majhána		Narkatia	
Kavaia		Majháwa ·	Majhawa	Náthpúr	Náthpur
Kelália		Majhowa	Majhauwa	Nawábganj	•
Khairábád	Khairabad	Majkúri Gola	Majkuri Gola	Nepal	Nepál
Khánpúr	Khánpur	Makhára		Newáda	_
Kharkhari	_	Malan		Newáni	
Kheri		<b>M</b> alkonia		Nichlaol	Nichlaul
Khesri		Mandúr		Nighásan	
Khopra		Mánícháok	Manichauk	Nimua	~~·
Khotágách	Khotagáchh	Mánikpúr	Mánikpur	Nirpúr	Nirpur
Kiloli	177	Manikpúr	Mánikpur	Oel '	
Kimeria	Kumeria	Mánikpúr-Bardáha	Mánikpur-Bardáha	Omiria Páhárkáta	Pahárkáta
Kimúsera Kishangani	Kisson min ma	Mansúrganj Manúla		Panarkata Pairwáha	Tahalvara
Kishanganj Kohorawál	Kissengunge	Manula Manúla-Páti	Manúlapati	Pairwana Pakaria	
Kohorawai Kokra	i	Manuia-Fau Maowai	Manuapan Mauwai	Panchpirwa	
Kota Kota		Maowai Marahia	TTUR WOT	Paori	Pauri
Kotdwára		Masáha		Paragawa	- wu.
Kothar	Khutár	Mási	Masi	Parewa	
			22.001	~ WI O 11 W	

Овтно	GRAPHY	Овтно	GRAPHY	ORTHOGRAPHY		
By old or Survey rules	By new or Government rules	By old or Survey rules	By new or Government rules	By old or Survey rules	By new or Government rules	
Pargáwa		Rhata Rámnagar		Sirsáñwan	Sirsáwán	
Parindáha		Richa	Richha	Sisgarh		
Parsa		Ríga	•	Sisowa		
Patargácha	Patargáchha	Rohilcund	_	Sissai	Sisai	
Patargháti		Rúdarpúr	Rudarpur	Siswar		
Pathardi		Rudpúr	Rudpur	Sítalghati	Sítalgháti	
Patli Doon	Patli Dún	Rungpore		Sonákhoda	Sonakhoda	
Phatakdaona	Phatakdauna	Rúpdi		Sonár		
Pikápár		Ruponi		Srinagar	Srinagar	
Pilibhít		Sahor		Sugánagar	Suganagar	
Pinjára		Saibara		Sukrámpúr	Sukrámpur	
Pipári	Pipari	Saidara		Sultánpúr	Sultánpur	
Piparía	Piparia	Samroli		Sunbarsa	•	
Pipáría	Piparia	Sáonbarsa	Saunbarsa	Sundai		
Pipra		Sáonchália	Saunchalia	Supaol	Soopole	
Pipráhia	Piprahia	Sáran	Sarun	Súpúr	Supur	
Pirela	r-	Sáriu	Sarju	Tagría	Tagria	
Pokhar		Sathwária	Sathwaria	Tajpúr	Tájpur	
Porandarpúr	Púrandarpur	Semára	Semara	Tálpúrwa	Tálpura	
Powain	Pawáyan	Semera	Semara	Tambaor	Tambaur	
Puran	Púran	Semnagar		Tarai	Tarái	
Púrangácha	Púrangáchha	Semra		Tarharwa		
Puráni	- dans	Semráha	Semraha	Teeree	Tehri	
Púranpúr	Púranpur	Semrána	Simrana	Terhari		
Púrena		Semráo	Semrau	Thakia		
Púrnea.	Purneah	Senjána	0022244	Thákúrganj	Thákurganj	
Rámganj	1 41110411	Seopuri		Thákúrgáon	Thákurgaon	
Rámkhetári		Seramao	Seramau	Tharaoli	Tharauli	
Rámnagar		Shágarh	Sháhgarh	Tigra		
Rámpúr	Rámpur	Sháhjehánpúr	Sháhjahánpur	Tilakpúr	Tilakpur	
Rámuápúr	Ramuapur	Shai	Sháhi	Tilpúr	Tilpur	
Ránigarh	Loanidapui	Shápúr	Sháhpur	Tirhoot	Input	
Rápti		Sidhoa Jabuna	Sidhua Johna	Tulsípúr	Tulsipur	
Ratangarh		Sihoria		Tulsundi	Laisipai	
Ratanpúra	Ratanpura	Sikaoda	Sikauda	Udepúr	Udepur	
Ratanpur Báñsi	Ratanpur Bánsi	Sikári	DIEGUUA .	Ul	Odehar	
Ratansarpati	Transmit Dansi	Sikrana		Umra		
Rátigách	Rátígáchh	Sikta		Upasai		
Rattúpúr	Rattúpur	Simraol	Semraun	Upasai-tola		
Ratwa	- Toursupur	Simraoi   Sinaría	Sinaria	o pasar-wia		
Relawa	Reláwa	1	SILISTIS			
Tretama	Iverawa	Singárjot	1	1		

August, 1882.

J. B. N. HENNESSEY,
In charge of Computing Office.



# BUDHON MERIDIONAL SERIES.

### BUDHON MERIDIONAL SERIES—(LONG. 78° 30'.)

#### INTRODUCTION.

In the year 1830 when the first measurement of the Calcutta Longitudinal Series was approaching completion, the Hon'ble the Court of Directors of the East India Company expressed a wish that a number of series of triangles should be carried northwards and southwards from certain sides of this triangulation, in order to connect together the isolated surveys which had already been made in various provinces and districts, and to furnish reliable bases for future surveys. The Surveyor General—then Captain G. Everest of the Bengal Artillery—in an exhaustive letter dated 12th October 1831, discussed all preliminaries for giving effect to the wishes of the Hon'ble Court, in regard to the number of the series to be undertaken, the character of the country to be traversed by each, the necessary additions to the then-existing establishment, and the probable cost of the operations.

During the year 1831-32 the requisite instruments for carrying out this scheme of triangulation were procured and instruction given to the officers and assistants selected for the work—one of a high order of accuracy—in which they had had no previous experience.

The first series undertaken was the Budhon, one of the 13 meridional chains now included in the North-East Quadrilateral. It follows the meridian of 78° 30′ as nearly as was practicable, and lies immediately to the east of the Northern Section of the Great Arc Series (E. Long. 78° and N. Lat. 24° to 30°). It was begun in 1832-33 at its southern end in the Saugor (Ságar) District, based on the side Budhon-Tinsmál of the Calcutta Longitudinal Series.

For about the first two and a half degrees (155 miles) of its length it was carried for the most part as a single chain of triangles across the north-eastern spurs and outliers of the Vindhya range which forms the southern watershed of the great Gangetic plain, traversing the modern districts of Saugor, Lalitpur, and Jhánsi, the Native States at the N. W. corner of Bundelkhand, and that of Gwalior, in which a good many secondary stations and places of interest or importance were fixed, including Tehri, the ancient town of Orchha and its modern successor Jhánsi, Datia, Narwar, and Gwalior.

To the north of Gwalior the Series left the hills and descended into the valley of the Chambal and Jumna, requiring henceforward the aid of towers and the heavy labour of ray-clearing, which greatly retarded its progress. Leaving Gwalior it passed through the districts of Agra, Mainpuri, Etah and Aligarh, striking the Ganges in latitude 28°, whence it was con-

tinued as a double series, with shorter sides, arranged in five polygonal figures, to its northern limit about latitude 30° where it reached the outlying hills at the foot of the Himalayas and closed upon stations of the Great Arc and N. E. Longitudinal Series, having traversed the districts of Budaun, Moradabad, Bijnor, and Muzaffarnagar, with one station in the Tarái and two in British Garhwál. The Budhon Series was brought to a close in the year 1842-43, a period of ten years having been occupied in completing about six degrees of distance along the meridian or about 400 miles.

The officer selected for the conduct of this Series was Lieutenant Roderick Macdonald of the 69th Bengal Native Infantry, an officer of the Revenue Survey who had been reported by the head of that department as "well fitted for employment in the Great Trigonometrical Survey and desirous of obtaining it". He was appointed a Second Assistant in the Department in March 1832, and in October the sanction of Government was obtained for a party to be employed under his orders, as follows:—A Principal and one Junior Sub-Assistant with a Native Establishment of the usual strength.

The party was organized in Calcutta under the supervision of the Surveyor General

let Season 1832-33.
Personnel.

Lieut. R. Macdonald, 2nd Assistant.
Mr. W. N. James, Principal Sub-Assistant.
,, J. H. Scully, 3rd Class
,,

Subsequently in March 1833.

" E. Cropley, 3rd Class Sub-Assistant.

B. Loane.

himself, and started on its long march to the field on the 23rd November 1832 provided with a 15-inch Theodolite by Harris and Barrow for the principal observations. It reached the town of Saugor (Ságar) on the 28th of January 1833 when a part of the native establishment struck for higher wages, and had to be replaced by new hands picked up on the spot; but Lieutenant Macdonald

pushed on and arrived at Budhon H. S. his first station, 22 miles N. W. from Saugor, on the 2nd February. This station and that of Tinsmál distant 30 miles to the eastward, defined the west and east ends of the base or side of origin for the new Series. They were both found intact, but much overgrown by jungle infested with wild beasts, since last visited and observed at for the Calcutta Longitudinal Series by Mr. Olliver eight years previously (in 1825).

The selection of the requisite stations in advance was taken in hand at once, and the junior Sub-Assistant sent on to select the best point available in the desired direction and to burn lights thereat; these however could not be seen without some artificial elevation, and it was only on the 23rd February that the final observations at Budhon could be begun. They were finished by the 27th, and the main party marched to Tinsmál where it was found necessary to raise the station platform by 8.5 feet to command the ray to Patna (I)* and overlook a small temple that obstructed the view. Whilst the building was going on, Lieutenant Macdonald proceeded to select the next two stations in advance on the east flank, Dargawa (II) and Dhandkúa (III) and having returned to Tinsmál, completed the observations by the 15th of March. Whilst there, the Surveyor General, who was on his way to resume the operations on the Great Arc, visited the party, and before going on, left two more Sub-Assistants, Messrs. E. Cropley and R. Loane with Lieutenant Macdonald.

^{*} The Roman number in brackets after the name of a station indicates its position in numerical order from south to north.

The signals observed during this season and for some seasons to come, were flags by day and vase lights by night.

Patna (I) was next visited, but hazy weather prevented the completion of the principal angles before the 23rd of April, the time between the two short periods of clearer weather being utilized by fixing as many secondary stations and points as practicable. Dargawa (II) and Dhandkúa (III) were next visited and the observations completed by the 3rd of May, when the principal observing was stopped by hazy weather and by obstruction met with from the inhabitants, who regarded the survey operations with suspicion and dislike, and hindered the advanced party continually.

Lieutenant Macdonald endeavoured to complete another triangle but failed, although he waited at Sirsaud (afterwards abandoned for Andhiári, IV) from 13th May to 25th June without having a single good night for observing. Indeed, the length of the rays here—over 30 miles—was too great for the requisite visibility at this season, unless the air were cleared by a general fall of rain. The party then went into recess quarters at Saugor.

The out-turn of work for the first season (1832-33) shews but three principal triangles completed, covering about 1000 square miles of country and stretching to a point nearly 50 miles north of the origin of the Series. But a good deal of secondary or minor triangulation had been accomplished, by which a number of points were determined, especially in and around the first triangle, when the weather was comparatively clear and suitable. A few commanding points were selected and observed at whilst marching between the principal stations, whereby many other places and landmarks which could be seen from two or more of the stations were fixed. For this work Lieutenant Macdonald appears to have used his large theodolite, employing his principal Sub-Assistant with a smaller instrument to supplement his work at the minor stations which he was unable to visit, whilst to the junior Sub-Assistant was entrusted the difficult task of selecting and building the principal stations in advance.

At the close of the recess an epidemic fever broke out at Saugor and attacked three

2nd Season 1833-34.
PERSONNEL.

Lieut. R. Macdonald, 1st Assistant.
,, P. Bridgman, Bengal Artillery, 2nd Asst.
(sick and ineffective.)
Mr. W. N. James, Principal Sub-Assistant.

" J. H. Scully, 3rd Class ,,
" E. Cropley, ,, (sick and died 27th Oct.)

" R. Loane, 3rd Class Sub-Assistant.

of the Sub-Assistants, one of whom, Mr. E. Cropley, died on the 27th October. It may be now noted that Lieutenant Bridgman who had recently been appointed as 2nd Assistant to the party, was prevented by sickness from joining until 15th February 1834 and further incapacitated for field duties until April, when he was entrusted with the execution of a secondary series in the vicinity of Gwalior,

with Mr. Loane for his assistant: but although he kept the field until the end of July he appears to have contributed little or nothing worth mentioning to the season's work. Shortly afterwards he was transferred to the South Párasnáth Series; but his health failed completely, and he died on his voyage home.

The party was thus in fact no stronger than during the previous season, and the persistent opposition of the inhabitants in the Native States, was a source of great hindrance and anxiety; but the results of this season's work proved nevertheless very much more favourable than the preceding or many succeeding seasons, and appear to reflect no little credit on Lieutenant Macdonald and his assistants.

Lieutenant Macdonald took the field about the middle of October 1833, and found that Dhandkúa (III), the terminal station of the previous season, had been destroyed during the recess; this necessitated the remeasurement of the angles thereat, as well as at Patna (I) and Dargawa (II). These were completed by the 18th November, after which the new stations were visited in the following order:—Andhiári (IV), Gwáli (V), Kathera (VI) a remarkable Bundela stronghold, Bhitári (VII) first visit, Algi (VIII) first visit, Bhitári (VII) second visit, Daryapur (IX) first visit, Maharájpur (X), Karaia (XII), Narwar (XI), Algi (VIII) second visit, Daryapur (IX) second visit, Majhár (XIV) and Ráepur (XIII), by the 30th April 1834. No further observations could be made throughout the month of May owing to the hazy weather, and the season's work closed on the side Ráepur (XIII)—Majhár (XIV), on the 1st of June, when the party marched into recess quarters at Agra where it arrived on the 30th.

In all, twelve new principal triangles had been measured, extending the Series to a point near Gwalior, distant 140 miles north of its origin.

The secondary triangulation accomplished this season was considerable, the points fixed being numerous and fairly well spread over the country traversed, including the important towns of Tehri, the ancient Bundela capital Orchha, its modern successor Jhánsi, the large artificial lake Barwa Ságar, Datia, and Gwalior, besides others of less note.

Some of the chief secondary stations were made to form a minor series by which an independent value was obtained of the side Gwáli-Bhitári, as a check against certain unusually large discrepancies in the observations of some of the previous angles.

In addition to the principal and secondary triangulation accomplished, the preliminary selection of the stations in advance was carried to a distance of 60 miles, well into the plains across the Chambal and Jumna rivers, rendering this season's out-turn of work, notwithstanding many drawbacks and hindrances, one of the most successful noticed in this account.

At the commencement of the Budhon Series, the Surveyor General had directed that a connection should be made, as soon as it could be done without going out of the way, with the Great Arc Series adjacent, recently laid out by Mr. Rossenrode but not yet finally observed with the great theodolite.

The first opportunity of carrying out this connection occurred between Jhánsi and Gwalior, where the Great Arc Series approaches the Budhon Series in the secondary hill stations of Ladára and Karaia, and the principal station on the Ráepur hill, the first of which is visible from Algi (VIII), the second from Ráepur (XIII), and both first and second from Maharájpur (X). Lieutenant Macdonald therefore, occupied the sites of the two Great Arc Series secondary stations of Ladára and Karaia as principal stations, rebuilding the platforms, which had been destroyed by the inhabitants from superstitious motives; but he built a fresh principal station on the Ráepur hill, because the Great Arc Series station thereat could not be observed from the Budhon Series side owing to a small temple that occupied the peak of the hill and precluded the establishment of a common station suitable for both series. Thus a hexagonal figure was formed round Maharájpur (X), and, after measuring the angles, Lieutenant Macdonald reported that he had effected a connection with the Great Arc Series on the side Narwar (XI)—Karaia (XII), Narwar being identical with Ladára h.s. of the Great Arc. These two stations being only secondary points this connection could not be accepted. The three prin-

cipal stations of the Great Arc Series, Shergarh, Dhobái, and Ráepur, although they are near to Narwar, Karaia and Ráepur of the Budhon Series, respectively, are in reality different points, and in fact no proper connection was effected. Subsequently however in 1877, the Surveyor General, then Colonel J. T. Walker, R.E., caused a more exact connection to be made between the two principal stations on the Ráepur hill, which were only about 41 feet apart, the temple above mentioned being on the summit of the peak, between them. The details of this connection will be found at page 73—J. of Volume VII of the Account of the Operations of the Great Trigonometrical Survey of India.

The Budhon Series had now been carried for one-third of its entire length in two

3rd Season 1834-35.

Lieut. R. Macdonald, 1st Assistant.

Mr. W. N. James, Principal Sub-Assistant.

j. J. H. Soully, 3rd Class

R. Loane

seasons, to the northern limit of the hilly tract in which it began, and the provision of towers or artificial elevations, to carry the Series across the plain country to the north, became indispensable. The Surveyor General had already applied to the Government to sanction the erection of high

towers for the purpose, like those being built by the Public Works Department for the Great Arc Series, which had been sanctioned during the year 1833. Those towers however promised to be so expensive that the Government hesitated to sanction any more for the time, or until their precise cost was known, and put forward a memorandum by the Hon'ble Colonel Morrison suggesting the adoption of a reflecting circle and a portable wooden mast, in place of a big theodolite and a masonry tower. The Surveyor General could not accept this suggestion, but proposed the construction of a lofty central pier of masonry for the instrument and signals to stand on, supplemented by a scaffolding with a stage for the observatory, the cost of which he estimated at Rs. 140 to Rs. 270; and if this should prove too costly, then he believed that a mast, such as he himself had recently used for the approximate Series of the Great Arc, would answer. He did not think such costly towers as those just erected for the Great Arc necessary, and pointed out the excessive depth given to their foundations by the Public Works Department, by whose officers they were built. Finally he expressed a hope that the Survey Officers should not be required to build their own towers or supervise the expenditure of large sums of public money, having already as much to attend to in their own proper professional line as they could well do. This representation however seems to have produced little or no effect, for we find the surveyors generally from that time forwards building their own towers as best they could, in a more modest but sufficiently effective way; and, notwithstanding some failures, this arrangement has probably proved the most economical.

Meanwhile, pending the settlement of the question as to what kind of tower stations should be adopted, Lieutenant Macdonald took the field on the 1st October 1834, and having taken extra precautions for the preservation of the two terminal stations observed at during the previous season—Ráepur (XIII) and Majhár (XIV)—proceeded by direction of the Surveyor General to select the stations in advance by the "ray trace" system, using small theodolites and perambulators. Much skill and judgment is necessary in carrying out this method, and some time was spent in acquiring the requisite accuracy; in short, a good deal of the work had to be revised. Moreover, progress was retarded by sickness, the services of the

principal Sub-Assistant Mr. James being lost through this cause for nearly three months of the field season. The principal station sites were finally selected across the Doáb as far as the Ganges, and the preliminary selection pushed on into the districts of Budaun and Moradabad beyond, before the party returned to recess quarters at Agra early in June.

No observing of principal angles was done this season, but the approximate series was completed for a distance of 100 miles, as far north as the Ganges, by 12 stations forming a single series of symmetrical triangles, and operations were in progress for a considerable distance beyond.

Lieutenant Macdonald himself was obliged by ill health to quit the field in April, and suffered so much from jungle fever during the ensuing recess that he applied to be relieved of his charge in September, and obtained sick leave. Unhappily he did not recover, but died before the end of the year. He was succeeded by Lieutenant E. L. Ommanney, of the Bengal Engineers, who had been appointed to the party in May to learn the practical duties of the Trigonometrical Survey, he having hitherto been employed on a survey of the Brahmaputra river. He joined the Budhon Series at Agra on the 13th June.

Mr. James was transferred to the Great Arc and his place not filled up until 1st March
4th Season 1835-36. 1836, when Mr. J. Olliver, Chief Civil Assistant, joined, and

Personnel.

Lieut. E. L. Ommanney, Bengal Engineers, 2nd Assistant.
Mr. J. H. Scully, 2nd Class Sub-Assistant. the transfer of Mr. Scully also to the Great Arc towards the end of this season left the Series without any of its original staff. Lieutenant Ommanney took the field on ag received no sanction as yet for the erection of the towers, nes along the rays between the selected station sites, to

the 8th November 1835, and having received no sanction as yet for the erection of the towers, proceeded at once to run trial lines along the rays between the selected station sites, to ascertain that no serious obstacle existed in them which could not be readily removed, and he was engaged in this work until March 1836. But hitherto no rays were actually cleared owing to Lieutenant Ommanney's inexperience and to the refusal of the inhabitants to allow trees to be cut down.

The Government had recently (April 1835) considered the subject of ray clearing, and had directed that equitable compensation should be given in all cases of injury to the owners; and to enable a just valuation to be speedily made in the case of recusant proprietors, the civil authorities were ordered to direct the personal attendance of the tahsildár or peshkár (local subordinate Revenue Officers) at the spot, when called upon by the Survey Officers. At the same time the Survey Officers were enjoined to use every means to avoid bringing any highly prized or sacred tree in the ray passing from one station to another.

The latter part of this season was spent in clearing the rays between the stations in the plains, and in determining the height of the towers of observation which would inevitably be required to command them. Approximate angles were observed from the top of masts erected for the purpose, and before the close of the field season this work had been completed as far as Pondri (XXIV) in the middle of the Doáb.

In the case of the two first stations in the plain country—Gúrmi T.S. (XVII) and Bhind S. (XVIII)—the forts at these places offered suitable sites for stations, in the one case on a high bastion, and in the other on the gateway tower, on which during this season stations were built.

The final selection of stations forming a single series of symmetrical angles was extended as far as Moradabad in Lat. 29°, but this advanced part of the approximate series north of the Ganges was afterwards abandoned in favour of a double series of smaller triangles.

Several principal stations being now ready, Lieutenant Ommanney commenced the

6th Season 1836-37.

Personnel.

Which he completed at the undermentioned stations as follows:—at Jhánkri H.S. (XVI) 18th to 27th October 1836, at Majhár H.S. (XIV) 28th to 31st October, at Ráepur H.S. (XVII) 18th to 23rd November, at Sánichri (XV) 5th to 8th November, at Gúrmi T.S. (XVII) 11th to 23rd November, and at Bhind S. (XVIII) by 2nd December.

By the time the observing party arrived at Gúrmi T.S. the next forward station on the west flank had been built on the gateway of Panáhat Fort, and the first tower station erected, that at Athgath, had been sufficiently prepared to be observed to.

Lieutenant Ommanney had intended to build solid, conical, mud towers, 22 feet in diameter at base, 15 feet at top, and about 40 feet high, at an estimated cost of from Rs. 200 to Rs. 300 each, but this plan did not meet the Surveyor General's approval; as, firstly, the lower centre, or station mark must be on the ground, so as not to be affected by dilapidation of the superstructure; and, secondly, the upper centre mark for the frequent adjustment of instrument and signals, must be always plumb over the lower centre, for which purpose the latter must be easily accessible both at first and for subsequent re-examination. Lieutenant Ommanney modified his towers accordingly, having a masonry core pierced with a vertical shaft or central opening 18 inches in diameter, and a horizontal arched passage of masonry at ground level giving light and access to the lower centre or station mark, with an easy spiral slope or ramp winding round the tower and leading to the summit.

The first tower erected, Athgath T.S. (XIX) on the banks of the Chambal, was only built in the first instance to a height of 26 feet, which appears to have been sufficient for the back rays, but afterwards (in 1840) it was rebuilt and raised 10 feet higher.

No further principal observations were taken this season, after those concluded at Bhind S. on the 2nd December, and the rest of the season was spent in building the towers and in taking approximate angles with the aid of masts and scaffolds, as far as the Ganges.

By the close of the season four towers Sherpur, Firozabad, Baragaon and Pondri, were reported as "well advanced" towards completion, and four others, Kilármáo, Salímpur, Jamálpur and Sankráo, begun. But the earthwork of the Firozabad tower gave way and fell down twice, after it had been built up to a height of 28 feet.

By the end of the fourth season's work the following method of carrying on the principal triangulation in the plains, had been arrived at:—The country having been reconnoitred generally and no hills or artificial elevations suitable for stations met with, a ray trace, traverse or route survey was made in the desired direction for each new station, from which its precise bearing could be computed. A trial line was then run to ascertain that it contained no insurmountable obstacle, after which the line was cleared and the angles between adjacent lines measured by means of a small theodolite raised on the top of a high mast surrounded by a

scaffold with a stage for the observer. This measurement was termed the "Approximate Series," a term which in more recent times has been applied to the laying out and preparation of the principal triangulation generally. After this it only remained to build the towers requisite for the final observations with a large theodolite.

The apparently small progress made may be attributed to the want of officers and assistants experienced in the work of triangulating in a plain country and of building high towers in mud without professional aid. But the prime cause of delay was the attempt to maintain almost as large triangles in the plains as in the hills, thus necessitating observations over distances much too great for distinct vision, except in very unusually clear weather.

Final observations were made at 6 principal stations, forming a quadrilateral figure and two single triangles, by which the Series was advanced a meridional distance of 32 miles and reached the south bank of the Chambal river, the boundary between the Gwalior State and the Agra District.

On 31st May 1837 Lieutenant Ommanney resigned his appointment in the Department, and left the Series in charge of Mr. Olliver, Chief Civil Assistant, the only officer remaining with the party.

6th Season 1837-38.

PERSONNEL.

Mr. J. Olliver, Chief Civil Assistant. J. Driberg, 3rd Class Sub-Assistant.

Before resuming the field work for Season 1837-38, the Surveyor General directed Mr. Olliver to reduce the size of the triangles in laying out the Series to the north of the Ganges, and in place of a single series of triangles having 15 to 20 mile sides, to adopt a double series of consecutive polygonal figures,

with sides from 8 to 15 miles in length, by which lower towers would suffice, greatly improved signals would be obtained, and some of the mounds which frequently obstructed the view on the longer rays might be utilized for station sites, whilst the double series would afford an effective check against error. Having regard however to the very backward state of the Series, none of the previous work which would serve, could be abandoned.

Mr. Olliver therefore, in great hopes of completing the section of the Series already laid out to the south of the Ganges, set to work to finish the 8 or 9 towers commenced under Lieutenant Ommanney the previous season. The more advanced of these—Athgath (XIX), Sherpur (XXI), Firozabad (XXII) and Pondri (XXIV)—still required much additional height which however their foundations were not calculated to bear with safety. Firozabad had already fallen twice from this cause. Mr. Olliver therefore pulled them down and rebuilt them afresh upon deeper and more solid foundations. In the case of Firozabad firm soil was only found at a depth of 16 feet below the surface. Having commenced work at all the towers at once to economize time, he was greatly impeded for want of funds; and was constrained to advance sums from his own private purse.

In his half-yearly report, dated 1st March 1838, he said that the progress hitherto had been rapid. The towers at Pondri (XXIV) and Baragaon (XXIII) were finished, Athgath (XIX) 25 feet high, and Kilármáo (XXV) 27 feet; but that Firozabad tower had fallen again after reaching a height of 40 feet.

This was the last of his (Mr. Olliver's) work here, for his services being urgently

required with the new party just formed for the Great Arc (Section 18° to 24°) under Lieutenant Waugh, B.E., he suddenly left on the 4th March, having made over charge to the Sub-Assistant, Mr. Driberg. Early next month (April 1838) and before he could have made much progress, Mr. Driberg was ordered to repair with the whole of the Budhon Series party to the Head Quarters of the Surveyor General at Dehra Dún.

During the following season, 1838-39, this party was employed under Lieutenant Renny on the southern section of the Great Arc, and the Budhon Series was thus left in abeyance.

7th Season 1839-40.

#### PERSONNEL.

Lieut. T. Renny, Bengal Engineers, 1st Assistant,
(absent on other duty).

Mr. C. Murphy, let Class Sub-Assistant. Mr. C. Murphy, 1st Class, W. Rossenrode, 2nd (with Troughton and Simms' 18-inch Theodolite

On the 13th November 1839 Lieutenant Renny was put in charge of the Budhon Series in the hope that his experience and ability would conduce to its more rapid progress and early completion. He was directed to re-organize an efficient party from the former Budhon Series party and from that of the Amua Series recently completed by Mr. Murphy, and to resume the operations where Lieutenant Ommanney had left off;

but as his personal assistance was required in the astronomical observations at Kaliána, Mr. Murphy was placed in temporary executive charge.

The work of the season consisted in completing the towers and extending the approximate series. The stations of Bhind (XVIII), Gúrmi (XVII), and the towers at Firozabad (XXII), Baragaon (XXIII) and Pondri (XXIV) were repaired, the last-built tower of Athgath (XIX) raised from 25 to 36 feet, and that of Kilármáo (XXV) from 19 to 44 feet, a new tower at Sherpur (XXI) built, and those at Salimpur (XXVI), Jamálpur (XXVII) and Sankráo (XXVIII) completed, leaving Parauli (XXXI) alone unfinished of all those south of the Ganges.

As soon as Mr. Murphy had set on foot the tower building he proceeded to take up the approximate series to the north of the Ganges as a double series of consecutive polygons with shorter sides, ordered by the Surveyor General in 1837-38, abandoning the sixty miles of approximate series ahead which had been carried as far as Moradabad (Lat. 29°). By March 1840 he had laid out the Sakrora hexagon.

Lieutenant Renny now (March 1840) visited the party and remained long enough to satisfy himself that the work was being carried on in a correct and systematic way.

By the end of this field season the Sakrora tower had been built, and the ground in advance for the next polygon reconnoitred. The towers built under Mr. Murphy north of the Ganges appear to have been solid, as first intended by Lieutenant Ommanney.

Lieutenant Renny being engaged in the astronomical observations at Kaliánpur and 8th Season 1840-41.

#### PERSONNEL.

Lieut. T. Renny, Bengal Engineers, 1st Assistant, (absent on other duty).

Mr. C. Murphy, 1st Class Sub-Assistant (in executive charge). O. Mulheran, 2nd W. Glynn, 3rd W. Glynn,

in the measurement of the Bider Base-line, Mr. Murphy remained in executive charge all this season. He began the season's work by selecting a second hexagon about the advanced station of Bánsgopál (XXXV), whilst the towers that had been damaged during the recent rainy season were being restored. One of them, Jamálpur (XXVII),

had fallen, although the precaution had been taken of thatching the towers before the rains

set in. He then hastened southwards to resume the final observing which had been in abeyance four years since Lieutenant Ommanney finished at Bhind S. on the 2nd December 1836.

The final horizontal angles were now taken up and completed at the undermentioned stations as follows:—

```
at Firozabad T.S. (XXII)
                          between 7th and 9th November 1840
  Panáhat
             S. (XX)
                                  10th ,, 15th
  Athgath
            T.S. (XIX)
                                  16th ,,
                                          18th
                                                           ,,
                                  19th ,, 20th
  Sherpur
                (XXI)
                                                           ,,
                                       " 30th
  Baragaon
                (XXIII)
                                  21st
                                                           ,,
  Pondri
                (XXIV)
                           in all December 1840
  Kilármáo
                 (XXV)
  Salímpur
                 (XXVI)
                            " January, February, and to 8th March 1841.
                 (XXVII)
  Jamálpur
  Sankráo
```

The towers in advance were not sufficiently advanced for any further observations to be made; but before the end of the field season a third hexagon—that round Sirsa (XL)—was selected and marked by masonry pillars, up to the side Milik (XLIII)—Akbarpur (XLIV), the rays of the Sakrora and Bánsgopál polygons all cleared, and the angles approximately measured with a small theodolite.

No vertical angles were measured this season, and scarcely any secondary triangulation at all accomplished. The vertical angles were not measured, doubtless because the signals on these comparatively long rays in the plains were not visible at the time of least refraction, the only safe time for a single observer to measure them, and they were deferred until the year 1842-43 when a pair of observers with two good instruments became available for the simultaneous reciprocal measurement, requisite at any other time of day. The party returned to recess quarters at Dehra Dún on the 4th June 1841.

The approximate series having now been brought up from the south to within 50

9th Season 1841-42.

PERSONNEL.

Hardwar (Haridwar), Mr. Murphy took the field in the

Lieut. T. Renny, Bengal Engineers, 1st Assistant.

(absent on other duty).

Mr. C. Murphy, 1st Class Sub-Assistant, (in executive charge).

Mr. O. Mulheran, 2nd ,

W. Glynn, 3rd ,

"

miles of the out-lying hills of the Sub-Himalayas about

Hardwar (Haridwar), Mr. Murphy took the field in the

est to Dehra Dun, and proceeded to lay out the figures

by which the junction with the Great Arc Series was to

be effected.

Starting from the stations of Sheopuri T.S., Godhna T.S., and Chándípahár H.S., of the Great Arc, he selected Mahesari T.S., (now also belonging to the Great Arc) as the centre of a very irregular hexagonal figure, the north and north-east stations being on hills and one of them (Mábegarh) common to this and to the N.E. Longitudinal Series. Two more stations were then selected to form a pentagonal figure about Sarkára T.S. (XLV) by which the entire plan of the Series was completed about the end of February 1842. The rays

Digitized by Google

of these two polygons having been cleared at the same time, and the necessary tower stations built to the required height (16 to 20 feet), there remained only a few rays in the Sirsa hexagon to clear, and the towers to build or complete in the southern polygons before having all ready for the final measurement of the angles.

But it required the utmost exertions of all concerned to finish the towers by the beginning of July, when the party returned to recess quarters, having accomplished a very laborious season's work successfully.

(1). Equipped with Troughton 10th Season 1842-43. and Simms' 18-inch theodolite No. 2 and PRESONNEL. Lieut. T. Renny, B.E., 1st Assistant.
Mr. C. Murphy, lst Class Sub-Assistant.
O. Mulheran, 2nd " "
W. Glynn, 3rd " " two 12-inch theodolites by Troughton Budhon Series Party (1). and Simms for simultaneous reciprocal verticals. Mr. W. N. James, 1st Principal Sub-Assistant.
,, N. Parsick, Sub-Assistant.
,, T. Olliver, ,, (2). With probably an 18-inch Extra Party (2). theodolite by Cary. Mr. G. Logan, 1st Assistant.
,, G. Terry, Sub-Assistant.
,, A. Olliver, ,, (3). With 15-inch theodolite by Extra Party (3). Cary.

In view of the large amount of observing to be done, no astronomical observations for azimuth having yet been taken since the Series was begun, and no vertical angles observed since it entered the plains across the Chambal, (owing to want of visibility at time of minimum refraction), and to ensure its completion, the Surveyor General appointed two extra observing parties, and divided the work into three sections to be taken up simultaneously by the three parties as follows:—

In Lieutenant Renny's absence on military duty as Field Engineer to the Army of Reserve assembling at Ferozpur, Mr. Murphy with the main party was to complete the horizontal angles of the southern (Sakrora) polygon, and the unobserved triangle to the south of it, the whole of the verticals, and two Azimuths.

A third Azimuth was to be observed by one (or other) of the two extra parties.

Mr. James with two Sub-Assistants was to observe the horizontal angles of the next two polygons, the Bánsgopál and Sirsa hexagons, measuring the vertical angles also in the afternoon whenever practicable.

Mr. Logan with two Sub-Assistants was to observe the angles of the two northernmost polygons, the Sarkára pentagon and the Mahesari hexagon.

Accordingly Mr. Murphy took the field on the 15th October 1842 and reached Firozabad his first station for observation on the 11th November. Here in conjunction with his subassistants he measured three of the four vertical angles by simultaneous reciprocal observations, after which he proceeded to Panáhat and Gúrmi, where by the 10th December he had completed a set of azimuth observations (to  $\epsilon$  Ursæ Minoris at both E. and W. elongations), besides the requisite vertical angles.

He then visited in succession the stations of Bhind (XVIII), Sherpur (XXI), Baragaon

(XXIII), Pondri (XXIV), Kilármáo (XXV), Jamálpur (XXVII), and Sarsotha (XXIX), where by the 25th January 1843 he had completed the vertical angles on all but seven rays of the single portion of the Series to the south, and by the middle of February, the horizontal angles at Jamálpur (XXVII), Sarsotha (XXIX), Kariámái (XXXII), Sakrora (XXX), Mehtra (XXXIV), and Rajauli (XXXIII) of the Sakrora hexagon were also finished besides vertical observations on three rays of this figure. On the 10th February Lieutenant Renny rejoined and assumed charge at Sankráo T.S. (XXVIII), where he at once took up the final observing and by the 25th had completed the second Azimuth (using 29 Camelopardalis Hev. at both elongations), the necessary horizontal and the simultaneous reciprocal verticals.

Lieutenant Renny then completed the horizontal and vertical angles remaining to be observed in the following order:—at Parauli (XXXI) by the 4th March, Chandanpur (XXXVI) by the 14th, whilst Messrs. Murphy and Glynn with the two 12-inch theodolites co-operated in observing the simultaneous reciprocal verticals. The main party now returned to Kilármáo, Pondri, and Kariámái, completing or re-observing the angles which Mr. Murphy had been unable to obtain satisfactorily on his first visit, all which were made good by the 9th April. Having completed the work assigned to the main party on the southern section, Lieutenant Renny marched northwards re-observing or supplementing the observations which were still wanting to complete the Series.

A good half of the vertical angles were, practically speaking, simultaneous, i.e. taken at both ends of a ray within five minutes of one another, but some only within 15 minutes, whilst in a few cases the observations of the vertical angle at one end of a ray were taken at a widely different time from the corresponding observations at the other. The verticals had necessarily to be observed at any time of day when the signals were visible, with the natural result of giving great variations in the deduced co-efficient of refraction.

Meanwhile the two extra parties under Messrs. Logan and James leaving Head Quarters, Dehra Dún, on 2nd November reached Agra on the 26th, and having completed their equipment proceeded to the section of the field work allotted to them.

Mr. James reached his first station Rajauli (XXXIII) on the 23rd December 1842, and completed his two horizontal angles there on the 30th. The two next angles occupied him at Mehtra (XXXIV) from the 4th to the 21st January 1843. He next measured the six angles at Bánsgopál (XXXV) between the 24th January and 4th February, after which he proceeded to Sirsa (XL) where he was employed nearly a whole month, from 7th February till 3rd March, observing an azimuth and completing five of the six angles. He observed 29 Camelopardalis Hev. at both elongations, the same star that Lieutenant Renny was simultaneously observing at Sankráo. He next visited Bhatauli (XLII), near Moradabad town which he observed to, and whilst here his party was inspected by the Surveyor General. The four angles at Atora T.S. (XXXIX) occupied from the 14th to 26th March, and the two at Barauli (XXXVII) till after the middle of April. He then returned to Sirsa and was occupied from 20th April till the 3rd May in making good the angle which he had been unable to completed during his former long visit. The rest of the observing allotted to him having been completed by the other two parties, Mr. James helped to complete the vertical angles for a few days before returning to recess quarters.

Mr. Logan on the northern section of the work was rather more fortunate. He completed the angles at his first station Akbarpur (XLIV) by the 25th December 1842, then those at Nandi (XLVII), and three of the five angles at Sarkára (XLV) by the 10th January 1843; Harpálsid H. S. (XLVIII) was next observed at, and then Mahesari T.S., where however a portion of the angles had to be left unmeasured, by the 3rd of February. The Surveyor General visited and inspected the party whilst at Mahesari. The angles at Chándípahár near Hardwár, Godhna and Sheopuri, the stations of the Great Arc, were completed by the 16th February, after which the missing angles at Mahesari were observed, and all the four at Haldaur (XLVI), by 6th March. The missing angles at Sarkára (XLV) were next observed, and the party then proceeded to Milik (XLIII) where the measurement of the 4 angles occupied from the 12th to the 25th March, when the northernmost section allotted to Mr. Logan was finished, but Mr. James's work being backward, he continued his southward progress, completing the angles at Lút (XLI) and Kandarki (XXXVIII) by the end of the month.

Seeing Mr. James to be now in a fair way to complete the angles at the centre and east flank of the Series, and those on the west flank and to the southward being finished, Mr. Logan proceeded to co-operate with Lieutenant Renny in observing the remaining vertical angles all of which were completed by the middle of May, when all three parties marched to Head Quarters at Dehra Dún.

Three other angles were measured at the northern extremity of this season's work and in connection with the triangulation above described, by Captain J. S. Du'Vernet, when commencing the "North Connecting Series" afterwards named the North-East Longitudinal Series, in October and November 1842; but two of them were eventually superseded by re-measurements made by Lieutenant Renny eight years later, with superior instruments, which two are now incorporated with the North-East Longitudinal Series.

The calculations of the triangulation of this Series having been carried up from the side of origin, Budhon-Tinsmál of the Calcutta Longitudinal Series, to the terminal side, Sheopuri-Mahesari of the Great Arc, the following discrepancies were met with between the original values of the length and azimuth of the terminal side above named and those of the latitude and longitude of the terminal station Mahesari, and the values of the same as derived from the Great Arc after the reduction of the North-West Quadrilateral.

In Logarithm of the side + 0.000,0302,6 = 4.5 inches per mile nearly.

,, Latitude + 1".002 ,, Longitude + 0:307 ,, Azimuth + 8:284

These discrepancies were treated as errors in the Budhon Series and were dispersed by the method of least squares, as described in Part I of Volume VII of the Account of the Operations, &c.

Soon afterwards, the two principal stations at Ráepur of this Series and the Great Arc which are only about 41 feet apart, (see page VII—J. above), were connected in the manner described at page 73—J. of Vol. VII quoted above.

 $XVI_{J}$ 

The following discrepancies between the first corrected Budhon Series values, and the adopted values of the Great Arc were then met with at Ráepur H.S. (XIII) belonging to the Budhon Series:—

These discrepancies were treated as errors in the first corrected results of the Budhon Series, and they were dispersed over the whole triangulation by introducing two additional equations of condition for satisfaction, the four primary equations which were required to dispose of the terminal errors being simultaneously maintained. For full description of the procedure see Part I of Vol. VII of the Account of the Operations, &c.

The trigonometrical heights above sea-level were checked at several stations (see page 63-J) by the spirit leveling operations of the Trigonometrical and Revenue Surveys, and the errors thus disclosed, together with those of the terminal side Sheopuri-Mahesari, dispersed over the Series in four sections indicated at pages 37 and 38 of Part I of the above named volume.

In the section Budhon-Tinsmál to Firozabad-Baragaon, a distance of about 212 miles, the cumulative error was + 12 feet nearly. In the next section ending at Mehtra-Bánsgopál, a distance of about 88 miles, it was as much as - 17 feet. In the next section ending at Bhatauli-Sirsa-Milik, a distance of about 34 miles, it was less than 1 foot; and in the last section, a distance of about 50 miles, it was nearly - 7 feet. For further details see pages 37 and 38 quoted above.

#### Secondary Triangulation.

As long as the Series lay in hilly country under Lieutenant Macdonald, the number of secondary stations, landmarks, and places of importance or interest fixed, was very considerable, including the towns of Tehri, Orchha, Jhánsi, Datia, Narwar, Gwalior, Barwa Ságar, and many hill forts, temples &c.

But after entering the plains in lat. 26° 30′ where no view was to be had except by clearing the rays of trees and building high towers, scarcely any secondary points could be fixed without making special arrangements, and the whole strength of the establishment was barely sufficient for the principal triangulation until its close. Nevertheless, Shikohabad, Jalesar, Moradabad, Bijnor, and Kankhal were fixed.

Compiled from the very extensive and complete materials collected by Mr. Charles Wood.

May 1881.

B. R. BRANFILL.



# ALPHABETICAL LIST OF PRINCIPAL STATIONS.

Akbarpur	•		•			XLIV.	Kilármáo		_		-		XXV.
Algi						VIII.	Lút					. •	XLI.
Andhiári	•	•				IV.	Mábegarh	•		•.	,	•	I.
Athgath					•	XIX.	(of North-East Longitu	idinal Se	ries).		•	•	1.
Atora		•				XXXIX.	<b>M</b> aharájpu <b>r</b>	•	•	•	•	•	X.
Bánsgopál	•	•	•	•		XXXV.	Mahesari (of Great Arc Meridion	al Serie	в).	•	•	•	LII.
Baragaon			•	•	•	XXIII.	Majhár		, ,	.هـ			XIV.
Barauli	•		•			XXXVII.	Mehtra	•	•		•	•	XXXIV.
Bhatauli			•	•		XLII.	Milik	•	•	•		.•	XLIII.
Bhind	•	•	•	•		XVIII.	Nandi	•	•	•	•		XLVII.
Bhitári			•			VII.	Narwar	.•		.•		•	XI.
${f Budhon}$			•	•		III.	Panáhat		•	•		,•	XX.
(of Calcutta Longitudina	l Series)						Parauli			•	•		XXXI.
Chandanpur	•	•	•	• '	•	XXXVI.	Patna			_			Ι.
Dargawa	•	•	•	•	•	II.	Pondri	•	•		•	. •	XXIV.
Daryapur	•	•	•	•	•	IX.	Ráepur	•	•	•	•	•	
Dhandkúa	•		•	•	•	III.	<u>-</u>	•	•	•	•	•	XIII.
Firozabad	•		•		•	XXII.	Rajauli	•	•	•	•	•	XXXIII.
Gúrmi			•			XVII.	Sakrora	•	•	•	•	•	XXX.
Gwáli						<b>v</b> .	Salímpu <b>r</b>	•	•	•	•	.•	XXVI.
Haldaur				•		XLVI.	Sánichri	•	•	•	•	•	XV.
Harpálsid	•	•	•	•	•	XLVIII.	Sankráo	•	•	•	•	•	XXVIII.
Jamálpur	•	•	•	•	•		Sarkára			,	•		XLV.
•	•	•	•	•	•	XXVII.	Sarsotha						XXIX.
Jhánkri	•	•	•	•	•	XVI.	Sheopuri					_	XLVIII.
Kandarki	•	•	•	•	•	XXXVIII.	(of Great Arc Meridion	al Serie	3).	•	•	•	222 / 111.
Karaia	•	•	•	•	•	XII.	Sherpu <b>r</b>	•	•	•	•	•	XXI.
Kariámái	•	•	•	•	•	XXXII.	Sirsa	•	•	•	•	•	XL.
Kathera	•	•	•	•	•	VI.	Tinsmál (of Calcutta Longitudir	nal Series	· 3).	•	•	. •	VII.

# NUMERICAL LIST OF PRINCIPAL STATIONS.

III		•	•	•	• .		Budhon.	XXVI	•	•	•	•	•	Salímpu <b>r.</b>
<b>377</b>					(	of Calcutte	Longitudinal Series). Tinsmál.	XXVII	•	•		•	•	Jamálpu <b>r.</b>
VII		•	•	•	•	of Calcutte	11nsmal. Longitudinal Series).	XXVIII		•	•	•	•	Sankráo.
I		•	•	•	•	•	Patna.	XXIX	•	•	•	•	•	Sarsotha.
II		•	•	•	•	•	Dargawa.	$\mathbf{X}\mathbf{X}\mathbf{X}$	•	•	•	•	•	Sakrora.
III		•	•	•	•	•	Dhandkúa.	XXXI	•	•	•	•	•	Parauli.
IV		•	•	•	•	•	Andhiári.	XXXII	•	•	•	•	•	Kariámái.
<b>v</b> .		•	•	•	•	•	Gwáli.	XXXIII	•	•	•	•	•	Rajauli.
VI			•	•	•	•	Kathera.	XXXIV	•	•	•	•	•	Mehtra.
VII			•	•	•	.•	Bhitári.	xxxv	•	•	•	•	•	Bánsgopál.
VIII		•	•	•	•	•	Algi.	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{V}\mathbf{I}$	•	•	•	•	•	Chandanpur.
IX		•		•	•	•	Daryapur.	XXXVII	•	•	•	•	•	Barauli.
$\mathbf{X}$		•	•	•	•	•	Maharájpur.	XXXVIII	•	•	•	•	•	Kandarki.
ΧI		•	•	•	•	•	Narwar.	XXXIX	•	•	•	•	•	Atora.
XII		•	•	•	•	•	Karaia.	$\mathbf{XL}$	•	•	•	•	•	Sirsa.
XIII		•	•	•	•		Ráepur.	XLI	•		•	•	•	Lút.
XIV			•	•	•	•	Majhár.	XLII	•	•	•	•	•	Bhatauli.
$\mathbf{x}\mathbf{v}$	•	•	•	•	•	•	Sánichri.	XLIII	•	•		•	•	Milik.
$\mathbf{x}\mathbf{v}\mathbf{I}$		•	•	•	•	•	Jhánkri.	XLIV	•	•		•	•	Akbarpur.
XVII		•	•	•	•	•	Gúrmi.	XLV		•		•	•	Sarkára.
XVIII		•	•	•	•	•	Bhind.	XLVI	•	•	•	•	•	Haldaur.
XIX		•	• .	•	•	•	Athgath.	XLVII	•	•	•	•	•	Nandi.
$\mathbf{x}\mathbf{x}$		•	•	•	•	•	Panáhat.	XLVIII	•	•	•	•	•	Harpálsid.
XXI	•	•	•		•	•	Sherpur.	I	•	•	•	•	•	Mábegarh.
XXII	٠	•	•	•	•	•	Firozabad.	XLVIII				(of No	orth-East	Longitudinal Series).
XXIII		•	•	•		•	Baragaon.	ALVIII	•	•	•	• (of	Great Ar	Sheopuri. c Meridional Series).
XXIV			•	•	•	•	Pondri.	LII	•	•	•	• , ,	•	Mahesari.
XXV		•	•	•	•	•	Kilármáo.					(ot	Great Ar	c Meridional Series).

#### DESCRIPTION OF PRINCIPAL STATIONS.

Of the 48 Principal Stations composing this Series, the first 16 are on hills occupying the southern half of its extent. They are low solid platforms, either level with the rock, marked in such case in sitû, or raised above it. Where the platform is thus raised there is (presumably) a rock-mark or stone, above which one or more mark-stones, with the usual engraved circle and dot, are inserted in the platform, the uppermost even with its surface. When the Series entered the plains, artificial elevations had to be constructed; the necessity for constructing these was sometimes avoided, either in part or entirely, by taking advantage of existing buildings and bastions of forts with which the country abounded. The special erections consisted at first, generally speaking, of kacha towers, 20 to 30 feet square at base, having about 7 feet square in the interior made of paka brick laid in mud cement, with a central hollow about 1½ feet in diameter running vertically through it, and a mark-stone laid in masonry at about the level of the ground: an arched doorway and passage led to the mark-stone for convenience in plumbing; and a staircase exterior to the tower gave access to the top. Subsequently, the paka pillar instead of being perforated was made solid, of about 42 inches diameter at top and having one or more mark-stones built vertically within it: in certain instances no definite information is forthcoming as to the number of marks which were built into the pillar; in these cases no allusion is made in the descriptions to any mark save that at the summit.

The following descriptions have been compiled from those given in the original MS. General Report and other original records of this Series, supplemented in respect to the neighboring villages, by information obtained from the Revenue Survey, Topographical Survey, and other reliable maps of the country traversed. The orthography is in literal agreement with the Gazetted List for the N.W. Provinces, wherever the locality is identified; and conforms to the spirit of the orders of Government on the subject, as worked out in this and other provincial lists, where there is no clear literal authority. The information as to the local sub-divisions in which the several stations occur has been derived where practicable from the Annual Reports received from the civil authorities to whose charge the stations have been committed.

III.—(Of the Calcutta Longitudinal Series). Budhon Hill Station, lat. 24° 5′, long. 78° 34′—observed at in 1826, 1833 and 1864—is situated immediately above the village of that name: thána Barodia, tahsíl Kurai, pargana Banda, district Saugor.

The pillar is solid and contains three marks, the two upper respectively 9 and 4 feet above the lowest. The station of 1826 was re-visited in 1833 for the purpose of originating the Budhon Meridional Series, but no alteration in its construction appears to have been made. When again visited in 1864 the mark-stones were found untampered with, the upper being accurately plumbed over the lower, which was adopted for the new station. The bearings and distances of surrounding villages are:—Jaman Kheri 1.5 miles N.W; Burruho 1.5 miles N; Dubri 1.3 miles E.N.E.; Khirea 1.1 miles E.S.E.; and Kanera 2 miles due S.

VII.—(Of the Calcutta Longitudinal Series). Tinsmál Hill Station, lat. 24°7′, long. 79°2′—observed at in 1826, 1833, 1834 and 1864—is situated on the top of a very conspicuous hill about three quarters of a mile S. by E. of the village of Tinsua from which it is approached: thána, tahsíl and pargana Banda, district Saugor.

The pillar is solid and has three marks, one engraved on the rock in sitü and the others 3.5 and 8.5 feet above it respectively. The station of 1826 was re-visited in 1833 for the purpose of originating the Budhon Meridional Series, when its height was increased by 8.5 feet. It was again visited in 1834 to originate the Rangir Meridional Series, but no further alteration in its construction appears to have been made. On visiting it in 1864 the upper mark was found displaced and the position of the lower was adopted for the new station. The bearings and distances of other surrounding villages are:—Dalpatpur, from which a road leads up to the station, 1.5 miles N.E.; Lamnau 1.3 miles towards the W.; and the deserted village of Tinsi 0.8 mile S.S.E.

I. Patna Hill Station, lat. 24° 20′, long. 78° 40′—observed at in 1833—is situated on a sandstone hill, standing on an elevated plateau, on the N. E. face of which is the large village of Patna distant half a mile from the station: tahsíl Mahroni, pargana Máraura Nárhat, district Lalitpur.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of other surrounding villages are:—Dongraa Kalan 2.2 miles N. by W.; Chanaura 2.2 miles N.E. by N.; and Baraudia 2.4 miles due E.

II. Dargawa Hill Station, lat. 24° 37′, long. 79° 4′—observed at in 1833—is situated on a steep rocky ridge, running nearly north and south, at the northern foot of which is the village of Dargawa distant 0.4 mile from the station: pargana Baldeogarh of the Orchha or Tehri state.

The station is marked on the rock in sita. The bearings and distances of other surrounding villages are:—Parra 0.3 mile N.W; Rasoi 1 mile N.N.W.; Bhadaura 1.4 miles S.S.W.; and Magarkhera 1.6 miles E.S.E.

III. Dhandkúa Hill Station, lat. 24° 48′, long. 78° 46′—observed at in 1833 and 1834— is situated on a detached hill, which is deemed sacred by the inhabitants of those parts, and at the northern foot of which at a distance of 500 feet is the village of Dhandkúa: tahsíl Mahroni, pargana Bánpur, distret Lalitpur.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of other surrounding villages are:—Pura 0.8 mile N.W. by N.; Billahta 0.8 mile S.S.W.; and Khakhron 2.3 miles S.E. by E.

IV. Andhiári Hill Station, lat. 24° 41′, long. 78° 16′—observed at in 1833—is situated on the highest point of the sandstone range of that name, and about 100 yards north of a remarkable cave: in the Gwalior state.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of surrounding villages are:—Sirsod 0 4 mile N. by W.; Jamursa 2 1 miles S.E.; and Larheri 2 miles S.W.

V. Gwáli Hill Station, lat. 25° 10′, long. 78° 28′—observed at in 1833—is situated on a rocky ridge running north and south, and takes its name from a small village which is distant about ½ of a mile to the E.: pargana Jhánsi, district Jhánsi.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of surrounding villages are:—Bijpur 1.2 miles N.E.; Lakhaupur 1.3 miles S.E. by S.; and Busai 1.6 miles S.W. by S.

VI. Kathera Hill Station, lat. 25° 14′, long. 79° 0′—observed at in 1834—is situated on a high and steep hill which was formerly used as a stronghold: pargana Mau, district Jhánsi.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of surrounding villages are:—Laraun 1 mile S.W.; Katehra Muáf 1.6 miles W.; and Hanspura 0.4 mile E. by N.

VII. Bhitári Hill Station, lat. 25° 28′, long. 78° 47′—observed at in 1834—is situated on a hill on the E. bank of the Betwa river, and distant 0.4 mile S.S.W. of the village after which it is named. The high road from Jhánsi to Garotha passes about a mile north of the station: in the Orchha or Tehri state.

The station is marked on a large block of quartz around which a platform has been built. The bearings and distances of neighboring villages are:—Tiletha 1.1 miles S. by W.; Bagat, on the left bank of the Dangrai Nadí, 2.8 miles E. by S.

VIII. Algi Hill Station, lat. 25° 30′, long. 78° 24′—observed at in 1834—is situated on a hill about 3 miles north of the hill fort and large village of Dinara: in the Gwalior state.

The station is marked on the rock in situ around which a platform has been built. The bearings and distances of surrounding villages are:—Khirk 1.2 miles N.N.W.; Algi 1.1 miles S.W.; and Guraira Raj Orchha 0.5 mile due S.



IX. Daryapur Hill Station, lat. 25° 42′, long. 78° 41′—observed at in 1834—is built on the site of a dilapidated fort surmounting a low isolated hill, on the southern brow of which is the village of Daryapur: tahsil and pargana Datiya of the Datiya state.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of surrounding villages are:—Bhúla 0.9 mile S.; Dúrsara 1.3 miles N.E.; and Karkhara 1.6 miles N.N.W.

X. Maharájpur Hill Station, lat. 25° 54′, long. 78° 17′—observed at in 1834—is situated on a hill rising immediately above the village of Maharájpur and surrounded by several lower hills: in the Gwalior state.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of surrounding villages are:—Rajare and Lailiapura 0.8 mile towards the W. by S.; Kanwai 1.5 miles N.N.E.; and Chetauni 1.8 miles S.E. by S.

XI. Narwar Hill Station, lat. 25° 37′, long. 77° 58′—observed at in 1834—is situated on the N.E. extremity of a sandstone hill on which, at a few feet to the E.S.E., the secondary station Ladára h.s. (of the Great Arc Meridional Series, Section 24° to 30°) is built: in the Gwalior state.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of surrounding places are:—the large town and fort of Narwar about 1½ miles N.W. by N.; Surkharia village 1.3 miles N.E.; and Shergarh 1.5 miles S. by E.

XII. Karaia Hill Station, lat. 25° 54′, long. 78° 3′—observed at in 1834—is situated in the centre of an unfinished fort which occupies an eminence of the great sandstone range extending to the vicinity of Gwalior: in the Gwalior state.

The pillar is solid, and has a mark stone at its upper surface. The bearings and distances of surrounding villages are:—Karaia 0.5 mile E.S.E.; Rethaunda 2 miles S. by W.; and Dhobai 1.8 miles N. by E.

Note.—This station is almost certainly identical with the secondary point Karaia h.s. of the Great Arc Meridional Series, Section 24° to 30°, in the original records of which however it is described as on the W. turret of a well known detached fortified hill on road Gwalior to Sironj; Karaia village lies on the eastern slope: it is marked by a circular platform with a mark-stone, having a  $\odot$  engraved on it.

XIII. Ráepur Hill Station, lat. 26° 8′, long. 78° 7′—observed at in 1834 and 1836—is situated on a lofty conical peak of the Vindhyáchal range surmounted by a Hindu temple, on the western side of which Ráepur H.S. of the Great Arc Meridional Series, Section 24° to 30°, is built. The station commands a good view of the town and fort of Gwalior which lie about 9½ miles to the N.E.: in the Gwalior state.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of neighboring villages are:—Ráepur 1½ miles W.S.W.; and Naigaon 1.5 miles S.

XIV. Majhár Hill Station, lat. 26° 6′, long. 78° 31′—observed at in 1834 and 1836—is situated on the same elevated plateau as Gujara fort from which it is distant about 1½ miles due north: in the Gwalior state.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of neighboring places are:—Jamrúha fort 2 miles E.N.E.; and Naugamo village 3 1 miles E.S.E.

XV. Sánichri Hill Station, lat. 26° 24′, long. 78° 15′—observed at in 1836—is built adjoining some ruins on a sacred hill which is the residence of a *guru* or religious instructor of the Raja, and stands above the ruins of the ancient town of Ainti: in the Gwalior state.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of surrounding places are :— Khitoro fort 2 miles E. by N.; Burrúli village 1.4 miles N.N.W.; and Parbat village 0.6 mile W.S.W.

XVI. Jhánkri Hill Station, lat. 26° 19′, long. 78° 35′—observed at in 1836—is situated on a low range of hills which runs nearly north and south, and has a couple of hamlets lying at the foot of the hill on the eastern side: in the Gwalior state.

The pillar is solid, and has a mark-stone at its upper surface. The bearings and distances of surrounding villages are:—Silauli 1.3 miles N.E. by E.; Makata 1.1 miles S.E.; and Chimara 1.9 miles W.S.W.

XVII. Gúrmi Tower Station, lat. 26° 36′, long. 78° 33′—observed at in 1836 and 1842—is situated

on a bastion at the northern angle of the mud fort attached to the village of Gúrmi which lies between the Sánichri hills and the Chambal river: in the Gwalior state.

The station consists of a tower of sun-dried bricks and mud cement, raised to a height of 27 feet above the terreplein of the rampart, and having a mark-stone at top and another at bottom. The bearings and distances of surrounding villages are:—Silauli 1.6 miles N.W. by W.; Kaliánpura 1.6 miles S.W. by W.; and Gopalpura 1.4 miles E. by S.

XVIII. Bhind Station, lat. 26° 34′, long. 78° 50′—observed at in 1836 and 1842—is situated on the roof of the gateway in the north face of the masonry fort attached to the large village of Bhind which lies on the plain south of the Chambal river. The station is 34 feet above the level of the interior of the fort: in the Gwalior state.

The station consists of a masonry pillar, 5 feet high and 9 feet square, which carries the usual mark-stone at its upper surface. The bearings and distances of surrounding villages are:—Pura 0.4 mile N. by E.; Khirpura 1.3 miles S. S. W.; Haibatpura 1.8 miles W.; and Kumaroa 1.7 miles N.W. by W.

XIX. Athgath Tower Station, lat. 26° 48′, long. 78° 45′—observed at in 1840 and 1842—is situated amidst the ravines on the north bank of the Chambal river, and close to the northern skirts of the village of Athgath or Hathkanth: tahsíl Panáhat, pargana Hathkanth, district Agra.

The station consists of a tower, 36 feet high and 14 feet square at top, having a central hollow core of masonry: it has a mark-stone at level of ground floor. The bearings and distances of surrounding villages are:—Kiari 13 miles W. by S.; Piarampura 11 miles N.E.; and Surekhipura 13 miles N.E. by E.

XX. Panáhat Station, lat. 26° 53′, long. 78° 25′—observed at in 1840 and 1842—is situated on the roof of a vaulted building (apparently an interior gateway) of the dilapidated masonry fort at the south side of the village of Panáhat: tahsíl and pargana Panáhat, district Agra.

The station mark is elevated 30 feet above the ground at the south side of the building, the walls of which were raised to form a platform around a pillar 3 feet high.

The bearings and distances of surrounding villages are:—Biprauli 1.4 miles W.N.W.; Utsana 1.1 miles S.S.E.; and Sikthura 2.5 miles E.

XXI. Sherpur Tower Station, lat. 27° 1′, long. 78° 42′—observed at in 1840 and 1842—is situated on the terreplein of the rampart at the northern corner of an old mud fort standing a short distance east of the village of Sherpur: thána Sarsaganj, tahsíl and pargana Shikohabad, district Mainpuri.

The station consists of a tower of sun-dried bricks and mud cement, 30 8 feet high and 14 feet in diameter at top, having a central hollow core of burnt brick: it has a mark-stone at level of ground floor. The bearings and distances of surrounding villages are:—Madanpur 1 mile N.N.W.; Pandrawan 0.3 mile S. by E; and Aidalpur 0.3 mile N.E.

XXII. Firozabad Tower Station, lat. 27° 9′, long. 78° 26′—observed at in 1840, 1842 and 1843—is situated on the terreplein of the rampart at the S. E. corner of an old mud fort standing about ½ mile W. of the town of Firozabad: pargana and tahsíl Firozabad, district Agra.

The station consists of a tower of sun-dried bricks and mud cement, 43.8 feet high and 14 feet square at top, having a central hollow core of burnt brick: it has a mark-stone at 1 foot below the level of the terreplein. The bearings and distances of surrounding places are:—Firozabad station, of the E. I. Railway, 0.3 mile S.S.E.; Rasúlpur village 1.1 miles E.S.E.; Datauji 1.1 miles W.S.W.; and Humáyúnpur 1.2 miles N.W.

XXIII. Baragaon Tower Station, lat. 27° 15′, long. 78° 45′—observed at in 1840, 1842 and 1843—is situated on the crest of a mound distant ½ mile to the S. E. of the village of Baragaon: thána Jasrána, tahsíl and pargana Mustafabad, district Mainpuri.

The station consists of a tower of sun-dried bricks and mud cement, 45.4 feet high and 14 feet square at top, having a central core of burnt brick: it has a mark-stone at 1 foot below the ground floor. The Etawab Branch of the Ganges Canal runs at 4 mile S.W. of the station; and the bearings and distances of surrounding villages are:—Nahu 1.1 miles N.; Jasrána 2.8 miles S.S.W.; Kuiari 2.2 miles S.E.; and Kanchgahi 2.6 miles N.E.

XXIV. Pondri Tower Station, lat. 27° 28′, long. 78° 27′—observed at in 1840 and 1843—is situated on a mound (about 25 feet in height) within the ruins of the mud fort attached to the small village of Pondri: tahsíl and pargana Jalesar, district Agra.

The station consists of a tower of sun-dried bricks and mud cement, 44.3 feet high and 13 feet square at top, having a central hollow core of burnt brick; it has a mark-stone at 1 foot below the ground floor. The bearings and distances of surrounding villages are:—Punhara 1.5 miles W. by N.; Kasua 1.3 miles N.; Khaira Taj 1.2 miles E. by N.; and Mahaki 1.8 miles S.S.W.



XXV. Kilármáo Tower Station, lat. 27° 33′, long. 78° 49′—observed at in 1840, 1842 and 1843—is situated on the crest of a mound (about 20 feet in height) distant ½ mile west of the small village of Kilármáo: thána, tahsíl, pargana and district Etah.

The station consists of a tower of sun-dried bricks and mud cement, 44.5 feet high and 14 feet square at top, having a central hollow core of burnt brick: it has a mark-stone at 1 foot below the ground floor. The bearings and distances of surrounding places are:—Etah town 6 miles W.; Nehchalpur village 0.9 mile W.N.W.; Jisukhpur 0.5 mile S.W.; and Murjadpur 0.6 mile N. by W.

XXVI. Salímpur Tower Station, lat. 27° 47′, long. 78° 33′—observed at in 1841 and 1843—is situated on the crest of a mound (about 20 feet in height) distant 600 yards west of the small village of Salímpur: thána and tahsíl Kásganj, pargana Bilrám, district Etah.

The station consists of a tower of sun-dried bricks and mud cement, 48 feet high and 13 feet square at top, having a central hollow core of burnt brick: it has a mark-stone at 1 foot below the ground floor. The bearings and distances of surrounding villages are:—Badampur 0.9 mile E.S.E.; Naráinpur 0.5 mile S.; Kutubpur 1.2 miles N.W.; and Dharampur 1.3 miles N.E. by N.

XXVII. Jamálpur Tower Station, lat. 27° 48′, long. 78° 52′—observed at in 1841 and 1843—is situated on a mound (about 12 feet in height) within the ruins of a mud fort distant nearly half-a-mile to the N.W. of the small village of Jamálpur: thána Saháwar, tahsíl Kásganj, pargana Saháwar, district Etah.

The station consists of a tower of sun-dried bricks and mud cement, 28 feet high and 14 feet in diameter at top, having a central hollow core of burnt brick: it has a mark-stone at 1 foot below the ground floor.

The bearings and distances of surrounding villages are:—
Firozpur 0.5 mile S.S.W.; Chadpur 0.5 mile N.W.; and Bhaloli 0.7 mile N.E.

XXVIII. Sankráo Tower Station, lat. 28° 2′, long. 78° 35′—observed at in 1841 and 1843—is situated on the site of an old fort on a high spur of the bank which bounds the southern edge of the *khádar* or low lands of the Ganges, and stands close to the west side of the village of Sankráo which is distant within halfamile to the south of the old bed of that river: tahsíl Atrauli, pargana Gangíri, district Aligarh.

The station consists of a tower of burnt bricks and mud cement, 37.3 feet high and 14 feet in diameter at top, having a central hollow core of masonry: it has a mark-stone at 1 foot below the ground floor. The bearings and distances of surrounding villages are:—

Rustamnala 1.1 miles W. by N.; Mohkampur 1.2 miles S.S.E.; and Síkri 1.1 miles E. by S.

XXIX. Sarsotha Tower Station, lat. 28° 6′, long. 78° 48′—observed at in 1843—is situated on the northern edge of the *khádar* or low lands of the Ganges, and stands about half-a-mile N.E. of the hamlet of Sarsotha a place of Hindu pilgrimage: thána, tahsíl and pargana Sahaswán, district Budaun.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 23.8 feet high: it has a mark-stone in the foundation, another at 7 feet above ground level, and a third at summit. The bearings and distances of surrounding villages are:—Manikpur 1 mile S.W.; Alipur 0.6 mile N.W.; and Guhlaul 2.3 miles N.E. by E.

XXX. Sakrora Tower Station, lat. 28° 13′, long. 78° 36′—observed at in 1843—is situated on a mound (about 10 feet in height) within half-a-mile S. by W. of the village of Sakrora: than Asadpur, tahsíl Gunnaur, pargana Asadpur, district Budaun.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 21 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Lahra 0.5 mile W.N.W.; Mirzapur 0.6 mile S.; and Baudrái 1.8 miles N.E. by E.

XXXI. Parauli Tower Station, lat. 28° 10′, long. 78° 24′—observed at in 1843—is situated on high ground about 350 yards due north of the village of Parauli or Parhauli: thána Ramghat, tahsíl Anúpshahr, pargana Dibai, district Bulandshahr.

The station consists of a tower of unburnt bricks and mud cement, 15 feet in diameter at top, enclosing a central solid pillar of masonry 18.8 feet high: it has a mark-stone at ground level, another at 7 feet above it, and a third at summit. The bearings and distances of surrounding villages are:—Rampur 0.7 mile E.; Bajhera 0.6 mile S.E.; Jírajpur Khurd 1.2 miles W.; and Belon Nagla 0.9 mile N.

XXXII. Kariámái Tower Station, lat. 28° 15′, long. 78° 48′—observed at in 1843—is situated on a slight elevation distant half-a-mile east of the village of Kariámái: thána Islámnagar, tahsíl Bisauli, pargana Islámnagar, district Budaun.

The station consists of a tower of unburnt bricks and mud cement, 15 feet in diameter at top, enclosing a central solid pillar of masonry 17.3 feet high: it has a mark-stone at ground level, and another at summit. The bearings and distances of surrounding villages are:—Bhartpur 0.4 mile S.S.E.; Udaipur 0.8 mile N.E.; and Firozpur 1.1 miles due N.



8___

XXXIII. Rajauli Tower Station, lat. 28° 22′, long 78° 28′—observed at in 1843—is situated on the khádar or low lands of the Ganges, and stands 0.4 mile S.E. of the village of Rajauli or Rajawali: thána Rajpura, tahsíl Gunnaur, pargana Rajpura, district Budaun.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 23 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Paniwara 1.3 miles S.W.; Neora 1.3 miles S. by E.; and Gobindpur 1.1 miles due E.

XXXIV. Mehtra Tower Station, lat. 28° 22', long. 78° 41'—observed at in 1843—is situated on a mound (about 10 feet in height) distant 1 mile north of the small village of Mehtra: tahsíl and pargana Sambhal, district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 16 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Bahpur Patti 1 1 miles E; Sultanpur 2 4 miles W.; Mirzapur 0 9 mile N.N.E.; and Yazafpur 0 8 mile N.W. by N.

XXXV. Bánsgopál Tower Station, lat. 28° 33′, long. 78° 34′—observed at in 1843—is situated on a sandy mound (7 or 8 feet in height) distant 500 yards west of the temple of Bánsgopál a place of Hindu pilgrimage: tahsíl and pargana Sambhal, district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 18.8 feet high: it has a mark-stone at a little below ground level, and another at summit. The bearings and distances of surrounding places are:—Sambhal town 3 miles N.E.; Turrano Sarai 1.8 miles E. by S.; Gandhipura village 1 mile N. by E.; Busla village 1.7 miles W. by S.; and Bahádurpur Sarai 1.1 miles S.W. by S.

XXXVI. Chandanpur Tower Station, lat. 28° 34′, long. 78° 21′—observed at in 1843—is situated at the distance of half-a-mile to the E.S.E. of the village of Chandanpur: tahsíl and pargana Hasanpur, district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 16.5 feet high: it has a mark-stone at ground level, another 7 feet above it, and a third at summit. The bearings and distances of surrounding villages are:—Deorara 0.8 mile S.; Khanraua 1.8 miles W.S.W.; and Chhapna 2.1 miles N.W. by N.

XXXVII. Barauli Tower Station, lat. 28° 32′, long. 78° 48′—observed at in 1843—is situated on a mound (about 20 feet in height) which is apparently the site of a deserted village, and is distant nearly 1½ miles N. E. of the village of Barauli: tahsíl and pargana Bilári, district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 16.5 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Khásepur 0.6 mile W.; Pípli 0.8 mile N.E.; and Akrauli Auliapur 1.1 miles E.S.E.

XXXVIII. Kandarki Tower Station, lat. 28° 44′, long. 78° 27′—observed at in 1843—is situated close to the eastern side of the village of Kandarki: tahsíl and pargana Hasanpur, district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 18.7 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Khairpur 1.1 miles E.S.E.; Begpur 1 mile S.W. by W.; and Jehul 1 mile W.N.W.

XXXIX. Atora Tower Station, lat. 28° 43′, long. 78° 40′—observed at in 1843—is situated on a mound (about 30 feet in height) immediately N. W. of the village of Atora or Athaura on the high road from Moradabad to Sambhal and Aligarh: tahsíl and pargana Sambhal, district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 17.8 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Athauri 0.4 mile S.; Bháuddínpur 0.8 mile W.; Harthali 1.3 miles N.W.; and Sháhpur 1.6 miles E.N.E.

XL. Sirsa Tower Station, lat. 28° 55′, long. 78° 35′—observed at in 1843—is situated on a mound (about 15 feet in height) distant 600 yards north of the village of Sirsa: tahsíl and pargana Amroha, district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 26 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Daryapur 0.7 mile S.W. by W.; Mauye Chak 0.4 mile N.E. by N.; Raghunáthpur 1 mile S.E. by S.; and Háshampur 0.9 mile N.W.

XLI. Lút Tower Station, lat. 28° 54′, long. 78° 21′—observed at in 1843—is situated in the lands of the village of Lút: tahsíl and pargana Hasanpur, district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 20 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Mahamdi 01 mile N.N.W.; Afzalpur 0.6 mile S. by E.; Kurala 0.6 mile N.E.; and Lakhania 1.2 miles S.W.

XLII. Bhatauli Tower Station, lat. 28° 54′, long. 78° 46′—observed at in 1843—is situated at the distance of about 1 mile west of the village of Bhatauli: tahsíl, pargana and district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 14.5 feet high: it has a mark-stone at summit. The bearings and distances of surrounding places are:—Moghalpur town 1.6 miles N.; Mahtakpur 1.2 miles W.S.W.; and Gopálpur 1.9 miles W. by N.

XLIII. Milik Tower Station, lat. 29° 5′, long. 78° 28′—observed at in 1843—is situated in the lands of the village of Lodhipur Milik: tahsil Chándpur, pargana Burhpur or Nurpur, district Bijnor.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 173 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Sahela 11 miles E.; Ber 0.6 mile S.S.E.; Shehbonpur 0.6 mile W.S.W.; and Mor Makdúmpur 1.2 miles N.E. by N.

XLIV. Akbarpur Tower Station, lat. 29° 5′, long. 78° 41′—observed at in 1842 and 1843—is situated close to the high road from Hardwar to Moradabad, and distant about half-a-mile N.W. of the village of Akbarpur: tahsil and pargana Amroha, district Moradabad.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 15 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Garhi 0.4 mile S. by W.; Burhpur 0.8 mile W. by S.; and Salimpur 0.5 mile N.E. by E.

XLV. Sarkára Tower Station, lat. 29° 16′, long. 78° 35′—observed at in 1843—is situated close to the high road from Hardwar to Moradabad, and distant about 0.6 mile S.S.E. of the village of Sarkára: tahsíl Dhámpur, pargana Sherkot, district Bijnor.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 16:3 feet high: it has a mark-stone at summit. The bearings and distances of surrounding villages are:—Rajmul 0:3 mile S.S.E.; Nasirpur Bhunwari 1:3 miles W.S.W.; and Salimpur Sarai 0:8 mile S. by W.

XLVI. Haldaur Tower Station, lat. 29° 17′, long. 78° 19′—observed at in 1843—is situated on a sandy mound (8 or 9 feet in height) in the lands of the village of Rasúlpur, and is distant about 1 mile S.W. of the large village of Haldaur: tahsíl Bijnor, pargana Daranagar, district Bijnor.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 19.7 feet high: it has a mark-stone at top. The bearings and distances of surrounding villages are:—Chajjupura 0.8 mile S.E. by E.; Uttapur 0.8 mile S.W.; and Sikandarpur Sani 1.1 miles nearly due N.

XLVII. Nandi Tower Station, lat. 29°17′, long. 78°49′—observed at in 1842 and 1843—is situated in the lands of the village of Púranpur, and is distant about half-a-mile E.S.E. of the village of Nandi: tahsíl and pargana Káshipur, district Tarái.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central solid pillar of masonry 12 feet high: it has a mark-stone at summit. The surrounding villages are:—Púranpur 0.6 mile N.; Raipur; Haripura; and Mowa Dabra.

XLVIII. Harpálsid Hill Station, lat. 29° 40′, long. 78° 36′—observed at in 1843—is situated on the peak immediately west of the hill of Harpálsid on the southern border of the Sub-Himalaya mountains, and is approached from Najíbabad by Kotkadr and Bagnala: district Garhwál.

The station is denoted by the centre of a circle engraved on a stone which is fixed in the middle of a platform and is flush with the level of the ground. The station of 1843 was re-visited in 1866 in the course of the secondary operations of the Kumaun and Garhwal Survey, but, from the absence of information to the contrary, no alteration in its construction appears to have been made.

I.—(Of the North-East Longitudinal Series). Mábegarh Hill Station, lat. 29° 53′, long. 78° 30′— observed at in 1842, 1843, 1850 and 1865—is situated on the hill of that name, and adjoins a rude temple to the north: pargana Ajmir, district Garhwál.

The station consists of a platform of stones and earth, 14 feet square at top, enclosing a central isolated pillar of masonry 6.9 feet



high: it has a mark-stone at 1 foot above ground level, and another at summit. The original station of 1842-43 which was common to the Budhon Meridional and the North Connecting Series—was re-visited in 1850 in the course of the operations of the North-East Longitudinal Series, and again in 1865 to originate the Kumaun and Garhwál Survey; on neither of these occasions was any alteration made in the construction of the station. The bearings and distances of surrounding villages are:—Kundra 1 mile S. by W.; Jaurási 1.8 miles W.; Harsu 1.6 miles N.; and Badoli 1.8 miles N.N.E.

XLVIII.—(Of the Great Arc Meridional Series, Section 24° to 30°). Sheopuri Tower Station, lat. 29° 19′, long. 78° 2′—observed at in 1836, 1837, 1843 and 1866—is built on an elevated mound, apparently the site of a ruined fort, standing on a high bank which bounds the bed of the Ganges on the west, and distant about half-a-mile east of the village of Sheopuri: tahsíl Jánsath, pargana Bhúma Sambalhera, district Muzaffarnagar.

The station consists of a hollow masonry tower 40.5 feet high, having a mark-stone in the ground floor. It was originally constructed as a station of the Great Arc Meridional Series, Section 24° to 30°, in the course of the operations of which it was visited in 1836, 1837 and 1866, the Budhon Series having connected with it in 1843: no change was however made on the occasion of the subsequent visits to the original tower. The bearings and distances of surrounding places are :—Miranpur town 3 miles S.W.; Jaspur village 1 mile N.N.E.; and Alampur 1.2 miles E.

LII.—(Of the Great Arc Meridional Series, Section 24° to 30°). Mahesari Tower Station, lat. 29° 30′, long. 78° 11′—observed at in 1843, 1851, 1865 and 1866—is built on a sand ridge (about 20 feet in height), near the S.W. corner of the village of Mahesari: tahsíl Bijnor, pargana Mandáwar, district Bijnor.

The station consists of a tower of unburnt bricks and mud cement, 14 feet square at top, enclosing a central pillar of masonry 13.5 feet high which is solid to a height of 12 feet above ground level and perforated thereafter: it has a mark-stone at the level of the ground, and others at 7 and 12 feet respectively above this level. The station of 1843—which was 12 feet in height—was re-visited in 1851 in the course of the operations of the North-East Longitudinal Series, when the masonry pillar was found in good order and the upper mark-stone undisturbed. When again visited in 1865-66 in connection with the Great Arc Meridional Series, Section 24° to 30°, the pillar and upper mark-stone were found in good preservation: on this occasion however the height of the pillar was raised to 13½ feet, but no mark-stone was placed at its summit, a hollow cylindrical space, 4 inches in diameter, having been left for reference to the old mark-stone. The bearings and distances of surrounding places are:—Mandáwar 16 miles S.S.W.; Shahbazpur 12 miles W.; Ratanpur Raiya 08 mile N.N. W.; and the town of Kíratpur about 3 miles E.

February 1877.

J. B. N. HENNESSEY,

In charge of Computing Office.

#### PRINCIPAL TRIANGULATION. ADDENDUM TO DESCRIPTION OF STATIONS.

Note.—Consequent on modern alterations of district and other boundaries, the sites occupied by the stations are in some instances now included in civil divisions of territory which differ from the district, pargana, or village, recorded in the preceding descriptions of stations: a complete list of all the stations of the Series including a suitably modified statement of the altered subdivisions in question is accordingly given in the following table, and is derived chiefly from the annual reports, up to 1881, made by the Civil Officials to whose care the stations have been committed. The statement also gives additional information as to position, construction, and present condition of certain of the stations; where no entry regarding present condition is made against a station it is to be assumed that the station when last reported on by the district Official was in good order.

The spelling of names is in accordance with that given in the lists of more important places published under the orders of Government whenever such names occur in the lists.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Remarks on the Construction and Condition of the Station
III*	•••	Saugor	Tah. Kurai, Táluka Pi- tihra, Thá. Baraudia	Budhon	
VII*	•••	,,	P., Tah. and Thá. Banda	Tinsi	
I	•••	Lalitpur	Tah. Mahroni, P. Má- raura	Patna	The upper mark-stone wanting as reported in January 1870.
II	•••	Bundelkhand Political Agency	P. Baldeogarh	Dargawa	
111	•••	Lalitpur	Tah. Mahroni, P. Bán- pur	Dhandkua	The pillar fallen down as reported in May 1867.
IV	Andheri	I'sagarh (Gwalior territory)	P. Marguli	Sarsud	No trace of the station found as reported in 1877.
v	•••	Jhánsi	Tah. Jhánsi	Gwali	No mark-stone found as reported in May 1867.
VI	Hanspura	"	Tah. Mau	Hanspura	No mark-stone found as reported in May 1867. A pile of earth and stones raised over the pillar in 1879.
VII	•••		•••	•••	No report received.
VIII	•••	Jhánsi (Gwalior territory)	P. Karera	Algi Dinara	

Note.—Stations III * and VII * appertain to the Calcutta Longitudinal Series of the South-East Quadrilateral. Thá. for thána.

P. stands for pargana, Tah. for tahsil, and



No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Remarks on the Construction and Condition of the Station
IX		Bundelkhand Political Agency	Tah. Datia	Daryapur	
X		Narwar (Gwalior territory)	P. Karhia	Mahárájpur	
, XI	•••	22	P. Narwar	•••	
XII		l'sagarh (Gwalior territory)	P. Chanderi	Karehra	
XIII		Gwalior	P. Gird Gwalior	Raepur	•••
XIV	•••	29	P. Pichhor	Gujara	
XV	Saníchari	22	P. Kotwál	Antri	The pillar fallen down, only the mark remains, as reported in May 1877.
XVI		Sikarwári (Gwa- lior)		<b></b>	
XVII	Gormín	Tonwarghár (Gwalior)	P. Gormín	Gormín	The tower fallen down as reported in May 1877.
XVIII	•••	Bhind (Gwalior)	P. Bhind	Bhind	
XIX	Hathkanth	Agra	P. Panáhat	Hathkanth	
XX	•••	22	Ditto.	Panáhat	
XXI	Sarsaganj	Mainpuri	Tah. Shikohabad, Thá. Sarsaganj	Madanpur	The arch and the lower portion of the central pillar were found dug into up to the perforation.
XXII	•••	Agra	P. Firozabad	Raepur .	•••
XXIII	Jasrána	Mainpuri	Tah. Mustafabad, Thá. Jasrána	Kushiari	About 20 feet of the pillar fallen down as reported in March 1873.
XXIV		· •••			The station was connected with the Revenue Survey line of levels in 1873, under Colonel Anderson, when the lower mark-stone was found intact and the height of summit of pillar above this mark to be 42.5 feet.
xxv	•••	Etah	Tah., P. and Thá. Etah	Kilármau	The pillar 42 feet high as reported in 1874.
XXVI	Salímpur	<b>2</b> 2	Tah. and Thá. Kásganj, P. Bilrám	Salímpur	The pillar 35 feet high as reported in 1874.
XXVII	·	23	Tah. Kásganj, P. and Thá. Saháwar	<b>Ja</b> málpur	The pillar 25 feet high as reported in 1874.
XXVIII	Minár Sankra	Aligarh	Tah. Atrauli, P. Gangiri	Sankra	The mark-stone wanting as reported in 1867.

Norg.—Stations XXI to XLVII were visited in 1865-66 by Mr. W. Ivey, Assistant Surveyor, who was especially deputed for the purpose. With regard to the central paka pillars, their condition when visited and the repairs effected are given in detail above. As respects the kacha towers, around the pillars, these were found either partially or wholly washed away; nor were any measures taken specially for their restoration. Mr. Ivey protected the stations in the following manner:—
the summits of the pillars were capped by conical mounds of sun-dried bricks or earthwork to carry off the rainfall, and the pillars themselves were enclosed in same materials up to varying heights. After this he transferred all these stations to the charge of local officials,

P. stands for pargana, Tah. for tahail, and Thá. for thána. Digitized by

· ·					
No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Remarks on the Construction and Condition of the Station
XXIX	Mánikpur	Budaun	Tah., P. and Thá. Sahas- wán	Mánikpur	The central pillar and its upper mark-stone were found uninjured.
xxx	 ·	"	Tah. Gunnaur, P. Asadpur	Sakrora	The central pillar and its upper mark engraved on a burnt brick were found uninjured.
XXXI		Bulandshahr	Tah. Anúpshahr, P. Di- bai, Thá. Rámghat	Parauli	The central pillar and its upper mark-stone were found all right.
XXXII		Budaun	Tah. Bisauli, P. and Thá. Islámnagar	Kariámái	Ditto.
XXXIII	<b></b>	<b>)</b> }	Tah. Gunnaur, P. and Thá. Rajpura	Rajauli	The central pillar was found half thrown down, it was raised by 3 feet with burnt bricks and mud cement, making its height about 14 feet above ground.
XXXIV	Mehtra Dha- rampur	Moradabad	P. Sambhal	Mehtra	The upper mark-stone was found intact, the central pillar partially dug into at base and summit.
XXXV	Benipur Chak	"	Ditto.	Bánsgopálpur	The central pillar and the upper mark-stone were found all right.
XXXVI	Chandanpur Khádar	"	P. Hasanpur	Chandanpur Khádar	Ditto.
XXXVII	Umra	"	P. Bilári	Barauli	The upper mark-stone was missing, and portion of the summit of the central pillar broken.
XXXVIII	Kandarki	28.	P. Hasanpur	Kandarki	The central pillar and its upper mark engraved on a burnt brick were found perfect.
XXXIX		<b>)</b>	P. Sambhal	Atora	The upper mark-stone was missing, and portion of the summit of the pillar broken.
XL		"	P. Amroha	Sirsa	The central pillar and the mark-stone on its summit were found perfect.
XLI	Mahamdí	<b>"</b>	P. Hasanpur	Lút	The whole structure was found fallen down, with the exception of 4 feet of the central pillar above ground. The pillar was raised 4 feet in height above the old remains, with burnt bricks and mud cement.
XLII	Kázipur	"	Tah. Moradabad	Bhatauli	The central pillar and the mark-stone on its summit were found perfect.
XLIII	Lodipur Milik	Bijnor	Tah. Chándpur, P. Burh- pur	Lodipur Milik	The central pillar and the mark engraved on a burnt brick, on its summit, were found perfect.

Note.—P. stands for pargana, Tah. for tahsil, and Thá. for thána.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Remarks on the Construction and Condition of the Station
XLIV	•••	Moradabad	Tah. Amroha	Akbarpur	The central pillar was found stand- ing and slightly dug into at the base, and the mark-stone missing.
XLV	111	Bijnor	Tah. and P. Dhámpur	Bhíka Ját	The central pillar and the mark- stone on its summit were found per- fect, the edges of the pillar slightly decayed.
XLVI	•••	"	Tah. Bijnor, P. Dárana-	Rasúlpur	The central pillar and the mark- stone on its summit were found perfect.
XLVII	Nanda	· Tarái	P. Káshipur -	Púranpur	The central pillar was found fallen down to within 1½ feet of the ground level, this was repaired, raised to 2½ feet above ground, with burnt bricks laid in mud cement, and a markstone placed on it.
XLVIII	•••	Garhwál	P. Talla Salán, Táluka Bhábar	Bágnála	A portion of the masonry given way as reported in 1879.
I	•••	"	P. Ganga Salán, Patti Ajmír	Nali Badholi	A portion of the masonry given way as reported in 1878.
XLVIII*	•••	Muzaffarnagar	P. and Tah. Jánsath, Thá. Míránpur	Sheopuri	
LII	•••	Bijnor	Tah. Bijnor, P. Mandá- war	. Mahesari	

Norz.—Station I appertains to the North-East Longitudinal Series.

Stations XLVIII* and LII appertain to the Great Arc Meridional Series, Section 24° to 30°.

P. stands for pargana, Tah. for tahsil, and Thá. for thána.

September, 1882.

J. B. N. HENNESSEY,
In charge of Computing Office.

#### OBSERVED ANGLES.

### At III (Budhon) of Calcutta Longitudinal Series.

February 1833; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle				Circ	ele readi	ngs, teles	scope bei	ng set o	n I				General Means
between	27*	207°	82°	<b>2</b> 12°	87°	217°	<b>42°</b>	222°	47°	<b>2</b> 27°	52°	232°	and Probabilities.
	,,	"	"	"	"	"	,,	"	"	"	"	• 11	,
	10.83	3 10.83	7:50	8.83	8 11,00	11.67	14.50	10.QJ	14.33	9,17	10.62	8 Q.00	65° 18′ 10″·96
I & VII*	57*	<b>2</b> 87°	62	• •	242°	67°	247°	72	•	252°	77*	<b>2</b> 57°	65° 18' 10" 96 Prob. = 0.59
	19:50	12,00	9,3	3 9	33	13.83	11.17	12.	00 g	50	10.83	7:67	

# At VII (Tinsmál) of Calcutta Longitudinal Series.

### March 1833; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle	-			Circl	e reading	gs, telese	cope bei	ng set or	ı III•				General Means
between	800°	190°	<b>8</b> 10°	1 <b>3</b> 0°	820°	140°	880°	150 ⁶	840°	160°	850°	170°	and Probabilities.
III• & I	" 43°34	45°08	45°17	44.83	" 42.92	40,50	40.20 40.20	37:50	35°83	# 40.00 8	# 46:00	" 41.00	36° 17' 41"'89 Prob. = 0.89
				Cin	cle read	ings, tele	escope b	eing set	on I		•		
	27*	<b>2</b> 07°	87°	217*	47°	227°	57°	287*	67°	247°	77*	257°	
I & II	19.50	28:83	25.83	29:17	30.20	29.67	35 2 7	26:50	32.83	30.50	39:83	32:34	61° 1' 30".06 Prob. = 1.39

^{*} Of Calcutta Longitudinal Series.

At I (Patna)

†March, April; and ‡October 1833; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	reading	gs, teles	cope bei	ng set o	n IV				General Means
between	180°	0°	190°	10°	196°	16°	200°	20°	211°	81°	231°	51°	and Probabilities.
IV & III	" 43°17	" 45:00	" 43:17	" 45° 33	51.67	42.00 1	50.50	// 42.00	47 :00	40:33	39.00	. " 46:33	56° 48′ 44″ 63 Prob. = 1 06
<b>‡</b>				Circ	le readir	ngs, teles	scope be	ing set o	n III				·
+	180°	00	190°	10°	200°	20°	210°	80°	220°	<b>4</b> 0°	230°	50°	
ш & п	39,11	37°67	40.00 1	34, 17	37:00	39,67	.41,33	30:33	41:34	34:17	42,33	42 00	$40^{\circ} 43' 38'' \cdot 24$ Prob. = $0.75$
<b>.</b>	221°	41°	231°	51°	241°	61°	251°	71°	261°	81°	271°	91°	1100. = 0 /3
†	42.67	37:67	32:33	37:33	40.00	43,33	36:33	43.11	30.83	39:50	38:67	36.83	
11 & VII*	20°67	19,33	25°67	24:33	26°00	24:50	22:33	17:50	30.50	27:78	29°34	26°50	69° 29′ 24″.54 Prob. = 1.10
				Circle	e reading	gs, telesc	ope bein	g set on	<b>VII</b> •				
	281°	101°	<b>2</b> 91°	111*	<b>8</b> 01°	121°	810°	130°	821°	141°	831°	151 ₆	
VII* & III*	11,00	12:33	7:67	4,00	11:17	6.83	8:83	13:17	10.83	5 33	6:34	6.83	$78^{\circ} 24' 8'''69$ Prob. = $0.82$

### At II (Dargawa)

§ April; and ¶ November 1833; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	reading	gs, telesc	ope bein	g set on	VII*				General Means
between	00	180°	10°	19Ò°	20°	200°	80°	210°	40°	220°	50°	230°	and Probabilities.
VII* & I	69:33	72:17	58.67	" 69:50	73:83	76.83	64:33	" 74.67	63.00	77:17	68:50	67 250	49° 29′ 9″ 63 Prob. = 1 57
§	32.83	34,50	33:17	39:17	37,33	30.83	45°33	35,50	39.00	37,67	37:00	48.83	
I & III	51°	281°	61°	Circ 241°	ele readi	ngs, tele	scope be	ing set o	on I 91°	271°	101°	281°	69° 43′ 36″·76 Prob. = 1.00
Ч	25.67	34,33	36.55	44.67	39:08	33.67	33.67	32.00	39,50	38:67	33,50	39:67	

[•] Of Calcutta Longitudinal Series.

### At III (Dhandkúa)

†May; ‡November, December 1833, and January 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle between	110°	<b>2</b> 90°	120°	Circle 800°	readin	gs, teles 810°	cope beii	ng set o	n II 150°	880°	160•	840°	General Means and Probabilities.
+	47,33	47° 50	46.67	58.67	" 54.00	57.67	" 49.00	" 47:00 8	51.20 "	50.83	51.33	" 41.83	
II & I	89°	269°	99°	279°	109°	289°	119°	<b>299°</b>	129°	309°	189°	819°	$69^{\circ} 32' 51''.76$ Prob. = 0.83
‡	55,33	48.83	48,67	56.33	51.67	53°67	53,17	55:00	58.00	53 <u>.</u> 67	52:66 1	52:00	
				Circle	e reading	gs, teleso	ope beir	ng set on	I				
	839°	169°	849°	179°	859°	189°	9°	199°	19°	209°	29*	219°	•
I & IV	+96:33	99:67	98.80	90.89	93.67	98:67	96:17	99:00	96,00	95 <mark>1</mark> 67	95,00	100.83	   65° 2′ 4″·70
1 & 1 V	-33,67	²⁴ .75	39.78	28:17	32.67	27:78 8	37°33	31.08	39,11	31.00	26.67	32.33	Prob. = 1.51
+ 233° 55′ - 168° 54′	62.66	74.92	59.02	62.72	61.00	70.89	58.84	67.92	56.89	64.67	68.33	68.20	
				Circle	reading	s, telesc	ope bein	g set on	IV				
	284°	54°	244°	6 <b>1</b> °	254°	74°	264°	84°	274°	. 94°	284°	104°	
IV & V	26:33	32.11	34,33	29:33	31.83	34:44	31.67	34:33	34.00	26.20	34,92	27:00	$68^{\circ} 20' 31'' 40$ Prob. = 0.91
v & vi	43 92	40,42	43.00	39.83	45,67	41.50	42:67	44:33	41.67	44,17	35 67	47 °67	60° 23′ 42″.54 Prob. = 0.85

# At IV (Andhiári)

November and December 1833; observed by Lieutenant R. MacDonald with Harris and Barrow's

15-inch Theodolite.

Angle				Circ	le readi	ngs, tele	scope be	ing set o	n V				General Means
between	48°	228°	57°	238°	67°	247°	78°	258°	88°	268°	98°	278°	and Probabilities.
V & III	30.89	40:33	" 44°33	" 39°33	41.83	" 40.00	" 42.67	35.67	" 45 ^{.8} 3	" 41.50	46.67	" 35 <b>°</b> 50	56° 13′ 40″·38 Prob. = 1·27
III & I	13.67	11.66	5:00	6:33	7:00	3:67	9.67	11.33	8:17	6:42	7:66	3 67	$58^{\circ} 9' 7''.85$ Prob. = 0.88

At V (Gwáli)

December 1833; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle	,			Circle 1	readings,	, telesco	pe being	set on	VIII				General Means
between	196*	16°	<b>2</b> 06°	<b>26°</b>	216°	36°	226°	46°	236°	56°	246°	<b>66°</b>	and Probabilities.
VIII & VII	" +76:00 4 -15:67	69:33 18:67	78:67 27:00	66:67 .8 21:50	80°67 24°83	2	78.83 17.83	74:33 19:50	" 67:00 1 19:56	75;33 20:00	70:67 2 19:83	" 74°17 9 22°11	54° 35′ 53″*04 Prob. = 1°30
+ 163° 44′ - 109° 9′	60.33	50.66	51.67	45°17	55.84	51.34	Q1.00	54.83	47.44	55.33	50.84	52.00	
VII & VI	+75,67	-	87:00 69:67	-	-	-	•	•	•	•	-	82:11 8 61:67	38° 27′ 20″ 08 Prob. = 0.78
+109° 8′ - 70° 41′	18.00	23.34	17.33	22.00	21.83	24.16	18.20	15.83	22.39	16.33	20.83	20.44	2100. — 6 70
VI & III	+57.67	55;33 53;83	69:67 52:33	-	_	_	59°33 50°67	-	-	-	59.00 1 49.33	61.67 1 50.33	62° 40′ 8″.57 Prob. = 1.19
+70° 41′ - 8° 1′	10.20	1.20	17:34	8.20	8.67	3.20	8.66	7.00	3.84	12.34	9.67	11.34	1100. — 1 19
III & IV	+47:17	53.83	52:33 9:83				50.67 14.33	-	-	-		50°33	55° 26′ 6″·76
+ 8° 1′ +47° 24′	61.20	73.00	62.16	69.17	68.17	67.67	65.00	72.00	68.66	64.11	63 · 67	66.00	Prob. = 1.01

### At VI (Kathera)

January 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle				Circl	e reading	gs, telesc	ope beir	ng set on	ı III				General Means
between	9°	189°	19°	199°	<b>2</b> 9°	209°	<b>8</b> 9°	<b>2</b> 19°	<b>4</b> 9°	<b>2</b> 29°	<b>5</b> 9°	239°	and Probabilities.
III & V	" +44;33 -34;67	50.00 34.50	" 42.67 38.33		49;66 36:66			51.67 34.00		46°17 43°00	" 48.00 2 32.17	5°;67 37;5°	56° 56′ 12″82 Prob. = 1 43
+ 113° 56' - 57° °	9.66	15.20	4'34	17.89	13.00	19.83	12.66	17.67	11.17	3.17	15.83	13.17	
V & VII	34.67	34.50	38:33	35.78	36·66	26.00 1	36.17	34.00	35.83	43.00	32.17	37.50	57° o' 35″ 38 Prob. = 1 10

^{*} This value should be 19 17: the error was not detected until after completion of the calculations.

At VII (Bhitári) .

January and February 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	e-reading	gs, telesc	ope bein	ng set on	VI				General Means
between	308°	128°	818°	185°	328°	148°	338°	156°	848°	168°	358°	178°	and Probabilities.
VI & V	8:83	" 11:50	5:33	3:00 1	" 12:33	" 14:67	" o:67 1	" 11:67	13:33	4 ^{.6} 7	" 7:66	" 6:67	84° 32′ 8″.36 Prob. = 1.22
V & VIII	23.00	28.67	26:00 1	25:67	23 <u>.</u> 67	21.67	28.66 1	24 <u>.</u> 67	28.00	28:33	25.00 1	23:33	50° 59′ 25″ 56 Prob. = 0.67
VIII & IX	+42:00 1 +41:50	32.00 1 40.33	34.67 40.00	34,67 43,00	43;33 36;67	36.67 43.00	28 33 40 67	30.00 1 39.00	32.00 1 39.00	42:17 42:66	31.83 43.67	32;33 39;00	65° 3′ 15″ 71 Prob. = 1 50
+ 46° 0' + 19° 2'	83.20	72.33	74.67	77.67	80.00	79.67	69.00	69.00	71.00	84.83	75.20	71.33	J

At VIII (Algi)

January, February and March 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's

15-inch Theodolite.

Angle				Circl	e readin	gs, teles	cope beir	g set on	XI .		-		General Means
between	249°	69°	<b>25</b> 9°	79 <b>°</b>	269°	89°	279°	890.	289°	109°	<b>2</b> 99°	119°	and Probabilities.
	"	" .	. "	"	"	"	. "	"	"	"	"	"	
	+94.83	90:67	89:67	86:33	93,67	92:00	92.66 1	98:67	90 <u>.6</u> 7	89:67	94,17	33 ئې99	
XI & X	-34.89	37:00	39,67	33:66	40.67	37.83	35,33	42.00 1	31.67	37.00	25.67	40.50	$56^{\circ} 45' 56'' 12$ Prob. = 1.34
+ 111° 14′ - 54° 29′	59.94	53.67	50.00	52.67	53.00	54.17	57.33	56.67	59.00	52.67	68.20	55.83	- ,
	+34.89	37:00	39:67	33:66	40,67	37.83	35;33	42,00	31:67	37:00	25 67	40 ;50	
X & IX	+43.89	42:67	41:00	46:67	35:00	39:33	. 40:67	41.67	43;33	46.67	37:16	36.83	66° 16′ 17″.57
+ 54° 29′ + 11° 46′	78.78	79.67	80.67	80.33	75.67	77.16	76.00	83.67	75.00	83.67	62.83	77.33	Prob. = $1.51$
	+75:33	80:67	80.00	81:67	73 83	79;67	69:67	83 33	74;33	75;00	78:33	72:00	
IX & VII	-43,89	42.67	41,00	46.67	35:00	39;33	40:67	41:67	43:33	46.67	37:16	36.83	43° 38′ 35″.75
+ 55° 24' - 11° 46'	31.44	38.00	39.00	35.00	38.83	40.34	29.00	41 66	31.00	28.33	41.12	35.17	Prob. = 1.33
VII & V	47;33	45, 67	49,89	46.83	46,00	40;34	46:67	46,33	42 ; 33	45,00	39:33	47;67	74° 24′ 45″ 28 Prob. = 0.86

At IX (Daryapur)

February and April 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	reading	s, telesco	pe being	set on	VII				General Means
between	257●	77°	267°	87°	277°	97°	287°	107°	297°	117°	<b>3</b> 07°	127°	and Probabilities.
VII & VIII	9.83	9:00 1	" 5;33	8:00 1	" 12:34	17:00	" 4;33	3:67	7:00	9:00 1	. 7:33	" o:67 1	71°. 18′ 7″.79 Prob. = 1.18
VIII & X	+30;33	24.67 9.00	16:00 1 5:33	16.67 8.00	16.67 1 12.34	31.00	12:33 4:33	9:00 3:67	14:33 7:00	15 00 1 9 00	20:33 7:33	20.67 1 0.67	67° 2′ 11″·13
+ 138° 20′ - 71° 18′	20.20	15.67	10.67	8.67	4.33	14.00	8.00	5.33	7.33	6.00	13.00	20.00	Prob. = 1.53
X & XIV	5,22	9;33	9,00	7:00	6.00	2:67	9:67	5:00	11,00	o:67			$40^{\circ} 58' 6'' 56$ Prob. = 0.99

# At X (Maharájpur)

February and March 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	e reading	s, telesc	ope beir	g set on	IX				General Means
between	1•	181•	11°	191° .	21*	<b>2</b> 01°	81°	211°	42°	222°	51°	231°	and Probabilities.
IX & VIII	27:45	" 42.83	" 25;34	30:33	31.00 "	37°33	30:33	34 <u>.</u> 67	" 34.00	" 37 ^{.6} 7	28:33 1	" 31:50	46° 41′ 32″.57 Prob. = 1.37
VIII & XI	+74°17	•	-	-	-	88:33 59:67	-	-	79°50 57°00	80°56 57°00		78°11 56°00	61° 8′ 22″.85 Prob. = 1.09
+ 104° 49′ - 43° 41′	21.00	21.67	22.67	28.84	20.33	28.66	15.17	27.66	22.20	23.26	20.00	22.11	1100. — 1 09
XI & XII	53:17	58:00	57;°°	58.83	56.00	59 ^{.6} 7	60:33	56:67	57:00	57:00	56°33	56.00	$43^{\circ} 41' 57'' 17$ Prob. = 0.52
XII & XIII	61.33	57,00	60:33	65:67	64:33	56.00	67:33	48.00 1	59.00	51.67	68:00	1 91.00	$59^{\circ} 52' 59'' 97$ Prob. = 1.69
XIII & XIV	+67:67 +69:17 -94:33	56:67	-	65:33	-	59, 33 63, 33 89, 33	_	64:67	59,00	65:33	61:33 66:67 1 92:66	2	76° 21′ 35″.63 Prob. = 1.39
$+ 59^{\circ} 41'  + 68^{\circ} 52'  - 72^{\circ} 12'$	42.21	32.67	40.17	29.33	36.66	33.33	36.19	40.00	5 [†] .6 ²	37.33	35.34	39.33	
XIV & IX	34, 33	26.67	34,50	27:00	34,00	29;33	31,00	34;67	35,67	32.00 1	32.66 1	32:67	$72^{\circ} 13' 32'' 04$ Prob. = $0.83$

At XI (Narwar)

March 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	reading	gs, teleso	ope bein	g set on	XII				General Means
between	0.	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	40°	220°	50°	230°	and Probabilities.
ХП & X	39:00 2	37:00 1	# 40.00	46.67 1	" 40.83	49.00 1	37.00 1	37:00	36°17	38:00 1	56:33	34:00	30° 52′ 39″•25 Prob. = 1·22
X & VIII	46.83	46:33	43:17	38:67	45:33	50.00	47;33	48:67	49,50	42:33	53:67	45;33	$62^{\circ}$ 5' 46"'43 Prob. = 1.09

### At XII (Karaia)

March 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	reading	s, telesc	ope bein	g set on	XIII				General Means
between	286°	10 <b>6°</b>	<b>2</b> 96°	116°	306°	126°	317°	187°	826°	146°	336°	156°	and Probabilities.
X MIII & X	‡51°67	46.67 1	55; 33	46.67	51:33	49:33	54.67	52:33	" 50:67	50:33	50:33	57:00	73° 33′ 51″*32 Prob. = 0.88
X & XI	24.67	30.00	23:33	28:33	21.67	27:00	19:34	24:33 1	27:33	27,33	20:33	23:33	105° 25′ 24″.75 Prob. = 0.92

### At XIII (Ráepur)

*April 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite. †November 1836; observed by Lieutenant Ommanney with Harris and Barrow's 15-inch Theodolite.

Angle			Circle	reading	s, telesc	ope bein	g set on	xv					General Means
between	0.	180°	12•	192°	24°	204°	86°	216°	48°	228°			and Probabilities.
XV & XVI	32.62	35°47	" 32.03	37:42	" 24:33	" 29:55	" 25°57	30-50	27°52	30.28			40° 42′ 30″.53 Prob. = 1.23
XVI & XIV	11.52	13.73	14.17	12:47	21.55	19:28	22.15	17:60	19:47	15:40			28° 36′ 16″.68 Prob. = 1.14
				Circle	reading	s, telesc	ope bein	g set on	XIV				
·	259°	79°	<b>2</b> 69°	<b>8</b> 9°	<b>27</b> 9°	99°	289°	106°	<b>299°</b>	119°	809°	125°	
XIV & X	30.20	32.00	23,33	31,33	32.00	31.67	31.00	20:34	31,33	24:33 1	26.00 1	21:34	54° 7′ 27″ 93 Prob. = 1 25
x & xII	6τ·50	63,00	73, 33	62:00	61:67	67:00	62:67	71.67	59:67	71:33	67:33	75;00	$46^{\circ} 33' 6'' 35$ Prob. = 1.47

[‡] This value should be 51:17: the error was not detected until after completion of the calculations.

#### At XIV (Majhár)

*April 1834; observed by Lieutenant R. MacDonald with Harris and Barrow's 15-inch Theodolite.

†October 1836; observed by Lieutenant Ommanney with Harris and Barrow's 15-inch Theodolite.

Angle				Circle			pe being						General Means and Probabilities.
between	293°	113°	303°	123°	313°	133*	323°	143°	333°	153°	343°	163°	una 170500111100.
1X & X	27,33	15:34	25:33	26:33	30:67 1	23:33	26:33	23:33	" 14.67	22:67 1	" 17:00	28:00 1	66° 48′ 23″'36 Prob. = 1'43
* X & XIII	68:67	71.67	61:33	56:00 1	64.67 1	67:00	61:33	68:00	64:33	66 <u>:</u> 33	76:33	68:67	49° 31′ 6″·19 Prob. = 1·46
			Circle	e reading	gs, telesc	cope bei	ng set o	n XIII					
	. <b>26</b> 0°	80°	272°	92°	284°	104°	296°	116°	<b>3</b> 08°	128°			
XIII & XVI	47.92	49,05	43.07	46.02	46.65	46.03	42:23	42.18	42°57	52.00		•	100° 21' 45".77 Prob. = 0.99
XVI & XV	28:12	27:40	31.72	31.47	33 2 7	30.11	25,26	32.90	22.58	35 27			54° 14′ 29″.81 Prob. = 1.18
XV & XIII	+47.92	49°05 27°40	43.07	46°02 31°47	46.65 33.27	30.11 46.03	42°23 25°26	42°18 32°90	42.57 22.58	52.00 35.27			46° 7′ 15″°96
+100° 21' - 54° 14'	19.80	21.65	11.35	14.22	13.38	15.92	16.92	9.58	19.99	16.43			Prob. = 1.18

### At XV (Sánichri)

November 1836; observed by Lieutenant Ommanney with Harris and Barrow's 15-inch Theodolite.

Angle	•		Circle	readings	s, telesco	pe being	set on	xvII			General Means
between	0.	180•	12°	192°	21°	204°	36°	216°	48°	' 228°	and Probabilities.
xvii % xvi	% 60°18	" 69°42	55;74	62:63	53:30	59 <u>°</u> 18	" 54°58	" 64.05	58°55	" 59° 37	53° 2′ 59″.70 Prob. = 1.44
XVI & XIV	4:27	4:37	6.33	5.78	6.62	2:53 2	6:25	1.55	3.85	6.52	$36^{\circ} 28' 4''.81$ Prob. = $0.54$
XIV & XIII	63.93	59:15	60:73	64:58	56.63	58.72	60.62	62.22	61.08	60.17	$64^{\circ} 34' \text{ o"} \cdot 87$ Prob. = $0.72$

### At XVI (Jhánkri)

October 1836; observed by Lieutenant Ommanney with Harris and Barrow's 15-inch Theodolite.

Angle			Circle	readings	s, telesco	pe bein	g set on	XIV			General Means
between	0,	180°	12°	192°	24°	204	36°	216°	48°	228°	and Probabilities.
XIV & XIII	% 60:58	64 68		60:37				59.10	и 61.40	% 61.12	51° 2′ 0″.57 Prob. = 0.92

between 0° 180° 12° 192° 24° 204° 86° 216° 46° 228° and Probabilit  XIV & XV	Angle			Circle	reading	s, telesc	ope beir	ng set on	XIV			General Means
XIV & XV		0°	180°	12°	192°	24°	204°	86°	<b>2</b> 16°	48°	228°	and Probabilities.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	XIV & XV	1				28.88		" 23°75	28.62 2	31.70		89° 17′ 28″ 30 Prob. = 1.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	XIII & XV						31.38	23.75 62.18				38° 15′ 27″·73
+ 160° 2′ - 89° 17′ 8.77 6.07 4.30 13.35 6.55 10.12 11.45 4.73 9.48 14.61 70° 45′ 8″ Prob. = 1.0	+ 89° 17' - 51° 1'	26.50	28.92	30.73	28.66	33.58	26.78	21°57	29.52	30.30	21.32	Prob. = 1.16
+ 160° 2' 8.77 6.07 4.30 13.35 6.55 10.12 11.45 4.73 9.48 14.61	XV & XVII	•	~	-	~	-	-	_	-	-	=	
+36.02 30.50 31.40 32.35 34.02 38.24 31.03 37.00 31.33	+ 160° 2′ - 89° 17′	8.77	6.07	4.30	13.35	6.22	10.15	11.45	4.73	9.48	14.61	Prob. = 1.00
	X VII & X VIII	+ 36.05	2	31.70	35,32		38:57	-	_	37,90	31,33	47° 50′ 58″·14

# At XVII (Gúrmi)

*November 1836; observed by Lieutenant Ommanney with Harris and Barrow's 15-inch Theodolite. †November 1842; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circ	le readii	ıgs, tel <b>s</b> ı	scope bei	ng set o	n XX				General Means
between	205°	25°	215°	35°	225°	45°	235°	<b>5</b> 5°	245°	65°	<b>2</b> 55°	75°	and Probabilities.
X X & R.M.	35,25	" 34°42	" 39°92	" 42.83	39°58	38°42	34.66	39:42	37°75	" 30°25	35°08	31:50	23° 14′ 36″·59
	104°	284°	116°	<b>2</b> 96°	128°	<b>3</b> 08°	140°	820°	152*	<b>8</b> 32°			
xx & xix	+36.72	39.65	-	37,32	39°57	36.28 14.18	38.86 7.63	36.43 13.62	43,92	32;35 16:20			65° 42′ 21″·17
+ 199° 56'	-10.43 -68.02	58.27	68.58	64.23	65.00	55.48	65.43	57.30	64.55 64.15	59.82			Prob. = 1.51
- 76° 29' - 57° 44'	18.54	30.06	14.89	19.89	23.60	24.84	25.80	12.21	22.28	16.33			
XIX & XVIII	68.05	58.27	68.28	64.53	65, 90	55,48	65,43	57:30	64.22	59.82			$57^{\circ}_{\text{Prob.}} = 2^{\circ}_{139}$
XVIII & XVI	10.43	11.32	13.53	12.90	10.02	14.18	7.63	13.62	17.12	16.30			76° 29′ 12″.70 Prob. = 0.87
* XVI & XV	52.28	52.90	50.30	56.65	54,65	54,43	46,55	56:47	47:10	56:58			$56^{\circ}$ II' $52''.79$ Prob. = 1.13

R.M. denotes Referring Mark. ‡ This value should be 26.62: the error was not detected until after completion of the calculations.

# At XVIII (Bhind)

November and December 1836; observed by Lieutenant Ommanney with Harris and Barrow's 15-inch Theodolite.

Angle			Circl	e reading	gs, teles	cope bei	ng set or	a XVI			G 136
between	0°	180°	12°	192°	24°	204°	86°	216°	48°	228	General Means and Probabilities.
XVI & XVII	" 52:40 2	55°7°	" 44°77	" 52:42	" 44:13	55°27	53°75	53.42	" 53.60	" 51:33	55° 39′ 51″.68 Prob. = 1.21
XVII & XIX	7:97	2 · 12	5°67	7:78	ъ 10.00	3,58	1 43	7 . 63	2.42	5.67	62° 47′ 5″.43 Prob. = 0.88

# At XIX (Athgath)

November 1840; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle between	291°	111°	301°	Circle 1	readings,	, telesco	pe being 821°	set on	XVIII	151°	841°	161°	General Means and Probabilities.
XVIII & XVII	51.08	50°17	53°92	49.00	" 49°,58		" 44.58	52:33	48°92	" 46°75	47:42	." 52.67	59° 27′ 49″'76 Prob. = 0.74
XVII & XX	23:17	28:42	23,25	24.67	25.58	21.08	26:33	19:17	21:58	18:17	26.67	29:25	$62^{\circ} 56' 23'' 94$ Prob. = 0.97
XX & XXI	8:17	5,58	3,42	7:08	3.17	13.75	4:75	11.83	11.33	13.83	6.25	3,42	$61^{\circ} 29' 7''.72$ Prob. = 1.11

# At XX (Panáhat)

November 1840; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle	reading	s, telesco	pe being	g set on	XXII				
between	85°	215°	45°	225°	55°	235°	65 <b>°</b>	245°	75°	255°	85°	265°	General Means and Probabilities.
XXII & XXI	45°92	45°25	43°50	" 45°91	" 41.00 2	40:75	" 44:50	" 44.42	" 40`42 8	# 46:00	″ 36.08	50:58	58° 26′ 43″.69 Prob. = 1.02
XXI & XIX	29,25	28:17	27:42	31.25	21.58	27.00 2	32.41	25.08	26°67	26.02	29.92	22.50	$42^{\circ} 54' 27'' 35$ Prob. = $0.89$
				Circle	reading	s, telesc	ope being	g set on	XIX				
XIX & XVII	166°	346°	176°	356°	186°	6°	196°	16°	206°	26°	216°	36°	
	14.58	12.33	11.75	13.92	17:17	20.00	18.75	15.67	15.00	12.75	9.92	14.25	51° 21′ 14″.67 Prob. = 0.81

# At XXI (Sherpur)

November 1840; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle	reading	gs, telesc	ope bein	g set on	XIX				General Means
between	0.	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	40°	220°	50°	<b>2</b> 30°	and Probabilities.
XIX & XX	28:83	" 25;75	23°75	" 26:50	24.83	17:00	21.92 21.93	28:50	27:50 27:50	29.67	" 24.92	28:16 28:16	75° 36′ 25″.61 Prob. = 0.98
XX & XXII	17.67	19.67	20.42	23:58	22:58	21.25	24,42	18:33	18.83	19.83	23:17	12.83	$58^{\circ}$ o' 20" 22 Prob. = 0.88
X X II & X X III	65.17	64.08	62,50	62.92	59,50	65,50	65:33	69:92	65.92	67:75	66:33	72;25	71° 28′ 5″.60 Prob. = 0.93

### At XXII (Firozabad)

November 1840; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle	readings	s, telesco	pe being	set on .	XXIV				General Means
between	1°	181°	11°	191°	21°	201°	31°	211°	41°	221°	51°	<b>2</b> 31°	and Probabilities.
XXIV & XXIII	21.83	" 22:42	25.83	" 18:75	25°92	" 16.83	23:00	23.83	" 24:75	21:50	· // 28:92	" 24:50	66° 30′ 23″·17 Prob. = 0·90
	118°	<b>2</b> 98°	128°	308°	138°	318°	148°	328°	158°	338°	168°	348°	
X X III & X X I	28.00	31.75	31.92	34,50	32:33	24 <u>.</u> 67	35,33	30:17	34.00	-32°58	53,42	31.08	50° 32′ 31″.65 Prob. = 0.82
XXI & XX	65.67	61:42	59.92	62:67	63:67	70.67	61.67	63:67	63:25	58:33	63.20	56.08	$63^{\circ} 33' 2'' 54$ Prob. = 1 o 1

### At XXIII (Baragaon)

November 1840; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle	reading	s, telesco	pe being	g set on	XXI				General Means
between	0.	180°	10°	190°	20°	<b>2</b> 00°	80°	210°	40°	<b>2</b> 20°	<b>5</b> 0°	<b>2</b> 30°	and Probabilities.
XXI & XXII	" 22.83	21:58	" 21:17	" 22:58	" 21.67	19:83	″ 25:00	" 24:17	26°33	" 19 <u>°</u> 67	19:17	" 23 [°] 33	57° 59′ 22′ 28 Prob. = 0.61
XXII & XXIV	21:50	22.33	21.25	19:17	23.00	19.67	20.75	23:33	17:58	30.20	18.58	19.25	$59^{\circ} 47' 21' 41$ Prob. = 0.93
XXIV & XXV	53,25	58.83	61.20	6ι·33	61.75	g1.08	55.92	53.83	57,42	51.84	65.00	64.25.	$62^{\circ} 54' 58'' \cdot 83$ Prob. = 1'21

### At XXIV (Pondri)

December 1840; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle	readings	, telesco	pe being	set on	XXVI				General Means
between	0.	180°	10°	190°	20°	200°	80°	<b>210°</b>	40°	220°	50°	230°	and Probabilities.
XXVI & XXV	" 50°42	" 45°50	49.00	55°92	. " 50°42	" 50°58	50°08	48.00 2	48:75	48:33	46.92	38.83	57° 55′ 48″.56 Prob. = 1.10
XXV & XXIII	34,92	32.75	31.17	30,25	33,42	36:33	28:75	44,50	33 2 17	34.58	26°58	42,42	53° 57′ 34″.°°7 Prob. = 1°43
XXIII & XXII	6.92	10.08	26°75	23.83	19,58	20.58	25.92	13,25	23:33	21,22	29,25	14.58	53° 42′ 20″.36 Prob. = 1.75

### At XXV (Kilármáo)

December 1840; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle 1	eadings,	, telesco	pe being	set on	IIIXX				General Means
between	00	180°	10°	190°	20°	200°	30°	210°	40°	<b>2</b> 20°	50°	<b>23</b> 0°	and Probabilities.
x x i i i & x x i v	" 34°42	" 29.25	33,42	" 29:75	" 29:75	25°33	" 30.67	27.58	26:17	.31.42	" 30:92	26:25 2	63° 7′ 29″·58 Prob. = 0·79
XXIV & XXVI	12:08	17:08	11.34	20.25	16.20	23,42	14.08	18.33	18,42	16.75	10:42	19.75	58° 53′ 16″.54 Prob. = 1.08
% IVXX IIVXX	18:17	12.67	15.75	15.28	16.28	10,20	17:58	17.83	13.92	13:34	18.08	13,33	54° 56′ 15″·28 Prob. = 0.69

# At XXVI (Salimpur)

January and March 1841; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle 1	eadings,	telescoj	pe being	set on X	XXVIII				General Means
between	0.	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	<b>2</b> 30°	and Probabilities.
XXVIII & XXVII	43,83	37:33	38:58	" 40:25	39.58	33 °67	34°58	40.00 2	" 37:75	41.50	35°25	38:25	80° 27′ 38″·38 Prob. = 0·81
XXVII & XXV	9,42	12.67	7,92	8:17	6°58	5;67	6.50	9,50	9.50	4.58	15.25	7:75	$49^{\circ} 20' 8'' \cdot 63$ Prob. = $0.82$
XXV & XXIV	49,58	50.33	61.17	53,00	52.25	55,75	60°25	58:42	59.00	54,42	57 233	53;25	$63^{\circ}$ 10' $55'''$ 40 Prob. = 1'07

### At XXVII (Jamálpur)

*March 1841; and †January 1843; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle	reading	s, telesc	ope being	g set on l	xxv				General Means
between	125°	305°	135°	815°	145°	325°	155°	835°	165°	845°	175°	855°	and Probabilities.
xxv&xxvi	37,50	33:33	" 32.92	" 32:08	" 29°67	33,00	38.50	41.58	" 43 92	" 43 • 92	" 41.25	" 39 [°] 83	75° 43′ 37″ ² 9 Prob. = 1°37
				Circle	readings	, telesco	pe being	set on 2	XXVI				
	71°	251°	81°	261°	91°	271°	101°	281°	111°	<b>291°</b>	121°	<b>3</b> 01°	. ·
XXVI & XXVIII	3.00	10.02	2:67	2,00	6.25	11.02	4:83	0.83	11.83	6.20	5,25	. 5, 33	48° 49′ 6″·19 Prob. = 1.00
				Circle	readings	, telesco	pe being	, g set on	XXVI				
•	72°	252°	82°	262°	92°	272°	102°	<b>2</b> 82°	112°	292°	122°	<b>3</b> 02°	
XXVIII &	+32:17	27°33	37°92 2°67	3°.75 5.00	32·42 6·25	32.42	25:08 4·83	32:08	28:08 11:83	30°25 6°50	20:83 5:25	28:42 5:33	35° 36′ 23″.62 Prob. = 1.72
+ 84° 25' - 48° 49'	29.17	16.41	35.5	25.75	26.17	20.20	20 25	31.52	16.52	23.75	15.28	23.09	

### At XXVIII (Sankráo)

*February 1841; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2. †February 1843; observed by Lieutenant T. Renny with Troughton and Simms' 18-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXXI												General Means and Probabilities.
	227 <b>°</b>	47°	237°	57°	247°	67° ı	257°	77°	267°	87°	277°	97°	
XXXI & XXX	22.08	19:17	18.00	" 20:25	22.08	" 19°42	" 24.42	" 20`58	" 24:50	23:17	" 24:50	" 21:33	58° 56′ 21″.63 Prob. = 0.61
x x x & x x i x	57.58	53, 33	54, 42	52.75	52.34	53.58	48.25	55,08	48.00	50,00	50.92	53 - 17	67° 27′ 52″·45 Prob. = 0·77
•	+46.83	48:59	52,08	44,42	47,25	48.92	50,33	48;08	48,50	54:67	48;00	50;33	
XXIX & XXVII	-15.83	16.67	16.75	18.52	15.75	20.92	-	20.33	16.52		16.52	18.52	60° 2′ 31″'31 Prob. = 0.78
+ 110° 45′ - 50° 43′	31.00	31.02	35.33	26.17	31.20	28.00	35.20	27.75	32.52	32.42	31.42	32.08	,,
XXVII & XXVI	15.83	16.67	16°75	18.25	15.75	20.92	14.83	20.33	16.25	22.25	16°25	18.25	50° 43′ 17″.69 Prob. = 0.65
	Circle readings, telescope being set on R. M.												
	280°	100°	290°	110°	800°	120°	810°	130°	320°	140°	<b>33</b> 0°	150°	
R.M. & X X X	40.50	40.50	43.00	42.17	41.02	39, 42	41.75	39.58	37,25	39.00	41.58	38:50	5° 44′ 40″.43 Prob. = 0.48

At XXIX (Sarsotha)

January 1843; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle between	00	180°	10°	Circle ro	eadings,	telescop	90 being	set on	X X V I I	220°	50°	230°	General Means and Probabilities.
XXVII & XXVIII	+27°92 +40°41	28:25 34:67	22°17 21°75	" 25,92 37,50	26:83 39:17	" 20:17 40:50	" 25:00 41:42	27;67 38;33	-	26:25 42:83	" 27:92 38:83	23.58 37.17	84° 21′ 4″.88 Prob. = 0.75
+ 24° 0′ + 60° 20′	68.33	62.92	63.92	63.42	66.00	60.67	66.42	66.00	64.33	69·08	66.75	60.75	,,
XXVIII & XXX	8.83	11.42	12.25	16.25	12.83	12.25	8:75	14,42	11.17	10.28	11.42	9.83	50° 59′ 11″.67 Prob. = 0.60
XXX & XXXII	27.58	25:33	29:58	20.17	24.58	21.42	24.50	25.08	26:33	20:58	25.67	27:08	57° 42′ 24″.83 Prob. = 0.79

### At XXX (Sakrora)

January and February 1843; observed by Mr. C. Murphy with Troughton and Simms' 18-inch
Theodolite No. 2.

Angle				Circle r	eadings,	telescop	e being	set on 2	x x viii				General Means
between	00	180°	10°	190°	20°	200°	30°	210°	40°	<b>2</b> 20°	50°	<b>2</b> 30°	and Probabilities.
XXXII &	" 59° 67	59°83	" 55 [.] 83	" 37:08	" 57° 58	52:83	" 59:00	57;42	" 54°92	53 ^{.6} 7	" 57 [°] 2 ⁹²	" 58·50	66° 33′ 57″ 02 Prob. = 0 63
XXXI & XXXIII	+ 107.92 - 59.67	-	-	-	-	-	-	-	-	-	-	-	7°° 5′ 49″·80
+ 136° 38′ - 66° 33′	48.25	49'42	50.20	50.34	46.34	49.20	20.03	48.08	55.16	55.20	49°25	44.33	Prob. = 0.38
XXXIII & XXXIV	52.50	50.42	50,42	48:17	54,33	51.67	55 267	55,25	51,42	53.08	51.17	55,58	$67^{\circ} 2' 52'' 47$ Prob. = 0.66
XXXIV & XXXII	4.33	12.25	8:17	12.92	8.00	8,08	1,28	7 33	7 92	9 . 33	9,17	8:17	50° 32′ 8″·10 Prob. = 0.84
XXXII &	+ 74°17 - 55°75	_	_	_	73°25	-	-	-	-	-	_	•	44° 12′ 16″·85
+ 105° 44' - 61° 32'	18.42	13.66	21.10	17:42	20.20	16.84	17.91	19.25	17.00	9.20	16.67	13.92	Prob. = 0.89
XXIX & XXVIII	55,75	56°17	53,92	54.08	53,25	61.08	54,92	52.67	53,58	58.92	55 83	59,50	61° 32′ 55″·81 Prob. = 0.75

#### At XXXI (Parauli)

February and March 1843; observed by Lieutenant T. Renny with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle r	eadings,	telescop	e being	set on 2	XXIII				General Means
between	. 0.	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	<b>40°</b>	220°	50°	230°	and Probabilities.
XXXIII &	59°58	58°33	57:08	52;75	57:17	52.83	,58°25	58.58	56°50	56°58	" 57 ² 5	56°33	56° 7′ 56″·77 Prob. = 0·58
XXX & XXVIII	35,92	35,50	39,75	40.17	36.25	42 . 42 8	37.83	41.83	40.58	39,17	37:50	38:33	54° 29′ 38″.77 Prob. = 0.63

#### At XXXII (Kariámái)

April 1843; observed by Lieutenant T. Renny with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle	readings	, telesco	pe being	set on 2	XXIX				General Means
between	0.0	180°	10°	190°	20°	20∪°	80°	<b>2</b> 10°	40°	220°	80°	230°	and Probabilities.
XXIX & XXX	+65°58	65:83	67;75 45:25	66:33 43.75	65;25 42:75	62:67 43:67	64:92 43:92	69:42 46:50	68:25 45:17	69:33 46:08	66:78 45:17	66°94 44°00	$78^{\circ}$ 5' 22"'27 Prob. = 0.39
+ 137° 55' - 59° 50'	24.66	21.19	22.20	22.28	22.20	19.00	21.00	22.92	23.08	23.52	21.01	22.94	
XXX & XXXIV	40.92	44, 67	45,25	43,75	42.75	43,67	43,92	46,50	45,17	46.08	45,17	44,00	$59^{\circ} 50' 44'' \cdot 32$ Prob. = 0.42

### At XXXIII (Rajauli)

† December 1842; observed by Mr. W. N. James with Cary's 15-inch Theodolite. *February 1843; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle between				Circle r	eadings,	telescop	e being	set on	x x x vı				General Means and Probabilities.
between	235°	55°	245°	65°	255°	75°	265°	. 85°	275°	95°	<b>2</b> 85°	105°	and Trobabilities.
	"	"	"	"	"	11	"	11	"	. ,,	"	"	
† XXXVI &	+ 101.00	100.13	106.66	103,12	104,05	110.73	106,08	105.91	100,03	104,77	105,13	108.08	0 4 04
XXXV	- 58.47.	54.22	71.89	65:48	64.87	66:27	62.91	69:48	75 42	68 258	72:05	77:05	55° 37′ 38″.07 Prob. = 1.48
+ 125° 21' - 69° 44'	43'43	45.00	34.77	37.67	39.18	44.46	44.07	36.43	30.01	36.19	33.08	31.03	
XXXV &	+ 118:47	114.55	131.89	125,48	124.87	126,27	122,01	129:48	135 42	128,58	132.05	137.05	
XXXIV	- 55,79		-	52.41	-	-	-	_	61:41	-			$63^{\circ} 6' 8'' \cdot 20$ Prob. = 1 · 19
+ 69° 43′ - 6° 38′	62.68	59.90	67.24	73.07	66.12	66.47	65.30	70.10	74.01	71.26	70.62	71.36	1100. — 1 19

				At :	XXXI	II (Ra	ijauli)-	—(Con	tinued	).			
Angle between	0°	180°	10°	Circle re	eadings,	telescop	e being a	set on Z	XXIV 40°	220°	50°	230°	General Means and Probabilities.
XXXIV &	25:00	23;25	30.58	30.92	30.92	26.08	33,50	32:08	27°33	29:00	25:50	" 34°42	50° 42′ 29″.05 Prob. = 0.99
XXX & XXXI	12,08	18.08	17:33	14.75	14.08	17.67	13.52	18.20	18:25	18.17	14.25	17:50	53° 46′ 16″.41 Prob. = 0.54

### At XXXIV (Mehtra)

*January 1843; observed by Mr. W. N. James with Cary's 15-inch Theodolite. †February 1843; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Angle between	0.	180°	10°	Circle 1	eadings	, telescop	pe being 80°	set on 210°	40°	220°	<b>5</b> 0°	<b>23</b> 0°	General Means and Probabilities.
**************************************	63°67	65°33	70:50	65.83	62:92	58°67	62:17	65.92	62:75	67:50	65:42	65 358	69° 37′ 4″·69 Prob. = 0·82
XXX & XXXIII	34°08	34,42	29,92	36°17	35°75	34,75	35.67	34,33	38.83	38:25	38:42	32.67	62° 14′ 35″·27 Prob. = 0.70
			_	Circle r	readings	, telescop	e being	set on X	XXIII				
	0.	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	280°	
* XXXIII &	+46.27	51,95	40.52	48:32	43.20	48.52	40:57	44,52	46.21	48.88	35:30	48:53	59° 54′ 6″·13
XXXV	-39°54	39,23	37:60	43,74	39°74	45,15	36.77	39.01	36.61	41.83	34.87	34,49	$59^{\circ} 54^{\circ} 6^{\circ} 13$
+89° 33′ -29° 39′	6.43	12.72	2.92	4.28	3.46	3.37	3.80	4.61	9.90	7:05	0.43	14.04	
* XXXV &	+39:54	39,23	37:60	43,74	39:74	45,15	36:77	30,01	36.61	41.83	34.87	34,49	
XXXVII	+55.21	54.64	55,07	53.31	56°74	57:03	49.62	58:17	57.00	46.96	61.92	49.20	$58^{\circ} 29' 33''.70$ Prob. = 1.44
+ 29° 39′ + 28° 49′	94.75	93.87	92.67	97:05	96.48	103.18	86.39	98.08	93.61	88.79	96.49	83.69	

#### At XXXV (Bánsgopál)

January and February 1843; observed by Mr. W. N. James with Cary's 15-inch Theodolite.

Angle			(	Circle rea	adings, t	elescope	being s	et on X	XXVII				General Means
between	35°	215°	45°	225°	55°	235°	65°	245°	75°	<b>2</b> 55°	85°	<b>265°</b>	and Probabilities.
	"	"	"	"	"	"	"	"	"	"	"	"	•
XXXVII &	+57,97	54, 25	49.87	47, 89	56.23	57, 52	52°10	50.22	51.36	47, 95	43,40	21,00	54° 48′ 33″·43
XXXIV	-23.60	24.89	20.85	16.67	24.32	16.78	25.92	12.88	17.28	10.45	16.80	8.10	Prob. = 1.47
+ 90° 10′ - 35° 22′	34.37	29.36	29.02	31.53	32.31	40.4	26.18	37.64	34.08	37.23	26.60	42.20	

# At XXXV (Bánsgopál)—(Continued).

Angle				Circle 1	eadings,	telescop	e being	set on X	XXVII				General Means
between	85°	215°	45°	<b>22</b> 5°	55°	235°	65°	<b>24</b> 5°	75°	255°	85°	<b>2</b> 65°	and Probabilities.
	"	11	"	"	"	"	"	<i>II</i>	ıř	"	"	"	
XXXIV &	100.2	7 106.75	•	-	•	102-10	105.12	97.88	99.88	92,14	103.04	2	56° 59′ 50″•01
XXXIII	- 57.9%	7 54.25	49,87	47.89	56.53	57,52	52°10	50.52	21,36	47,95	43,40	21.60	Prop. = 1.31
+ 147° 9′ - 90° 10′	50 30	52.20	48.07	53.16	55.36	44.66	53.02	47:36	48.52	44.19	59.64	44.43	
XXXIII &	+ 72,5	73 85	62.68	71.14	74,59	72.25	74,29	68:45	73 22	65 82	g1.00	64:59	
XXXVI	- 48:27	46.75	37,94	-	•	-	-	•	_	_	43 04	-	63° 56′ 27″.85
+211° 6' -147° 10'	24.57	4 27.10	24.74	31.00	22.80	30.02	29.17	30.22	33.34	33.68	18.86	28.26	Prob. = 1.23
XXXVI &	+ 20.43	29.07	16.54	20.30	27:12	19.32	24°79	15.02	22.68	10,08	13.56	15.25	
XXXVIII	- 12.51	13.85	2.68	11.14	14.59	12.25	14.29	8:45	13.22	5.82	1.89	4;59	54° 44′ 9″.91 Prob. = 0.88
+265° 51' -211° 7'	7:92	15.55	13.86	9.16	12.23	7:07	10.20	6.57	9.46	4.50	11.67	10.66	1100. = 0 66
XXXVIII &	+ 53.87	7 58,69	50,00	53 57	55,65	53,90	55,78	20.01	52 62	49,02	49 53	48.51	
XXXIX	- 20:43	3 29.07	16.54	20.30	27:12	19.32	24.79	-		10.08		15.25	59° 27′ 33″.08
+325° 18′ -265° 51′	33.44	29.62	33.46	33.52	28.23	34.28	30.00	34.99	29.94	38.04	35`97	33.56	Prob. = 0.82
XXXIX &	+ 83.60	84,89	80,85	76:67	84:32	76:78	85.92	72:88	77:28	70,72	76.80	69:10	
XXXVII	- 53,87	58.49	50,00	53,57	55,65	53,90	55.78	20,01		49:02	49,53	48.51	70° 3′ 25″ 72
+ 35° 21' -325° 18'	20.73	26.50	30.85	23.10	28.67	22.88	30.14	22.87	24.66	21.70	27.27	20.20	Prob. = 0.99

## At XXXVI (Chandanpur)

March 1843; observed by Lieutenant T. Renny with Troughton and Simms' 18-inch Theodolite No. 2.

Angle				Circle r	eadings,	telescop	e being	set on 3	XXXVI	II			General Means
between	0°	180°	10°	190°	20°	200°	80°	210°	40°	220°	<b>5</b> 0°	<b>23</b> 0°	and Probabilities.
XXXVIII & XXXV	и 64°17	″ 60:58	" 64.92	" 63°25	64.50	" 59°25	" 62:33	63 92	62:17	64.93	" 66:42	62:67	63° 27′ 3″·26 Prob. = 0·55
XXXV & XXXIII	52.58	′58°08	55, 25	55, 42	52,50	55, 66	53°67	54°75	56.50	52.67	53,92	57°25	60° 25′ 54″.85 Prob. = 0.51

At XXXVII (Barauli)

April 1843; observed by Mr. W. N. James with Cary's 15-inch Theodolite.

Angle				Circle r	eadings,	telescop	e being	set on 2	VIXXX				General Means
between	00	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	4()°	<b>220°</b>	50°	<b>23</b> 0°	and Probabilities.
XXXIV & XXXV	+73°92 -61°57	73°07 68°59	" 65 <u>'</u> 53 58 <u>'</u> 98	" 69° 59 74° 05	55;77 57;50	65;27 68:11	61.57 58.39	68:24 65:34	57°45 56°22	66.74 61.93	58;32 56;78	68.82 2.65.85	66° 42′ 3″•42 Prob. = 1·25
+ 161° 53′ - 95° 11′	72.35	64.48	66.22	55.24	68.27	57.16	63.18	62.90	61.53	64.81	61.24	62.97	
XXXV & XXXIX	+61:57	68:59 23:82	58:98 13:84		57°50	68:11		65 · 34 18 · 67		61.93 18.85	56:78 4:78	65 . 85 15 . 88	48° 55′ 47″ 54
+ 95° 11' - 46° 16'	48.32	44.77	45.14	57 · 18	45.21	47.76	49.85	46.67	40.52	43.08	52.00	49.97	Prob. = 1.22

## At XXXVIII (Kandarki)

March 1843; observed by Mr. G. Logan with Cary's 15-inch Theodolite.

Angle				Circle	reading	s, telesco	pe being	set on	XLI				General Means
between	830°	150°	840°	160°	<b>3</b> 50°	170°	00	180°	10°	190°	20°	200°	and Probabilities.
XLI &	+ 108:22 - 45:20	3	38:15 38:15	2	" 107:45 34:57	~ _	•	" 100°26 40°58	-	-	-	" 105°52 40°94	58° 50′ 0″.81 Prob. = 1.85
+ 28° 23′ -329° 34′	63.03	52.85	65.73	54.03	72.88	48.00	60.58	59.68	59°47	64.65	6455	64.28	
XL & XXXIX	+68:77 -48:22	2	73;68 43;88	-	_	-	60:84 33:90	-	-	-	63°25 38°60	73°75 45°52	63° 45′ 28″ 96
+ 92° 9′ - 28° 24′	20.22	36.43	29.80	29.82	31,13	38.05	26.94	32.57	33.20	25.23	24.65	28.53	Prob. = 1.55
XXXIX & XXXV	+78:93 - 8:77	•	79°97 13°68	77°252 7°287	-	70°98 11°83	-	76°15	69:73 9:70	78°43 9°68	75°28 3°25	74,60 13,75	52° 33′ 6″·41
+ 144° 42′ - 92° 10′	70.16	63.42	66.59	69.65	72.61	59.15	70.69	63.32	60.03	68.75	72.03	60.85	Prob. = 1.35
XXXV & XXXVI	+70.63 -18.93	68;55 12;57	67:07 19:97	-	_	¥	58.80 11.52	2	64°46 9°73	•	63;85 15;28	67:23 14:60	61° 48′ 50″·52
+ 206° 31' - 144° 43'	51.40	55.08	47.10	47.40	44.29	56.29	47 · 28	21.92	54.73	47.77	48.57	52.63	Prob. = 1.09

At XXXIX (Atora)

March 1843; observed by Mr. W. N. James with Cary's 15-inch Theodolite.

Angle			(	Circle re	adings,	telescope	being s	et on X	XXVII				General Means
between	00	180°	10°	190°	<b>2</b> 0°	200°	80°	<b>2</b> 10°	40°	220°	50°	280°	and Probabilities.
XXXVII & XXXV	38.71	# 48:90	33:20	48:48	" 32.52	" 43°40	38:75	" 44.03	34:10	38:75	" 29:95	42°16	61° o' 39"·41 Prob. = 1·71
XXXV & XXXVIII	24°55	25°43	24°65	19.89	26.99	17:78	30.80	25°45	22.09	26°34	² 7;47	21.10	67° 59′ 24″·38 Prob. = 1.00
XXXVIII&XL	4,11	2:27	9,86	5,77	10.87	15,90	1,00	7:69	12.58	9,32	2,10	9°87	64° 26′ 7″.84 Prob. = 1.20
XL & XLII	. 28:38	²² .74	25°65	26°12	19,11	25,09	27°65	. 15.82	28:57	20.30	35°85	23,29	46° 52′ 24″.88 Prob. = 1.44

### At XL (Sirsa)

February, April and May 1843; observed by Mr. W. N. James with Cary's 15-inch Theodolite.

Angle				Circle	reading	s, telesco	pe bein	g set on	<b>R.M</b> .				General Means
between	00	180°	· 10°	190°	20°	200°	80°	210°	40°	<b>220°</b>	50°	<b>23</b> 0°	and Probabilities.
R.M. &	" 43°54	″ 45°61	41:35	" 43°32	" 43°55	42:57	" 42.18	43.68	41°17	41.66 8	38°40	39°.88	31° 40′ 42″·24
XLIII	47,22	42,40	44,06	46.31	43 65	44.68	42.86	44 275	39,04	47,56	44,38	<b>42</b> 94	31° 40′ 44″·15
XLIII & XLIV	+82:30 -43:54	8	78:02 41:35	7+;35 43;32	-	84.87 42.57	77,85 42,18	79;83 43;68	80°17 9. 41°17		73°25 38°40	78:87 39:88	58° 19′ 37″·11 Prob. = 0.80
+89° 59′ -31° 40′	38.76	36.89	36.67	31.03	39.84	42.30	35.67	36.12	39.00	35.55	34.85	38.99	
XLIV &	+73;22 -22;30	76:25 22:50	71.36 18.02	68:34	73.07	-	74°06 17°85	70.02	72.67	68.52 3 16.88	66:33	64:35 18:87	65° 23′ 51″·17 Prob. = 1·02
+ 155° 23' - 90° 0'	50.03	53.75	53.34	53.99	49.68	43.51	£6.51	20.10	52.20	51.64	53.08	45.48	
XXXIX	+33.41	30°57 16°25	34.00 11.36	22°44 8°34	36.64 13.07	28:45 8:08	39°15	24.07 20.02	29°52 12°67	26:57 8:52	28:55 6:33	24:42 4:35	65° 30′ 19″'29 Prob. = 1.06
+220° 54′ -155° 24′	20'19	14.32	22.64	14.10	23.27	20:37	25:09	14.05	16.85	18.05	23.33	20.07	1100. — 1 33
XXXIX & XXXVIII	+63:37	63:23 30:57	34.00 34.00	52:20 22:44	68:74 36:64	60 07	-	57°7° 24°07	55°01	45°36 26°57	61.40 28.55	54°10 °24°42	51° 48′ 28″ 91
+272° 42′ -220° 54′	29.96	32.66	27.70	29.76	32.10	31.62	22.63	33.63	25.49	18.40	32.85	29.68	Prob. = 1'26

R.M. denotes Referring Mark.

Angle					Circle	reading	s, telesc	ope bein	g set on	R.M.				General Means
between		<b>0°</b>	180°	10°	190°	<b>2</b> 0°	200°	<b>3</b> 0°	210°	<b>40°</b>	220°	80°	230°	and Probabilities,
	Ī.	"	"	"	n	"	"	,,	<i>n</i>	"	"	<i>"</i>	"	
XXVIII &	+	103,24	105.01	101,32	103,33	103.25	102,57	103,18	103.08	101,14	101.66	98:40	99.88	
XLI	-	63,37	63:23	61.40	52 20	68:74	60,07	61.78	57,70	55,01	45 36	61.40	24,10	54° 31′ 10″·3
+ 31° 39′	-	33.52	30.42	35.18	35.20	29.05	30.23	29.56	33 27	26.37	40.11	35.68	39.53	Prob. = 1.21
-272° 42′ - 64° 26′		6.90	11.06	4.47	15.62	5.46	11.97	11.14	12.21	19'79	16.19	1.32	6.22	
LI & XLIII	+	46,05	48:02	21,13	49,19	45 40	45.85	46:40	48.52	47 33	52 354	21,40	56.29	
	+	47,22	42 ['] 40	44.06	46.31		_	42.86			-	44.28	42 94 8	$64^{\circ} 26' 33'' \cdot 1$ Prob. = 1 · 16
+32° 45′ +31° 40′		03.52	00,43	02.18	04.40	80.02	90.23	80.26	93.57	86:37	100.10	95.68	99.53	1100. — 1 10

At XLI (Lút)

March 1843; observed by Mr. G. Logan with Cary's 15-inch Theodolite.

Angle				Circle	reading	s, telesc	ope bei	ng set or	XLIII				General Means
between	811°	181°	821°	141*	881°	151°	841°	161°	351°	171°	1°	181°	and Probabilities.
XLIII & XL	+ 71:35 - 48:88	2	69:95 47:28	80;82 63;05	68:62 42:72	85;85 58;54	66:60 41:75	" 94:68 72:90	68.88 9 42.10	77 25° 60 52	" 7°:77 46:28	78;02 56;90	56° 19′ 22″·82 Prob. = 0·90
+ 7° 3′ -310° 44′	22:47	21.77	22.67	17.77	25.90	27.31	24.85	21.48	26.78	16.98	24.49	21.13	
XL & XXXVIII	+ 57°27	8	61.87 9.95	64.02 20.82	53;35 8:62	62:40 25:85	50°35	67:70 34:68	49 °00 8 88 8	63.78	52:40 10:77	68·45 18·02	66° 38′ 43″ 53
+73° 42′ - 7° 4′	45'92	44:82	21.03	43.30	44.73	36.22	43 75	33.03	40.13	46.38	41.63	50.43	Prob. = 1.47

At XLII (Bhatauli)

March 1843; observed by Mr. W. N. James with Cary's 15-inch Theodolite.

Angle				Circle re	adings,	telescop	e being	set on J	XXXIX				General Means
between	292°	112*	802°	122°	312°	132°	<b>322°</b>	142°	832°	152°	842°	162°	and Probabilities.
XXXIX & XL	" 4:43	" 2.75	9.50	" 8:50	" 5 °94	" 15.67	" 0.67	12.72	" 4°75	18:58 8	13.79	" 15°24	67° 37′ 9″·38 Prob. = 1·60
XL & XLIV	52.65	57°21	45,13	52.80	49,05	53,78	53.82	48.03	48.82	20.00	49, 10	48.72	63° 44′ 50″·76 Prob. = 0·92

R.M. denotes Referring Mark.

#### At XLIII (Milik) March 1843; observed by Mr. G. Logan with Cary's 15-inch Theodolite. Circle readings, telescope being set on XLVI Angle between General Means and Probabilities. 2820 102° 1120 132° 822° 142° 152° +95, 62 104, 07 83, 83 93, 95 87, 59 89, 45 87, 32 89, 02 86, 32 90, 08 85, 95 92, 53 XLVI & 62° 57′ 44″·78 XLV -46,07 51,42 45,35 45,83 43,43 44,97 40,34 49,07 38,05 50,27 36,12 57,45 Prob. = 1.49 +344° 58′ -282° 1′ 49.55 52.65 38.48 48.07 44.16 44.48 46.98 39.95 48.27 39.81 49.83 35.08 +48 63 46 98 46 45 47 15 43 98 37 82 39 50 47 08 41 28 45 60 36 13 51 58 XLV & XLIV -35°62 44°07 23°83 33°95 27°59 29°45 27°32 29°02 26°32 30°08 25°95 32°53 60° 14′ 13″.87 Prob. = 1'44 + 45° 13′ -344° 59′ 13.01 3.01 23.62 13.30 16.30 8.34 13.18 18.00 14.00 12.25 10.18 10.02 +85,73 93,23 88,05 91,83 87,64 88,87 84,75 88,20 85,12 88,93 84,70 93,12 XLIV & 61° 6′ 44″•00 XL-48°63 46°98 46°45 47°15 43°98 37°82 39°50 47°08 41°28 45°60 36°13 51°58 Prob. = 1.01+ 106° 19′ - 45° 13′ 37.10 46.25 41.60 44.68 43.66 51.05 45.25 41.12 43.84 43.33 48.57 41.54 +102,35 102,82 94,72 97,05 81,17 98,10 94,20 103,23 89,77 98,27 92,58 96,08 XL & XLI 59° 14′ 7″.51 · 25,73 33,23 28,05 31,83 27,64 28,87 24,75 28,20 25,12 28,93 24,70 33,12 Prob. = 1.63+ 165° 33' - 106° 20' 76.62 69.59 66.67 65.22 53.53 69.23 69.45 75.03 64.65 69.34 67.88 62.96 At XLIV (Akbarpur) December 1842; observed by Mr. G. Logan with Cary's 15-inch Theodolite. Circle readings, telescope being set on XLII General Means Angle and Probabilities. between 208° 28° 218° 258° 78° +68:37 64:32 72:23 70:63 73:17 69:62 75:23 73:75 77:75 72:77 72:33 69:25 XLII & XL -44°50 44°25 43°17 48°48 44°57 46°27 43°57 47°27 47°68 47°03 55°48 41°05 50° 51′ 25″ 51 Prob. = 1.31 + 152° 13' - 101° 22' 23.87 20.07 29.06 22.15 28.60 23.35 31.66 26.48 30.07 25.74 16.85 28.20 +44,50 44,25 43,17 48,48 44,57 46,27 43,57 47,27 47,68 47,03 55,48 41,05 XL & XLIII 6.73 11.28 6.85 9.62 12.33 9,63 60° 33′ 36″ 74 9:17 11:97 5,95 15,92 9:27 Prob. = 1.20 + 101° 22' 44.08 37.23 31.20 41.63 35.30 37.10 31.60 37.62 32.36 41.08 39.26 31.42 - 40° 40′

^{*} This value should be 48.12: the error was not detected until after completion of the calculations.

At XLIV (Akbarpur)—(Conta	inued).
---------------------------	---------

Angle					Circle	reading	s, telesco	ope being	g set on	XLII				General Means
between		208°	<b>2</b> 8°	218°	38°	<b>2</b> 28°	48°	288°	58°	248°	68°	258°	78°	and Probabilities.
	Ť	"	"	"	"	"	"	"	"	"	11.	"	"	
LIII &	+	0.42	6.73	11.28	6.85	9;27	9,17	11.97	9,65	15:32	5 395	15.92	9,63	6.0 -1 011.
XLV	+	59 ^{.6} 7	go.12	58.80	58:37	91.18	59°55	бо <u>°</u> 42	57,22	58:42	57,88	58,55	62.62	$65^{\circ}  1'  8'' \cdot 2^{\circ}$ $Prob. = 1 \cdot 2^{\circ}$
- 40° 49′ - 24° 11′		60.09	66.88	70.38	65.22	70.45	68.72	72.39	66.87	73.74	63.83	74.47	72.25	
XLV &	+	121,33	129.03	118,45	123.30	117.67	120.72	119.32	122,38	116,70	122.68	116,35	123.03	
XLVII	-	59.67	go.12	58.80	58:37	g1.18	59,55	бо [°] 42	57 22	58.42	57.88	58:55	62.62	$56^{\circ} 29' 1'''$ Prob. = 1.02
- 80° 39′ - 24° 11′		61.26	68.88	50.65	64.03	56.40	61.14	58.00	65.16	58.58	64.80	57.80	61.31	

## At XLV (Sarkára)

January and March 1843; observed by Mr. G. Logan with Cary's 15-inch Theodolite.

Angle between	'	38°	01.00	408		reading	s, telesco					008	200	General Means and Probabilities.
	<u> </u>		218°	48°	228°	- 58°	238°	68°	248°	78°	258°	88°	268°	
XLVIII &	+ 9	2	101,43	-	-	•	100.32		3	×	107.85	×	102.08	81° 40′ 59″·58
	-4	1,23	46 <u>°</u> 58	40,37	41,37	39,12	41.58	34.03	40.68	31,13	43.20	35,00	48.03	Prob. = 1.10
+119° 8′ - 37° 28′	5	5 [.] 64	54 [.] 85	57.08	60.21	63.48	58.74	63.65	55.75	65.15	64.65	60.33	54.95	
XLVII &	+ 8	5 <u>°</u> 38	86.83	88.20	92:75	84.93	91.22	82:18	93.83	76.62	93:87	81,35	95 97	#0° 0' 15"10 6
XLIV	<b>-</b> 3	7,17	41.43	37,45	41.88	42.90	40.32	37°68	36:43	36.58	47. 85	35.23	42.98	$70^{\circ} 2' 47'' 96$ Prob. = 1.34
+ 189° 11' - 119° 9'	4	8.31	45.40	50.12	50.87	42.03	20.00	44.20	57:40	40.34	46.03	46.13	52.99	1100. — 1 34
XLIV &	+ 6	9.3 I	71.00	69:75	71.72	96.10	74,50	67:45	74.88	66 03	76:42	62:65	70.62	
XLIII	- 2	5.38	26 [.] 83	28.20	32.75	24°93	31.22	22:18	33.83	16.62	33,87	21:35	35 97	54° 44′ 42″°28
+243° 56′ -189° 12′	4	13.63	44'17	41.22	38.97	41.12	43.58	45°27	41.05	49.41	42.22	41.30	34.65	Prob. = 0.99
XLIII &	+ .	19,75	58.92	53.08	55,33	20,99	60,85	52,47	60.03	47:48	65.88	45, 18	59:75	
LXVI	-	8.31	8 11.00	9:75	11.72	8 6.10	14.20	7:45	14.88	6.03	16.42	2.65	10.63	65° 7′ 45″ 02
+309° 4′ -243° 57′	4	to.44	47.92	43.33	43.61	44.89	46.35	45.03	46.05	41.45	49:46	42.23	49.13	Prob. = 0.81

## At XLV (Sarkára)—(Continued).

Angle				Circle r	eadings,	telescop	e being	set on 1	KLVIII				General Means
between	38°	218°	48°	228°	58°	238°	68°	248° .	78°	258°	88°	268°	and Probabilities.
XLVI &	+ 101.53 - 49.75	58.92 58.92	×	. " 101:37 55:33		60.85 60.85		100.68 60.93		103:20 65:88	95.00 45.18	" 108:03 59:75	88° 23′ 45″·17 Prob. = 1·24
+ 37° 27' -3°9° 4'	51 78	47.66	47.29	46.04	48.13	40.73	41.26	39.75	43.65	37.32	49.82	48.58	

## At XLVI (Haldaur)

March 1843; observed by Mr. G. Logan with Cary's 15-inch Theodolite.

Angle					Circle r	eadings,	telescop	e being s	et on X	LVIII•	_			General Means
between		299°	119°	809°	129°	819°	139°	329°	149°	839°	159°	849°	<b>16</b> 9°	and Probabilities.
XLVIII• &		61.77 29.30	59:38 26:53	" 62°95 25°52	70°60 35°70	63:12 30:78	66.65 32.82	2	2	и бт:48 21:20 8	31°55	60°50 19°67	70°15 36°03	56° o' 35"'42 Prob. = 0.93
+354° 50′ -298° 50′		32.47	32.85	37.43	34.90	32.34	33.83	40.14	34.20	40.58	31.40	40.83	34.13	
LII & XLVIII		132.05 61.77		-	_	-	<del>-</del> :	124°00 61°07	-	-	_	-	138.67 70:15	57° 57′ 5″°17 Prob. = 1°94
+ 52° 46' -354° 50'		70.58	81.44	68:57	54.08	64.96	64.92	62.93	56.43	62.94	66.13	60.23	68.22	1100. = 1 94
XLVIII & XLV	ŀ	44.30 12.05	•	36.90 11.52	44.20 4.68	•	45°12 11°57	36.33 4.00	49°20 8°68	38.73 4.42	35°27 9°08	35°12	43 °92 18 °67	60° 33′ 31″·14 Prob. = 1·88
+113° 21' - 52° 48'		32.52	16.31	25.38	39.22	34.13	33.55	32.33	40.2	34.31	26.19	34.09	25.5	1100. — 1 00
XLV & XLIII	l	73.93 44.30	68.82 37.03	73°42 36°90	75°62 44°20	70°38	74°13 8 45°12	. •	78:88 49:20	66.87 38.73	75°92 35°27	59°555 35°12	76°52 43°92	51° 54′ 30″•72
+ 165° 15' - 113° 21'	_	29.63	31.49	36.22	31.42	28.18	29.01	26.24	29.68	28.14	40.65	24.43	32.60	Prob. = 1.22

Note.—XLVIII* and LII appertain to Great Arc Meridional Series, Section 24° to 30°.

At XLVII (Nandi)

December 1842 and January 1843; observed by Mr. G. Logan with Cary's 15-inch Theodolite.

Angle					Circle	readings	, telesco	pe being	set on	XLIV				General Means
between		335°	155°	345°	165°	855°	175°	5●	185°	15°	195°	25●	<b>2</b> 05°	and Probabilities.
XLIV &		" 52,77 27,36	37.61 33.06	" 49° 55 24° 75	" 41.05 31.38	50.83 28.60	45;38 26;58	56:12 18:50	48.28 21.43	48:37 16:62	52;32 32;27	" 59:10 16:42	46.60 27.00	53° 28′ 13″ 50 Prob. = 1 79
+ 25° 4' + 28° 23'		80.13	60.67	74.30	72.43	79.43	71.96	74.62	69.71	64.99	84.59	75.2	73.60	
XLV & XLVIII	+		65.58 23.06	62:93 24:75	31,38 31,38	57, 23 28, 60	66:88 8 26:58	56.1. 18.50	68.00 21.43	60.85 16.62	63°22 32°27	16,42 61,89	68.22	69° 13′ 39″·54 Prob. = 1·49
+ 97° 36' - 28° 23'		38.79	42.52	38.18	39.33	28.63	40.30	37-67	46.27	44.53	30, 95	45.47	41.55	1100. — 1 49

## At XLVIII (Harpálsid)

January 1843; observed by Mr. G. Logan with Cary's 15-inch Theodolite.

Angle					Circle	reading	s, telesc	ope being	g set on	XLVII				General Means
between	Ì	. 288°	108°	298°	118°	308°	128°	318°	138°	<b>328</b> °	148°	338°	158°	and Probabilities.
XLVII &		38°35	38·25 2 16·63	41.68 3 19.32	" 42:97 14:03	#6-07 26:30	32:18 9:05	53°93 28°70	" 40°27 18°37	46-17 24-97	" 43 53 21 68	" 50-30 27-58	36.82 2 16.37	29° 5′ 22″·33 Prob. = 0.74
+ 71° 54' - 42° 49'		18-77	31.63	22.36	28.94	19.77	23.13	25.33	31.00	21 - 20	21.85	22.72	20.45	
XLV &		79°58 35°72	76.63 25.08	-	-	-	-	88:70 35:17	-	84:97 34:40	81.68 833.23	_	76-37 27:77	31° 2' 48"'32 Prob. = 1'47
+ 42° 48′ - 11° 46′		43 86	51.22	43.24	46.51	45.48	37.60	53.23	56.50	50-57	48.45	54.58	48.60	2100 1 4,
XLVI & LII	i	•	25.08 61.30	35°78 58°42				35°17 55°13				-	-	32° 54′ 29″ 92
+ 11° 46′ + 21° 7′		91.30	86.38	94.50	87.67	100.77	95.18	90.30	78.53	88.20	87.83	88.10	90.22	Prob. = 1.52
LII & I	1		д 112.98					103°13		-	_	-	<del>-</del>	91° 57′ 48″.61 Prob. = 1.26
+ 113° 4' - 21° 7'		49.67	51.68	42.43	50.43	44.67	40.65	48.03	47.80	55.73	47.82	55.17	48.98	1100. — 1 20

Note 1.—LII appertains to Great Arc Meridional Series, Section 24° to 30°.

2.—I appertains to North-East Longitudinal Series.

#### At XLVIII* (Sheopuri)

February 1843; observed by Mr. G. Logan with Cary's 15-inch Theodolite.

Angle				Circle	reading	s, telesc	ope bein	g set on	LII				General Means
betwe <b>e</b> n	50°	<b>23</b> 0°	<b>6</b> 0°	240°	70°	<b>2</b> 50°	80°	<b>2</b> 60°	90°	270°	100°	<b>2</b> 80°	and Probabilities.
LII & XLVI	43.64	56:35	" 48:45	55.82	" 52°55	50°37	36.18	52°05	53°25	45°55	" 49°27	45:32	63° 6′ 50″.73 Prob. = 1.21

#### At LII (Mahesari)

January, February and March 1843; observed by Mr. G. Logan with Cary's 15-inch Theodolite.

Angle				Circ	le <b>read</b> ir	gs, teles	scope bei	ng set o	n I				General Means
between	15°	195°	25°	205°	85°	215°	45°	<b>2</b> 25°	55°	285°	65°	245°	and Probabilities.
I & XLVIII	+58.92 -13.18	3,10 3,10	56.77 8-62	50°95 0°67	49;50 4;52	46°08 3°45	48:37 5:60	" 52:50 4:23	48:47 0:98	54.67 2.17	46:35 2:10	59°27 1°97	30° 0′ 47″.68 Prob. = 1.17
+44° 43′ -14° 43′	45.74	47.80	48.12	50.58	44.08	42.63	42.77	48.27	47.49	52.50	44.5	57.30	,
XLVIII & XLVI	+91°25	74°27 50°90	87:71 56:77	72°27 50°95	90°23 49°50	70°20 46°08	86°02 48°37	75;3° 52;5°	79;83 48;47	77:62 54:67	83°,55 46°,35	81°10 59°27	89° 8′ 28″ 88 Prob. = 1°94
+ 133° 51' - 44° 43'	32.33	23.37	30.94	21.32	40.43	34.13	37.65	22.80	31.36	22.95	37.30	21.83	1100. — 1 94
XLVII.	+58.75 -31.25	55;75 14;27	56:43 27:71	57;33 12:27	52:18 30:23	57:40 10:20	53°05 26°02	60°57 15°30	52°75 19°83	57:10 17:62	52;40 23;55	60,28	60° 52′ 35″.41 Prob. = 2.37
+ 194° 44′ 133° 52′	27.50	41.48	28.72	45.05	21.95	47.20	27.03	45.57	32.92	39.48	28.85	39.48	22021 - 2 37

#### At I (Mábegarh)

November 1842; observed by Captain J. S. Du'Vernet with Saiyad Mir Mohsin's 18-inch Theodolite.

Angle between				Circle r	eadings	and tele	всоре ве	tting u	aknowa					neral Means Probabilities.
XLVIII &	19.60	19:85	30, 10 11	" 23:39	27:70	17:93	" 22.07	" 22.03	26.68 2	. " 24,53	" 29.77	" 23.55	58° Pro	1' 23"·10 b. = 0.99

Note 1.—XLVIII* and LII appertain to Great Arc Meridional Series, Section 24° to 30°.
2.—I appertains to North-East Longitudinal Series.

**M**ay 1877.

J. B. N. HENNESSEY, In charge of Computing Office.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 1.

	Obser	ved	Angles					Equa	tions to l	e satisfi	ied			Factor
No.	v	alue	3	Beciprocal Weight— (Probability) ²		X ₁ X ₄ X ₇ X ₁₀ X ₁₈	+ x ₂ + x ₆ + x ₈ + x ₁₁ + x ₁₆	-	+ + + +	X ₈ X ₆ X ₉ X ₁₂ X ₁₅		$e_1 =  e_3 =  e_3 = +$ $e_4 =  e_5 = -$	1·69, 7·26, 3·94,	$egin{array}{c} \lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4 \ \lambda_5 \end{array}$
1 2 3	66 I	6 2	32·57 17·57	1·88 2·27 2·33	-1· +	x ₁₆ +x ₄ +x ₅ 42x ₈	+ x ₁	7 0 + 1	+ *43 + *85 + 1 *67	x ₁₈ x ₁₆ ;x ₆ ;x ₈	=	$e_{6} = + e_{7} = + $ $e_{8} = -$	o·90, o·23,	λ ₆ λ ₇ λ ₈
4 5 6	40 5	58 18	32·04 6·56 23·36	o·69 o·98 2·04			E	quation	as betwee	en the fa	actors			
7 8 9	49 3 <b>5</b> 4	7	35.63 6.19 27.93	1·94 2·12 1·57 2·85	No. of	Value of e	$\lambda_1$	λ	· \(\lambda_8\)	Co-eff	ficients	of λ ₆	λη	λ ₈
10 11 12 13 14 15 16	46 3 73 3 43 4 105 2	33 33 41 25 52 8	59.97 6.35 51.32 57.17 24.75 39.25 22.85	2·05 2·17 0·77 0·27 0·84 1·50 1·20	1 2 3 4 5 6	- 2.66 - 1.69 + 7.26 - 3.94 - 0.62 + 0.90	+6.48	+3.71	+5.63	+5.79	+2.61	+4.19	+1.88 +0.69 +1.94 +2.85 +0.27 +1.20	-0.020 -0.250 -0.672 -1.839 +2.740 +0.557
17	62 56		46·43 56·12	1.80	7 8	+ 0·23							+8.83	+ 12.259
1	Values o	f th	e Facto	rs				Ang	ular erroi	rs in sec	onds			
	$\lambda_{3} = \\ \lambda_{3} = \\ \lambda_{4} = \\ \lambda_{5} = \\ \lambda_{5} = \\ \lambda_{7} = \\ $	= -	- 0.462 - 0.536 + 1.15 - 0.96 + 0.396 + 0.246 + 0.175 - 0.61	5 3 5 6		$x_{9} = -$ $x_{8} = -$ $x_{4} = -$ $x_{6} = -$	- ·54 - ·44 - ·68 - ·24 + ·16 - ·61		$x_7 =  x_8 =  x_9 =  x_{10} =  x_{11} =  x_{12} =  [wx^3] = -$	+ 3·55 + 1·12 - 2·24 - ·83 - ·87		$x_{18} =  x_{14} =  x_{15} =  x_{16} =  x_{17} =  x_{18} = -$	+ ·18 - ·95 + ·51 + ·67	

[•] In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth term in the qth line being always the same as the co-efficient of the qth term in the pth line.

Figure No. 2.

	Obs	erved	l Angles			•	Equations to	be satisfied		Factor
No.	•	Va	lue	Reciprocal Weight = (Probability)		x ₈ -	+ x ₈ + x ₈ + x ₄ + x ₅ + x ₆ + x ₇	+ x ₄ + x ₆ + x ₈	$= e_1 = + 0$ $= e_3 = + 1$ $= e_3 = + 1$	110, λ ₂
1	° 51	, 2	,, o·57	· 84		<b>-</b> ⋅8	-	$-1.14 x_{8}$ $+1.268x_{8}$	= e ₄ = - I	·720, λ ₄
3	54 46	7	29·81 15·96	1.39			Equations	between the fac	tors	
5	28 40	36 42	30.23	1.30	No. of	Value of		Co-effic	cients of	
7	36	34 28	0·87 4·81	•52	е	6	λ ₁	λ	λ ₃	$\lambda_4$
8	38	15	27.73	1.34	1 2	+0.64	+4.92	+2.69	+2.04	-2·515
					3 4	+1.35		*	+3.67	+2.111
,	Value	s of	the Fact	ors			Angular	errors in second	ds	
	λ	=	<b>—0</b> ·165				x₁ ≐ +·68	x ₆	= +i·22	
	-		+1.379				$\mathbf{x_9} = + .07$ $\mathbf{x_8} = + .86$	-	= + ·33	
	λ,	=	-1.198	r			x ₄ = - · 97	$ax_2] = 3.18$ $x^8$	=19	

Figure No. 3.

	Obs	erved	l Angles			· · · · · · · · · · · · · · · · · · ·	E	quations	to be s	atisfied				Factor
No.		Va	lue	Reciprocal Weight = (Probability) ²		x ₁ x ₄ x ₇ x ₁₀ x ₁₃	+ x ₂ + x ₆ + x ₈ + x ₁₁ + x ₁₄	L L	+ + + +	- <b>x₈</b> - <b>x₆</b> - <b>x₉</b> - <b>x₁₂</b> - <b>x₁₆</b>	= =	$e_1 =  e_2 = +$ $e_3 =  e_4 =  e_6 = +$	3·10, 3·64, 4·17, 1·89,	$egin{array}{c} \lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4 \ \lambda_5 \end{array}$
I 2	6 6 67	3 ² 27	55·81 52·45	•56	-···	x ₁₆ +x ₄ +x ₇ 81x ₈ 53x ₅ 82x ₁₉ 73x ₁₄	$\begin{array}{c} +x_{17} \\ +x_{16} \\ -\cdot 41x_{9} \\ +\cdot 37x_{9} \\ -\cdot 53x_{1} \\ +\cdot 60x_{1} \end{array}$	, +x	+ · 2: + · 2: - · 5! + · 6;	8x ₈	= (	$e_6 =  e_7 = +$ $e_8 = -$	3·56, 0·05, 4·104,	<b>λ</b> ₆ <b>λ</b> ₇
3	5° 44	59 12	16.85	·36 ·79										
5 6	57 78	5	24.83	·63			]	Equation	s betwe	een the fa	ctors			
7 8 9	50 59 69	32 50 37	8·10 44·32 4·69	·70 ·18 ·67	No. of	Value of e	λ	λ	λ ₈	Co-effi	icients ————————————————————————————————————	of λ ₆	λ ₇	λ ₈
10	67 62	2 14	52·47 35·27	·43 ·50	I	-1.13	+1.21					~ <b>*</b>	+0.26	+0.020
12 13 14	50 70 53	42 5 46	29·05 49·80 16·41	· 98 · 77 · 29	3	+3·10 -3·64 -4·17		+1.28	+1.22				+0.79	-0·363
15 16	56 66	7 33	56.77	*34 *40	5 6	-3·56				+1.01	+ 1.4	+1.18 o	+0.43 +0.40	+0.016 +0.016
17 18	54 58	29 56	38·77 21·63	·40 ·38	7 8	+0.05						,	+3.65	+2.191
	Value	s of	the Facto	rs				Angul	ar error	s in secon	nds	<del></del>		
	$\lambda_2$ $\lambda_3$ $\lambda_4$ $\lambda_5$ $\lambda_6$	= =	- 1.010 + 1.324 - 2.612 - 2.069 + 0.924 - 3.336	k k ) k		$x_4 = +$ $x_5 = +$		:	$x_8 =  x_9 =  x_{10} =  x_{11} = -$	- 2.01		$x_{13} = +$ $x_{14} = +$ $x_{15} = +$ $x_{16} =  x_{17} = -$	· 50 · 06 · 1·02	
,	-		- 1.041			-6 — T	-/		[wx ³ ] =			<b>x</b> ₁₈ = -	- <b>.</b> ე#	

Figure No. 4.

	Observ	ed Angle	8										
·			27	1		Eq	uations t	to be sat	isfied				Factor
No.	Va	lue	Reciprocal Weight == (Probability) ²		x ₁ x ₄ x ₇ x ₁₀ x ₁₃	+ x ₂ + x ₅ + x ₈ + x ₁₁			x ₆	=======================================	$e_1 = + \\ e_2 = + \\ e_3 = - \\ e_4 = + \\ e_5 = +$	9°45, 8°35,	$\lambda_1$ $\lambda_2$ $\lambda_3$ $\lambda_4$
1 2 3 4	。 , 56 59 63 6 59 54 54 48	50·01 8·20 6·13 33·43	1·71 1·42 1·31 2·16	+.	x ₁₆ +x ₄ +x 58x ₈ 61x ₆ 77x ₁₃ 54x ₁₄	+ x ₁ ,	+ x ₁ ;	+:	x ₁₈ x ₁₆ x ₆ x ₈ x ₁₅	=	$e_{8} =  e_{7} =  e_{8} = +$	0.40,	λ ₅ λ ₆ λ ₇ λ ₈
5 6	58 29 66 42	33.70	2·08 1·57			E	quations	between	n the fa	ctors			
7 8	7° 3 48 55	25·72 47·54	.97 1.20	No. of	Value of				Co-effi	cients	of		
	61 o 59 ² 7	39.41	2·93 ·67	<b>6</b>	е	λ	λ	λ ₈	λ4 '	λ _δ	λ ₆	λη	λ ₈
	<ul><li>67 59</li><li>52 33</li></ul>	24·38 6·41	1.00	1 2	+ 3.16	+4.44	+5.81			•		+1.71	+0.036
_	54 44	<b>6.</b> 01	.77	3	- 8·35		_	f 5°40				+2.16	+0·307
•	<ul><li>61 48</li><li>63 27</li></ul>	50·52 3·26	.30	4	+ 2.67			+	F3·48			+0.67	+0.994
_	63 56	_	1.2	5 6	- 0·40			*	•	+ 2 · 26	+3.97	+0.77	-0·493
•	<ul><li>60 25</li><li>55 37</li></ul>	38·07	•26 2•19	7 8	0·00 + 1·634							+7.80	+6•648
· Va	lues of	the Facto	rs				Angula	r errors	in seco	nds		*	
		+ 1.03			$x_1 = +$	- 32	X,	, = -	2.19		x ₁₃ = +	- •56	
	-	+ 1.08			$x_3 = +$	- 1.14	X,	, = -	2.73		x ₁₄ = +	1.57	•
	•	- 1·42 + 0·87			$x_8 = +$	- 1.40	x,	, = -	3.43	•	$x_{15} = +$	- '54	
λ		+ 1.56		•	$x_4 = +$			10 = +			$x_{16} = -$	- 1.18	
•	_	+ 0.06			$x_5 = +$	- 3.26	<b>x</b> ₁	ıı = +	.40		x ₁₇ = -	- •05	
λ	₇ =	<del>-</del> 0.84	4		$x_6 = +$	3.42	<b>, x</b> ,	18 = +	2.33		x ₁₈ = +	· ·83	•
λ	s =	+ 0.45	4	[		·	ſπ	$vx^9] = 4$	· · · · · 0				

Figure No. 5.

	Obse	rved	Angles				Equ	uations t	o be sa	tisfied	•			Factor
No.		Va	lue	Reciprocal Weight — (Probability)*		x ₁ x ₄ x ₇ x ₁₀ x ₁₈	+ x ₉ + x ₅ + x ₈ + x ₁₁ + x ₁₄	<b>.</b>	+ + +	x ₃ x ₆ x ₉ x ₁₂	= 6 = 6 = 6	$e_{8} = +$ $e_{4} =  e_{5} = +$	7·48, 6·51, 3·16, 2·38,	$\lambda_1$ $\lambda_2$ $\lambda_3$ $\lambda_4$ $\lambda_5$
	•	,	*		<b>x</b> ₁	$\begin{array}{ccc} x_{16} \\ +x_4 \\ \end{array} + x_7$		+ x	ıs +	x ₁₈ x ₁₆	= 6	$e_6 =  e_7 = -$	0.00	$\lambda_8 \\ \lambda_7$
1	51	48	28.91	1.28		48 <b>x</b> ₃ 94x ₆	$+.81x^{6}$		- · 49	$\mathbf{x_8}$	= 6	e ₈ = +	0.062	$\lambda_8$
2	63	45	28.96	2.40	+:	55 ^x 13 50x ₁₄	$56x_{11}$	1 8	+·67	$\begin{bmatrix} \mathbf{x_{15}} \\ \mathbf{x_{17}} \end{bmatrix}$		, ·	•	· ·
3	64	26	7.84	1.44		19	. 70	•		.,.				
4	65	30	19.29	1.13										
5	46	52	24.88	2.08			]	Equation	s betwe	en the f	actors			
6	67	37	9.38	2.22			·							
7	·6 <b>5</b>	23	51.17	1.04						Co-ef	ficients	of		
8	63	44	50.16	•84	No. of	Value of								
9	50	51	25.21	1.47	е	е	$\lambda_1$	λ	$\lambda_8$	$\lambda_4$	$\lambda_{5}$	$\lambda_6$	$\lambda_7$	$\lambda_8$
10	58	19	37.11	•65										
11	60	33	36.74	1.45	1	+4.58	+5.42						+1.28	-0.485
12	61	6	44.00	1.01	2	-7.48		+5.75					+1.12	-0.609
13	64	26	33.12	1.32	3	+6.21			+3.35	;			+1.04	+0.779
14	59	14	7.21	2.67	4	-3.16				+3.11			+0.65	-o·256
15	56	19	22.82	·81	5	+2.38					+ 4.8		+1.32	-1.059
16	54	31	10.37	2.27	6	-6.39				*		+7.86	+2.27	+1.139
17	66	38	43.53	2.15	7	0.00							+8.01	
18	58	50	0.81	3.44	8	+0.063								+8.064
7	Values	of	the Facto	ors			`	Angul	ar erroi	rs in seco	onds			
	λ	=	+ 0.83	4		$x_1 = -1$	- 1.31	;	k ₇ = +	- 2.05		x ₁₃ = +	- •61	
	$\lambda_2$	=	- 1.32	2		$x_9 = -$	+ 2.17	;	x ₈ = -	1.72		$x_{14} = +$	1.47	
	$\lambda_3$	=	+ 1.97	9		$x_8 = -1$	- 1.10	:	x ₉ = -1	2.74		x ₁₆ = +	- •30	
	λ,	=	- 1.03	6	-	x ₄ = -			x ₁₀ = -			x ₁₆ = -	- 1.81	
	$\lambda_{\text{5}}$	=	+ 0.46	3		$x_5 = -$			x ₁₁ = -			$x_{17} = -$		
	$\lambda_{6}$	=	<b>- 0.</b> 79	0								$x_{18} = -$		
	λ ₇	=	- 0.00	7		$x_6 = -$	- 3.23		A ₁₉ = -	- 1.13		-18	J 🗸	
	$\lambda_8$	=	<b>-</b> 0.14	3					[wx ² ] =	35.97				

Figure No. 6.

	Observed Angle	8 ·			E	quations	to be satis	fied	· · · · · · · · · · · · · · · · · · ·		F	actor
No.	Value	Reciprocal Weight= (Probability)?		x ₁ , x ₄ x ₇	+ x ₃ + x ₅ + x ₈	+ x ₃ + x ₆ + x ₉			= e	$a_1 = +3$ $a_2 = +1$ $a_3 = -1$	·84, ·80, ·14,	$\lambda_1$ $\lambda_2$ $\lambda_8$
1 2 3 4 5	60 14 13·87 65 1 8·77 70 2 47·96 56 29 1·58	·98 2·08 1·44 1·79 1·04		x ₁ 47x ₈ -	-	$+x_{19}$ $+x_{16}$ $+x_{7}$ $\cdot 74x_{6}$ $\cdot \cdot 66x_{11}$	+ x ₁₀ - · 66x ₅ + · 51x ₁₆	+ 1 · 80 - · 78	$= \mathbf{e}_{13}$ $= \mathbf{e}_{23}$ $= \mathbf{e}_{33}$ $= \mathbf{e}_{33}$	4 = + 1 $5 = -0$ $6 = +0$ $7 = +7$	· 90,	λ ₄ λ ₅ λ ₆ λ ₇
6 7 8	53 28 13·50 81 40 59·58 69 13 39·54	3·21 1·20 2·21	No. of	Value of e	λ ₁	Equations \lambda_3	between C	the factor to-efficien		λ ₆	λ	7
9 10 11 12 13 14	29 5 22·33 88 23 45·17 31 2 48·32 60 33 31·14 65 7 45·02 51 54 30·72 62 57 44·78	.54 1.54 2.16 3.54 .64 1.48	1 2 3 4 5	+3.84 +1.80 -1.14 +1.64 -0.90 +0.01	+4.20	+6.04	+3.95	+7·24 *	+ 4 · 34	+0.98 +1.79 +1.20 +1.54 +0.64 +6.15	- 0 + 1 + 0 - 1 - 0	·689 ·132 ·604
,	Values of the Facto		7	+7.443		Angular	errors in	seconds			+13	814
	$\lambda_1 = + 0.97$ $\lambda_2 = + 0.20$ $\lambda_3 = - 0.23$ $\lambda_4 = + 0.41$ $\lambda_5 = - 0.16$ $\lambda_6 = - 0.25$ $\lambda_7 = + 0.606$	6 1 4 7 5	·	$x_1 = +$ $x_2 = +$ $x_3 = +$ $x_4 =  x_5 = -$	- 1·31 - 1·82 - ·09	x ₇ x ₈ x ₉	$= + 2 \cdot 0$ $= - \cdot 0$ $= + \cdot 4$ $= + \cdot 2$ $= + \cdot 2$	58 22 16	$x_{19} = x_{18} = x_{14} = x_{14}$	- 1·27 + 2·67 - ·27 - ·95 + ·32		

Figure No. 7.

	Observed A	ngles				Fixed data	†		
			-	Log. Ra	tio of side A	to side B (see	e diagram)	= 1.7039306,	5
No.	·Value	procal ght =			Sum of angle			51" · 29	
		Beciprocal Weight = (Probability)			•	ations to be s			Factor
	<u></u>	·		$\mathbf{x}_1$	+ x ₃	-	+ x ₈	$= e_1 = -c$	ο·03, λ ₁
,	_	,, •41 5•60	ĺ	x4	+ x ₅	-	+ x ₆	$= e_3 = + c$	ο. 61' γ ⁸ .
				x ₇	+ x ₈	-	+ x ₉	$= e_8 = -g$	3·43, λ ₈
2		.43 1.47		$\mathbf{x_1}$	+ x ₄	-	+ x ₇	$= e_4 = + c$	ο 68, λ4
3	56 0 35	•42 •87	.6	7×8	21x3	+1.2	5 x ₆	$= e_5 = + e_5$	ο· ε6τ <b>λ</b>
4	89 8 28	·88 <b>3</b> ·76	6	3x ₆	+ ·62x ₉	+ .0	3 x ₈ 5	— <b>0</b> 5 — F	- J> .ng
5	57 57 5	.17 3.75			Equati	ons between t	the factors		
6	32 54 29	.92 2.30					Co-efficien	ts of	·
7	30 0 47	.68 1.36	No. of	Value of					
8	91 57 48	·61 1·58			λ ₁	λ ₃	λ ₈	$\lambda_{4}$	$\lambda_{\delta}$
9	58 1 23	.10 .98	1	-0.03	+7.94			+ 5.60	-0.167
			2	+0.01		+9.81		+ 3.76	+1.303
	•		3	-3.43			+3.92	+ 1.36	+0.655
			4	+0.68			*	+10.72	·
			5	+0.261					+8:167
V	alues of the	Factors			Angr	ular errors in	seconds		
	$\lambda_1 = -c$	237		$\mathbf{x}_1 = + \cdot 55$	;	$x^4 = +1.0$	6 .	$x_{\gamma} = -$	•93
	$\lambda_3 = -\alpha$	·· <b>0</b> 54		$x_3 =47$		$x_5 = - \cdot 5$	7	$x_8 = -1$	•60
	λ ₈ = - 1	.017		$x^3 =11$				•	
	$\lambda_4 = + c$	335		11	•	$x_6 = + \cdot 4$	4	$x_9 = -$	<del>y</del> ~
	$\lambda_5 = + c$	. 153	·			$[wx^s] = 3.7$			

[†] The fixed data here given are obtained from Figure No. 8 of the Great Arc Meridional Series, Section 24° to 80°, and Figure No. 1 of the North-East Longitudinal Series, both of which were previously reduced. These data depend on the figurally corrected angles only, not on the finally corrected angles as published in the Volumes of the Operations of the Great Trigonometrical Survey of India; because this figure (No. 7) was reduced before the final values were obtained.

October 1877.

J. B. N. HENNESSEY,

In charge of Computing Office.



### PRINCIPAL TRIANGULATION. TRIANGLES.

No. of	triangle		Spherical Excess	. Cor	rections to	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Sphe	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
1		III• VII I	1,10 1,10 1,10	" + '34 + '77 + '65	" - :43 - :18 + :61		- '09 + '59 + 1'26	65 18 9.77 36 17 41.38 78 24 8.85	5.1693275,5 4.9832672,6 5.2020309,0	147681 · 99 96220 · 41 159232 · 20	27.970 18.224 30.128
2		VII I II	3.30 1.85 1.85 5.56	+ '46 + '28 + '59	-2·72 + ·02 +2·70		+ 1.76 - 2.26 + 3.29 + 1.33	61 1 25 95 69 29 22 98 49 29 11 07	5'2302895,6 5'2599285,0 5'1693275,5	169937°63 181940°12 147681°99	32°185 34°458 27°970
3		III II	1.48	- '58 -1'02 - '70	+ '17 - '69 + '52		- '41 - '71 - '18	40 43 36 35 69 43 33 56 69 32 50 09	5.0731170,7 5.2307924.4 5.2302895,6	118336°04 170134°53 169937°63	22.415 32.555 32.182
4		I III IV	2.04 2.04 6.11	+2:39 +4:88 +1:66	-1:10 - :44 +1:54		+ 1.29 + 4.44 + 3.20 + 8.93	56 48 43 89 65 2 7 10 58 9 9 01	5'2243153,8 5'2590521,3 5'2307924,4	167615°98 181573°36 170134°53	31.42 34.380 32.555
5		III IV V	2 · 08 2 · 08 2 · 07 6 · 23	-2·95 -5·69 -3·67	- '48 -1'13 +1'61		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68 20 25 89 56 13 31 48 55 26 2 63	5.2768654,1 5.2283873,7 5.2243153,8	189175°72 169194°93 167615°98	35.829 32.044 31.745

Notes.—1. The values of the side are given in the same line with the opposite angle.

2. Stations III* and VII appertain to the Calcutta Longitudinal Series.

Sirouit 6	Non- circuit	Station	Spherical Excess	Figure							
6		TTT		Figure	Circuit	Non- circuit	Total	Corrected Plane Angle	Log. feet	Feet	Miles
6		TTT	"	"	"	"	"	0 1 11			
	j	V V VI	2.08 2.08 2.08	+ '40 + '79 + 1'12	- '94 + '22 + '72		- '54 +1'01 +184	60 23 39 92 62 40 7 50 56 56 12 58	5 · 2443503,2 5 · 2536996,7 5 · 2283873,7	175529`57 179349`29 169194`93	33.04 33.00 33.04
- 1			6.34				+2.31	180 0 0.00	ļ		
7		V VI VII	1.34 1.34 1.38	.00	+ '43 - '64 + '21		+ '43 - '64 + '21	38 27 19 ² 4 57 9 33 ⁴ 7 84 32 7 ² 9	5.0400523,8 5.1699658,2 5.2443503,2	109661.06 147899.19 175529.57	20°76 28°01 33°24
			3.82				.00	180 0 0.00			
8	,	V VII VIII	1.13	- '28 - '08 - '12	- '16 - '27 + '43		- '44 - '35 + '31	54 35 51 47 50 59 24 08 74 24 44 45	5.0974530,0 5.0766814,3 5.1699658,2	125156·37 119311·27 147899·19	23.20 22.20 28.01
I			3.40				<u>- '48</u>	180 0 0.00			
9		VII VIII IX	·82 ·81 ·82	+1.34 +1.04 + .85	- ·67 + ·40 + ·27		+ '67 +1'44 +1'09	65 3 15.26 43 38 36.38 71 18 8.06	5.0784683,2 4.9599559,0 5.0974530,0	119803°17 91191°83 1195156°37	22.69 17.27 23.70
			2.45				+3.50	180 0 0,00			
10		VIII IX X	1,31	+ '44 +1'68 + '54	- '09 - '52 + '61		+1.12	66 16 16.61 67 2 10.08 46 41 32.41	5°1781671,5 5°1806703,8 5°0784683,2	150718·70 151589·92 119803·17	28.27 28.27 28.27
I			3.93				+2.66	180 0 0.00			į
11	·	IX X XIV	1,31 1,31	- '16 + '24 + 1'61	- ·26 + ·22 + ·04		- '46 + '46 + 1 '65	40 58 4'93 72 13 31'28 66 48 23'79	5.0314302,7 5.1935238,4 5.1781671,5	107505°39 156143°47 150718°70	20°36 29°57
ļ			3.65				+1.69	180 0 0.00			
12		X XIV XIII	·83 ·83 ·83	-2.20 -3.22 -1.12	+ ·19 - ·37 + ·18		-2.40 -3.92 94	76 21 32.40 49 31 1.44 54 7 26.16	5.1103651,3 5.0039476,2 5.0314302,7	107502,30	24.41 19.11 20.30
1	Ì		2.49				-7.26	180 0 0.00			
	45	VIII X XI	1,20 1,20	+ ·28 - ·51 - ·67		+ '03 - '37 + '34	+ '31 - '88 - '33	56 45 54.93 61 8 20.47 62 5 44.60	5.1567811,2 5.1767520,8 5.1806703,8	143476°61 150228°40 151589°92	27°17 28°45 28°7
Ì			4.20				00	180 0 0.00			ļ
	46	X XI XII	·60 ·59 ·60	- ·15 + ·95 - ·18		- '21 - '09 + '30	- '36 + '86 + '12	43 41 56.21 30 52 39.52 105 25 24.27	5°0121057,4 4°8830020,5 5°1567811,2	102826°67 76383°94 143476°61	19'4' 14'4' 27'1
ł			1.40				+ .62	180 0 0.00			
	47 -	X XII XIII	.53 .53 .52	+2·24 + ·87 + ·83		-: 44 +: 04 +: 40	+1.80	59 53 1°24 73 33 51°70 46 33 7°06	4.9590868,2 5.0039476,2 4.8830020,5	91009°53 100913°12 76383°94	17.3 19.1
			1.28				+3.04	180 0 0,00		,	
13		XIV XIII XVI	·80 ·79 ·79	- '93 + '97 - '68	- '02 + '09 - '07		- '95 +1'06 - '75	100 21 44.02 28 36 16.95 51 1 59.03	5.2125180,7 4.8997811,9 5.1103651,3	163124.09 79393.82 138933.80	30.8 15.0 24.4
			2.38				64	180 0 0,00			
14		XIII XVI XV	·86 ·86 ·87	-1·22 + ·19 - ·32	+ '06 - '07 + '01		-1.16 + .15 -1.19	40 42 28.51 38 15 26.99 101 2 4.50	5.0350054,9 5.0124512,4 5.2125180,7	108394.00 102908.49 163124.09	20°5 19°4 30°8

No. of	triangle		ical	Cor	rections to (	Observed A	ngle	Corrected Plane		Distance	-
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
	48	XIV XIII XV	" '98 '98	- '86 - '25 + '01	n -	- :06 + :15 - :09	" - '92 - '10 - '08	64 33 59.81	5.0124512,4 5.1256909,2 5.1103651,3	102908*49 133564*47 128933*30	19°490 25°296 24°419
15		XVI XV XVII	2 · 94 · 84 · 84 · 84	+ '28 + '50 + '31	- '11 + '14 - '03		+ '17 + '64 + '28	70 45 8 27 53 2 59 50 56 11 52 23	5.0904425,9 5.0180567,2 5.0350054,9	123152°32 108394°06	23°324 19°743 20°529
16		XVI XVII XVIII	2·52 · 74 · 75 · 75	- '08 - '07 - '13	+ '01 + '07 - '08		+1.09 02 00 00	180 0 0 0 0 0 0 47 50 57 33 76 29 11 95 55 39 50 72	4 [.] 9712527,4 5 [.] 0890179,9 5 [.] 0180567,2	93595 °03 122749 °00 104245 °35	17·726 23·248 19·743
17		XVII XVIII XIX	2 · 24 · 60 · 61 · 60	+2·30 + ·65	+ '07 - '01 - '06		+2·37 + ·93 + ·59	57 45 4 50 62 47 5 75 59 27 49 75	4 ⁻ 9633306,4 4 ⁻ 9851404,7 4 ⁻ 9712527,4	91903°20 96636°35 93595°03	17.406 18.302 17.726
18		XVII XIX XX	1.81 .77 .76 .76	+1.48	+ '05 - '08 + '03		+3·89 +1·53 + ·53 + ·45	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.0522101,9. 5.0421273,4 4.9851404,7	96636·35	18.302 20.869 21.329
19		XIX XX XXI	62 62 62	+ '48 + '32 + '38	- '04 + '11 - '07		+ '44 + '43 + '31 + 1'18	61 29 7:54 42 54 27:16 75 36 25:30	5.0098981,0 4.8990901,8 5.0522101,9	102305.30 79266.60 112774.31	19·376 15·013 21·359
20	·	XX XXI XXII	1.86 .67 .66 .67	-1.Q1 -1.Q1	+ '04 - '09 + '05		-1.20 -1.20	58 26 41 42 58 0 18 27 63 33 0 31	4 [.] 9884271,1 4 [.] 9863624,1 5 [.] 0098981,0	97370°43 96908°62 102305°29	18·442 18·354 19·376
21		XXI XXII XXIII	2.00 .65 .64 .65	+1°10 + °84 + °47	- ·o ₄ + ·o ₇ - ·o ₃		+ '44 + '91 + '44	71 28 6.01 50 32 31.02 57 59 22.07	5.0369327,3 4.9477260,8 4.9884271,1	108876°15 88659°67 97370°43	20.620 16.442
22		XXII XXIII XXIV	. 92 . 92 . 93	- '38 - '40 -1'41	+ '04 - '14 + '10	•	+2·41 - ·34 - ·54 -1·31	180 0 0 0 0 0 0 66 30 21 91 59 47 19 95 53 42 18 14	5.0930261,3 5.0672110,5 5.0369327,3	123887°10 116737°67 108876°15	23.463 22.100 20.620
23		XXIII XXIV XXV	2.75 .98 .97 .98	+ ·16 + ·22 + ·07	- '12 + '17 - '05		+ '04 + '39 + '02	62 54 57 8y 53 57 33 49 63 7 28 62	5.0922214,3 5.0503985,9 5.0930261,3	123887.10 112307.82 113882.10	23.420 21.520 23.403
24		XXIV XXV XXVI	2 · 93 · 98 · 98 · 99	+ ·84 + ·82 + ·79	+ 'oī - '14 + '13		+ '45 + '85 + '68 + '92	57 55 48 43 58 53 16 24 63 10 55 33	5.0697293,3 5.0741939,6 5.0922214,3	117416·55 118629·85 128657·79	22 · 238 22 · 468 23 · 420
25		XXV XXVI XXVII	2.95 .70 .69 .70 2.09	+ '14 + '20 + '55	- '0g + '11 - '02		+ · · · · · · · · · · · · · · · · · · ·	180 0 0.00 54 56 14.63 49 20 8.25 75 43 37.12 180 0 0.00	4·9963783,1 4·9633247,1 5·2697293,3	99169°55 91901°94 117416°55	18.782 17.406 22.238

No. of	riangle	Station	rical	Cor	rections to	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
26		XXVI XXVII XXVIII	" '75 '74 '74	- '01 - '01 - '01	+ .10 + .01 + .01	"	" - '12 + '09	80 27 37 63 48 49 5 33 50 43 17 04	5'1015467,9 4'9841721,3 4'9963783,1	126341·72 96421·12 99169·55	23.028 18.362 18.482
27		XXVII XXVIII XXIX	2 · 23 · 63 · 64 · 64	+1.21	- ·17 + ·17 ·00		+1.34 + .48 + .28	35 36 24 33 60 2 31 15 84 21 4 52	4.8687471,8 5.0413750,7 5.1015467,9	73917°49 109995°54 126341°72	14.000 20.832 23.028
28		XXVIII XXIX XXX	36 35 35	+ '34 + '67 + '12	- ·os - ·os		+ '34 + '62 + '17	67 27 52 43 50 59 11 94 61 32 55 63	4 [.] 8901520,8 4 [.] 8150686,9 4 [.] 8687471,8	77651 · 91 65323 · 39 73917 · 49	14.400 14.000
29		XXIX XXX XXXII	1 · 06 · 28 · 28 · 29	-1.58 -1.68	- '06 + '07 - '01		18 -1.91 -1.31	180 0 0.00 57 42 23.24 44 12 14.96 78 5 21.80	4·8266264,7 4·7429722,8 4·8901520,8	67085.16 52331.48	12·706 10·479 14·707
30		XXX XXXII XXXIV	·85 ·25 ·25 ·25	+1.30 + .30 +1.54	+ '07 - '06 - '01		+1.34 + .30 +5.00	50 32 9 19 59 50 44 37 69 37 6 44	4 7423343,4 4 7915573,0 4 8266264,7	55250.36 61881.00 67082.16	10°464 11°720 12°706
31		XXX XXXIV XXXIII	7.5 32 32 32	+ '55 + '74 +2'88	- 'oɪ - 'o7 + 'o8		+ .54 + .67 + 2.96	67 2 52 69 62 14 35 62 50 42 31 69	4 [.] 8670316,5 4 [.] 8497616,1 4 [.] 7915573,0	73626·08 70755·73 61881·00	13°944 13°401 11°720
	49	XXVIII XXX XXXI	. 33 . 33 . 32	+1.02 +1.05		+ .00 00 .00	+1.25 +1.25 +1.11	58 56 22 · 82 66 33 57 · 62 54 29 39 · 56	4 [.] 8372038,3 4 [.] 8670283,1 4 [.] 8150686,9	68739·10 73625·51 65323·39	13.010 13.010
	50	XXX XXXI XXXIII	· 98 · 37 · 36 · 36	- 1.33 06 20		+ .00 .00 00	+3.26 -1.42 06 41	70 5 48 01 56 7 56 35 53 46 15 64	4 [.] 9037643,8 4 [.] 8497616,0 4 [.] 8372038,3	80124·33 70755·73 68739·10	13.010 13.401 13.172
32		XXXIV XXXIII XXXV	.39 .40 .39	-1.10 -1.14 32	- ·14 + ·14 ·00		-1.84 -1.00 32	59 54 3 90 63 6 6 80 56 59 49 30	4 [.] 8805517,4 4 [.] 8937283,6 4 [.] 8670316,5	75954·18 78293·98 73626·08	14·385 14·828 13·944
33		XXXIII XXXV XXXVI	39 39 39	+ · · · · · · · · · · · · · · · · · · ·	- ·o3 - ·13 + ·16		+ .51 + 1.02 + 1.02   -3.16	180 0 0.00 55 37 36.82 63 56 28.51 60 25 54.67	4 [.] 8578008,7 4 [.] 8945903,5 4 [.] 8805517,4	72077°70 78449°54 75954°18	13.651 14.382
34		XXXV XXXVI XXXVIII	34 34 34 34	- '56 - '54 -1'57	- '14 - '01 + '15		+ '40 - '70 - '55 -1'42	54 44 8 87 63 27 2 37 61 48 48 76	4 ^{.8} 245757.7 4 ^{.86} 42248,7 4 8578008,7	66769·13 73151·77 72077·70	12.646 13.855
35		XXXV XXXVIII XXXIX	.31 .31 .31	- ·02 -2·22 - ·70	01 + .19 12		-2.67 17 -2.06 71	180 0 0.00 59 27 32.60 52 33 4.04 67 59 23.36	4.8322276,0 4.7968539.4 4.8642248,7	67955°97 62640°32 73151°77	12·870 11·864 13·855

No. of	triangle		ical ess	Cor	rections to (	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Faces	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
	51	XXXIV XXXV XXXVII	.37 .36 .37	" -3.56 -2.47 -3.42	u	" - '17 + '21 - '04	-3·73 -2·26 -3·46	0 , " 58 29 29 60 54 48 30 81 66 41 59 59	4 [.] 8614015,1 4 [.] 8430197,5 4 [.] 8937283,6	72677 · 75 69665 · 82 78293 · 98	13.765 13.194 14.828
	52	XXXV XXXVII XXXIX	1.10 .34 .34 .34	+2·19 +2·73 +3·43		+ '21 - '18 - '03	+2.40 +2.55 +3.40	180 0 0.00 70 3 27.78 48 55 49.75 61 0 42.47	4·8926775,1 4·7968539,4 4·8614015,1	78104·77 62640·32 72677·75	14·793 11·864 13·765
36		XXXVIII XXXIX XL	38 38 37	-1.31 -1.10 -2.14	- '04 - '22 + '26		+8·35 -2·21 -1·32 -1·05	63 45 26 37 64 26 6 14 51 48 27 49	4·8895967,8 4·8929916,1 4·8322276,0	77552.68 77999.47 67955.97	14.688 14.773 12.870
37		XXXIX XL XLII	34 34 35 1.03	+2.46 +1.49 +3.53	- '29 + '25 + '04		-4.58   +2.17   +1.74   +3.57   +7.48	18c o o o o o o o o o o o o o o o o o o o	4 [.] 7868407,6 4 [.] 8826480,3 4 [.] 8895967,8	61212·59 76321·70 77552·68	14.203
38		XL XLII XLIV	31	-2.05 -1.12 -2.14	+ 19 - 25 + 06		-1.86 -1.97 -2.68	65 23 49 00 63 44 48 48 50 51 22 52	+8558888,8 48499416,6 47868407,6	71761°06 70785°07 61212°59	13.400 13.400
39		XL XLIV XLIII	33 34 34 34	+ ·67 + 1·37 + 1·12	- '06 - '20 + '26		+ '61 + 1'17 + 1'38	58 19 37 39 60 33 37 57 61 6 45 04	4 [.] 837 <b>6</b> 105,2 4 [.] 8476064,4 4 [.] 8499416,6	68803.20 70402.47 70782.07	13.334 13.400
	53	XXXVIII XL XLI	·37 ·36 ·37	+3.02 +1.81 +1.26		- '09 - '32 - '41	+3.16 +2.93 +1.49 +1.97	58 50 3:37 54 31 11:50 66 38 45:13	4·8615229,7 4·8400080,4 4·8920916,1	72698°08 69184°38 77999°47	14.223
	54	XL XLI XLIII	37 36 37	- '61 - '30		- '32 - '14 + '46	+6.39 44 63	180 0 0.00 64 26 31.85 56 19 22.02 59 14 6.13	4.8826708,5 4.8476064,3 4.8615229,7	76325°71 70405°47 72698°08	14°456 13°769
40		XIIV XIII XIIV	36 36 36	-1.82 -1.31 71	- '25 + '20 + '05		-2·38 -2·07 -1·11 - ·66	65 1 6.34 60 14 15.40 54 44 41.56	4 [.] 8829477.7 4 [.] 8641688,1 4 [.] 8376105,2	76374°40 73142°34 68803°50	14.462 13.031
41		XLIII XLV XLVI	.47 .48 .47	- '32 + '27 + '95	- '06 - '24 + '30		-3.84 38 + .03 + 1.25	62 57 43 93 65 7 44 57 51 54 31 50	4 9366917,4 4 9446873,9 4 8829477,7	86435°42 88041°49 76374°40	16.371 16.371
42		XLV XLVI XLVIII	1.42 1.00 1.00	- ·24 -2·67 +1·27	- ·27 + ·10 + ·17		+ '90 - '51 -2'57 +1'44	88 23 43.66 60 33 27.57 31 2 48.77	5 ⁻²² 40912,1 5 ⁻ 1642053,2 4 ⁻ 9366917,4	167529°46 145950°41 86435°42	31.23 27.643 16.371
	55	XLIV XLV XLVII	2.99 .41 .42 .41	+ '20 + '09 -2'09		- '33 + '29 + '04	-1.64 -1.38 -2.05	180 0 0 0 0 0 0 56 29 1 0 0 4 7 0 2 47 92 53 28 11 0 4	4.8801843,1 4.9322742,9 4.8641688,1	75889°95 85560°68 73142°34	14°373 16°205 13°853

No of	triangle		ical	Cor	rections to	Observed A	ngle	Corrected Plane		Distance	•
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
	56	XLV XLVII XLVII	.87 .86 .86	+ ·58 + · · · · · · · · · · · · · · · · · · ·	11	+ ·17 - ·36 + ·19	+ '75 + '66 - '27	81 40 59:46 69 13 39:34 29 5 21:20	5 · 1888037,9 5 · 1642053,2 4 · 8801843,1	154455.65 145950.41 75889.95	29°253 27°642 14°373
43	·	XLVI XLVIII LII	1.02 1.03 1.03	+ '57 - '42 -1'06	+ '38 - '40 + '02		+1.14 + .05 82 -1.04	57 57 5°10 32 54 28°08 89 8 26°82	5°1523301,6 4°9591706,9 5°2240912,1	142013.68 91027.10 167529.46	26·897 17·240 31·729
44	·	XLVI LII XLVIII•	3.06 .53 .53 .53	+ '11 - '55 + '47	- '13 - '21 + '34		- '91 - '02 - '76 + '81	180 0 0.00 56 0 34.87 60 52 34.12 63 6 51.01	4 · 9274737,0 4 · 9501475,2 4 · 9591706,9	84620°13 89155°37 91027°10	16°027 16°885 17°240
	57	XLVIII LII I	1 · 59	+ · · 90 + · · 93 + · 90		-2.40 + .41 +1.99	+ '03  - '80 +1'34 +2'89 +3'43	91 57 46.87 30 0 48.08 58 1 25.05	5°2235428,0 4°9229430,9 5°1523301,6	167318°04 83741°96 142013°68	31.689 15.860 26.892

Note.—Stations XLVIII* and LII appertain to the Great Arc Series—Section 24° to 30°, and I appertains to the North-East Longitudinal Series.

March 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.

# PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Asimuth at A	Log. Feet	Azimuth at B	Series No.
I "	III* ,,, VII*	Budhon ,, Tinsmál	24 5 8·41 ", 24 7 12·97	,, 79 2 12·45	200 4 17·23 121 51 50·29 182 53 18·09	4·9832672,6 5·1693275,5 5·2599285,0	301 42 33·71 2 53 59·09	VII* I II
2 3 ,,	I  " II  III  "	Patna  ,, ,, Dargawa Dhandkúa		"	134 40 45·12	5.2307924,4 5.2590521,3 5.0731170,7 5.2243153,8	1	II IV III IV V
22	" IV V "	Audhiári Gwáli ,,	i i	,, 78 16 16·17 78 28 5·22 ,,		5·2768654,1 5·2443503,2 5·1699658,2	20 13 18·59 82 20 30·86 43 47 40·36	VI V VI VII VIII

NOTE.—Stations III. and VII. appertain to the Calcutta Longitudinal Series of the South-East Quadrilateral.

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Asimuth at B	Series No.
			0 1 "	o , ,,	0 / //		0 / #	
4	VI	Kathera	25 14 20.91	78 59 39.05	139 21 5.60	5.0400523,8	319 15 31.79	VII
5	VII	Bhitári	25 28 4.54	78 46 39.51	94 47 5.57	5.0974530,0	274 37 19.90	VIII
,,	,,	,,,	,,	"	159 50 21.95	4.9599559,0	339 47 53 54	IX
	VIII	Algi .	25 29 46.20	78 23 58 16		1	51 6 2.42	IX
	"	"	"	,,	164 42 24.79	5.1806703,8	344 39 14.91	X
	,,	,,	"	,,			287 45 14.56	1X
6	IX	Daryapur	25 42 12.41	78 40 55.86		-	297 57 41 19	X
,,	"	,,	· ,,	,,		5.1935238,4		XIV.
	X	Maharájpu <b>r</b>	25 53 54.44	78 16 40.27		1		XI
	"	"	"	,,	89 29 33.69	4.8830020,5	269 23 28.33	XII
	,,	"	,,	"	149 22 35.46	5.0039476,2	329 18 28.00	IIIX
1	,,	,,	,,	,,	225 44 8.69	5.0314302,7	45 50 18.96	XIV
	XI	Narwar	25 37 22.30	77 57 56.47	194 46 48.35	5.0121057,4	14 48 53 20	XII
	XII	Karaia	25 53 47 07	78 2 43 76	195 49 36.10	4.9590868,2	15 51 35.58	XIII
	XIII	Rácpur	26 8 14.29	78 7 16.15	275 11 1.01	5.1103621,3	95 21 21 23	XIV
	"	"	,,	,,	205 52 13.90	5.0124512,4	25 55 52.44	xv
Ì	,,	,,	,,	,,	246 34 43.27	5.2125180,7	66 46 50.27	XVI
7	XIV	Majhár	26 6 17.00	78 30 44 91	141 28 36.27	5.1256909,2	321 21 51.65	XV
,,	,,	,,	"	,,	195 43 6.05	4.8997811,9	15 44 50.45	XVI
	X∇	Sánichri	26 23 31 . 20	78 15 30.00	284 53 47.07	5.0350024,9	105 2 18.12	IVX
	,,	,,	"	>9	231 50 46.73	5.0904425,9	51 58 42.77	xvII
8	XVI	Jhánkri	26 18 53 92	78 34 41 . 30	175 47 27 23	5.0180567,2	355 46 49.70	XVII
,,	,,	"	,,,	,,	223 38 25.30	5.0890179,9	43 45 20.70	XVIII
	XVII	Gúrmi	26 36 3.63	78 33 17.00		4	99 25 12.17	
	<b>))</b> .	22	"	"	221 32 31.90	4.9851404,7	41 37 49.70	X1X .
	,,	,,	,,	<b>&gt;&gt;</b> .	155 50 9.20	5.0421273,4	335 46 25.06	xx
9	XVIII	Bhind	26 33 32.92	78 50 14.33	162 12 18.53	4.9633306,4	342 9 59 35	XIX
10	XIX	Athgath	26 47 59.51	78 45 4.33	104 34 14.17	5.0222101,9	284 25 9.94	XX
,,	,,	",	,,	,,			346 1 46.75	XXI
	XX	Panáhat	26 52 39.07	78 24 58 83	241 30 42.16	5.0098981,0	61 38 12.67	IXX
	,,	,,	,,	<b>,</b>	183 4 0.07	4.9863624,1	3 4 26.14	XXII
11	XXI	Sherpur	<b>I</b>		119 38 31.60	4.9884271,1	299 31 25.16	XXII
29	,,	,,	,,	"		1	11 8 4.60	XXIII
	IIXX	Firozabad	1		248 58 52.60	5.0369327,3	69 7 27.32	XXIII
	"	,,	,,	"	182 28 29.77	5.0672110,5	2 28 55 44	VIXX

		Station A				Side AB		Station B
Circuit No.	Scries No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Asimuth at B	Series No.
			0 , "	0 ^ //	0 ' "		o , ,,	
12	XXIII	Baragaon	27 15 2.94	78 44 42.45	128 54 48.19	5.0930261,3	308 46 36.39	XXIV
,,	,	<b>33</b>	, ,,	,,	191 49 47.06	5.0503985,9	11 51 44.79	XXV
	XXIV	Pondri	27 27 52.48	78 26 52.19	254 49 1.93	5.0922214,3	74 59 14 39	XXV
	"	<b>&gt;&gt;</b>	"	,,	196 53 12.52	5.0741939,6	16 56 10.40	XXVI
13	XXV	Kilármáo	27 33 11.44	78 48 58 27	133 52 31.61	5.0697293,3	313 45, 14.08	XXVI
		,,	,,	<b>,,</b>	188 48 46.94	4.9633247,1	8 49 59 78	XXVII
"	XXVI	Salimpur	27 46 36.46	78 33 15.88			84 33 37.60	XXVII
İ		))	,,	,,	183 57 26.76		3 58 1.53	XXVIII
14	" XXVII	Jamálpur	27 48 10.77	1	133 22 43.67		313 14 43.75	XXVIII
,,	,,	"	"	, ,	168 59 8.63		348 57 18.63	XXIX
"	•							•
	XXVIII	Sankráo	28 2 28.99	78 34 30.15	253 12 11.96	4.8687471,8	73 18 23 79	XXIX
	"	"	"	٠ ,,	185 44 19.17	1	5 44 53.60	XXX
1	"	"	"	,,	126 47 56.02	4.8670283,1	306 42 45.71	XXXI
15	XXIX	Sarsotha	28 5 59 88	78 47 40.39	124 17 36.08	4.8901520,8	304 11 57.62	XXX
"	"	<b>&gt;&gt;</b>	"	"	181 59 59.60	4.7429722,8	2 0 9.80	XXXII
	xxx	Sakrora	28 13 12.59	78 35 43 17		ľ	252 13 5.83	IXXX
1	"	<b>&gt;</b> >	",	,,	259 59 42.38	1	80 5 31 . 89	IIXXX
l	"	"	"	,,	142 24 39.93	4.8497616,1	322.20 50.86	XXXIII
	,,	"	,,	,,	209 27 32.94	4.7915573,0	29 30 14.39	XXXIV
ļ	XXXI	Parauli	28 9 45 27	78 23 31. 39	196 5 9.12	4.9037643,8	16 7 6.86	XXXIII
16	XXXII	Kariámái	28 15 7.44	78 48 1.99	130 56 16.51	4.7423343,4	319 53 7.70	XXXIV
	XXXIII	Rajauli	28 22 27 . 53	78 27 39 95	271 38 18.85	4.8670316,5	91 44 50.33	XXXIV
	"	1)	,,	נג			28 35 25.58	1
	"	»	,,	23			332 51 23.41	
17	XXXIV	Mehtra	28 22 5.99				331 35 35.89	
İ			i			_		
"	"	"	"	y.			30 11 31.46	
18	XXXV	Bánsgopál	28 33 28.07	78 34 26 89			272 25 28.35	XXXVI
"	"	99	"	"			96 53 31.42	
"	"	<b>2</b> 2	"	"			327 12 30.73	XXXVI
"	"	<b>2</b> 2	"	"	200 43 36.60	4.7908539,4	26 46 8.24	XXXIX
	XXXVI	Chandanpur	28 33 58 94	78 20 59 24	208 58 25.64	4.8245757,7	29 1 19.83	XXXVI
	XXXVII	Barauli					325 45 25 43	
	XXXVIII	Kandarki			274 39 26.38			XXXIX
	"	,,	"	"			30 57 36.91	XL
	<b>33</b>	,,	"	,,,	1		332 1 0.15	XLI
				1				

	,	Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
			0 1 11	0 , "	0 1 "		0 / . #	
19	XXXIX	Atora	28 42 41 . 94	78 39 43 31	159 11 38.43	4.8895967,8	339 9 9.05	<b>XL</b> :
	99	,,	,,	"	206 4 5.48	4.8826480,3	26 7 7.31	XLII
	XL	Sirsa	28 54 39.64	78 34 33 32	85 28 48.77	4.8615229,7	265 22 14.65	XLI
	. 99	,,	"	"	273 38 48.02	4.786840,76	93 44 20.26	XLII
	,,	"	,,	"	149 55 20.99	4 · 847606,44	329 52 8.21	XLIII
	, ,,	<b>)</b> )	,,,	,,	208 14 58.71	4.8499416,6	28 18 1.77	XLIV
	XLI	Lút	28 53 42 23	78 20 57.91		1	1	XLIII
20	XLII	Bhatauli	28 54 0.60	78 46 0.69	157 29 9.05	4.8558888,8	337 26 38.94	XLIV
	XLIII	Milik	29 4 42 70	78 27 55.61	268 45 22.83	4.8376105,2	88 51 39.68	XLIV
	"	<b>))</b>	"	"	208 31 10.07	4.8829477,7	28 34 30.76	XLV
	<b>))</b>	"	"	,,	145 33 25.67	4.9446873,9	325 28 51.51	XLVI
21	XLIV	Akbarpur	29 4 56.85	78 40 50.96	153 52 46.38	4.8641688,1	333 49 49 14	XLV
"	"	99	"	"	210 21 47.83		-	XLVII
22	XLV	Sarkára	29 15 46.92	78 34 47 36	93 42 15.81	4.9366917,4	273 34 19:54	XLVI
"	"	"	"	,,	263 47 0.80	4.8801843,1	83 53 57.46	XLVII
,,		,,	,,	,,,	182 6 0.47	5.1642053,2	2 6 30.29	XLVIII
	XLVI	Haldaur	29 16 41 23	78 18 33.28	213 & 20.97	5.2240912,1	33 9 20.05	
	"	,,,	"	,,		4.9501475,2		
	"	,,	"	,,		4.9591706,9	t i	
	XLVII	Nandi	29 17 7.53	78 48 59.41	153 7 37.66	5.1888037,9	333 1 8.23	XLVIII
23	XLVIII	Harpálsid	29 39 50.90	78 35 47 99			245 51 43.83	l .
"	"	"	,,	,,			337 58 40.32	
	XLVIII*	Sheopuri		4	215 48 11.17		1	
	LII	Mahesari		1	215 50 54.81	5.2235428,0	36 0 6.31	I
	I	Mábegarh	29 52 39.58	78 29 52.03				
			<u> </u>				•	

Norg.—Stations XLVIII* and LII appertain to the Great Arc Meridional Series, Section 24° to 30°; and I appertains to the North-East Longitudinal Series.

April 1878.

J. B. N. HENNESSEY,

In charge of Computing Office.



#### PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument &c., in pairs of horizontal lines, the first line of which gives the data for the 1st or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction, and the height of the 2nd station above or below the 1st, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results". The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit leveling operations, whenever a junction between the two has been effected. The spirit leveled determinations are always accepted as final, and the trigonometrical heights of stations lying between those fixed by the leveling operations are adjusted—usually by simple proportion—to accord with the latter. In the table the spirit leveled values are printed thus, 557'44 &c., or, when not very exactly identified, thus, 557, to distinguish them from the adjusted trigonometrical values. The column in which the mean trigonometrical heights are given is barred across where necessary, as after deduction of Stn. XXIII from Stn. XXIII, page 58 - J. to indicate that one set of adjustment ends and another begins. The trigonometrical heights always refer to the upper mark-stone, or to the upper surface of the pillar on which the theodolite stood; when a spirit leveled height does not refer to either of these surfaces, it is given in combination with a correction, thus  $\begin{cases} 557.44 \\ + 43.8 \end{cases}$  and the sum of these two quantities, in this case 601.2, represents the value with which the corresponding trigonometrical mean height 612.5 is comparable. Descriptions follow these tables, exactly indicating the positions of the leveling staff during the determinations of the spirit leveled heights.

When the pillar of the station is perforated, the height given in the last column, is that between the upper surface of pillar and ground level mark-stone in floor of passage; otherwise it is the approximate height of the structure, above the ground at the base of the station.

The heights of the initial stations are taken from the Calcutta Longitudinal Series of the South-East Quadrilateral, page 179___, Vol. VI, and are as follows:—

VII

1867.4 2139.2 } feet above Mean Sea Level at Karáchi.

Astronon	nical	Date			ions	Height	in feet			estrial action	ation	Height in	n feet of 2n	d Station	Tower
		Mean of	<b>-</b>	Observed	observations		42	ed Aro		of Are	nt of - 1st Sta	above	Mean Sea	Level	6
1883		Times of obser-	Station	Vertical Angle	Jo	Signal	Instrument	Contained	seconds	Decimals Contained A	Hoight of 2nd Station — 1st Station in feet	Trigono Res	metrical ults	Final	t of Pillar
		vation	_		Number		ų		II	Cont	2nd 8	By each deduction	Mean	Result	Height of
		h. m.		0 1 11				"					·		feet
Feb. Mar.	26 31	15 *	III	Do 454.2	8 4	0.20	2.20 2.20	951	124	.130	- 31.7	1835.7		-0	.
" 31, Ap		15	VII I	Do 152.4	4 8	0.20	2.20	1459	154	. 100	- 328.2	1811.0	1823.3	1823	†
Mar. Ap.	15 29	15	VII II	D o 25 15.9 E o o 38.4	4	0.20	2,20 11,00	1798	164	.001	- 678.5	1460.7			
Oct. Nov.	29 4	9 15	I П	D o 10 15.0	4 4	o.20	2.20	1679	151	.090	- 377.9	1445.4	1453.1	1452	°

^{*} Denotes that the times of observation are either partially or altogether unknown. † Not forthcoming.

Astronomical	Date			ione	Height	in feet			estrial action	Station	Height is	n feet of 2n	d Station	Tower
	Mean of	Station	Observed Vertical Angle	observations		a ti	ined Are	ą	of Aro	Height of 2nd Station – 1st Sta in feet		Mean Sea		8
1832-84	Times of obser-		Vertical Angle	Number of	Signal	Instrument	Contained	In seconds	Decimals Contained	Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height Height He	Trigono Rec	metrical sults	Final	Height of Pillar
	vation			Nam.						2nd	By each deduction	Mean	Result	Heigh
Oct. 24,29 Nov. 14,15	h. m.	I III	D o o 56.9	10	0.20	5.20 2.20	1681	156	.003	- 523.3	1300.1			feet
" 4 " 12,14	9 15 10 0	IÌ III	D o 12 23 4 D o 2 35 0	4 8	0.20	2,20 2,20	1169	144	.123	- 168.8	1284.3	1292.3	1291	*
Oct. 24,29 Nov. 24,25	• 10	I IV	D o 15 39'7	10 12	0.20	<b>2.</b> 20	1794	184	.103	- 194.6	1628.7	1631.0	1630	
" 15,17 " 25	9 30 9 30	III 1 <b>V</b>	D o 12 12.1 D o 3 12.4	6 6	0.20	2.20 2.20	1656	217	.131	+ 342.8	1635.0	1031 9	1036	†
" 14,17,18 Dec. 18	9	V V	Do 135.1	10	0.20	2.20 2.20	1672	282	.169	- 86·1	1206.1	1212'2	1200	+
Nov. 23,24,25 Dec. 22,24	10	IV V	Do 18 47.3	18 6	o.20	2.20 2.20	1869	264	.141	- 413.6	1218.3	1312 3	1209	<b>T</b>
Nov. 14,17,18 Jan. 14	9 8	VI VI	D o 11 48.2	12 6	o.20 o.20	2.20 2.20	1772	269	.123	+ 73.9	1366.1	1350'1	<b>73.40</b>	
Dec. 20 Jan. 18	10	V VI	D o 13 51.2	8 4	0.20	2.20 2.20	1734	189	. 100	+ 126.0	1338.3	1352.1	1349	†
Dec. 18 Feb. 14	9	AII A	D o 13 11.7	4 6	0.20	2,20 2,20	1461	151	.104	- 147.4	1064.8	1058.5	tore	
Jan.       10         Jan.       20	4	VII VI	Do 17 14.2 E o 1 33.4	<b>6</b>	0.00	2.20 2.20	1083	18	-075	- 299.9	1052.5	1058 5	1055	0
Dec. 18 Jan. 30	9	AIII A	Do 851.3 Do 527.8	<b>4</b> 6	0.20	2.20 2.20	1179	169	143	- 58.8	1153.4	1158.4	1154	
,, 20 Feb. 5	'	AIII	D o 11 26.2	6 4	0.00	2.20 2.20	1237	84	••68	+ 104.9	1163.4	1130 4	**5#	
" 13 " 17	*	VII IX	D o 14 57.7	6 6	o.20	2.20 2.20	901	155	172	- 261.4	797'1	798.0	793	+
" 7 " 17	15	VIII IX	Do 15 57.1	6 6	0.20	2.20 2.20	1184	263	•222 ·	- 359.6	798.8	790 0	193	
	15	VII Chandeva ‡	D o 11 27.7	6 6	o.20 o.20	2.20 2.20	1039	121	1117	- 142·5	<b>01</b> 0.0	914.3	909	0
" 7 " 18	_	VIII Chandeva ‡	Do 14 17.4 E o 4 7.2	12 6	0.20	2.20 2.20	908	160	.176	- 246.0	912.4	<i>7*</i> ₹	y <b>~</b> y	
" 8 Mar. 1	I .	X X	D o 10 33.4 D o 10 33.4	4 6	0.20	2.20 2.20	1498	305	.304	— 134·t	1024.3	1020.7	1015	<b> </b>
													2013	

^{*} Denotes that the times of observation are either partially or altogether unknown. † Not forthcoming. ‡ An auxiliary station.



Astrono	mical	Date			tions	Height	in feet			estrial action	tation		n feet of 2n		Tower
		Mean of Times	Station	Observed Vertical Angle	cobservations		lent	Contained Are	nd <b>s</b>	ls of d Are	Height of 2nd Station — 1st Station in feet		Mean Sea	Level	5
1834		of obser-		Vertical Anglo	ber of	Signal	Instrument	Cont	In seconds	Decimals Contained	He Statio ir	Trigono Res	metrical ults	Final	t of 1
		vation			Number				# 	Con	2nd (	By each deduction	Mean	Result	Height of Pillar
Feb.	18	h. m.	Chandeva ‡	0 / " Do 4 8.7	4	0.20	5.20	"							feet
Mar.	7	15	X	Do 948.9	4	0.20	5.20	1220	200	.164	+ 101.8	1010.0			
"	23 16	15 15	VIII XI	Do 145.3	6	0.20	5·50 5·50	1484	164	.110	+ 349.6	1508.0		1489	
"	8 16	15 15	X XI	E o 1 32.0	6	0.20	5.20 2.20	1417	145	.102	+ 461.3	1481°5	1494.7	1409	
"	7 10	15 15	X XII	E o 7 23.7 D o 17 23.5	6 4	0.20	5·20	755	91	121	+ 275.3	1295.5	1293.0	1287	+
"	20 11	15 15	XI XII	D 0 12 37 7	6 4	0.20	5.20	1010	170	• 167	- 304.1	1290.6	93	,,	
Apr.	8 24	15	Chandeva ‡ XIV	D o 13 Q.5	8 4	0.20	5.20 2.20	1496	214	143	+ 135.8	1050.0	,		
Mar. Apr. 1836	7 22	15 15	X XIV	Do Q 13.0	6	0.20	5.20 2.20	1062	168	. 128	- 0.4	1010.8	1034.1	1028	+
Nov. Oct. 18 <b>34</b>	3 29	•	XIII XIV	D o 14 23.6	4	o.42	5°42 5°42	1274	89	.070	- 192.4	1032.4			
Mar. Apr.	1 29	15 16	XIII	D 0 13 13.4	4	o·50	5.20 2.20	997	132	.132	+ 203.4	1223.0			
Mar. Apr. 1836 Oct	11 29		XII	Do 331.0	6 6	0.20	5.20	899	97	.108	- 67.4	1225.6	1225.6	1219	+
Nov.	3	•	XIV XIII	Do 4 8.0	4	o.75	5°42 5°42	1:74	89	.070	+ 192.4	1227.3			
Oct. Nov.	81 7	•	XIV XV	D o 14 53.7 D o 4 25.7	4	o.42	5°42 5°42	1320	88	.066	- 203.3	830.8			
"	3 7	•	XIII XV	D o 20 34.7	4	o. 75	5°42 5°42	1017	68	.067	- 391.8	833.8	832.1	825	+
Oct. No <del>v</del> .	26 7	*	XVI XV	Do 1 23.7	4	o·75	5°42	1071	80	•075	+ 199.9	831.7			
Oct.	2 2-j	*	XIV	E o 11 58.4	4	o. 75	5.42 5.42	784	53	•067	- 400'2	633.9			
Nov. Oct.	25 25	•	XIII XVI	D o 24 20.7	4	o. 75	5.42 5.42	1611	104	.065	- 595.9	629.7	632.0	624	+
Nov. Oct.	7 <b>2</b> 6	•	XV XVI	Do 123.4	4	o.12	5.42 5.42	1071	80	.075	- 199.9	632.4			

^{*} Denotes that the times of observation are either partially or altogether unknown. † Not forthcoming. ‡ An auxiliary station.



Astrono	mical	Date			ations	Height	in feet	<b>9</b>		estrial action	Station		n feet of 2n Mean Sea		Tower
1836		Mean of Times of obser- vation	Station	Observed Vertical Angle	Number of observations	Signal	Instrument	Contained Arc	In records	Decimals of Contained Arc	Height of 2nd Station – 1st S in feet		metrical	Final Result	Height of Pillar or Tower
					N					18	2nd	By each deduction	Méan		Heig
		h. m.		0 1 11				"							feet
Nov.	7 19	*	XV XVII	Do 2 4.1	4	o·75	5.42	1217	85	.070	- 243.4	588.4			
Oct.	27		XVI	Do 9 5'1		0.42	5.42						583.0	575	27
Nov.	17	•	XVII	Do 528.8	4	0.75	5.42	1030	87	.082	- 54.7	577.3			
	5,26		XVI .	D o 10 37.3	4	0.75	5.42		0.	60	6				
Nov.	26	•	XVIII	Do 7 7.4	4	0.72	5.42	1213	82	.068	- 62.5	569.5	670.4	562	5
"	18		XVII	D o 7 33.1	4	0.42	5.42	925	46	.049	- 11.8	571.3	570.3	302	34
1842	25	•	XVIII	Do 641.4	4	0.72	5.42		7-	"		3,			
99 91	28 28	5 51 5 50	XVII XIX	Do 4 30.5	8	0.03	4°75 4°92	954	200	.209	+ 7.0	590.0			
Dec.	11	5 38	XVIII	Do 421.1	8	0.03	4.03						585.7	577	36
21 '	11	5 39	XIX	Do 2 1.9	8	2.17	4.03	908	177	.194	+ 11.1	581.4			'
Nov.	<b>3</b> 0	5 52	xvII	Do 310.1	8	0.03	4.75								
"	80	5 53	XX	Do 517.5	8	0.03	4.03	1088	293	.560	+ 31.6	614.6	40514	400	•
"	23	5 39	XIX	D o 4 1.9	8	0.03	4'92	1114	333	.299	- 5.2	580.2	597°4	588	30
"	28	5 38	XX	Do 341.3	8	0.03	4.72		333	-99	3 3	J 500 2			
Dec.	15 15	5 30	XIX XXI	Do 3 56.2	8 8	0.03	4.03	783	178	.227	+ 4.9	590.6			
" No <b>v</b> .	21	5 38	XX	_	8		4.75						587.8	578	311
,,	21	5 41	XXI ·	Do 3 31.9	8	0.03	4°75 4°92	1011	327	.323	- 12.4	585.0			
<b>"</b>	16	5 49	xx	Do 341'9	8	0.03	4.03					_			
<b>39</b>	16		XXII	D o 4 36.1	8	0.03	4.75	957	238	*249	+ 13.8	610.3	_	∫ 557°44	
"	13	6 1	XXI	Do 129.7	8	0.03	4.92	962		.356	+ 27.1	614.9	612.2	1 + 43.8	43 .8
29	18	6 0	XXII	Do 3 23.2	8	1.12	4.75	ا	343	330		014 9			
Dec.	24 24	5 35	XXI	Do 4 26.6	8	0.03	4.02	876	80	100.	+ 43.5	631.3			
" Nov.	11		XXII	Do 748.5		0.03	4.75						630.7	{ <b>573</b> '30	45.4
m	11	6 16 6 18	XXIII	Do 3 37.0	8	0.03	4.75 4.92	1075	294	*274	+ 17.6	630.1		( 1 13 1	
1843 Jan.	1	6 4	XXIII	D o 5 35.4	12	0.03	4.03								
"	1	6 4	XXIV	Do 6 26.0	8	0.03	4.75	1224	242	.198	+ 24.6	643.3		∫ 594°75	
Mar.	27	6 58	XXII	Do 327.5	8	0.03	4.92	1162	308		+ 38.7	600:0	641.6	1+44.3	44.3
" 18 <b>42</b>	27	6 56		Do 543.7	10	1.08	4.83	1153	300	.367	7 30 7	639.9			
Dec.	<b>2</b> 8	5 35	XXIII	Do 6 2.4	8	0.03	4.75	1109	236	.213	<b>—</b> 20.0	598.7			
19	<b>2</b> 8	5 35	XXV	Do 449.4	8	0.03	4'92						603.2	605	44
		<u> </u>		1	1		l	1							<u> </u>

[•] Denotes that the times of observation are either partially or altogether unknown. † Above the terreplein of the rampart on which the tower stands. ‡ Above roof of gateway on which the pillar stands.

Astronomical Date  Mean of Times of observation				tions	Height in feet			Terrestrial Refraction		ation		Height in feet of 2nd Station			Tower	
		Times of obser-	Station	Observed Vertical Angle	Number of observations	Bignel	Instrument	Contained Arc	In seconds	Decimals of Contained Arc	Height of 2nd Station—1st Station in feet		above Mean Sea Trigonometrical Results		Final	Height of Pillar or J
		Vacion								C G			By each deduction	Mean	Result	Heig}
Mar.	28 23	<b>к. т.</b> б 35 б 34	XXIV XXV	D o 4 56.8	8	0.03	4·92 4·83	1221	269	.550	_	30.8	608·3			feet
" " Jan.	23 23 7	7 5 7 7 5 49	XXV XXVI XXIV	Do 3 42.2 Do 6 3.7	8 12 8	0.92	4·83 4·92 4·75	1160	294	.253	+	40.3	643.7	641.1	645	48
" "	7 18 18	5 51 5 40 5 41	XXVI XXV XXVII	Do 3 33.2 Do 2 22.5	4 8 8	0.02	4.92 4.75 4.92	908	272	.314	-	0.4	587.7			
n n Feb.	21 21 18	4 6 4 7	XXVI XXVII	D o 2 10.3	8 8	o·67	4 [.] 92 4 [.] 75	980	101	.103	_	42.0	599.1	593 4	599	28
n	18 19 19	4 40 4 44 16 34	XXVI XXVII XXVII XXVIII	Do 637.5 Do 740.8 Do 050.6	8 10 4	0.75 0.75 0.92	4.92 4.83 4.92	952	56 459	.368	+	73.9	656.0	661.6	670	37
Jan.	24 24	16 34 4 35 4 32	XXVII XXIX	Do 643.1 Do 626.4	4 4	0.08	4·83 4·83 4·75	1086	156	.144	-	4.0	589.4	596*3	606	24
Feb.	24 24 25	3 57 3 57 5 13	XXVIII XXIX XXVIII	Do 2 45.0 Do 2 32.1	16 8	0.13	4·83 4·92 4·83	730	48	.066	_	58.2	603.1	J9° 3		
" Mar.	25 7 7	33		Do 137.8 Do 053.7 Do 052.7	8 8 8	o·58	4.33 4.75	767	341	.095	_	<b>o.</b> 6	595.7	600.7	біз	21
Feb.	26 26	7 5 7 8	XXVIII XXXI	D o 3 20.0	8	0.33	4°92 4°75	727	254	.320	-	38.2	623.1	628.8	643	19
" " Mar.	26 26 7	4 41 4 40 7 48	XXX XXXI XXIX	Do 3 23.7 Do 6 45.2 Eo 1 11.2	8 12 8	0.17	4°92 4°75 4°33	679	49	.072		33.8	634.5			
17 10	7 7 7	7 47 6 53 6 53	XXXII	Do 014.1 Do 014.1	8 8 8	0.52	4.92 4.75 4.92	547	231	*422 *445	+	11.8	Q13.8	δ10·4	624	17
Feb.	11 11	l	xxx	E o o 56.0 D o o 7.7	12	0.03	4 9 ² 4 75	699	385	.221	+	11.0	611.4			
"	12 12			E o 158.3	8 8	0.03	4·83 4·83	791	472	-596	-	30.3	608.6	613.6	629	23

Astron	nomical	Date			observations	Heigh	t in feet	Are		estrial action	Station		n feet of 2: Mean Sea		or Tower
		Mean of	Station	Observed			ent	Contained Arc	age Pa	s of	ight of 1 - 1st 1 feet				
184	8	Times of obser-	·	Vertical Angle	ber of	Signal	Instrument	Conta	seconds	Decimals Contained	Height of 2nd Station — 1st E in feet	Trigono: Res	metrical ults	Final	t of P
		vation			Number		됩			, F. §	2 pug	By each deduction	Mean	Result	Height of Pillar
May "	15 15	h. m. 7 24 7 31	XXXIV XXXIII	Do 4 6.9	8	21.43	4.01	727	126	.174	- 20.3	617.4			foo
Mar.	6 6	6 <b>39</b> 6 <b>40</b>	XXX XXXIV	E o o 22.6	12 8	0.33	4.4.5 4.65	біі	226	•369	+ 35.2	635.9			
Feb.	6	4 18 4 18	XXXII XXXIV	D o 2 10.0	4	o 75 o 75	4°92 4°75	546	50	.001	+ 29.3	639.6	635.3	652	16
Ma <b>y</b> ,,	15 15	7 31 7 24	XXXIII	Do 2 7.4	8	24.33	4.81 7.41	727	126	.174	+ 20.3	630.2			
April " Mar.	10 10	16 15	XXXIV XXXIII	E o 2 26.2 E o 0 31.7	8 8 8	0.42	4.83	773	487	.631	+ 21.0	657.2	659.7	677	19
mar. " May	13 12	6 59 7 3 16 8	XXXIV	E o 0 33.1 E o 0 33.1	12	0.92	4.83 4.25 5.41	750	287	*382	+ 49.5	663.1			
"	12 8	15 56 15 32	XXXVII	E o 144.1	8	20.20	4.01	688	398	.579	- 1.3	650.8	649.6	657	16
" April	8 2	15 17	XXXV	Do 153.7	8 8	1.04	4.82	718 619	—11 —11	.164	+ 10.2	648.3			
" May	2 10	" 7 34 7 33	XXXIX XXXIX	Do 6 8.1  Do 3 47.5	8 8 14	1.28	4.96 4.91	771	278	.360	,	698.3	692.9	695.93	17.8
" Feb.	19 19	4 31	XXXIX XL	Do 3 28.3	6	*5°45 3°75	4.01	766	49	.063	+ 46.2	742.4	742.4	739'45	26.0
Mar.		6 48 6 42	XXXIX XLII	Do 145.0	4	2.42	4.81 4.81	754	264	*350	- 5.6	690.3	688.8	689'37	14.5
Feb.	21 21	3 57 3 5 ²	XL XLII	Do 744'9	8 6	1.33 *5.45	4.01 4.33	605	2	.003	- 52.3	687.2	-		
Mar.	10 10	7 12	XXXVI	Do 3 46.4	10	0.83	4·83	775	226	.292	+ 21.1	650.1			
" " May	10 10 5	7 49	XXXVI XXXVIII	Do 036.9	8 8	1.08	4°25 4°83	712	315	*442	- 30.3	646.8	647.1	647	16
"	5 5	8 2 8 3 8 3	XXXVI	E o 4 o o	8	21.33		659	276	·420	- 44.0	644.3			
"	5	8 2	XXXVIII	Do 036.0	10	20.33	4·83 5·42	659	276	·420	+ 44.0	692.5			

^{*} Note.—These heights are to be combined with negative signs, because the pillar at XL, Sirsa, had a permanent addition made to it of 7.73 feet by a subsequent observer.

Astrono	mical	Date			tions	Heigh	t in feet			restrial action		tution		n feet of 2n		Tower
1843		Mean of Times of obser-	Station	Observed Vertical Angle	er of observations	Signal	Instrument	Contained Arc	In seconds	Decimals of	Height of	2nd Station – 1st Station in feet	Trigono	metrical	Final	Height of Pillar or
		vation			Number of		Į.		-II	Cont		2nd S	By each deduction	Mean	Result	Height
Apr.	3 8	h. m. afternoon	XXXV XXXVIII	E o 2 58.2	12	1,33	4.82	722	530	.734	+	6.8	683.8	689.3	689	feet
91 91	6 6	after mid- night	XXXIX XXXVIII	D o 0 20.2	10	1.53	4.69	671	283	.422	-	4.0	691.9			
May	5 5	7 16 7 31	XL XXXVIII	D o 2 44'9 E o 1 35'9	8   8	51.33	4.83	770	309	.402	-	50.3	689.2			
Mar.	<b>3</b> 1	5 48 5 48	XXXVIII XLI	Do 157.4	8	2.24	5.4 ₂	683	153	.553	+	26.9	715.9			
Apr.	14 14	15 23 15 23	XL XLI	D o o 33, 1	8 8	31.20	4.01	718	241	.336	-	24.3	715.3	716.3	716	20
May "	3 3	8 19 8 2;	XLIII XLI	Do o 8.4	8 8	18.75	4·8 ₃	75+	364	.483	  -	24.3	717.8			
Feb.	24 24	4 47 4 54	XL XLIV	Do 3 30.0	10	4·02 *5·45	*1·32	699	94	.134	-	26.0	713.4			
Mar.	13 13	5 17 5 5	XLII XLIV	Do 233.5	10	3.11 5.00	4.81 2.41	709	124	. 175	+	33.1	722.2	716.0	719	15
"	16 16	5 43 5 43	XLIII XLIV	Do 344.7	6 6	2.90	5.4 ₂	679	196	.289	_	24.2	712.1			
Feb.	26 26	+ 53 + 57	XL XLIII	Do 459.5	12 6	4°02 *5°45	4.01	695	71	.103	_	2.2	736.8	739`7	742	17
Mar.	16 16	5 43 5 43	XLII XLIV	Do 121.2	6	0·87 2·90	4.00	679	196	.289	+	24.2	, ₋ 742.6		,	
\pr. "	17 17	7 17 7 12	XLIII XLV	E o o 10.0	8 8	0.42 0.42	4·83	754	344	.456	+	20.1	759.8	758.5	761	16
"		15 7 15 6	XLIV XLV	E o 3 53'1	8 8	0.42	4.83 4.83	722	490	•678	+	41'2	757 '2	/3° 3	701	
"	18 18	7 40 9 27	XLVI XLVI	E o 1 36.2	8	0.05	4·83 4·92	870	403	.463	+	58.8	798.5	801.2	806	20
<b>33</b>	18 18	8 45 10 40	XLVI	E o 1 34'2 D o 2 7'8	8 8	0.25	4.83 4.83	854	420	*492	+	46.4	801.0	001 /	000	20
"	- 1	15 39	XLIV XLVII	B o 1 39.2	8	1.18	4.0 ₂	845	38o*	*449	+	50.4	766.7	768°ı	771	12
11 11	17 17	4 49 5 °	XLV XLVII	Do 6 17.0	16 10	0.28	4·83 5·46	750	41	.055	+	11.0	769.5	•	,, -	

^{*}Note.—These heights are to be combined with negative signs, because the pillar at XL, Sirsa, had a permanent addition made to it of 7.73 feet by a subsequent observer.

Astr	ronomica	1 Date			tions	Heig	ht in feet			rrestrial fraction		tion	Haight	in fact of	03 0	1	Wer
16	348	Mean of Times of obser-	Station	Observed Vertical Angle	Number of observations	Signal	Instrument	Contained Are	econds	Decimals of	Old Day	Height of 2nd Station — 1st Station in feet	Trigon	ove Mean S	2nd Static	on	Height of Pillar or Tower
		vation			[ump	o o	Inst	් ද	a	Deci		3 Sta	<u> </u>	esuits	Fina Resul	1	t of
					2	-					_ _	<b>4</b>	By each deduction	Mean	1 Teebul		Heng
May "	15 15	h. m. 7 24 7 31	XXXIV	Do 4 6.9	8	21.40	4.01	727	126	.174		- 20:3	617.4			fe	901
Mar.	6	6 39	XXX	E 0 0 22 6	12	24.33	5'41					J	", "				
"	6	6 40	XXXIV	Do 331.9	8	0.28	4°75 4°92	би	226	.360	,   -	F 35°2	635.9			1	
Feb.	6	4 18 4 18	XXXII XXXIV	Do 2 10.0 Do 5 47.2	4 4	0.75	4.92 4.75	546	50	.091		- 29.2	639.6	635.3	652	10	<b>S</b>
May	15	7 31	XXXIII	Do 2 7.4	12	24.33	5.41		1					35 5		"	<b>'</b>
"	15	7 24	XXXIV	D o 4 6.0	8	21.43	4.01	727	126	174	1	- 20.3	630.2			1	
April "		-	XXXIV XXXV	E o 0 31.7	8 8	0.25	4 · 92 4 · 83	773	487	.631	1	- 31.0	657.2				
Mar. "	13 13		XXXIII	E o o 33.1	8	0.08	4·83 4·25	750	287	382	+	49.5	662.1	659.7	677	19	
lay "			XXXIV XXXVII	E o 1 36.2	12	20.86	5,41	688	398	.579	-	1.5	650.8				
"		- 1	XXXV XXXVII	D o 4 36 4 D o 1 53 7	16 8	21.00	5°41 4 91	718	118	.164	_	28.7	648.3	649.6	657	16	
pril "	2 at 2		XXXV XXXIX	D o 6 8.1	8 8	0.08	4·82 4·96	619	-11	.018	+	10.2	687.5				
lay "	10 7 10 7	1	XXXVII XXXIX	Do 0 7.5	8 14	1.28	4'91 5'42	771	278	•360	+	41.3	698.3	692.9	695'93	17.8	
eb. "	19 19 4		XXXIX KL	Do 3 58.3	6 12	5 · 45 3 · 75	4.01	766	49	•063	+	46.2	742 '4	742.4	739'45	26.0	
ar.	16 6 16 6		XXXIX XLII	Do 145.0	4 4		5°41 4°91	754	264	.320	_	5.6	690.3				
eb.	21 3 21 3		TII TL	Do 744'9 Do 239'6	- 1	1.33	2.32	бо5	2	.003	-	52.3	687.2	688.8	689'37	14.2	
ar.	10 7 10 7		XXIII XXVI	Do 156.2 Do 346.4	8	0.83	4.83	775	226	.292	+	31.1	650.1				
,	10 7 10 7	-	XXV XXVI	D o 2 17.2 E o o 34.7	_ 1	0.83	4.22	712	315	·442	_	30.3	646.8	647.1	647	16	
y	5 8 5 8		XXVIII XXVI	_	10 2	0.33	5.42	559	276	·420		44.0	644.3		:		
	5 8 5 8		XXVI XXVIII	E o 4 0.0	8 2	1.33 4	1.83	559	276	420	+	44.0	692.5				

^{*} Note.—These heights are to be combined with negative signs, because the pillar at XL, Sirsa, had a permanent addition made to it of 7-73 feet by a subsequent ebserver.



Astron	omic <b>a</b> l	Date			at ions	Height	in feet	٤		estrial action	Stution		n feet of 2n		r Tower
1848	)	Mean of Times of obser-	Station	Observed Vertical Angle	Number of observations	Signal	Instrument	Contained Arc	In seconds	Decimals of	Height of 2nd Station – let Stution in freet	Trigono	metrical sults	Final	Height of Pillar or
		vation			Numbe	, a	Inst	0	.II	Dec	2nd St	By each deduction	Mean	Result	Height
Apr. "	3 3 6 6	h, m. afternoon  ,, after midnight	XXXV XXXVIII XXXIX XXXVIII	Do 050.7	12 12 10	1.33 1.33 1.23	4·82 4·69 4·96 4·69	722 671	53° 283	·734	+ 6.8	683.8	689°3	<b>6</b> 89	feet
" May	5 5	7 16 7 31	XL XXXVIII	D o 2 44.9	8	51.33	4·83 5·42	770	309	.402	- 50.3	689.3			
Mar.	<b>3</b> 1	5 48 5 48	XXXVIII XLI	Do 157.4	8 8	2.24	5.42	683	153	.223	+ 26.0	715.9		1	
Apr.	14 14	15 23 15 23	XL XLI	Do 033.1	8	31.20	4.0 ₁	718	241	.336	- 24.3	715.3	716.3	716	20
May "	<b>8</b> 3	8 19 8 27	XLIII XLIII	E o 124.0	8 8	18.75	4·83 5·45	75+	364	.483	- 24 2	717.8			
Feb.	24 24	4 47 4 54	XL XLIV	Do 330.0	9 10	4°02 *5°45	*1·32	699	94	.134	- 26.0	713.4			
Mar.	13 13	5 17 5 5	XLII XLIV	Do 233.5	10	3.11 5.00	4.81 2.41	709	124	. 175	+ 33.1	722.2	716.0	719	15
"	16 16	5 43 5 43	XLIII XLIV	D o 3 44.2	6 6	2.90	5.4 ₂	679	196	•289	- 24.2	712.1			
Feb.	<b>2</b> 6 <b>2</b> 6	+ 53 + 57	XLIII	Do 4 29.5	6	4°02 *5°45	*2·32	695	71	.103	- 2.2	736.8	739.7	742	17
Mar.	16 16		XLII	Do 121.5	6	o·87 2·90	4.00 2.42	679	196	.289	+ 24.7	742.6		,	
\pr. "	17 17	1		Do 138.5	8	0.63	4·83	75+	344	.456	+ 20.1	759.8	758.5	761	16
" "	17 17		XLV	E o 3 53.1	8	0.42	4.83	722	490	•678	+ 41.3	757.2			
"	18 18	9 27	XLVI	Do 2 59.6	8 12	0.05	4.83	870	403	.463	+ 58.8	798.5	801.2	806	20
"	18 18	10 40	XLVI	E o 1 34.5	8	0.22	4.83	854	420	.492	+ 46.4	801.0			
"	17 17	15 51	XLVII	Do 129.2	14	1.18	5·46	84.5	380*	•449	+ 50.7	766.7	768.1	771	12
"	17 17	1	_	Do 6 17.0	16	0.28	4·83 5·46	750	41	.022	+ 11.0	769.5			

^{*}Norg.—These heights are to be combined with negative signs, because the pillar at XL, Sirsa, had a permanent addition made to it of 7.73 feet by a subsequent observer.



Astrono	mical	Date			tions	Height	in feet		Terre Refra		tation		feet of 2nd		Tower
18 <b>43</b>		Mean of Times of obser- vation	Station	Observed Vertical Angle	Number of observations	Signal	Instrument	Contained Arc	In seconds	Decimals of Contained Aro	If eight of 2nd Station — 1st Station in feet	Trigonor Res		Final Result	Height of Pillar or Tower
April	20 20	h. m. 4 59 4 46	XLV XLVIII	E 0 39 7 8 D 1 0 21 6	20	1.52	4·83 5·08	" 1441	89	.062	+2111.8	2870.3			feet
" May "	11 11	5 34 6 29	XI.VI XLVIII	E o 30 38.1	10	1.08	4.83	1655	122	.074	+2069.6	2871.3	2871.9	2876	0
April	21 21	4 3 1	XLVII XLVIII	D o 58 14.1	10	1.03	5·46 5·68	1525	86	.026	+3100.0	2874.1			
May "	11 11	4 4 ² 4 30	XLVI XLVIII†	Do 444.6 Do 933.7	8 8	0.20	4·83	880	20	.023	+ 63.1	863.8	863.8	871	41
April	<b>2</b> 5 <b>2</b> 5	15 47 16 4	XLVI LII	E o o 1.5	8 8	*1.00	4·8 ₃ 3·3 ₃	899	428	.476	+ 15.8	817.5	814.8	821	
May	12 12	_	XLVIII LII	D t o 7.7 E o 39 40.9	12	*1·17	5.08	1402	94	.067	-2059.8	813.1	014 0	021	74
April	25 25	1 5 ./	1	E 1 46 43.0 D 2, 0 18.3	12 6	3.03	5°45 4°89	827	14	.012	+2764.9	5640.0	5648.9	5652	7
(1) (2)		3 0 2 3	LII	E 1 27 44.9 D 1 50 56.2	8	0.10	3·87 5·43	1652	135	.082	+4835.8	5656.8	3040 9	J~J*	

Note —Stations XLVIII † and LII appertain to the Great Arc Meridional Series, Section 24° to 30°; and I appertains to the North-East Longitudinal Series.

These heights are to be combined with negative signs, because the pillar at LII, Mahesari, had a permanent addition made to it of 1.5 feet by a subsection. quent observer.

Digitized by Google

⁽¹⁾ The mean of observations taken on 27 January 1843, and 2, 3 January 1851.
(2) ,, 17 November 1842, and 3, 4 December 1850.

† This height is to be combined with a negative sign, because the signal (heliotrope) at XLVIII, Harpálsid, in this instance was placed 0.37 feet below the mark-stone denoting the station.

The spirit-leveled heights given on pages  $58__J$  and  $60__J$ , were determined by the operations either of the G. T. Survey or the Revenue Survey; these connections are hereafter indicated in the former case by the letters (G. T. S.), and in the latter by (R. S.) immediately following the name of each station; the surface on which the leveling staff stood is also described.

	XXII	or	${\it Firozabad}$	Tower	Station,	(G. T. S.);	On the mark-stone imbedded at 1 foot below the level
ab built.					•	, ,	of the terreplein of the rampart on which the tower is built.

XXIII	"	Baragaon Tower Station,	"	;	On the mark-stone imbedded at 1 foot below the
XXIV	,,	Pondri Tower Station,	(R. S.)	;	ground floor of the tower.

$\mathbf{XL}$	39	Sirsa Tower	Station,	(G. T. S.); At foot of the tower, height = 715.22 feet. To this
	•••			value, 24.23 feet (the height of the upper mark
				above this spot determined by subtense angles)
				being added, the height of upper mark-stone is
				found to be 739.45 feet.

XLII	29	Bhatauli Tower Station,	23	; At foot of the tower, height = 673.88 feet. To this
				value, 15:49 feet (the height of the upper mark
٠				above this spot determined by subtense angles)
				being added, the height of upper mark-stone is
				found to be 680.37 feet

April 1878.

J. B. N. HENNESSEY,

In charge of Computing Office,

## BUDHON MERIDIONAL SERIES.

# PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS. At XVII (Gúrmi)

Lat. N. 26° 36′ 3″.63; Long. E. 78° 33′ 17″.00=5 14 13.1; Height above Mean Sea Level, 575 feet.

December 1842; observed by Mr. C. Murphy with Troughton and Simms' 18-inch Theodolite No. 2.

Mean Right Ascension .. .. .. .. .. .. .. .. 17^h 2^m 22^s

Local Mean Times of Elongation, December 4 .. { Western 5 55 Eastern 18 24

ate			rk)		FACE LEFT		FACE RIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	In House of Elongation in Arc to Time of Elongation	Reduced Observation Ref. Mark — Star at Elongation  Ref. Mark—S	ngs   5 50 Arc to 1 ime o	
Dec.	4	W.	o /. 190 I & 10 I	+ 7 42 50.83 42 49.33 40 44.50 40 26.00	m 8 , "  0 53 + 0 0.23  4 23 0 5.63  20 51 2 6.32  22 21 2 25.13	+ 7 42 51 06 54 96 50 82 51 13 42 13 42 13	.62 11 40 0 30.12	43.82
**	4	E.	10 I & 100 I	- 9 27 48 17 28 21 33 31 38 33 31 55 17 33 21 83 33 16 33	33 47 32 11 18 54 17 4 17 4 1 24.86 0 59 0 0.28 5 14 0 8.02	- 9 33 18·24 - 9 24 52 21·31 22·37 20·03 22·11 24·35 32·59	100     40     2     7     42     64       167     26     36     3     25     17       183     25     30     3     8     86       100     9     23     0     25     72	18·64 17·84 18·69
"	5	w.	199 4 &	+ 7 42 2 17 42 18 00 42 18 00 42 9 17	13 27 + 0 53 23 11 7 0 36 32 10 31 0 32 26 11 51 0 40 95	+ 7 42 55 40 54 32 50 26 50 12 + 7 42 40 42 40 41 11 40 55	.12 o 3 o o.oc	48.59
22	5	<b>E</b> .	199 4 35 19 4	- 9 29 49 33 30 20 83 32 53 17 32 59 67 33 9 33 33 8 33	26 47 — 3 28·12 24 47 2 58·27 9 47 0 27·91 7 49 0 17·87 4 45 0 6·64 6 28 0 12·24	- 9 33 17 45 - 9 31 40 31 55 33 24 17 54 33 22 15 97 20 57	.00 1 20 0 1,14	21'74
<b>27</b>	6	w.	209 4 & 29 4	+ 7 41 4 50 41 23 83 42 48 83 42 47 00 41 43 83 41 29 67	18 53 + 1 44.85 17 2 1 25.39 2 10 0 1.38 1 5 0 0.34 14 52 1 4.45 16 32 1 19.68	+ 7 42 49 35	17 8 31 0 21 29 100 7 1 0 14 39 183 8 26 0 20 79 17 23 33 2 41 22	46°45 47°39 46°62 50°39

ş			k) of		FA	OR LEFT	PA	CE BIGHT
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Interval in Time from Elongation	Reduction in Arc to Time of Elongation at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation Ref. Mark—Star at Elongation
Dec.	6	E.	209 4 & 29 4	- 9 28 20°17 28 59°67 31 47°00 32 0°00 33 17°50 33 21°33	m s 31 58 30 3 18 1 16 46 3 9 1 49	- 4 55.88 4 21.61 1 34.52 1 21.87 0 2.90 0 0.96  - 9 33 16.05 21.28 21.52 21.87 20.40 20.40	- 9 30 27 50 24 37 30 41 83 32 51 83 10 25 8 55 33 7 33 31 00 8 28	- 2 55.98 2 40.86 0 31.67 0 23.21 0 15.59 0 21.00 22.00 22.00
,,	7	W.	219 4 & 39 4	+ 7 42 38 00 42 46 00 42 41 50 42 31 33	7 23 5 48 7 24 9 0	+ 0 15.97 0 9.84 0 16.02 0 23.60 + 7 42 53.97 55.84 57.52 54.93	+ 7 41 45 33 14 19 41 58 67 12 59 42 47 00 0 7 42 46 67 1 20	+ 1 0.50 0 49.47 0 0.00 0 0.53 + 7 42 45.53 48.14 47.00 47.20
n	7	E.	219 4 & 39 4	- 9 32 27.67 32 40.33 33 17.00 93 12.67 31 38.83 31 29.33	13 22 11 52 2 55 4 23 18 2 18 57	- 0 52.09 - 9 33 19.76 0 2.50 19.50 0 5.65 18.32 1 35.73 14.56 1 45.77 15.10	- 9 31 14.50 21 18 31 29.33 19 43 33 13.33 5 36 33 19.50 4 1 33 5.67 8 16 32 56.67 9 36	- 2 11'93 1 53'08 0 9'17 0 4'71 0 20'05 0 27'07 - 9 33 26'43 22'41 22'50 24'21 24'21 25'72 23'74
n	8	w.	229 4 55 4	+ 7 42 10°50 42 21°83 42 55°33 42 53°00	12 50 11 24 0 27 1 48	+ 0 48:33 + 7 42 58:83 0 38:20 00:03 00:06 55:39 53:94	+ 7 42 33 33 6 14 42 39 00 4 48 42 30 67 7 23 42 25 50 8 48	+ 0 11'37 + 7 42 44'70 0 6'77 45'77 0 15'95 46'62 48'16
"	8	E.	229 4 & 49 4	- 9 32 31 00 32 38 67 33 28 00 33 25 33 32 35 00 32 19 83		- 0 54'93 - 9 33 25'93 0 44'76 23'43 0 0'12 26'24 0 54'25 29'25 1 6'21 26'04	- 9 31 1.33 22 20 31 17.67 20 50 33 11.83 6 8 33 15.67 4 51 33 12.17 7 9 33 4.00 8 19	- 2 24'90 - 9 33 26'23 23'80 22'79 22'56 015'02 27'19 24'34
29	9	w.	239 4 & 59 4	+ 7 42 20.83 42 27.83 42 56.00 42 54.00	2 11	+ 0 39°33	+ 7 42 41.67 5 0 42 46.00 3 40 42 27.33 9 5 42 18.00 10 27	+ 0 7'35 0 3'95 0 24'05 0 31'85 + 7 42 49'02 49'95 51'38 49'85
n	9	E.	239 4 & 59 4	- 9 33 12.67 33 18.50 33 2.67 32 50.00	3 29 8 18	- 0 10'49 - 9 33 23'16 22'05 0 20'18 22'85 23'71	- 9 32 20°17 15 26 32 36°67 13 10 33 24°50 1 32 33 22°67 2 57	- 1 9.36 0 50.60 0 0.68 25.18 25.21

## BUDHON MERIDIONAL SERIES.

## Abstract of Astronomical Azimuth observed at XVII (Gúrmi) 1842.

## 1. By Eastern Elongation of $\epsilon$ Ursæ Minoris.

Face	${f L}$	${f R}$	L	R	${f L}$	R	L	R	${f L}$	R	L	R
Zero	190°	10°	199°	19°	209°	29°	219°	39°	229°	<b>49°</b>	239°	59°
Date	Decem	ber 4	Decem	iber 5	Decen	iber 6	Decen	ıber 7	Decen	iber 8	Decem	ber 9
	"	"	"	"	"	"	"	"	"	"	"	"
01	18.54	18.01	17:45	24.06	16.02	23.48	19:76	26.43	25.93	26.53	23.16	29.53
Observed difference of Circle-Readings,	21.31	18·64 17·84	<b>51.08</b>	21.74	21.58	22.69 23.50	21.39	22'41 22'50	23.43 28.13	23·80 22·79	22.05 22.05	25.18 32.52
Ref. M.—Star	22°37	18.60	17.54	25°14 22°73	21.87	23.04 23.20	18.3 <b>2</b> 19.50	37.31	26.54	22.26	23.41	25.21
reduced to Elongation	<b>55</b> ,11	16.23	15.97	/3	20.40	22.03	14.26	25.72	29.25	27.10	-5 ,-	-5
1000000 00 210280000	24.35	14.88	20.27		22.29	22.00	12.10	23.74	26.04	24.34		
Means	21.40	17.46	18.62	23.42	20.27	22.77	18.11	24.17	26.20	24.49	<b>3</b> 2 · 94	36.80
		<i>n</i>		"		"		"		"		"
	- 9 33 19	.43	21	. 02		. 67	2 1	114	25	49	24	1.87
Az. of Star fr. S., by W.	188 38 5	*24		5.20	5	18.		5.09	6	5.36		5.64
Az. of Ref. M. "	179 4 45	.81	44	<b>ֈ</b> • 48	44	ϰ 14 .	4-	1'95	40	.87	4.1	7.77

## 2. By Western Elongation of $\epsilon$ Ursæ Minoris.

Face	${f L}$	R	${f L}$	R	${f L}$	R	L	R	L	B	L	${f R}$
Zero	190°	10°	199°	19°	<b>2</b> 09°	29°	219°	89°	229°	40°	239°	59°
Date	Decer	nber 4	Decer	nber 5	Decer	nber 6	Decen	nber 7	Decei	nber 8	Dece	mber 9
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	51°06 54°96 50°82 51°13	41°24 43°82 53°41 52°81	55.40 54.32 50.26 50.12	41°43 40°17 48°59 46°96	49°35 49°22 50°21 47°34 48°28 49°35	48·29 46·46 47·39 46·62 50·39 50·00	53°97 55°84 57°52 54°93	45° 53 48° 14 47° 00 47° 20	58·83 60·03 55·39 53·94	44'70 45'77 46'62 48'16	60°16 58°80 57°39 57°61	49°02 49°95 51°38 49°85
Means	21.99	47.82	52.23	44.59	48.96	48.19	55.57	46.97	57.05	46.31	58.49	50.02
Means of both faces Az. of Star fr. S., by W. Az. of Ref. M. "	0 / + 7 42 49 171 21 54 179 4 44	.01	34	" 3°41 1°63 1°04	54	" 3·58 3·35 3·93	54	" 1°27 1°06	53	" 1 · 68 3 · 79 5 · 47	53	" 1, 51 3, 24 1, 58

	(by Eastern	n Elongation	n	•••	•••	•••	179 4 43.67
Astronomical Azimuth of Referring Mark	by Wester	n "	•••	•••	•••	•••	<b>"</b> 44 [.] 89
	(	Mean	•.• •	•••	•••	•••	,, 44.28
Angle Referring Mark and XX (Panáhat) a	ee page 19_	. J. •••	•••	•••	•••	•••	- 23 14 36.59
Astronomical Azimuth of Panáhat by observ	ation .	•••	•••	•••	•••	•••	155 50 7.69
Geodetical Azimuth of ,, by calculate	ation from th	at adopted	(Vol. I	I, page	141)	at	
Kaliánpur, see page 52 ante.	•••	•••	. •••	4	•••	•••	155 50 9.20
Astronomical—Geodetical Azimuth at XVII	I (Gúrmi)	•••	•••	•••	•••	•••	- 1.21

#### At XXVIII (Sankráo)

Lat. N. 28° 2′ 28″ 99; Long. E. 78° 34′ 30″ 15=5 14 18.0; Height above Mean Sea Level, 670 feet.

February 1843; observed by Lieutenant T. Renny with Troughton and Simms' 18-inch Theodolite No. 2.

Star observed

29 Camelopardalis Hev.* (East and West).

Mean Right Ascension 1838.0

10h 4m 53s

Mean North Polar Distance 1838.0

4° 56′ 1"·14

Local Mean Times of Elongation, February 16

Eastern 6h 33m Western 18 10

*So called in Everest's "Measurement of the Meridional Arc of India" 1847, p. 98. The Star is identical with B.A.C. No. 3495 Ursæ Majoris, and with Madras General Catalogue No. 4534, 189 Camelop. [ardalis]. It is not in Pond's Cat. of 1112 stars 1833—which seems to have furnished other names, e.g. 146 Rangiferis observed at Somtána Hill Station of the Great Arc Meridional Series, Section 18° to 24°. No evidence remains pointing certainly to any one catalogue relied on by Everest. The place given here is from an autograph list of circumpolars furnished by "T. G. Taylor, H. C. Astronomer" for 1838, presumably at Everest's request.

J. H.

gg g			rk)	,	PACE LEFT			PACE RIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star 'at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Feb.	16	B.	99 53 & 279 54	- 5 37 34 83 37 33 17 35 34 33 35 14 83	77	- 5 37 35 58 38 23 36 02 36 13	- 5 37 16 83 10 1 37 30 50 7 37 4 17 13 5 36 52 83 16 2	- 0 20 04 0 9 58 0 37 21	- 5 37 36·87 40·08 41·38 44·61
12	16	w.	99 54 & 279 54	+ 5 35 6 33 35 31 00 36 58 50 37 2 00	24 20 + 153°97 21 40	+ 5 36 60·30 61·38 59·18 62·03	+ 5 36 30°17 12 5 36 40°50 8 4 36 40°50 10 1	0 19.45	+ 5 36 62·10 60·28 60·93 60·84
'n	17	E.	109 53 & 289 53	- 5 37 32 00 37 34 33 37 19 00 37 7 83	6 48 - 0 8 86 6 10 0 7 30 10 39 0 21 83 0 33 34	- 5 37 40·86 41·63 40·93 41·17			- 5 37 41 98 43 70 40 72 39 62
,, 3	17	W.	109 53 & 289 53	+ 5 36 40·33 36 50·67 36 35·67 36 22·00	10 48 + 0 22 · 41 8 11 0 12 · 88 11 19 0 24 · 51 0 38 · 62	+ 5 36 62·74 63·55 60·18 60·62	+ 5 35 30°33 20 4 35 50°83 18 3 36 54°83 0 36 55°67 2 2	0 0.00	+ 5 36 53.27 56.90 54.83 56.72
,, 1	18	Е.	119 53 & 299 53	- 5 37 24·33 37 28·33 37 1·83 36 51·17	5 35 - 0 5.98 4 36 0 4.06 13 2 0 32.68 0 14.53	- 5 37 30°31 32°39 34°51 35°70	- 5 36 44 33 17 1 37 0 50 14 5 37 40 17 1 37 36 17 4 1	0 42.62	- 5 37 40.81 43.12 40.37 39.60

	}		k) of		PACE LEFT			FACE RIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Resdings Ref. Mark-Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark-Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark — Star at Elongation
Feb.	18	w.	119 53 & 299 53	0 , " + 5 36 5.83 36 23.83 36 37.67 36 29.50	m	+ 5 36 59.63 59.55 56.68 57.87	+ 5 34 29 50 27 3 34 58 00 24 5 36 56 00 3 4 37 1 33 0 1	2.73	0 , " + 5 36 56·59 57·61 58·73 61·34
,,	19	E.	129 53 & 309 53	- 5 37 35 67 37 35 83 36 39 33 36 31 83	2 I - 0 0.78 0 17 0 0.02 17 18 0 57.52 18 37 1 6.73	- 5 37 36.45 35.85 36.85 38.56	- 5 37 23 33 10 1 37 26 50 8 3 37 29 17 8 37 20 67 9 4	0 14.15	- 5 37 43° 10 40° 65 41° 71 38° 85
,,	19	W.	129 53 & 309 53	+ 5 36 55 00 37 0 67	4 48 + 0 4:43	+ 5 36 59°43	+ 5 35 46.83 19 1 35 57.83 17 2 36 32.50 11 5 36 26.17 13 3	0 58.74	+ 5 36 58.55 56.57 60.01 61.39
<b>)</b> )	20	E.	139 53 & 319 53	- 5 37 36·50 37 35·83 36 36·33 36 23·33	0 3 - 0 0.00 2 11 0 0.03 17 48 1 0.08 1 14.31	- 5 37 36·50 36·75 37·31 37·64	- 5 37 25 33 7 3 37 29 33 6 2 37 20 67 9 1 37 13 50 10 4	0 19.28	- 5 37 36·21 37·12 37·25 35·45
"	20	w.	139 53 & 319 53	+ 5 35 36·17 35 50·67 36 56·33 36 55·33	20 31 + 1 21.03 18 25 1 5.31 0 4 0 0.00 0 1.13	+ 5 36 57.20 55.98 56.33 56.46	+ 5 36 45 · 17 8 5 36 49 · 83 7 2 36 39 · 33 10 1 36 29 · 33	0 10.21	+ 5 36 60·20 60·34 59·55 57·99
,,	21	E.	149 53 & 329 53	- 5 37 25.83 37 20.00 35 44.50 35 32.50	6 27 - 0 7.98 8 51 0 15.08 23 53 1 49.90 25 18 2 3.31	- 5 37 33.81 35.08 34.40 35.81	- 5 37 36 33 3 1 37 36 38 67 17 1 36 30 67 18 1	0 0.00	- 5 37 38 31 38 00 35 84 34 78
,,	21	w.	149 53 & 329 53	+ 5 36 20 17 36 30 17 36 32 33 36 29 00	13 32 + 0 35.25 11 47 0 26.67 10 51 0 22.55 0 26.95	+ 5 36 55.42 56.84 54.88 55.95	+ 5 35 11 00 22 5 35 27 67 20 5 36 48 67 1 4 36 53 00 0	7 0 0.01 7 0 0.01	+ 5 36 51.99 51.27 49.28 53.00

## Abstract of Astronomical Azimuth observed at XXVIII (Sankráo) 1843.

## 1. By Eastern Elongation of 29 Camelopardalis Hev.

L	R	L	${f R}$	${f L}$	${f R}$	L	R	${f L}$	${f R}$	L	${f R}$
100°	<b>2</b> 80°	110°	290°	120°	<b>300°</b>	130°	810°	140°	820°	150°	830°
Febru	ary 16	Febru	ary 17	Febru	ary 18	Febru	ary 19	Febru	ary 20	Febru	ary 21
*	*	*	*	*	*	*	*	•	*	n	"
35.58 38.23 36.02	36.87 40.08 41.38	40.86 41.63 40.83	41.98 43.70 40.72	30.31 32.39 34.51	40.81 43.12 40.37	36.45 35.85 36.85	43°10 40°65 41°71	36.22 36.22	36.51 37.15	33.81 35.08	38.31 38.00
36.13	44.61	41.12	39.62	35.40	39.60	38.26	38.85	37.64	35.45	35.81	34.48
36.49	40.74	41.13	41.21	33.53	40.08	36.93	41.08	37.05	36.21	34.78	36.43
0 1	"		n		7		·	,	,		,
		•	-								75
			-				•				
	100°  Febru  35.58 38.23 36.02 36.13  36.49  - 5 37 38 185 37 17	100° 280°  February 16  35.58 36.87 38.23 40.08 36.02 41.38 36.13 44.61	100° 280° 110°  February 16 February 16 February 16 February 16 February 16 35°58 36°87 40°86 38°23 40°08 41°63 36°02 41°38 40°83 36°13 44°61 41°17  36°49 40°74 41°12  - 5 37 38°61 41°185 37 17°74 17	Tebruary 16 February 17  35.58 36.87 40.86 41.98 38.23 40.08 41.63 43.70 36.02 41.38 40.83 40.72 36.13 44.61 41.17 39.62  36.49 40.74 41.12 41.51	February 16 February 17 February 16 February 17 February 18 35.58 36.87 40.86 41.98 30.31 38.23 40.08 41.63 43.70 32.39 36.02 41.38 40.83 40.72 34.51 36.13 44.61 41.17 39.62 35.70  36.49 40.74 41.12 41.51 33.23	Tebruary 16 February 17 February 18  35.58 36.87 40.86 41.98 30.31 40.81 38.23 40.08 41.63 43.70 32.39 43.12 36.02 41.38 40.83 40.72 34.51 40.37 36.13 44.61 41.17 39.62 35.70 39.60  36.49 40.74 41.12 41.51 33.23 40.98	February 16 February 17 February 18 February 16 February 17 February 18 February 18 35.58 36.87 40.86 41.98 30.31 40.81 36.45 38.23 40.08 41.63 43.70 32.39 43.12 35.85 36.02 41.38 40.83 40.72 34.51 40.37 36.85 36.13 44.61 41.17 39.62 35.70 39.60 38.56	Tebruary 16 February 17 February 18 February 19  " " " " " " " " " " " " " " " " " " "	February 16 February 17 February 18 February 19 February 16 February 17 February 18 February 19 February 18 35.58 36.87 40.86 41.98 30.31 40.81 36.45 43.10 36.50 38.23 40.08 41.63 43.70 32.39 43.12 35.85 40.65 36.75 36.02 41.38 40.83 40.72 34.51 40.37 36.85 41.71 37.31 36.13 44.61 41.17 39.62 35.70 39.60 38.56 38.85 37.64 36.49 40.74 41.12 41.51 33.23 40.98 36.93 41.08 37.05	February 16 February 17 February 18 February 19 February 20  """""""""""""""""""""""""""""""""""	100°       280°       110°       290°       120°       300°       130°       810°       140°       820°       150°         February 16       February 17       February 18       February 19       February 20       February 20         35.58       36.87       40.86       41.98       30.31       40.81       36.45       43.10       36.50       36.21       33.81         38.23       40.08       41.63       43.70       32.39       43.12       35.85       40.65       36.75       37.12       35.08         36.02       41.38       40.83       40.72       34.51       40.37       36.85       41.71       37.31       37.25       34.40         36.13       44.61       41.17       39.62       35.70       39.60       38.56       38.85       37.64       35.45       35.81         36.49       40.74       41.12       41.51       33.23       40.98       36.93       41.08       37.05       36.51       34.78         4       40.74       41.31       37.10       39.01       36.78       35         185 37 17.74       17.40

## 2. By Western Elongation of 29 Camelopardalis Hev.

Face	L	R	L	${f R}$	L	R	${f L}$	R	L	${f R}$	L	${f R}$
Zero	100°	280°	110°	290°	120°	300°	130°	310°	140°	320°	150°	330°
Date	Febru	ary 16	Febru	ary 17	Febru	ary 18	Febru	ary 19	Febru	ary 20	Febru	ary 21
	~	"	•	•	*	"	*	*	*	*	"	"
Observed difference	60.30	62.10	62.74	53.27	59.63	56.29	59.43	58.22	57:20	60.30	55.42	51.99
of Circle-Readings,	61.38	60.58	63.55	56.00	59.22	57.61	60.80	56.22	55.08	60.34	56.84	51.37
Ref. M.—Star		60.03	60.18	54.83	56.68	58.73		60.01	56.33	59.55	54.88	49.28
reduced to Elongation	62.03	00'84	60:62	56.43	57.87	61.34		61.39	56.46	57.99	55.95	23.00
Means	60.72	61.04	61.77	55.43	58.43	58.57	60.13	29.13	56.49	59.52	55.77	51.39
antana kantana di kantana pangana kantana kantana kantana kantana kantana kantana kantana kantana kantana kant	0 1 "			<del> </del>		,		,		,		,
Means of both faces	+ 5 36 60.	88	58.	бо	58.	50	59.	62	58.	01	53.	58
Az. of Star fr. S., by W.	174 22 42		42.		43	12	43.	46	43	8o	44.	
Az. of Ref. M. "	179 59 43°	30	41.	37	41.	62	43	o8	41.	81	37	73

	by Eastern	Elongation	•••	· •••	•••	179 59 38	79
Astronomical Azimuth of Referring Mark	by Western	ı ,,	•••	•••	•••	,, 41	·48
,		Mean	•••	•••	•••	,, 40	14
Angle Referring Mark and XXX (Sakrora) see p	age 23	•••	•••	•••	•••	+ 5 44 40	°43
Astronomical Azimuth of Sakrora by observation	n	•••	•••	•••	•••	185 44 20	57
Geodetical Azimuth of ,, by calculation	n from that	adopted (F	ol. II,	page 141)	at		
Kaliánpur, see page 53, ante	•••	•••	•••	•••	•••	185 44 19	17
Astronomical—Geodetical Azimuth at XXVIII	(Sankráo)	•••	•••	•••	•••	+ 1	<b>'</b> 40

#### At XL (Sirsa)

Lat. N. 28° 54′ 89″ 64; Long. E. 78° 34′ 83″ 82=5 14 18·2; Height above Mean Sea Level, 739 feet.

February 1843; observed by Mr. W. N. James with Cary's 15-inch Theodolite.

 Star observed
 ...
 ...
 29 Camelopardalis Hev.* (West and East).

 Mean Right Ascension 1838·0
 ...
 ...
 10h 4m 53s

 Mean North Polar Distance 1838·0
 ...
 4° 56′ 1″·14

 Local Mean Times of Elongation, Feb. 12
 ...
 {Western 18h 25m Eastern 6 49

* So called in Everest's "Measurement of the Meridional Arc of India" 1847 p. 98. The Star is indentical with B.A.C. No. 3495 Ursse Majoris, and with Madras General Catalogue No. 4534, 189 Camelop. [ardalis]. It is not in Pond's Cat. of 1112 stars 1838—which seems to have furnished other names, e. g. 146 Bangiferis observed at Somtána Hill Station of the Great Arc Meridional Series, Section 18° to 24°. No evidence remains pointing certainly to any one catalogue relied on by Everest. The place given here is from an autograph list of circumpolars furnished by "T. G. Taylor, H. C. Astronomer", for 1838, presumably at Everest's request. J. H.

at a			rk)		PACE LEFT		,	ACE RIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation  Reduced Observ Ref. Mark—S at Elongatio	Star
Feb.	12	W.	• 1 80 I 85 • 1	- 56 5 53:47 5 41:40 5 31:60 5 37:50	m e ,	0 / 4 - 56 5 21.25 21.10 22.81 23.55	- 56 7 46.70 27 30 6 35.60 19 49 5 10.83 0 27	+ 2 26.99 - 56 5 19 1 16.17 0 0.89 13	" - 71 - 43 - 51 - 79
n	15	w.	190 I	- 56 7 1.83 6 44.26 5 25.40 5 25.40	23 10 + 1 44.29 20 31	- 56 5 17.54 22.56 24.69 22.02	- 56 9 26.74 35 47 8 48.37 33 17 5 31.74 9 48 5 20.66 7 51 5 56.60 14 39 6 1.40 16 51	0 18·63 13 0 11·93 8· 0 41·35 15	·60 ·96 ·11 ·73 ·25 ·69
n	16	E.	190 I	- 67 25 26·83 25 36·77 24 32·80 24 18·43	4 21 — 0 3.67 1 52 — 0 0.67 17 58 — 1 2.66 19 58 — 1 17.32	- 67 25 30°50 37°44 35°46 35°75	- 67 24 52 36 15 19 24 59 74 12 52 25 22 13 6 8 25 10 23 10 59	0 7'30 29'	.59 .66 .43 .62
,,	16	w.	200 I	- 56 7 21.00 7 3.60 5 23.73 5 25.47	24 2 + 1 52°12 3 30 0 2°38 0 38 0 0°08	- 56 5 28.88 27.87 21.35 25.39	- 56 9 38·50 36 4 8 44·87 32 23 6 2·43 14 1 5 40·83 11 46 5 30·57 7 48 5 37·74 9 30	0 38.00 24. 0 26.81 14. 0 11.73 18.	·62 ·00 ·34 ·02 ·84 ·33
"	17	Е.	200 I & 20 I	- 67 25 33.60 25 35.13 24 37.67 24 19.57	4 19 — 0 3.61 2 16 0 1.00 17 30 0 59.44 1 19.68	- 67 25 37 21 36 13 37 11 39 25	- 67 24 58 50 14 43 12 31 25 29 00 5 25 22 80 7 33	- 0 41 '77 - 67 25 40' 0 30'20 0 5'68 0 11'06 33'	· 53 · 68

			Jo e	E)			-				F	ACE I	EF.	r										•			<b>y</b> a	CE R	GH	r					
Astronomical Date		Klongation	Zeros (Circle Beadings of	Kelerring Mar	D		ntal f R	eadi		Interval in	Time from Elongation	Ar	to	ctior Tin <b>ga</b> ti	10 of	R	of. l	Mar		vation Star ion	D	rizo iff. c	of R	. As eadi	ingle : ings Star	Interval in	Lime trom	Arc	to '	tion Tim gati	e of	R	ef. I	lark	servatio - Star ation
Feb.	17	w.	210 & 30	1	-		5 5	59 48 40	* *50 *93 *47 *06	13	14 26 32 28	+	0	33 25 17 25	·31	_	56	, , ; 5	23	5 55 3 62 3 94 3 68	_	56	7 6 5	45 20	. 70 . 24 . 37 . 63	23 21 3	22 19 35 45	+	[ 0	45° 28°	95 25 49 59	_	• 56		,, 18.45 16.64 16.64
27	18	E.	210 & 30		_	67	25 25	23 20	·77 ·33 ·6 ₇ ·87	7	35 8 36 12	_	0	14 9 11 16		_	67	25	33	; 00 ; 16 ; 88 ; 25	_	67	24 25	5 I 29	63 24 79 47	14	35 35 52 <b>53</b>	_	0	4 t '	°03 °01 °14	_	67		28·66 32·25 29·84 27·62
"	18	w.	220 & 40	1	-	56	6 5	44 22	· 13 · 46 · 17 · 67	20	16 37 17 45	+	0	45 22 0		_	56	5 5	21	96 197 116 1108	_	56	5	39	7 60 36 27	31	33 16 4	+	3	13°	00 41 62	_	56		21.47 16.19 14.24 15.35
"	19	E.	220 & 40	1		67	25 23	27 42	· 50 · 96 · 43 · 20	23	50 20 52 49	_	0	3	·65 ·64 ·69 ·45	1	67	25	33	65 65		67	25 24	17 59	10 20 20	12	33 43 46 34	_	0	31°	57 14	_	67		23·20 25·89 30·77
,,	<b>20</b>	E.	230 & 50		_	67	24 21	41 12	·80 ·80 ·77 ·47	36	11 28 32 56	_	0 4	33 46 19 54		_	67	25	28 32	5°47 3°20 3°47 3°44		67	25 23	11 14	33 40 70 57		28 59 7 7	_	0 2	4	18 82 47 84	_	67		17°51 16°22 17°51
,,	<b>2</b> 0	w.	230 & 50			56	8 5	7 18	• 26 • 13 • 63 • 70	29 I	55 19 21 48	+	0	30° 47° 0	35	_	56	5	20 18	3°52 3°58 3°58	-	56	10 6	5 t	53 67 16	41 18	57 55 37 6	+	5	41 ' 7 '	38 86 27 28		<b>56</b>		12.69 9.67 10.88
n	21	E.	180 dz	i	-	67			`94 <b>`40</b>	2 4	26 46	-	0	1 4	'14 '41	_	67	25	3 3 2 3 5	. 8 · 8 8 · 8	_	67	25	20	;·17 •·30	5	57 14 54	_	0	5	31 30 06	-	67		26.66 25.60 26.48
,,	22	E.	6 28 081		_	67	25	26	·83 ·84 ·63	7	27 20 26	_	0	10	. 74 . 42 . 32		67	25	37	9°57 7°26 1°95	_	67			; · 40 ; · 56		26 51	-			79	_	67		29°19 25°23

#### BUDHON MERIDIONAL SERIES.

## Abstract of Astronomical Azimuth observed at XL (Sirsa) 1843.

## 1. By Eastern Elongation of 29 Camelopardalis Hev.

Face	L	$\mathbf{R}$	${f L}$	${f R}$	${f L}$	${f R}$	L	${f R}$	${f L}$	${f R}$	${f L}$	R
Zero	180°	0°	190°	10°	200°	20°	210°	80°	220°	40°	230°	50°
Date	Februa	ry 21	Febru	ary 16	Febru	ary 17	Febru	ary 18	Febru	ary 19	Febru	ary 20
	"	"	*	*	•	"	"	"	"	" #	"	•
	32.08	24.48	30.20	37.59	37.21	40.27	35.00	28.66	30.12	23.30	26.47	17.21
Observed difference	32.81	25.60	37.44	31.66	36.13	43 53	33.16	32.5	31.60	25.89	28.30	16.53
of Circle-Readings, Ref. M. – Star	40.10	26.66	35.46	29.43	37.11	34.68	31.88	29.84		30.77	32.47	17.17
reduced to Elongation	*37`79 *32`48	<b>*</b> 29.72	35`75	33.63	39°25	33.86	35.5	27.62	33.65	31.31	27`44	15.41
Means	35.65	26.44	34.79	33.08	37.43	38.09	33.82	29.59	32.13	27.79	28.65	16.28
	0 1	"	ı	,		1		"		"		"
Means of both faces	- 67 25 31	·05	33		37	. 76	31	.71	29	•96	22	·61 ¦
Az. of Star fr. S., by W.	185 40 3			63	-	· 28		<b>.</b> 93		· 59		. 23
Az. of Ref. M. "	118 14 32	·84	31	70	27	• 52	33	. 53	34	. 63	41	. 63

## 2. By Western Elongation of 29 Camelopardalis Hev.

Face	${f L}$	${f R}$	${f L}$	R	L	${f R}$	L	R	${f L}$	${f R}$	${f L}$	${f R}$
Zero	180°	0° '	190°	10°	200°	<b>20°</b>	210°	<b>30°</b>	220°	40°	230°	50°
Date	Februa	ry 12	Febru	ary 15	Februs	ry 16	Februs	ry 17	Febru	ary 18	Febru	ary 20
	"		"	*	"	11	"	ıı.	"	11	"	•
<u> </u>	21.25	19.71	17.24	17.60	28.88	25.62	25.22	18.75	23.96	21.47	18.52	12.69
Observed difference	21,10	19.43	22.26	12.96	27.87	21.00	23.62	16.99	21.97	16.19	20.13	9.67
of Circle-Readings,	22.81	13.21	24.69	13.11	21.35	24.34	22.94	17.88	22.16	14.74	18.38	16.40
Ref. M —Star	23.55	10.49	22.03	8.73	25.39	14.03	22.68	16.04	21.08	15.35	19.28	10.88
reduced to Elongation				15.25		18.84						
				6.69		20.33						
Means	22.18	15.86	31.40	12.39	25.87	20.69	23.70	17.42	22.29	16.04	19.13	13.41
	0 /	"		"	,,			11		"		n
Means of both faces	- 56 5 19	.03	17	·05	23.	28	20	•56	19	. 62	15	.77
Az. of Star fr. S., by W.	174 19 53		•	. 19	54.			.*8 <b>9</b>		. 24		·94
Az. of Ref. M. "	118 14 34		•	14	31.			33		.63		· 17

· · · · · · · · · · · · · · · · · · ·	by Eastern E	longation	•••	•••	•••	118 14	33 [*] 59
Astronomical Azimuth of Referring Mark	by Western	,,	•••	•••	•••	,,	35.44
	(	Mean	•••	•••	•••	,,	34.2
Angle Referring Mark and XLIII (Milik) see	page 29		•••	•••	+	31 40	42.24
Astronomical Azimuth of Milik by observation	<b></b>	•••	•••	•••	•••	149 55	16.76
Geodetical Azimuth of ,, by calculation	from that adop	ted (Vol.	II, page	141) at			
Kaliánpur, see page 54 ante	• •••	•••	•••	•••	•••	149 55	20.99
Astronomical—Geodetical Azimuth at XL (Sirs		•••	•••	•••		•	4.53

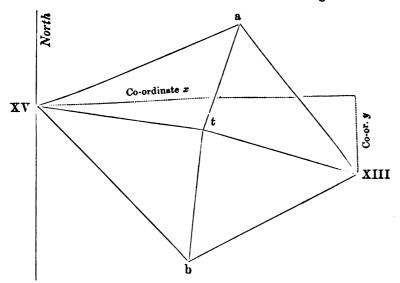
Note.—Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date—the most convenient—by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.

May 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.



#### BUDHON MERIDIONAL SERIES.


#### PRINCIPAL TRIANGULATION.

## PRINCIPAL STATIONS ON RAEPUR HILL, LAT. N. 26° 8', LONG. E. 78° 7'.

As the summit of the conical peak of Ráepur was found occupied by a Hindu Temple when the advance party of the Great Arc Series visited the hill in 1833, the station then selected was necessarily placed on the side of the cone, and by preference West of the Temple since some of the Great Arc Series stations lay in that direction: the point chosen is numbered XV and is described at page 5—1 Volume IV of the "Account of the Operations of the Great Trigonometrical Survey of India". Subsequently, it was necessary to select another station on the same hill to suit the Budhon Meridional Series which passes East of Ráepur, so that the point now chosen was necessarily placed on the East face of the cone; this station is numbered XIII and is described at page 5—1 of this volume. Thus principal stations XV and XIII stand on opposite sides of the Temple, which obstructs the view between them; they are equidistant from the Temple and are about 41 feet apart.

Stations XV and XIII were however not connected with one another until November 1877, when Mr. W. J. Cornelius, Assistant Surveyor, was instructed to make the necessary measurements, with the view of establishing, in station XIII, an additional fixed point on which to fit the Budhon Meridional Series. The adjustments of this series which followed, will be found explained in Part I of Volume VII; it is only necessary here to describe Mr. Cornelius' operations and to state their results.

Mr. Cornelius found the structure and mark of XV in good order. But at station XIII the isolated circular pillar



had been wilfully destroyed, and this had been done so effectually that even the lower markstone could not be found: the circular pillar had however been originally enclosed, as usual, within a platform, so that on removing the former there remained in the latter a corresponding circular cavity, from which the position of the original mark was determined with ample accuracy for the object now in view and certainly within a foot of the truth. Station XIII being thus sufficiently found, three auxiliary stations a, b and t were chosen; of these t was on the Temple*: the connection between

XV and XIII, thus made, is shown in the marginal diagram.

As the distances involved were only a few feet, sufficient accuracy was secured by using a Prismatic Compass and Measuring Tape. Both back and forward magnetic bearings were taken on all the lines: the forward azimuths given in the following table were found, by taking the mean on each line of the forward bearing increased by 180° and the back bearing, and correcting the mean for Magnetic Variation. The distances were measured with the Tape. The bearing of the line t to XIII could not be determined

^{*} This point is identical with the station of the Gwalior and Central India Topographical Survey.

⁺ Variation East 1º 13'.

#### Principal Triangulation. Stations on Ráepur Hill.

with accuracy, because the dome of the Temple rose between the two to an inconvenient height.

No.	At	Azimuth		Distance		No.	At	Azimuth		Distance	
		of	o ,	ft.	in.	210.	710	of	o ,	ft. in.	
1	xv	8.	250 43	27	0	5	xv	t	281 5	20 8	
2	a	XIII	322 5	23	9	6	t	a	200 58	13 10	
3	xv	ь	318 5	27	2	7	a	XIII	322 5	23 9	
4	b	XIII	243 48	24	4.2	8	t	b	8 50	16 6	
						9	Ъ	XIII	243 48	24 4.2	

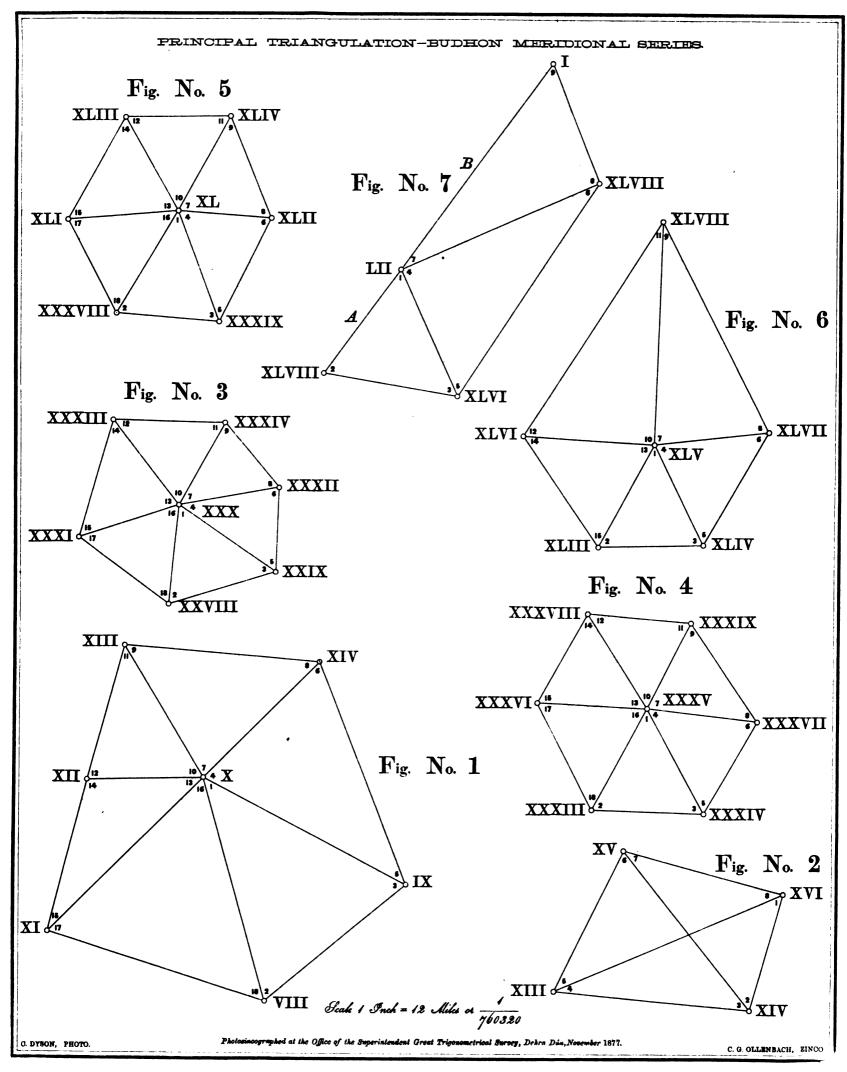
Adopting the combinations indicated in the following table, the 4 routes between XV and XIII were plotted on a scale of 1 inch = 2 feet, with XV for origin and its meridian and perpendicular as co-ordinates, and the resulting co-ordinates of XIII given hereafter were measured off with a pair of compasses.

By Combining	Co-ordinates of XIII referred to XV				
Nos.	Sout	th or y	East or x		
		ft.	in.	ft.	in.
1 and 2	•••	9	9	39	4.2
3 and 4	•••	10	0.8	39	9.8
5, 6 and 7	•••	9	6	39	6
5, 8 and 9	•••	9	11.2	39	11
Means	•••	9	9.8	39	7.8

The equivalents of these results are,

Latitude, South 9 ft. 9.8 in. = 
$$-0^{\circ}$$
·10  
Longitude, East 39 ft. 7.8 in. =  $+0.44$ 

which are the required differences in Latitude and Longitude between XV and XIII.


Now since XV has already been fixed by the simultaneous reduction of the North-West Quadrilateral, we have only to take the Latitude and Longitude of XV thus determined and apply to them the differences (a), in order to find the corresponding values of XIII, as follows,

Of XV, see Vol. IV Great Arc	Meridions	al Series	Page 26—a		•••	Latitude N. 26° 8′ 14″°39	Longitude E. 78° 7′ 15″ 71
(a) from above	•••	•••	•••	•••	•••	- 0 .10	+ 0 .44
Corresponding values of XIII	•••	•••	•••	•••	•••	26 8 14 . 29	78 7 16 . 15

These are the values of XIII to which the Budhon Meridional Series has been made to conform at this point.

J. B. N. HENNESSEY,
In charge of Computing Office.

28th March 1881.



## RANGIR MERIDIONAL SERIES.

#### RANGIR MERIDIONAL SERIES—(LONG. 79° 30').

#### INTRODUCTION.

The Rangír Series is the second in order, reckoning eastwards from the Great Arc, of the meridional chains of triangles which are included in the North-East Quadrilateral. It is aligned, as closely as the nature of the country would allow, on the meridian of Rangír, viz., 79½°. It emanates from the side Tinsmál-Rangír of the Calcutta Longitudinal Series, and extends over a meridional distance of about 4½°, up to the North-East Longitudinal Series. It was constructed throughout as a chain of single triangles, but with the introduction of a trigon around the station of Muhammadabad (xxii). For the first hundred miles of its length, it crosses the low hills which, generally speaking, may be said to form the northern outliers of the Great Vindhya range; and in this part of its course, it traverses portions of the modern districts of Saugor, Damoh, Jhánsi and Hamírpur and of the Native States which are affiliated with the Bundelkhand Agency. It then enters the great plains of the Gangetic valley, and after crossing portions of the modern districts of Jálaun, Etáwah, Farrukhabad, Sháhjahánpur, Budaun and Bareilly, terminates in the forests of the Tarái at the foot of the Himalayan mountains.

The execution of the Series was originally entrusted to Lieutenant A. S. Waugh of the Bengal Engineers—afterwards Surveyor General—Lieutenant T. Renny of the same Corps being chosen at the same time to conduct the adjoining chain of triangles to the east, viz., the Amua Series. Both these officers had recently been appointed to the Great Trigonometrical Survey, on the recommendation of Major Everest, the Surveyor General, with a view to the early commencement of these chains of triangles. But as they had had no previous experience of principal trigonometrical operations which were designed to subserve the requirements of Geodesy as well as Geography, Major Everest recommended that they should be primarily employed as assistants in the operations which were then being carried out on the Great Arc, in order to gain a practical knowledge of duties such as those which they were eventually intended to undertake, observing that "although both these "gentlemen are highly talented as far as theory goes, they cannot be expected to conduct "duties of this sort intuitively".

At the time when their appointments to the Great Trigonometrical Survey were sanctioned by the Government they were both in Calcutta; and as in marching from Calcutta to the scene of their operations, in Central India, they would have to pass through or near

certain localities of which "as little was known as of the heart of Africa", Major Everest proposed that they should carry a rapid route-survey (supplemented by suitable descriptive notes) through the tracts in question. He drew up instructions for their guidance, which are given below in extenso*, as they are interesting for the evidence they afford of the necessity which existed in those days for combining surveys of the roughest description, which were wanted to satisfy immediate geographical requirements, with operations of extreme precision, which were intended to form a permanent basis for all future survey operations.

Even the primary operation of selecting suitable sites for the stations of the principal triangulation was made to subserve the geographical requirements of the moment; it furnished approximate values of the positions of the stations themselves and of the hill

*Extract of Instructions communicated to Lieutenants Waugh and Renny, by the Surveyor General in November 1832.

The first obvious blank in all our maps is the mass of mountain land on which Rotasgurh is situated.

The range called "Kula Phar" to the east of this which bounds the valley of the Soane may be generally laid down.

But as to the route over the mountain at the back of Rotasgurh, this gap in our knowledge may well be filled up more particularly. I took a route of the tract between Rotasgurh and Punnoogunge near Bijeygurh in 1817, which is perhaps as accurate as route surveys in general. It was plotted very carefully by me from my field book and I lent it to Colonel Blacker for the purpose of facilitating the operations of my own people under Mr. Olliver in 1825. In that plan there is a road from Weenee branching off to Chunar left incompleted, the last place on it being Bogheelah. There is also a road from Dhobaec branching off to Chaenpoor from the road between Bijeygurh and Sheergurh, the most advanced place on it being Peeprah. If these two roads could be explored they would connect the details of my sketch with the general map, and the details would be filled up more satisfactorily still if direct roads can be found leading from Sheergurh to Rotasgurh, from Bijeygurh to Chunar, and from Bijeygurh to Rotasgurh along the face of the mountains.

I leave it to your judgment to examine or not any portion of my route again. You may perhaps lay down the hills more accurately, which is an object, and as it was a very hasty performance, you may if you find any errors correct them, but I think you will find it as good as route surveys usually are.

Rough plans of Bijeygurh and Sheergurh will be of use as well as plans of any other hill forts on that range. Historical facts connected with Sheergurh may be instructive. The tract to the southward of Sonegurra or Songurh leading to Omurkuntuk is absolutely terra incognita and it is one of the most interesting parts of India both geologically and geographically. The route I wish to be explored is that leading to Omurkuntuk from Rajgurh on the Soane, but you may be compelled to adopt some other route and I must rely on your prudence to take that which will afford the most information. Rajgurh appears to lie in Latitude 24° 35′ and Longitude 82° 6′, Omurkuntuk in Latitude 22° 40′ and Longitude 81° 43′. Whatever route you take however, you must cross the southern face of the Kimoor range respecting which any particulars you can give will be interesting.

Your Latitudes and Longitudes will all be referred to the nearest principal stations of the Longitudinal Series of the Great Trigonometrical Survey, whenever you can manage to discover them.

Having explored the route to Omurkuntuk, you will proceed if possible along the northern bank of the Nerbuddah to Jubbulpore and from thence to Seronj, where you will fall in with the party under Mr. Rossenrode, and I wish you to take advantage of that opportunity to acquire a practical acquaintance with the method of conducting Trigonometrical operations in the field.

I need not point out to gentlemen of your good sense and talent how necessary it is to devote your whole energy to this object, and how manifest an advantage it is to you to enter on your career as geodesists with full liberty to use the splendid instruments of my department and try your hand at any part of the operations without apprehension of doing mischief. A course of regular operations could not hold out those advantages because business requiring the most scrupulous attention to accuracy is then to be performed; but in an approximate series, if you should make a wrong reading, it is but putting the pen through it, and the work will still be accurate enough for the object in view. I shall therefore trust to your own sense of propriety to lose no opportunity of qualifying yourselves to take charge of a party on one of the independent meridians; but when you can do so without injury to this principal object, I wish you to furnish as many data for the topography of the country within the Series as you can collect.

#### Data

Barometer to be observed every day three times if possible at the same hour.

Two Barometers to be observed simultaneously when the depths of the beds of rivers or the heights of mountains are required.

Angles of elevations of any high peaks to be observed from two places whose distance is known, as well as the horizontal angles, so that the distances and heights of the main features of the country may be fixed.

Courses of rivers.—Where they emerge from the mountains to the plains. Their height at flood. Their minimum if perennial. Their period of drought if dried up. Locality of their sources. The strata they pass through, and the breadth of their beds. The depth of the channel as respects the surrounding country. Whether the banks are steep or cut into ravines or sloping.

Nature of the country passed through.—If a valley, how bounded, by high hills or low? The nature of those hills. Are they of primary or secondary formation? Do they contain mines of coal or marble or asphaltum or rock-salt, &c., or is there gold, lead, copper, &c.

peaks, towns, villages or other prominent objects seen from them, by observations taken with small theodolites or sextants during the course of the general reconnaissance of the country. The preliminary triangulation thus executed came to be called the Approximate Series, for it was intended to serve as a pis aller until the principal observations with the great theodolites could be completed. It was invariably pushed on as rapidly as possible without regard to nicety, observations being taken sometimes from trees and lofty scaffolds in the plains, and sometimes to distant torches and blue-lights which could be seen with the aid of nocturnal refraction over intervening obstacles, before the 'rays' between the principal stations had been cleared for the final observations.

Lieutenants Waugh and Renny started from Calcutta early in the field season of 1832-33, with two assistants. After carrying out, as fully as was possible, the instructions they had received for making route-surveys and drawing up reports of the

terra incognita through which they had to pass, they reached the camp of the party which was then employed on the Great Arc, at the principal station of Mao, in the Gwalior territory, about 18 miles from the town of Sipri. They devoted the remainder of the field season to acquiring an insight into the nature of the operations of the principal triangulation and some practical familiarity with the details.

The following recess was spent in Agra, where both officers were for some time occupied in bringing up their maps, plans, and reports on the route-surveys which they had recently accomplished, and afterwards in making preparations for commencing—in the next field season—the chains of triangles which had been respectively allotted to them.

Lieutenant Renny's subsequent operations being described in the Introductory Account of the Amua Series, we have here to deal only with those of Lieutenant Waugh, on the Rangír Series.

The party which was intended to break ground on this Series was constituted as shewn

Season 1833-34.
PERSONNEL.

Lieut. A. S. Waugh, Bengal Engineers, 2nd Assistant. Mr. J. W. Armstrong, 3rd Class Sub-Assistant. W. R. Forster, in the margin. It was furnished with an 18-inch theodolite by Cary for the principal observations*, with two 7-inch instruments for the secondary work, and with such other equipment as was deemed necessary. It started from Agra on the 30th of November 1833, and marching

to be found in them? How far from water carriage? Mineral springs, hot or cold. The order of the strata shewn in the beds of rivers and the bare sides of mountains.

Manners and language of the people.—Are they Hindoos or Mahomedans, or what is their religion? Are they obliging or hostile to strangers? To what state of civilization have they attained? Their progress in agriculture, manufactures, &c. The weapons they use. The language they speak. Are they a truth-telling people or deceitful and prone to falsehood? If the inhabitants are wild, are the settlements formed by the natives of Hindoostan amongst them numerous?

Fertility of the country.—Are there means of irrigation? Does the country admit of such being constructed, as building dykes? Number of crops a year? Are the people generally comfortable or oppressed? Are they wandering tribes, or attached to their homes?

Is the country open or covered with forest? What kinds of trees are found in the forests? Enumerate the different kinds of building wood to be met with. Are ebony and other kinds of wood fit for cabinet work found there? Of building materials, what means of water carriage? Drawings of curious temples, and all objects tending to illustrate the manners, customs, history, geology, and natural and artificial features of the country will be acceptable.

* Known as Cary's 18-inch L; for a description of this instrument see page 69 of the Appendices to Volume II.

Digitized by Google

viá Gwalior, Datia, Jhánsi and Saugor, arrived at Rangír about the 6th of January 1834.

Here Lieutenant Waugh commenced operations by taking a set of circumpolar star observations for determining a fundamental value of the azimuth, which was to be employed instead of the value that had been brought up through the Longitudinal Series from Kaliánpur. He then proceeded to lay out the triangulation, employing the side Rangír-Tikaria as his base, in conformity with the instructions he had received from Major Everest. But the ground immediately to the north of that side proved utterly impracticable for the extension of the triangulation therefrom; for the side was of considerable length—over 30 miles—and was confronted by a portion of the Vindhyáchal range which here developes itself into a mountainous table-land of considerable breadth, covered with high forest trees and dense underwood, and devoid of any commanding eminences. Thus the selection of symmetrically situated stations was a very difficult task to accomplish.

Lieutenant Waugh reported that after "having traversed the whole range and ob-"served from nearly every high tree and rising ground", his endeavours had all been in vain to advance the Series in any other way than by constructing a tower station 35 feet high at Saipur on the hills to the north of Rangír to command the view. tower was commenced, and it was being built of stones set in clay instead of mortar, and had attained a height of 10 feet, when the water supply failed; the remaining 25 feet was run up with dry stones, and it came tumbling down almost immediately after com-This disaster, combined with the circumstance that it would be necessary not merely to rebuild the tower at Saipur, but to construct a tower 60 feet high on the Sonha hills, at a considerable cost, if the originally intended side of origin was to be maintained, eventually induced Lieutenant Waugh to adopt the side Tinsmál-Rangír as the origin of the Series. At first however he loyally endeavoured to carry out the instructions he had received, reporting progress constantly and soliciting further orders; but the postal arrangements in those regions were so defective that he frequently did not receive answers to his letters to the Surveyor General in less than two months. A change of base involved the rejection of the work of several months which a young officer might well shrink from doing on his own responsibility; but immediate action was necessary, and Major Everest when all the facts were reported to him, at once approved of the change, saying that it was quite sufficient "if one flank of the Series-it did not matter which-was kept close to the me-"ridian of the operations", and giving as an illustration the Great Arc Series which "runs "as often on one side of the meridian as the other" and follows the principle of "not "fighting with a difficult tract when its flank can be turned". As regards the two towers which were required for the triangulation from the original base, Major Everest wrote that he preferred "vitiating the symmetry of the triangles to having towers of 60 feet in a hilly "country to start with; the notion is startling and must be abandoned".

Thus after five months of harassing anxiety and failure, during the best time of the year for field operations, Lieutenant Waugh found himself compelled to commence work on a new base at the time when the field season was nearly ending. But he had resolved that, in spite of all the difficulties which had beset the work at the very outset, the Rangír Series should not be found "to have fallen in arrears or have lagged behind its neighbours".

He remained in the field until the end of July, so as to avail himself of the clearing of the atmosphere which usually takes place when the rainy season commences; and he succeeded in observing the angles of the principal triangles up to the side Nágonáth-Phára, (VIII-IX) thereby completing the Series for a distance of 100 miles, and achieving an admirable out-turn of work in an unusually short space of time. Even the operations in the first five months of the field season, though a failure as regards the advancement of the principal triangulation, were fruitful in results of much value for immediate geographical requirements; as a large area of country had been reconnoitered, and the positions of several towns and forts of importance, lying mostly in Native States as yet unsurveyed, had been fixed from various secondary stations at which observations were taken with the small theodolites in the course of the search after suitable sites for the principal stations.

The latter 40 miles of the season's work on the Rangír Series lay in the Hamírpur District, which was suffering so terribly at the time from famine that Mr. Pidcock, the Settlement Officer of the district, reported that the season was one of unparalleled distress to the people and loss to Government,—the miseries of famine, pestilence, and exile having denuded the district of nearly one-half of its population.

In submitting from recess quarters the computations of the field season's operations, Lieutenant Waugh noticed with much regret the presence of triangular errors of over six seconds in the 5th and 6th principal triangles. He stated that he would have re-observed the angles had it not been for the impossibility of procuring further supplies of food for his people; being diffident of his skill as an observer he said that though not conscious of any remissness in this particular portion of the work, he could not but suppose that the errors "arose chiefly from bad observations". It is now however quite certain that the errors were due not to the observer but to the instrument employed, which was soon found to be of inferior value and was discarded.

Lieutenant Waugh's out-turn of work during the year consisted of a set of circumpolar star observations for azimuth; 8 principal triangles; 21 secondary triangles of the first class, and 43 of the third class; the elevations of all the principal and of 26 secondary stations, also a skeleton plan of the triangulation and a reconnaissance of the tract of country operated in. The latter included a part of Bundelkhand of which Lieutenant Waugh remarked that "it "was peculiarly favourable for secondary work; the detached granite ridges command "extensive views; forts and temples perched on eminences abound; indeed a complete map "might be made by triangles of the 1st, 2nd, and 3rd classes, and had it not been for the "difficulties which beset my debût, I should have formed such a map without at all delaying "the Principal Series".

The chain of triangles had now been carried into the plains of the Gangetic valley, only one more hill remaining to offer its friendly assistance in presenting a suitable site for a station of observation. One-third of the chain was complete, all of which—with the exception of the first triangle, measured in the course of the operations of the Calcutta Longitudinal Series—had been achieved by Lieutenant Waugh in a single year, under many and great difficulties as already set forth. Nevertheless the completion of the remaining two-thirds occupied nearly eight years to accomplish. The great retardation in the subsequent rate of

progress was due to two causes. First, at every station in advance—with the single exception of the hill of Gokulphára—towers had to be constructed to furnish stations of observation, and on sites carefully selected so as to present the fewest possible obstacles on the lines between the stations; moreover all obstacles to mutual vision had to be removed before the final observations could be commenced. Secondly, in order to construct a chain of triangles composed of as few links as possible, the sides of the triangles in the plains were maintained throughout at so great a length that the rays between the stations grazed the surface of the ground for a distance of several miles, thus making distinct mutual visibility impossible, excepting under unusually favourable atmospheric conditions which were of very rare occurrence.

The building of towers required the co-operation of the Department of Public Works; the Surveyor General had therefore moved the Government to issue the necessary instructions to that Department. Although anticipating that some delay would occur before the arrangements for the construction of the towers could be matured and suitable designs prepared, he was nevertheless confident that the building of artificial elevations of some sort or other would eventually be sanctioned. He accordingly issued instructions that field operations should be resumed during the ensuing field season, but that they were to be restricted to the selection of suitable sites for future tower stations. At the same time he prescribed a method of 'ray-tracing', for site-selection, by carrying a traverse with a theodolite and perambulator over each ray, with a view to effecting a close examination of the ground in each instance, before the final adoption of the sites and the commencement of ray clearing. Vide Section 3 of Chapter II of Vol. II.

In the following field season the party started from Cawnpore on the 10th of October.

Season 1834-35.

#### PERSONNEL

Lieut. A. S. Waugh, Bengal Engineers, 1st Asst. Mr. J. W. Armstrong, 2nd Class Sub-Assistant.
" W. R. Forster, 8rd ", "

Lieutenant Waugh wrote a circular letter to the Civil Officers of the various districts through which his operations would have to pass, pointing out his dependence upon them for obtaining labour and supplies, and explaining the necessity for the removal of all obstructions on

the lines between the principal stations; he said that great care would be exercised both by himself and his assistants not to inflict more injury in the removal of obstacles than was absolutely necessary, and due recompense would be readily made for all property destroyed; also that as he had no leisure nor inclination for entering into disputes with the owners regarding the cutting down of trees or removing of other obstacles, he trusted the Civil Officers would issue plain and positive orders for his support. This timely explanation of matters led to very happy results in the substantial assistance which was rendered to the surveyors throughout the field season.

Writing from Kanwa (XII), where the ray-tracing was begun on the line to Gura (XI), Lieutenant Waugh reported that the country thereabouts abounded with mud forts situated on the high lands. "Some of these", he said, "are uninhabited, with defences "ruined, and presenting a rude mass with steep sloping sides; they are solid, and a station "placed in the middle would be permanent even were the sides to crumble away to a slope "of 45° which is an event improbable, considering the tenacity of the material and its dis-

"position in successive strata or layers, according to the usual habit of the natives in build"ing earthwork". Other forts were partially tenanted, and had solid towers which could
be used as stations. Again, eminences were met with which were crowned with old and untenanted brick buildings, and occasionally with domed temples. It was expected that many
of these structures might serve as basements for the stations of the principal triangulation,
and thus obviate the construction of towers of the great height which would otherwise be
necessary in order to secure mutual visibility over the plains.

Having reconnoitred the country and given a good start to the operations, Lieutenant Waugh was summoned by Major Everest, towards the end of November, to assist in the measurement of the Dehra Dún Base-line, leaving the work on the Rangír Series under the supervision of Mr. Armstrong, the senior of his two assistants. On the completion of the base-line he returned to the charge of the Series, joining Mr. Armstrong in camp on the 20th May.

The party kept the field till the end of June. By this time all the rays had been cleared up to the side Chandanpur-Pothári (xxi-xxiii), and stations had been selected up to the side Janjíri-Gajnera (xxix-xxx), thus furnishing as the out-turn of the season's work a symmetrical series of 20 triangles, of the first 13 of which the rays were all cleared. In reporting on the field season's operations, Lieutenant Waugh stated that "the chief portion "of this work having been done during my absence by Mr. J. W. Armstrong, any merit it "may possess, either quantitatively or qualitatively, is entirely owing to his zeal and abilities. "I have on former occasions borne testimony to the talents and good conduct of Mr. "Armstrong as well as Mr. Forster, and I may now add that their efficiency keeps pace with "their experience. Their labours during the last season, in the novel and arduous under-"taking of carrying a series across the plains without any resource but what their judgment "might suggest, so greatly surpass my expectations that it becomes a pleasing duty to me to "bring them to the particular notice of the Superintendent".

During the following recess season, Lieutenant Waugh supplied carefully prepared drawings and estimates of the masonry columns that would be required at the first ten of the tower stations in the plains. These were designed simply for the support of the large theodolites which would be employed in the measurement of the principal angles; they were further intended to mark the station permanently. The surrounding platform for the support of the observer, his attendants, and the observatory tent, was to be constructed as a portable scaffolding, which would be removable at pleasure, in order to be employed alike at all the stations; bamboo ladders were to be erected for the use of the signallers whenever the scaffolding was not available. The early construction of the masonry pillars was very desirable; therefore, in forwarding the designs for them to the Government, the Surveyor General pressed for an early decision, as otherwise the progress of the Series would be arrested. Thereupon the Military Board—to which the general construction of all public works was then entrusted—was directed to adopt the necessary measures for the construction of the required columns of masonry, in communication with Lieutenant Waugh.

The party had already (3rd October) taken the field when the orders of Government

were received. As the erection of

Season 1835-36.

PERSONNEL.
Lieut. A. S. Waugh, Bengal Engineers, 1st Asst.
Mr. J. W. Armstrong, 1st Class Sub-Assistant.
,, W. R. Forster, 2nd ,, ,,

requirements.

As the erection of the masonry columns would take some time, no final observations were contemplated this season. The party was therefore to be occupied in clearing rays, selecting stations and also in measuring the angles approximately—with small theodolites—for immediate geographical

Early in this season the services of Lieutenant Waugh were again drawn off to assist Major Everest, whose health was in such an unsatisfactory condition that his medical advisers strongly recommended him to abjure all further active field work and proceed to sea. The Surveyor General was most anxious to finish the operations on the northern section of the Great Arc; and at the same time he wished to guard against any sudden emergency, by having with him an officer in whose hands he could confidently leave the conduct of those operations, the early completion of which was of great importance in the interests of geodesy. Accordingly, with the sanction of Government, he directed Lieutenant Waugh (on 8th December) to repair with as little delay as possible to the Head Quarters of the Great Arc party which was then at Kaliána—the northern astronomical extremity of the Arc. Thus the management of the Rangír Series was again left in the hands of Mr. Armstrong, an officer to whom it could be confidently entrusted.

The ray-clearing and approximate measurement of the angles was carried on without cessation, and under many difficulties, until the 22nd of June, when the rainy season set in with such violence as to prevent further operations in the field. Fourteen rays had been cleared and approximate angles measured between stations previously selected, thus bringing this part of the operations up to the side Janjíri-Gajnera (xxix-xxx). Five stations were selected further north, by which the Series was extended to the outer Himalayas.

Meanwhile the Executive Engineer of the Cawnpore Division was proceeding with the construction of the ten masonry columns which were required to be erected at the principal stations, in accordance with the designs previously furnished by Lieutenant Waugh. At the station of Atsu (xvi), in the Etáwah District, the overseer was completely thwarted by the determined opposition of a zemindar, Zálim Sing, the owner of a fort where a column was to be erected, the site for which he had originally given over voluntarily for the purpose; but when the overseer appeared on the scene, just one year afterwards, Zálim Sing put forward the most frivolous pretexts for holding back from his concession, and even went the length of building around the very spot which had been chosen. The overseer was compelled to suspend his operations, and a lengthened correspondence with the Civil Authorities ensued. Lieutenant Waugh pointed out that any change made in the site of the station would involve a loss to Government of Rs. 1,700, which should be defrayed by the zemindar as it would be due solely to a breach of faith on his part. This argument produced more practical results than all former persuasion had done; and it was finally settled that Mr. Armstrong should proceed to the spot, early in the following field season, and set the overseer to work, after personally arranging matters with Zálim Sing.

During the recess—which was spent at Bareilly—Mr. Armstrong prepared designs and estimates for fourteen columns remaining to be erected, and of modifications to the column

at Bisungarh (xx), which had been found to require an increase of 9 feet to its height, in order to be seen from the two forward stations.

Mr. Armstrong marched, on the 26th September, from Bareilly to make the necessary

Season 1836-37.
Personnel.

Mr. J. W. Armstrong, 1st Class Sub-Assistant.
" J. Mulheran, 2nd Class "

arrangements regarding the construction of the column at Atsu (xvi). It was found that the zemindar still objected to give up the site which he had originally conceded; he was probably more influenced by the idea of preserving his

dignity than any other reason; for he willingly gave another site, within a few feet of the first, but still at a sufficient distance to necessitate a partial reclearing of all the rays between Atsu and the surrounding principal stations, a work which occupied several days.

Mr. Armstrong then proceeded southwards to examine the columns which had been built by the Department of Public Works, and clear the rays of whatever vegetation had sprung up on them during the period of two years which had elapsed since they were first opened. He found the condition of some of the columns far from satisfactory. At Husapura (XIV) so much deflection had taken place, owing to insufficient foundation and bad workmanship, that the column was in a dangerous condition and had to be rebuilt; arrangements for this were immediately made, as the column would be soon wanted in the course of the measurement of the principal angles. The columns at other stations had also become deflected to an extent which rendered it impossible to suspend a plumb-line from the centre of the summit, through the hollow core, over the centered markstone on the ground-level at the base; but this defect was got over, partly by moving the markstone, and partly by adding a capital of larger diameter to the pillar, to increase its upper surface and thus permit of the theodolite being set up excentrically. Elsewhere the columns were found to be "correct and adapted for final work".

Mr. Armstrong then proceeded to Cawnpore to take over the portable scaffolding which was to be employed around the columns at each station; these had meanwhile been constructed by the Ordnance Department, from designs supplied by the Surveyor General. No description of the so-called portable scaffolding is now forthcoming; but some idea of its bulk may be formed from the circumstance that no less than 10 four-bullock carts were required for its transport.

By the end of November everything was ready at the first ten tower stations for the measurement of the principal angles, and arrangements had been made for constructing columns at fourteen stations in advance by the Bareilly Division of the Department of Public Works. Mr. Armstrong therefore proceeded to Gokulphára (x) to resume the final observations, taking with him an 18-inch theodolite—Cary's L, described at page 69 of the Appendices to Vol. II—to employ in the measurement of the principal angles. By the 10th April, the whole of the horizontal angles had been measured at stations viii to xvii inclusive. The measurement of the vertical angles had however terminated at stations ix and x, because satisfactory verticals could not be obtained; consequently this part of the work was postponed until arrangements could be made for taking simultaneous reciprocal observations, with the assistance of a second observer and instrument.

Observations were being taken at Birona (xvIII), and two-thirds had been completed,

when, on the night of the 10th April, the portable scaffolding was set on fire; being very inflammable it was completely destroyed in the course of a few minutes. When access to the summit of the station was obtained next morning by ladders, the instrument appeared at first "to have escaped the effects of the flames"; but eventually it was found to be so damaged as to have become practically useless. The origin of the fire remained a mystery, but is believed to have been purely accidental. This catastrophe, happening in the month of April, necessarily put a stop to all further measurements of the principal angles during this field season.

During the following recess Mr. Armstrong was furnished with another 18-inch theo-dolite—Cary's M.O., described at page 68 of the Appendices to Vol. II; he was also directed to proceed to Agra, to superintend the construction of another portable scaffolding, with such assistance as he might obtain from the Ordnance Magazine at that place.

Provided with a new scaffolding, Mr. Armstrong commenced the operations of the

Season 1837-38.
PERSONNEL.

Mr. J. W. Armstrong, 1st Class Sub-Assistant.
" J. Mulheran, 2nd ", ",

field season of 1837-38 by final observations at Bisungarh (xx). Though detained there for sixteen days—from 24th October to 9th November—he was unable to complete the horizontal angles, but succeeded in measuring the vertical

angles simultaneously with Mr. Mulheran, who took the reciprocal angles at the surrounding stations. He then proceeded to Kalsán (xix), where, though he again succeeded in executing his share of the reciprocal verticals, he was still unfortunate as regards the horizontal angles; the condition of the atmosphere was such as to prevent him from obtaining a sufficiently satisfactory view of the signals at the surrounding stations to enable him to measure the angles between them with the requisite degree of precision. Attributing the state of the atmosphere to unprecedentedly high winds, with concomitant clouds of dust, which then prevailed in the immediate vicinity of the River Ganges, he thought it advisable to lose no more time in that neighbourhood, and, passing over three stations—xxi, xxiii and xxiv—he set up his theodolite at Guri (xxv). Here he was detained a whole month, the out-turn of which was only two principal horizontal angles and simultaneous verticals on two rays, besides a set of experimental observations to circumpolar stars for azimuth. The next three weeks sufficed but to take the principal horizontal angles at Dháka (xxvi) and the verticals on the ray to Saipur (xxvII). It was now the 5th of February, and during the next month all that he was able to finish was the measurement of the angles, horizontal and vertical, at the stations of Saipur and Kasrak (xxvIII). In writing from the latter station on the 5th of March, Mr. Armstrong reported that owing to the reverses which he had experienced from the state of the atmosphere, he had "only completed two entire triangles on the south side of the Ganges and three triangles on the north side," besides of course the vertical observations which he had advanced pari passû with the horizontal measurements. It was his intention at the time to continue his progress as far north as he could proceed in the month of March, and then to return and finish the work below. He made comparatively good progress during the remainder of the month, completing the horizontal and vertical angles up to and including the side Gajnera-Fatehganj (xxx-xxxi), as well as a good number of secondary angles. He then retraced his steps to Guri (xxv), where between the 15th and 19th April he observed the principal angle between the side Pothári-Mau (xxIII-xxIV), the verticals on two rays, and some secondary angles. He next moved on to Mau where he remained until the 8th of May by which time he was able to finish the three principal angles, the verticals along the ray to Dháka, and the secondary angles to surrounding stations and points. But unfavourable weather again set in, and Mr. Armstrong moved into the station of Fatehgarh where he was to spend the recess; there he employed himself on the computations, at the same time holding himself in readiness to start for his next station Pothári (xxIII) whenever the weather might permit; but dust storms continued to prevail persistently and with unusual frequency and violence; thus he was unfortunately unable to take the field again this season in order to bridge over the gap in the triangulation in the immediate vicinity of the Ganges.

The pillars built by the Department Public Works this year in the Farrukhabad and the Bareilly districts, as far north as Fatehganj, were very favorably reported on by Mr. Armstrong who found them in general well built, steady and symmetrical.

The resumption of field operations in the season of 1838-39, was delayed, because the

Season 1838-39.

PERSONNEL.

Mr. J. W. Armstrong, 1st Class Sub-Assistant.,, J. Mulheran,

severity of the preceding rainy season had done considerable damage to the portable scaffolding. It had been left standing at the station of Pothári (xxIII), until the month of August when Mr. Armstrong brought it in to Fatehgarh,

for protection against further injury and for subsequent repairs; he experienced considerable difficulty in so doing because of the state of the roads and the large number of carts required for its transport. The damage done to the scaffolding took some time to repair, which, with delays in obtaining carts, prevented Mr. Armstrong from taking the field earlier than 25th December 1838. By the 19th of the following month, he had only succeeded in measuring three principal horizontal angles at the station of Pothári and in taking verticals on the rays to Chandanpur (xxi) and Mau (xxiv). He then moved on to Chandanpur, and completed three angles at this station and the verticals on the ray to Mau, by the 3rd of February. Here he received information of the fall of the pillar at Bagwara (VII of N.E.L.S.); he therefore moved the Executive Engineer of the Bareilly Division to have the pillar rebuilt with all possible despatch, as it would be required for use by the end of March. The station next visited was Bisungarh (xx); the horizontal angles were completed by the 11th of the same month, but no verticals could be obtained. For some unexplained reason Mr. Armstrong was unable to go down southwards, and complete the angles which remained unmeasured at the stations of Birona (XVIII) and Kalsán (XIX). This deficiency was not made good for another season.

From Bisungarh Mr. Armstrong marched northwards to the station of Gajnera (xxx), where he arrived on the 12th of March; by the 18th he completed the horizontal angle between Fatehganj (xxxi) and Atária (xi of N.E.L.S.), and had taken verticals on the ray to the latter station. By the 23rd of March, the horizontal and vertical angles at Fatehganj were concluded, and the party was on its way to Atária. The pillars at this station and at Sisgarh (x of N.E.L.S) were found to be very much out of the perpendicular; the former moreover was in a somewhat dangerous condition, several cracks having taken place both

in the shaft and the basement. Though somewhat apprehensive that the pillar at Atária might fall down, Mr. Armstrong set up his large theodolite on it, rather than postpone the observations until it could be rebuilt; it was so much deflected however that the instrument could not be plumbed over the mark-stone in the basement; four small pillars were therefore built round the station, with a mark on each, and these marks formed a quadrilateral figure the diagonals of which intersected in the normal of the point of observation. By the 16th of April, the horizontal and vertical angles at this station and at Sisgarh were disposed of; and by the 3rd of May the ray from Beheri (IX of N.E.L.S.) to Bagwara (VII of N.E.L.S.)—left uncleared in 1836 had been cleared, and the horizontal angles at Beheri had been measured. The work at Bagwara was concluded by the 19th idem, some delay having been occasioned by the necessity for further clearing on the ray to Sisgarh*. The party then proceeded to recess quarters at Bareilly.

Season 1839-40.

PERSONNEL.

Mr. J. W. Armstrong, 1st Class Sub-Assistant. " J. Mulheran,

At the commencement of the field season of 1839-40 Mr. Armstrong was required to proceed to the camp of the Great Arc party in the Meerut District, to receive instructions and exchange his large theodolite for Harris and Barrow's 15-inch theodolite—described at page 72 of the Appendices to Vol.

II—which had recently been employed with very satisfactory results on the Budhon Series.

Returning to resume field operations, on the 11th November he reached Fatchgarh. where he found his assistant, Mr. Mulheran, on whom he was dependent for the reciprocal observations, completely prostrated with a malarious fever. For this and other reasons the party was detained at Fatehgarh until the 6th of January.

The progress made during the next two months was very small, comprising only the measurement of the two northern horizontal angles at Kalsán (x1x), and verticals on the rays Pothári-Guri (xxIII-xxv) and Seontára-Birona (xvII-xvIII). By the 21st of April, Mr. Armstrong completed the horizontal angle that had remained unobserved at Birona as well as the simultaneous verticals on the fifteen rays that had hitherto existed as a gap between the side Phára-Gokulphára (IX-X), and Seontára-Birona (XVII-XVIII). The party then returned to Fatehgarh. Here Mr. Armstrong found instructions awaiting him from the Surveyor General, directing him to proceed to the Head Quarters at Dehra Dún with the whole of the establishment and instruments under his charge, leaving the portable scaffolding and other heavy ordnance stores in deposit at the Gun Carriage Agency in Fatehgarh.

On the 1st of the following October, Mr. Armstrong started from the Head Quarters

Season 1840-41.

PERSONNEL.

Mr. J. W. Armstrong, 1st Class Sub-Assistant. J. Mulheran, ,, W. C. Rossenrode, 3rd Class

to commence the field operations of 1840-41, and proceeding vid Fatehgarh marched to Muhammadabad (xxII), where a new station was to be established for azimuth observations, which had also to be connected with the surrounding stations. A tower 16 feet high was erected on the bastion

^{*} Mr. Armstrong reported that when he was observing at Sisgarh in April, the refraction was so great as to enable him to see the heliotrope at Bagwara over every obstruction. Unfortunately this was not the case during the reciprocal observations.

of the fort at Muhammadabad, the construction of which was completed in time for the star observations to be commenced on the 25th December. The azimuth was determined by observations to δ Ursæ Minoris at both elongations. These observations, as well as the measurement of all the horizontal angles of the three triangles connecting xxII with the surrounding stations xx, xXI and xXIII, were completed by the 12th February.

Mr. Armstrong was then transferred to Lieutenant Waugh's party, which was operating near Hyderabad in the Nizam's dominions. Mr. C. Lane, 1st Class Sub-Assistant, was placed in charge of the Rangír party, which he assumed on the 1st of March. Mr. Mulheran extended the Approximate Series in advance into the outer Himalayan Mountains by four triangles, of which the northernmost station (Khánkra) was fixed beyond the 30th parallel of latitude. But these triangles were subsequently incorporated into the North-East Longitudinal Series, at the side of junction with which—Sísgarh-Atária—the Rangír Series is now considered to terminate. Anything that may have to be stated of the triangulation beyond, which was originally executed as a part of this series, will therefore appear in the Introduction to the North-East Longitudinal Series.

The remaining operations in connection with the principal triangulation of the Rangír Series, as at present constituted, were as follows. First, in the field season of 1841-42 the vertical angles at and between stations xx and xxi to xxiii, which had not been previously observed were measured reciprocally by Mr. Lane and Mr. Rossenrode, observing simultaneously. Finally, in the season 1863-64, when Mr. George Shelverton reached Rangír, during the course of the revision of the Calcutta Longitudinal Series*—the station was found to have been so much injured that there was every reason to believe that the markstone, which was forthcoming in the débris, must have been displaced. Happily the marks at the stations of Tinsmál and Kusmár—which, with Rangír, form the first triangle of the chain—were uninjured. Mr. Shelverton therefore constructed a new station at Rangír—in the centre of the débris of the first station—and measured the three angles of the triangle Rangír—Tinsmál–Kusmár, and thus connected the Rangír Series with the revised Calcutta Longitudinal Series.

The contrast between the rapid completion of the lower third part of this Series, which is situated in a hill country, with the slow execution of the upper two-thirds which is situated in the plains, has already been noticed at pages VII and VIII of this Introduction. The principal cause of the slow progress in the plains was that the sides of the triangles were made of a length which averaged from 18 to 19 miles, and occasionally exceeded 22 miles. Such sides are much too long for satisfactory observations between towers of even the considerable height of those which were erected for the principal triangulation. Thus the measurement of the horizontal angles proceeded very slowly; that of the vertical angles had frequently to be performed so long after the time of minimum refraction that simultaneous reciprocal

^{*} See Vol. II, pages 19 and 71; also Vol. VI, page WII—R.

verticals were often essential to secure even moderate accuracy; and this not only necessitated the employment of a second observer with a complete instrumental equipment, but greatly retarded the progress of the operations. The experience gained on the Rangír Series led to an immediate and very sensible reduction in the lengths of the sides of the triangles in the plains. And further experience showed the desirability of still further reductions in length, in order to obtain the great advantage of mutual visibility at the time of minimum refraction, between tower stations of moderate height; thus eventually an average of 11 miles—ranging from 9 to 13—has come to be recognized as the most suitable length for the sides of the principal triangles in the plains; see Chapter II of Vol. II.

The triangulation of the Rangír Series has been included in the Simultaneous Reduction of the North-East Quadrilateral. The errors actually dispersed on this Series between the origin, Tinsmál-Rangír, and the terminus, Sísgarh-Atária, are:—

The dispersion of these errors by the Simultaneous Reduction of the North-East Quadrilateral was effected by the method of least squares, as described in Part I of Vol. VII.

The trigonometrical determinations of the heights of the stations of this Series above the mean sea level have been corrected by connecting the stations, wherever possible, with the lines of spirit levels which have been executed of late years in the course of operations in the Trigonometrical and Revenue branches of the Survey Department. A list of the stations which have been so connected will be found on page 43—x. [of Vol. VII]; a statement of the several sections into which the series is divided, as well as the method of adjustment employed is given in detail on page 38 of Part I of Vol. VII. It will here suffice to state that the spirit levels show that occasional errors of a magnitude which reaches a maximum of 14.5 feet between contiguous stations were made in the trigonometrical determinations; and that the cumulative error in the entire Series, from origin to terminus, is about 52 feet. This large accumulation of error is unquestionably due to the great lengths of the sides of the triangles in the plains, which has already been shewn to have been a cause of great delay in the progress of the operations, and which frequently compelled the measurement of the vertical angles to be made at other times than that of minimum refraction. An inspection of the values of the refraction—in seconds, and in decimals of the 'contained' arc—which are given at pages 38—K. to 43—K. [of Vol. VII] will show many instances of greatly abnormal variations of refraction, such as are fatal to accuracy in the resulting determinations of height.

#### Secondary Triangulation.

The secondary triangulation accomplished in connection with this Series was mainly executed by the measurement—with the large theodolites—of the angles at the principal stations, to the surrounding secondary stations and other prominent objects, and by the measurement—with smaller theodolites—of the angles at the secondary stations which were required for combination with the former, in order to complete the secondary and minor triangles. The whole is shown in the chart accompanying the Synoptical Volume for this Series, in which volume all the requisite numerical details of angles and side-lengths, and of latitudes, longitudes, azimuths and heights, are given, both for the secondary stations and for the 'intersected' but unvisited points.

Most of the angles at the secondary stations were measured by Mr. Mulheran, who was specially commended for the vigour with which he succeeded in laying down the very large number of points between the parallels of  $25^{\circ}\frac{3}{4}$  and  $27^{\circ}\frac{1}{4}$  in a single field season, 1836-37.

(	Compiled, with Addenda by the Surveyor General, by	
Mussoor	TA TA	C. WOOD,
MUSSOOK	F. {	Surveyor 2nd Grad
August 18	81. )	·

August 1881.

# ALPHABETICAL LIST OF STATIONS.

Atária (of North-East Lon	gitudina	1 Series	• ).	•	XI.	Kalsán	•	•	•	•	XIX
Atsu	•	•	•		XVI.	Kanwa	•	•	•	•	XII.
Bhoraj		•	•		IV.	Kasrak	•	•	•	•	XXVIII.
Birona	•	•	•		XVIII.	Kusmár	•	•	•	•	I.
Bisungarh	•	•	•	•	XX.	<b>M</b> amdábád	٠.	•	•	•	XXII.
Chandanpúr		•			XXI.	Manang	•	•	•	•	VII.
Chandla		•	•	_	III.	Máo		•	•	•	XXIV.
Dálípúr	•			•	II.	Nagonáth	•	•	•	•	VIII.
Datiára –	•	•	•	•	<b>v</b> .	Nipenía	•	•	•	•	XIII.
Dháka	_	•	•	•	XXVI.	Phára	•	•		•	IX.
Fateganj		•	•	. •	XXXI.	Pothári	•	•	•	•	XXIII.
Gajnera	•	•	•	•	XXX.	Rangír		`:	•		<b>X.</b>
Gandaspúr	•	• .	•	•		(of Calcutta Longitu	idinal Sei	ries).		٠	-
_	•	•	•	•	<b>XV.</b>	Saipúr	•	•	•	•	XXVIL
Gokalphára	•	•	•	•	<b>X</b> .	Seontára	•	•	•	•	XVII.
Gura	•	•	•	•	XI.	Sisgarh	. •	•	•	•	X.
Guri	•	•	• .	•	XXV.	(of North-East Long	gitudinal	Series).	•		
Husápúra		_			xiv.	Thanela	•	•	•	•	VI.
Janjíri	•	•	•	•	XXIX.	Tinsmál (of Calcutta Longitu	dinal Ser	ies).	•	•	VII.
9											

# RANGIR MERIDIONAL SERIES.

# NUMERICAL LIST OF STATIONS.

VII	•	•	of Calcu	tta Ta	Tinsmál. ongitudinal Series).	XVII	•	•	•	•	Seontára.
37		•	or Carca		1	XVIII	•	•	•	•	Birona.
X	•	. (	of Calcu	tta L	Rangír.	XIX	•	•	•		Kalsán.
I	•	•		•	Kusmár.	XX	•	•	•	•	Bisungarh.
п	•	•	•	•	Dálípúr.	XXI			•	•	Chandanpúr.
ш	•	•	•	•	Chandla.	XXII	•			•	Mamdábád.
IV	•	•	•		Bhoraj.	XXIII	•		•	•	Pothári.
V	•	•	•	•	Datiára.	XXIV	•				Máo.
VI	•	•	•	•	Thanela.	XXV	•		•	•	Guri.
VII	•	•	•	•	Manang.	XXVI	•	•	•	•	Dháka.
VIII	•	•	•	•	Nagonáth.	XXVII	•		•	,	Saipúr.
IX	• •	•	• •	•	Phára.	XXVIII			•	•	Kasrak.
X	•	•	•	•	Gokalphára.	XXIX	•	•	•	•	Janjíri.
XI	•	•	•	•	Gura.	XXX		•		•	Gajnera.
XII	•	•		•	Kanwa.	XXXI	•	•	•	•	Fateganj.
ХШ	•	•'	•	•	Nipenía.	X	•	•	•	<u>.</u> .	Sísgarh.
XIV	•	•	•		Husápúra.				(of No	rth-Kast	Longitudinal Series).
XV	•	. •	•	•	Gandaspúr.	XI	•	•	(of No	th-East	Atária. Longitudinal Series).
XVI	•	•	•		Atsu.						

#### RANGIR MERIDIONAL SERIES.

#### DESCRIPTION OF PRINCIPAL STATIONS.

Of the 31 Principal Stations composing this Series, the 10 southernmost are on hills, and are low solid platforms carrying a mark engraved either on the rock in situ or (presumably) on a stone imbedded at about the level of the ground: above this mark one or more other mark-stones, with the usual engraved circle and dot, are inserted in the platform, the uppermost being flush with the structure. When the Series entered the plains, artificial elevations had to be constructed. These special erections at the first 9 stations consisted of perforated columns of masonry of the following description; - foundation a foot or two in depth and having a mark-stone sunk flush with its surface; plinth either 41 or 51 feet square and 31 feet high; shaft composed of two or more cylinders with diameters varying from 4 or 5 feet at base to 3 feet at summit; surmounted in nearly all instances with capitals 4 feet in diameter and about 3 feet in depth; an aperture about a foot across passed vertically through the column to admit of plumbing over the mark-stone to which access was obtained by means of a vaulted passage in the plinth. For the remainder of the Series the construction of these columns of masonry was slightly modified, and the structures, generally speaking, were built as follows;—foundation 3 feet in depth; plinth 9 feet square and 2 feet high having a mark-stone sunk flush with its surface; basement circular, 7 feet in diameter and 5 feet high; shaft starting in a curve from the edge of the basement and subsequently continued in the form of a truncated cone with a diameter of 3 feet at summit; surmounted with a capital and having an aperture as before described. For the accommodation of the observatory tent, temporary scaffolding platforms were erected around the columns: when the last 2 stations were subsequently visited in the course of the operations of the North-East Longitudinal Series, the columns were surrounded with a kacha tower about 14 feet in diameter at top. Exceptions to the general rules in point of construction of the towers will be found at the stations of Bisungarh and Muhammadabad, in the descriptions of which such details as are forthcoming have been embodied.

The following descriptions have been compiled from those given in the original MS. General Report and other original records of this Series, supplemented in respect to the neighboring villages by information obtained from the Revenue and Topographical Survey maps of the country traversed. The information as to the local sub-divisions in which the several stations occur has been derived where practicable from the latest Annual Reports received from the District officers to whose charge the stations have been committed.

VII.—(Of the Calcutta Longitudinal Series). Tinsmál Hill Station, lat. 24°7′, long. 79°2′—observed at in 1826, 1833, 1834 and 1864—is situated on the top of a very conspicuous hill about three-quarters of a

mile S. by E. of the village of Tinsua from which it is approached: thána, tahsíl and pargana Banda, district Saugor.

The pillar is solid and has three marks, one engraved on the rock in sital and the others at 3.5 and 8.5 feet above it respectively. The station of 1826 was revisited in 1833 for the purpose of originating the Budhon Meridional Series, when its height was increased by 8.5 feet. It was again visited in 1834 to originate the Rangír Meridional Series, but no further alteration in its construction appears to have been made. On visiting it in 1864, the upper mark being found displaced, a new mark was substituted in the normal of the lower mark. The distances and bearings of surrounding villages are:—Dalpatpur, from which a road leads up to the station, 1.5 miles N.E.; Lamnau 1.3 miles towards the W.; and the deserted village of Tinsi 0.8 mile S.S.E.

X.—(Of the Calcutta Longitudinal Series). Rangír Platform Station, lat. 24° 0′, long. 79° 28′—observed at in 1827, 1834 and 1864—is situated in a ploughed field about half a mile S.E. of the little village of Rangír: thána Narsinghgarh, tahsíl and district Damoh.

The pillar is solid and contains two marks, the upper being 5 feet above the lower. The station of 1827 was revisited in 1834 for the purpose of originating the Rangír Meridional Series, and was then raised 4 feet in height. On again visiting it in 1864 the station was found destroyed, and although a mark-stone was discovered amongst the debris it was impossible to say if this mark was in its original position. The new station established in 1864 is identical in height with the old station and it also agrees as closely in position with the latter, as this point could be conjectured. The distances and bearings of surrounding places are:—Narsinghgarh town 2½ miles W. by S.; Murhiya village 1.4 miles S.E.; and the town of Sítanagar 3.1 miles N.N.E.

I. Kusmár Hill Station, lat. 24° 15′, long. 79° 23′—observed at in 1826, 1834 and 1864—is situated on a low range of hills which extend from Panna towards Saugor, and is named after the village of Kusmár which lies at the foot of the hill at a distance of about a mile N. by W. of the station: pargana Baxwáho of the Panna state.

The station consists of a platform enclosing a central solid pillar of masonry 7.2 feet high which has a mark-stone at its upper surface, another at 2.9 feet below this, and a third at the level of the ground. The station of 1826 was revisited in 1834 in the course of the operations of the Rangír Meridional Series, and again in 1864 in the prosecution of the Calcutta Longitudinal Series, but no alteration in its construction appears to have been made on either of the two latter occasions. The distances and bearings of surrounding places are:—Hírapur iron mine about 11 miles towards the N.W.; Baxwaho town 3 miles W.; Machandri village 1.4 miles N.; and Semra village 1.5 miles S.S.W.

II. Dálípur (Dálípúr) Hill Station, lat. 24° 27′, long. 79° 12′—observed at in 1834—is situated on the northern face of the Vindhyáchal range and is named after the small hill fort of Dálípur which stands at the base: pargana Bijáwar of the Bijáwar state.

The station consists of a platform enclosing a central solid pillar of masonry which has a mark-stone at its upper surface. The distances and bearings of surrounding places are:—Hirapur iron mine 6.6 miles S.E. by S.; Patera village 0.6 mile W. by S.; and Singhpur village 2.7 miles E.N.E.

III. Chandla Hill Station, lat. 24°37′, long. 79°30′—observed at in 1834—is situated on a hill so called, on the northern face of the Vindhyáchal range: pargana Bijáwar of the Bijáwar state.

The station consists of a platform enclosing a central solid pillar of masonry which has a mark-stone at its upper surface. The distances and bearings of surrounding places are:—Bijáwar town 2½ miles E.N.E.; Gulganj town on high road from Saugor to Cawnpore 8 miles N.W. by N.; and the villages of Andiáro and Pokhrelo at 3 miles and 2.5 miles to the S.S.W. and W. respectively.

IV. Bhoraj Hill Station, lat. 24° 50′, long. 79° 6′—observed at in 1834—is situated on a lofty range, on which stands a temple dedicated to the Hindu goddess Bhawáni: pargana Baldeogarh of the Orchha or Tehri state.

The station consists of a platform enclosing a central solid pillar of masonry which has a mark-stone at its upper surface and a mark engraved on the rock in sitā. The distances and bearings of surrounding villages are:—Serkunpur about 0.7 mile N. by E.; Dauhit-Singh-ka-pura 0.6 mile S.W.; and Khena 1.5 miles E.

V. Datiára Hill Station, lat. 25° 6′, long. 79° 25′—observed at in 1834—is situated on the highest point of a cluster of hills, along whose western base the Dhasán river winds: thána Ajnár, tahsíl and pargana Panwári, district Hamírpur.

The station consists of a platform enclosing a central solid pillar of masonry which has a mark-stone at its upper surface and a mark engraved on the rock in sitd. The distances and bearings of surrounding villages are:—Narwara 0.5 mile N. by W.; Purainia 1.6 miles S.E. by S.; Daurea 1.7 miles E. by S.; and the town of Gerauli 2.1 miles S.W. by S.

VI. Thanela Hill Station, lat. 24° 58′, long. 79° 47′—observed at in 1834—is situated on a detached hill, at the foot of which lies the village of Sela: pargana Chhatarpur of the Chattarpur state.

The station consists of a platform enclosing a central solid pillar of masonry which has a mark-stone at its upper surface. The distances and bearings of surrounding villages are:—Mau 0.9 mile N.W.; Naddia 3.1 miles E. by S.; and Kotah 1.6 miles S.S.E.

VII. Manang Hill Station, lat. 25° 17′, long. 79° 46′—observed at in 1834—is situated on the summit of a hill so called, at the foot of which—and due south of the station—lies the village of Salat Malat: jagír Garhauli which adjoins thána Kulpahár, tahsíl and pargana Panwári of the Hamírpur district.

The station consists of a circular paka platform, 16 feet in diameter, enclosing a central solid pillar of masonry which has a mark-stone at its upper surface and a mark engraved on the rock in sitú. The distances and bearings of surrounding villages are:—Narari 1.8 miles S.E. by E.; Larpur 1.3 miles N.W. by N.; Kamálpur 1.5 miles W.; Supa 2.9 miles N.E.; and a Revenue Survey Bench-Mark fixed on a rock 1.04 chains S. by W.

VIII. Nágonáth (Nagonáth) Hill Station, lat. 25° 27′, long. 79° 23′—observed at in 1834 and 1836—is named after the Hindu deity Nágonáth whose temple stands on the same hill along the eastern side of which the river Dhasán winds: pargana Garotha, district Jhánsi.

The station consists of a platform enclosing a central solid pillar of masonry which has a mark-stone at its upper surface. The distances and bearings of adjacent villages are:—Gura 1.1 miles S.W. by S.; and Karora about 1.2 miles N.W.

IX. Phára Hill Station, lat. 25° 41′, long. 79° 43′—observed at in 1834 and 1836—is situated on a hill, on which at the distance of a few yards S.S.E. of the station a temple—dedicated to the Hindu deity Mahádeo—is erected; it is named after the village of Phára or Pahra which lies at the foot of the hill and is due east of the station: thána Jariya, tahsíl and pargana Ráth, district Hamírpur.

The station consists of a platform enclosing a central solid pillar of masonry which has a mark-stone at its upper surface. The distances and bearings of surrounding villages are:—Umaría 2 miles W. by N.; Jarmauli 1.6 miles N.N.W.; Turnan 2 miles E.S.E.; and Chilli 1.4 miles S.W.

X. Gokulphára (Gokalphára) Hill Station, lat. 25° 46′, long. 79° 20′—observed at in 1836—is situated on the highest of several eminences clustered in this vicinity, and is named after the small village of Gokulphára which lies at the western foot of the hill: in the Gursarai state within pargana Garotha of the Jhánsi district.

The station consists of a platform enclosing a central solid pillar of masonry 12 feet high: it has a mark-stone at its upper surface and a mark engraved on the rock in sitd. The distances and bearings of surrounding villages are:—Gogul 0.6 mile N. by W.; Donri 2.6 miles W. by S.; Dhanora 2.1 miles S.S.E.; and Dhanori 2 miles E. by S.

XI. Gura Tower statian, lat. 25° 58′, long. 79° 36′—observed at in 1837—is situated on a slight eminence and is named after the ruined village of Gura: than Orai, tahsíl Kálpi, district Jálaun.

The station consists of a perforated masoury column  $5\frac{1}{2}$  feet square to a height of  $3\frac{1}{2}$  feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 33.3 feet above the mark-stone imbedded at the level of the ground and into which a brass plug with the mark engraved thereon has been countersunk. The distances and bearings of surrounding villages are:—Kurmir 1.8 miles N.N.W.; Burdar 1 mile E. by N.; Kurwi Buzurg 1.6 miles S.S.W.; and Dhani Buzurg 2.5 miles W.

XII. Kanwa Tower Station, lat. 26° 4′, long. 79° 19′—observed at in 1837—is situated on the terreplein and close to the N.W. tower of the fort of Kanwa distant about 6 miles S.W. by S. of the town and station of Jálaun: thána, tahsíl, pargana and district Jálaun.

The station consists of a perforated masonry column 4½ feet square to a height of 3½ feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the colmun is 28.8 feet above the mark-stone imbedded at the level of the ground. The distances and bearings of surrounding villages are:—Lachura 1.5 miles N.W.; Purwári 1.4 miles N.E.; Dunora 2.8 miles S.E.; and Bhair 2 miles W.S.W.

XIII. Nipania (Nipenia) Tower Station, lat. 26° 14′, long. 79° 38′—observed at in 1837—is situated on the right bank of the Jumna, and stands on the lands of the village of Pal Sarania at a distance of 1½ miles N. by W. of the village of Nipania: thána Nipania, tahsíl Kálpi, district Jálaun.

The station consists of a perforated masonry column 51 feet square to a height of 31 feet, and circular thereafter—the



diameter at top of shaft being 8 feet: the summit of the column is 39 feet above the mark-stone imbedded at the level of the ground. The distances and bearings of surrounding villages are:—Simra Shaikhpur 1 mile E.S.E.; Sikuuui 1.9 miles S.; and Sunni Ser 1.5 miles W. by N.

XIV. Husapura (Husápúra) Tower Station, lat. 26° 22′, long. 79° 21′—observed at in 1837—is situated in an open field due S. of the village of Husapura, and distant about 2½ miles from the right bank of the Jumna: thána Gohan, tahsíl Mádhogarh, district Jálaun.

The station consists of a perforated masonry column 5½ feet square to a height of 3½ feet, and circular thereafter—the diameter at top of shaft being 3 feet: the summit of the column is 33.8 feet above the mark-stone imbedded at the level of the ground. The distances and bearings of surrounding villages are:—Pánípur 0.6 mile S.W.; Magtoa 1.1 miles due W.; Shaikhpur Ahir 0.5 mile E.; and Nímgaon 1.3 miles S.E. by E.

XV. Gandaspur (Gandaspúr) Tower Station, lat. 26° 28′, long. 79° 38′—observed at in 1837—is situated on a low mound which stands on the west side of the village of Gandaspur, and is distant about three-quarters of a mile from the right bank of the Sengar nadi: thána and pargana Derapur, district Cawnpore.

The station consists of a perforated masonry column  $4\frac{1}{2}$  feet square to a height of  $3\frac{1}{2}$  feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 28 feet above the mark-stone imbedded at the level of the ground. The distances and bearings of neighboring villages are:—Napallapur 1.3 miles E.; and Mahásinghpur 0.8 mile S.E.

XVI. Atsu Tower Station, lat. 26° 35′, long. 79° 24′—observed at in 1837—is situated on the elevated platform which surrounds the exterior of the N.E. tower of the fort of Atsu or Arsu: táluka Bhareh, thána Ajítmal, tahsíl and pargana Auraiya, district Etáwah.

The station consists of a perforated masonry column 4½ feet square at base to a height of 3½ feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 25.7 feet above the mark-stone imbedded at the level of the platform. The distances and bearings of surrounding villages are:—Mahíuddín 0.6 mile S.; Durhaspur 1.6 miles W.; Alamgírpur 0.9 mile N.N.W.; and Rasúlpur 1 mile N.E. by N.

XVII. Seontára Tower Station, lat. 26° 42′, long. 79° 38′—observed at in 1837—is situated on the western solid tower of a small brick fort which is built on an extensive elevated mound (about 50 feet in height) down the eastern slope of which lies the village of Seontára, the western declivity being washed by the Rind or Arind nadi: thána Bela, tahsíl and pargana Bidhúna, district Etáwah.

The station consists of a perforated masonry column 4½ feet square at base to a height of 3½ feet, and circular thereafter—the diameter at top of shaft being 4 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 16.8 feet above the mark-stone imbedded at the level of the tower. The distances and bearings of surrounding villages are:—Dunwamau 1 mile W.N.W.; Rámpur 1.1 miles N.E.; Baryáraimau 0.9 mile E.S.E.; and Ekghara 1.5 miles W.S.W.

XVIII. Birona Tower Station, lat. 26° 51′, long. 79° 25′—observed at in 1837 and 1840—is situated on the terreplein between the outer and inner walls of the fort in the village of Birona Kalán: thána Kudarkot, tahsíl and pargana Bidhúna, district Etáwah.

The station consists of a perforated masonry column 4½ feet square to a height of 3½ feet, and circular thereafter—the diameter at top of shaft being 3 feet: the summit of the column is 23.2 feet above the mark-stone imbedded at the level of the ground. The distances and bearings of surrounding villages are:—Shaikhpur 1.6 miles N.W.; Morcha 1.3 miles N. by E.; Balpur 2.4 miles S.E.; and Ujuhruh 1.6 miles S.S.W.

XIX. Kalsán Tower Station, lat. 26° 57′, long. 79° 41′—observed at in 1837 and 1840—is situated on the S.W. corner of an elevated mound in the village of Kalsán: pargana Tirwa, district Farrukhabad.

The station consists of a perforated masonry column 4½ feet square at base to a height of 3½ feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 23·1 feet above the mark-stone imbedded at the level of the ground. The distances and bearings of surrounding villages are:—Mírpura 1·6 miles W.; Bagulhai 2·1 miles N.N.E.; Munkapur 2·7 miles E.; and Rámpur 1·3 miles S.

XX. Bisungarh Tower Station, lat. 27° 7′, long. 79° 27′—observed at in 1839 and 1841—is situated on a narrow mound to the south of the bárádari (summer-house) and outside the fort of Bisungarh or Binsia: pargana Chhibramau, district Farrukhabad.

The station consists of a perforated masonry column 5½ feet square to a height of 1 foot, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 24 feet above the

Digitized by Google

mark-stone which is imbedded at 1 foot above the level of the ground. The distances and bearings of surrounding villages are:—Surdamai 0.9 mile N. by E.; Astutabad 1.2 miles E.; and Shaikhpur 2.3 miles S.E.

XXI. Chandanpur (*Chandanpúr*) Tower Station, lat. 27° 14′, long. 79° 41′—observed at in 1839 and 1841—is situated in an open field, and stands on the northern bank of a small tank at a distance of about 350 yards S.W. of the village of Chandanpur: pargana Bhojpur, district Farrukhabad.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 38 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. The Ganges flows about 1 mile N.E. of the station, and the high road from Farrukhabad to Cawnpore passes within a mile to the west of it; the distances and bearings of surrounding villages are:—Rájípur 0.6 mile W.; Singirámpur 0.9 mile N.E.; and Mukrandnagar 0.8 mile S. by E.

XXII. Muhammadabad (Mamdábád) Tower Station, lat. 27° 18′, long. 79° 28′—observed at in 1841—is situated on the east bastion of the fort of Muhammadabad, and is distant about 400 yards W.S.W. of the town of that name: thána and pargana Muhammadabad, district Farrukhabad.

The station consists of a tower of burnt bricks and mud cement 24 feet square at base and 18 feet square at top, enclosing a central isolated pier of masonry  $3\frac{1}{2}$  feet in diameter and 16.7 feet high—with a foundation of  $4\frac{1}{4}$  feet— which is marked in the usual manner. The high road from Agra to Fatehgarh passes about 600 yards E. of the station; and the distances and bearings of neighboring villages are:—Nandu Takípur 0.7 mile S.W.; and Kabírpur the same distance N.W. by N.

XXIII. Pothári Tower Station, lat. 27° 23′, long. 79° 27′—observed at in 1838, 1839 and 1841—is situated on an elevated mound in the village of Pothári: pargana Muhammadabad, district Farrukhabad.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 37.6 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. The distances and bearings of surrounding villages are:—Karanpur 0.6 mile E. by N.; Chandtokh 1.4 miles S.E.; Buruh 2 miles S.W.; and Pithua 2.1 miles W. by S.

XXIV. Mau (Máo) Tower Station, lat. 27° 30′, long. 79° 43′—observed at in 1838—is situated on a high mound in the village of Mau which lies on the left bank of the Rámganga: pargana Imratpur, district Farrukhabad.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 38.2 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. The distances and bearings of surrounding villages are:—Maulaganj 0.7 mile N.W.; Sháhjaháupur 1.1 miles E.; and Aligarh 0.9 mile S.S.W.

XXV. Guri Tower Station, lat. 27° 40′, long. 79° 29′—observed at in 1837 and 1838—is situated on a small mound in the village of Guri distant about 2 miles N. of the Ganges: pargana Meherabad, district Sháh-jahánpur.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 37.9 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. The distances and bearings of surrounding villages are:— Usmánpur 0.4 mile S.W.; Lakhanpur 0.4 mile N. by E.; and Pítampur 1.7 miles S.E. by S.

XXVI. Dháka Tower Station, lat. 27° 45′, long. 79° 43′—observed at in 1838—is situated on a low sandy elevation in an open field to the west of the village of Dháka: pargana Meherabad, district Sháhjahán-pur.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 37.7 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. The distances and bearings of surrounding places are:—Jalalabad town 2.2 miles S.S.W.; Malupur 0.9 mile W.; Jugnah 0.9 mile N.E. by N.; and Gularia 0.8 mile S.S.E.

XXVII. Saipur (Saipúr) Tower Station, lat. 27° 55′, long. 79° 27′—observed at in 1838— is situated on an elevated mound said to be the site of the ancient village of Saipur: thána and pargana Hazratpur, tahsíl Dátaganj, district Budaun.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 38 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. The distances and bearings of surrounding villages

are:—Chungosi 0.9 mile N.W.; Chithri 0.8 mile S.E.; Sikutia about 1 mile S.W.; and Garhia 1.6 miles E.

XXVIII. Kasrak Tower Station, lat. 28° 3′, long. 79° 42′—observed at in 1838— is situated on the crest of an elevated mound 600 yards south of the village of Kasrak: pargana Míránpur Katra, district Sháhjahánpur.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 38 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. The high road from Farrukhabad to Bareilly passes about half a mile west of the station; and the distances and bearings of surrounding places are:—the town of Miranpur Katra 1.6 miles S.; Kusak village 1.2 miles N. by W.; and Sahupur 0.5 mile N.E.

XXIX. Janjíri Tower Station, lat. 28° 11′, long. 79° 27′—observed at in 1838—is situated on a mound in the village of Janjíri, and is distant 2 miles from the right bank of the Rámganga: pargana Ballia, district Bareilly.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 37.8 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. The distances and bearings of surrounding villages are:—Kíratpur 0.6 mile W. by N.; Turkuni 1.2 miles N.E.; and Himpatpur Behárípur 0.8 mile E.

XXX. Gajnera Tower Station, lat. 28° 20′, long. 79° 41′—observed at in 1838 and 1839— is situated on a mound about 350 yards south of the village of Gajnera the eastern extremity of which is washed by the Kailás nadi: pargana Farídpur, district Bareilly.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 38 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. The distances and bearings of surrounding places are:—the town of Bhuta 2.2 miles W.; Suraur village 1.4 miles N.N.E.; and Khurduha 0.8 mile S.E.

XXXI. Fatehganj (Fateganj) Tower Station, lat. 28° 27′, long. 79° 21′—observed at in 1838 and 1839—is situated on a mound distant about 500 yards S.E. of the town of Fatehganj on the high road from Bareilly to Moradabad; this locality is memorable in the annals of Rohilkhand as the scene of the last struggle made (in 1794) by the Patháns under their leader Naju Khán against the power of the British: pargana Karor, district Bareilly.

The station consists of a perforated masonry column 9 feet square to a height of 2 feet, and circular thereafter—the diameter at top of shaft being 3 feet—surmounted by a capital of 4 feet diameter: the summit of the column is 37.9 feet above the mark-stone which is imbedded at 2 feet above the level of the ground. In a large enclosure about 200 yards E. of the station are the tombs of the Patháns who fell in the struggle, and a cenotaph erected on the spot by order of Government commemorates their heroism; the mausoleum of their brave leader stands at about 40 yards from the station: the distances and bearings of surrounding villages are:—Unási 0.9 mile W.; Ballia 2.5 miles E.; and Rukumpur 1.3 miles S.E.

X.—(Of the North-East Longitudinal Series). Sisgarh Tower Station, lat. 28° 44′, long. 79° 21′—observed at in 1839 and 1851—is situated on a platform in the centre of the fort which stands on a mound raised considerably above the general level of the surrounding country, and immediately south of the large village of Sisgarh: pargana Sirsáwán, district Bareilly.

The station consists of a tower of unburnt bricks and mud cement, 14 feet in diameter at top, enclosing a central perforated pillar of masonry whose summit is 38.0 feet above the mark-stone which * is 2 feet higher than the level of the ground. The station of 1839 was a column standing 38.3 feet above the mark-stone and similar in construction to the stations which precede; it was found, when revisited in the course of the operations of the North-East Longitudinal Series, to be so deflected as to necessitate the dismantling of a considerable portion of it; it was then rebuilt to its present height and enclosed in a kacha tower—the upper 5 feet of it being isolated therefrom: at the same time a second mark 1.8 inches N.W. by W. of the former one was cut on the original mark-stone. The road from Bareilly to Almora passes by the station; and the distances and bearings of surrounding villages are:—Ghulámganj 1.4 miles W.; Tigri 1.4 miles E.N.E.; and Girdhárpur 0.6 mile S.

XI.—(Of the North-East Longitudinal Series). Atária Tower Station, lat. 28° 38′, long. 79° 38′— observed at in 1839, 1843 and 1851—is situated on a mound near the east bank of the Baigul nadi, and distant about half a mile S.W. of the village of Atária: pargana Richha, district Bareilly.

The station consists of a tower of unburnt bricks and mud cement, about 14 feet in diameter at top, enclosing a central



^{*} In the description of this station given in the North-East Longitudinal Series p. 7—I, the height of this mark-stone above ground level is stated at 0 feet as erroneously entered in the field records of that series.

perforated pillar of masonry whose summit is 37.8 feet above the mark-stone which* is 2 feet higher than the level of the ground. The station of 1839 was a column 37.3 feet above the mark-stone and similar in manner of construction to the stations which precede; it was found greatly deflected when the observations on the Rangír Series came to be made so that the mark-stone in the basement could not be plumbed from the summit of the tower; the point of observation was indicated by the intersection of the diagonals of a quadrilateral each angular point of which was denoted by a dot engraved on an iron bolt imbedded in an external masonry pillar built in the adjacent fields. When the station was revisited in 1843 in the course of the operations of the North Connecting Series, the pillar was found still further deflected, and no trace of the four external pillars was forthcoming; the instrument was accordingly plumbed over a mark engraved on a new mark-stone let into the basement. On again visiting the station in 1851 in the course of the operations of the North-East Longitudinal Series, it was found necessary to dismantle a considerable portion of the pillar, which was then rebuilt to its present height and enclosed in a kacha tower: at the same time a second mark 3.5 inches W.N.W. of the mark of 1843 was engraved on the mark-stone of that year. The distances and bearings of surrounding villages are:—Ináyatpur 0.9 mile N.E.; Sayyidpur 1.2 miles E.; Uturia Mádhopur 0.5 mile S.S.W.; and Jumunián 0.8 mile N.W.

July 1877.

J. B. N. HENNESSEY,

In charge of Computing Office.

^{*} In the description of this station given in the North-East Longitudinal Series p. 7—I, the height of this mark-stone above ground level is stated at 0 feet as erroneously entered in the field records of that series.

#### RANGIR MERIDIONAL SERIES.

#### OBSERVED ANGLES.

## At VII (Tinsmál)

*June 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L. †March 1864; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.

Angle between				ircle readir	ngs, teles	cope bein	g set or	n II				General Means
Detween .	830°	150°	840° 16	850° 850°	170°	0°	180°	10°	190°	20°	200°	and Probabilities.
ı & ı	26.83	43 66 s		, , , , , , , , , , , , , , , , , , ,	38.00 38.00	# 36:50	39.11	" 33°33	38:33	27:83	" 41.83	44° 20′ 35″ 60 Prob. = 1.55
	0° 2′	180° 2′	<del> </del>	Circle readi	ngs, teles	<del>-</del>			37′ 81	6° 48′	136° 48′	M - Mean of Groups w = Relative Weight C = Concluded Angle
i & X	1 21.60	h 17 94	, h21°08	" h 20.70 l 20.74 l 20.88	l 22.60	1 21.12	h 20'4	6 118. 4 h18.	52 h 2 86 h 2	20.84	121.00	$M = 20^{\circ} \cdot 42$ $w = 5 \cdot 91$ $\frac{1}{1} = 0 \cdot 17$
												$C = 37^{\circ} 36' 20''$

Note.—VII and X appertain to the Calcutta Longitudinal Series.

#### At X (Rangir)

*June 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L. † April 1864; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.

Angle between			Ci	rcle readi	ngs, teles	cope bein	g set on V	VII			<ul> <li>M = Mean of Group</li> <li>w = Relative Weigh</li> </ul>
Detween	169° 20′	<b>349°</b> 20 <b>′</b>	248° 31′	68° 31′	327° 43′	147° 43′	<b>46°</b> 55′	226° 55′	126° 7′	806° 7′	C = Concluded Ang
	"	. "		"	11	"	,,	"	11	"	35 -6".6-
	h 15.32	1 14.58	1 17:20	1 16.44	y 12.10	1 18.03	h 19.36	h 16.48	y 12.39	1 17:02	$M = 16'' \cdot 69$
VII & I	h 16.76	115.80	1 17.86	1 16.88	y 10.08	y 10.08	y 18.34	h 17:30	h 15 58	16.44	w = 11.00
	# 17 32	6 15 42	1 19.08	17 94	W 10.00	n 10 50	n 17 10	n 15 '90	15.44	<i>t</i> 15.20	$\frac{-}{1} = 0.00$
	16.43	. 15.27	17.35	17.09	16.49	17.19	18.27	16.99	15.46	16.34	$O = 54^{\circ} 24' 16''$
			-			•					
			_ (	Circle rea	dings, tele	scope bei	ng set on :	I			General Mean
	840°	160° :	851° 17	l° 1°	181°	11°	191°	21° .20	01° 31°	211°	
* & R.M.		37.16 4	4:50 40:							38.66	19° 33′ 45″·o

### At I (Kusmár)

‡June 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L. §April 1864; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.

Angle	Circle readings, telescope being set on X	M = Mean of Groups w = Relative Weight
between	272° 3′ 92° 2′ 851° 18′ 171° 12′ 70° 26′ 250° 25′ 149° 37′ 329° 37′ 228° 49′ 48° 49′	C = Concluded Angle
x & vii	h 24.94 l 27.56 l 26.48 l 26.08 l 27.20 l 25.80 l 25.44 l 27.80 l 25.42 l 26.76 h 25.58 l 27.06 l 26.60 l 25.32 l 25.82 l 25.74 l 24.22 l 26.54 l 25.66 l 25.74 h 25.18 l 26.78 l 25.22 l 25.38 l 24.70 l 26.40 l 25.00 l 27.36 l 25.48 l 24.58	$M = 25'' \cdot 93$ $w = 14 \cdot 90$ $\frac{1}{v} = 0 \cdot 07$ $C = 87^{\circ} 59' \cdot 25'' \cdot 93$
	Circle readings, telescope being set on VII  849° 169° 859° 179° 9° 189° 19° 199° 29° 209° 89° 219°	General Means and Probabilities
11 & 11 v	49.16 49.16 52.16 52.16 52.16 53.83 53.33 47.83 43.50 45.83 52.66 48.00	71° 53′ 49″.99 Prob. = 0.97
11 % III	10.83 11.33 55.83 13.16 15.83 2.20 16.33 11.33 53.88 12.33 16.00 14.16	55° 51′ 15″·38 Prob. = 1·34

Note.—VII and X appertain to the Calcutta Longitudinal Series. R.M. denotes Referring Mark.

At II (Dálípur)

July 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L.

Angle between				Circl	le readin	gs, telesc	ope beir	ng set or	ı IV				General Means and Probabilities
D01#00B	53°	288°	63°	243°	78°	253°	88°	268°	93°	278°	105°	283°	and I robabilities
IV & III	" 41:55	36.55 8	42°16	.37:66 8	" 45°50	41,33	39:66 8	41.88 8	37 [.] 88	" 34 <u>`</u> 94	34°93	38:83 4	73° 16′ 39″·41 Prob. = 0·89
III & I	10,00	18:77	17:33	19.92	8:33	14.33	14.83	20.88 8	· 17.66	14.22	15,33	11,33	80° 31′ 16″.00 Prob. = 1.02
I & VII	34,44	24°55	38.00	31.33	43,66	30.16	39.00	29:25	32,33	31.88	42,16	40,00	63° 45′ 34″.73 Prob. = 1.61

### At III (Chandla)

## June 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L.

Angle				Circ	cle readi	ngs, tele	scope be	ing set o	n I				General Means and Probabilities
between	190°	10°	200°	<b>20°</b>	210°	80°	220°	40°	<b>23</b> 0°	50°	<b>24</b> 0°	60°	and Probabilities
I & II	38.83	27:83	35:50	27:50	38.66 3	30°50	41.11	" 25,33	39:00	18.33	39 <u>.</u> 66	" 23 [.] 88	43° 37′ 32″·18 Prob. = 2 °09
II & IV	35 33	46°77	38,83	42 33	43,67	50:17	40°22 8	47 :83	39.22	47 83	40:33	50.00	$62^{\circ} 27' 43''.55$ Prob. = 1.35
IV & V	55.83	60:33	62.83	63.16	57,66	60:33	53,55	55 33	68:33	61.33	60°33	66.00	49° 15′ 0″.42 Prob. = 1.21
V & VI	70.11	40°11	68:66	61.83	68.00	74:16	70.16	68°22 8	58°16	70°16	73:16	74°16	$45^{\circ} \ 37' \ 8'' \cdot 91$ Prob. = 1 · 31

## At IV (Bhoraj)

# July 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L.

Angle botween				Circ	le readin	ıgs, teles	cope bei	ng set or	n <b>V</b>				General Means and Probabilities
Dotween	218°	88°	223°	43°	283°	58°	243°	63°	253°	78°	268°	83°	
V & III	67°16	58:33	59.00	51:33	72:66	59°16	59°33	61.33	64.00 8	8 .19	89°.16	65.00	74° 12′ 2″.89 Prob. = 1.64
III & II	47.16	38.66	43,50	44°66	38 <u>.</u> 66	43.83	40,50	35.50	44°16	36. 16	37.00	39,50	44° 15′ 40″.78 Prob. = 1.05

Note.—VII appertains to the Calcutta Longitudinal Series.



At V (Datiára)

July 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L.

Angle				Circle	reading	s, telesco	ope bein	g set on	VIII				General Means and Probabilities
between	206°	26°	216°	86°	<b>2</b> 26°	46°	236°	56°	246°	66°	256°	76°	and Probabilities
VIII & VII	" 47:00 8	45:16	" 53°50	43°55	8 01.00	" 44°33	56°50	" 44° 16	21°33	46.50	55°33	" 48°50	64° 59′ 49″.74 Prob. = 1.58
VII & VI	26°55	25°16	19.83	28°44 8	τ9 <b>.</b> 66	22:50	23:33	19.83	19.50	10,00	20.83	21,33	52° 50′ 22″.17 Prob. = 0.86
VI & III	<b>62</b> .66	47,92	57,50	57:16	55,66	21.1Q	8 60.11	56°33 2	57:46	42.66 8	58.00	54,00	59°. 12′ 55″.06 Prob. = 1.52
III & IV	51,20	58,50	51.33	53,00	49.22	64:33	57.88	go.00	52.75	61.20	52.50	57,58	56° 32′ 55″.84 Prob. = 1.31

## At VI (Thanela)

July 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L.

Angle between		•		Circl	e reading	gs, telesc	cope beir	ng set or	ı III				General Means and Probabilities
Detwoon	100°	280°	111°	<b>2</b> 90°	121°	801°	1816	810°	141*	821°	151°	881°	and 1100aunicies
III & V	9,50	7:77	7;55	" 6:33	7:55	" 7 <mark>.</mark> 75	" 4:33	" 8·58	" 6·88 8	" 5 <u>°</u> 50	7:16	" 9 <del>`</del> 75	75° 1 Q' 7" 39 Prob. = 0.43
V & VII	36°55	37 .88 8	40,00	36°33	43.16	44° 16	39,66	40°16	40°33	44.16	39:33	40.11	$62^{\circ} 30' 40'' \cdot 16$ Prob. = 0.72

#### At VII (Manang)

July 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L.

Angle between				Circ	le readin	gs, teles	cope bei	ng set or	ı VI				General Means and Probabilities
Deragen	885°	155°	845°	165°	855°	175°	5°	185°	15°	19 <b>5°</b>	25°	205°	and I robabilities
VI & V	61.00	59°33	59:50	58:16	60°50	61:50	61:33	61.83	59.88 8	58,50	60,50	65:00	64° 39′ 0″.64 Prob. = 0.51
V & VIII	5 33	7:66	6.83	g.00	9:33	9:33	3.1Q	8 6.66	10.11	15.66	2°16	5.66	$54^{\circ} 52' 7''.50$ Prob. = 0.93
VIII & IX	20.66	25,33	23.16	25:16	24°33	22.00	28.00	17.83	25°44	17.00	21.00	26.00	59° 42′ 23″'00 Prob. = 0'93

# At VIII (Nágonáth)

*July 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L. †December 1836; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

Angle				Circ	le <b>rea</b> din	ngs, teles	cope bei	ng set o	n X				General Means and Probabilities
between	O°	180°	10°	190°	20°	200°	30°	210°	40°	<b>2</b> 20°	50°	<b>23</b> 0°	and I rooms miles
x & IX	10.83	11.75	7:00 8	15.75	2.75	15°66	6.92	15.50	8 0.Qt	16.Q1 "	10.25	" 17:17	60° 8′ 10″ 90 Prob. = 1 55
	1												
	]			Çirc	l <b>e rea</b> din	gs, teles	cope bei	ng set or	ı IX			-	
:	54°	234°	64°	Çirel 244°	le readin	gs, teles 254°	cope bei 84°	ng set or 264°	94°	274°	·104°	284°	
ix & VII	27:66				. 74°		84°	264°	94°	274° 27;83	28:50	284° 24.50	62° 6′ 28″·19 Prob. = 0·79

### At IX (Phára)

‡July 1834; observed by Lieutenant A. S. Waugh with Cary's 18-inch Theodolite, L. §December 1836, and January 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

Angle between				Circl	e readin	gs, teles	cope beir	ng set on	VII	-	•		General Means and Probabilities
	81°	<b>2</b> 61°	91*	<b>271°</b>	101°	281°	111°	<b>2</b> 91°	121°	301°	131°	311°	
vii & viii	10.00	18.83	15,33	13.66 3	13:16	17:00	" 12:50	16.20	11.83	" 14.16	13°16	" 10:33	58° 11′ 13″ 93 Prob. =0.71
				Circle	reading	s, telesco	pe being	g set on	VIII				
	245°	65°	255°	75°	<b>2</b> 65°	85°	275°	95°	285°	105°	<b>2</b> 95°	115°	
VIII & X	+74.56	73,67	73,58	72,75	69:92	65:17	67:08	67:58	75,58	64.75	68.08	66,20	
VIII & X	-38.00	32.50	26.17	36.08	35.97	28.50	24.83	26.92	33.58	25.67	33.08	31.20	
+ 115° 16′ - 65° 25′	36.26	41.17	47 '41	36.67	33 95	36.67	42.5	40.66	42.00	39.08	35.00	35.00	49° 51′ 38″.87 Prob. =1.09
8	+ 38:00	32.50	26:17	36.08	35;97	28,50	24.83	26.92	33,58	25,67	33.08	31,20	
x & xı	-23:00	:8 <u>:</u> 94	22.89	21.22	28:38	22:25	16.28	19.25	26.79	15,29	22.25	17:42	
+ 65° 25' - 7° 47'	12.00	13.26	3.58	14.86	7.59	6.52	8.52	7.67	6.49	10.38	10.83	14.08	57° 38′ 9″ 88 Prob. = 1 06

At X (Gokulphára)

December 1836; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

Angle			٠	Circle	e reading	gs, telesc	ope bein	g set on	XII		-		General Means
between	173°	853°	183°	3°	193°	18°	203°	23°	213°	83°	<b>223°</b>	43°	and Probabilities
XII & XI	+48°75	" 60.83 22.08	" 55,58 10.00	" 64:58 23:33	" 49;75 6;94	" 47:83 18:92	39;50 3;72	55,83 17,92	" 54;58 15;25	56.92 19.17	52°50 8°21	" 61:58 25:17	53° 8′ 38″.57 Prob. = 1.28
+ 187° 6' - 133° 58'	34.08	38.75	45.28	41.5	42.81	28.91	35.78	37.01	39.33	37.75	44 29	36.41	
XI & IX	+74.67 -19.25	82:08 31:33	70.00 29.92	83:33	66.94 24.42	78:92 27:58	•	77°92 26°67	75°25	79°17 23°58	68.21	85°17 29°67	51° 11' 50".20 Prob. = 1.39
+ 133° 57' - 82° 46'	55.42	50.75	40.08	21.00	42.22	51.34	45°47	51.25	52.20	55.29	50.96	55.20	1100. — 1 39
IX & VIII	+ 19:25 -17:25	31.33 19.42	29.92 20.75	32°33 16°58	24°42 21°67	27:58 15:00		2.	22;75 16:58	23.58 17.67	17.25 16.83	29.67 16.25	70° 0′ 7″ 91 Prob. = 1.46
+ 82° 46′ - 12° 46′	2.00	11.01	9'17	15.75	2.75	12.28	2.31	12.20	6.17	2.01	0.43	13.42	1100. = 1 40

# At XI (Gura)

January 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

Angle between				Circ	le readin	igs, teles	cope bei	ng set or	ı IX				General Means and Probabilities
	179°	859°	189°	9°	199°	19°	209°	29°	219°	<b>3</b> 9°	229°	<b>4</b> 9°	and Proponities
	"	"	"	"	"	"	"	"	"	"	"	"	
IX & X	+ 118·50 - 48·67	54.89	52.92	46.08	-	·	109°17	Ū	53,42	120,33 51,72	53,17	60°29	71° 10′ '1″'27 Prob. = 1°35
+ 181° 18'	69.83	62.11	60.75	59.92	61.20	54.77	22.09	66.55	61.08	68.61	58.83	56.46	1100. — 1 93
X & XII	+ 108.67												61° 37′ 0″·45
	- 52°33	55,42	56°08	55,50	52,33	21,00	57,00	52,33	51.28	52.00	38.00	50.92	Prob. = 1.62
+ 110° 8' - 48° 32'	56.34	59°47	56.84	50.28	66.20	69.67	57.08	62.84	61.84	59.72	55.17	69:37	1100. — 1 02
XII & XIII	+ 52 33	55,42	56.08	55,50	52,33	21,00	57,00	52,33	51.58	52.00	58,00	50.02	0 0/ //
AII () AIII	+45.08	46.08	51,12	52.17	55.00	52.75	57:00	53°67	52.83	46.75	52:33	56.00	72° 58′ 45″ 44
+48° 32′ +24° 25′	37.41	41.20	47.25	47.67	47 33	+3.75	24.00	46.00	44.41	38.75	50.33	46.92	Prob. = 1.29

At XII (Kanwa)

January and February 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

Angle between				Circle	reading	s, telesc	ope bein	g set on	XIV				General Means and Probabilities
Det weed	· 19°	199°	<b>2</b> 9°	209°	39°	219°	<b>49°</b>	229°	. 59°	239°	<b>69°</b>	<b>24</b> 9°	and Probabilities
XIV & XIII	+33.67 -26.33	36.00 23.50	44.83 32.17	44.00 28.33	38:22 8 27:50	1	45°20 25°67	39:83 28:00	37; 33 25; 00	40.83 25.50	37;67 26:50	44:50 31:33	53° 40′ 13″.56 Prob. = 1.02
+ 72° 11' - 18° 31'	7.34	12.50	13.66	15.67	10.43	20.20	19.23	11.83	12.33	15.33	11.12	13.12	
XIII & XI	+69:17	36.00 8 64.00	72:83 44:83	72.67 8 44.00	•	66:67 48:00		×	62:00 37:33	67.83 40.83	68:50 37:67	60:83 44:50	51° 14′ 26″ 90 Prob. = 1°51
+ 123° 25' - 72° 11'	35.20	28.00	28.00	28.67	32.58	18.67	23.55	29.67	24.67	27.00	30.83	16.33	1100. — 1 31
XI & X	+35,50	25°00 4°00	32:00 12:83	34°00 12°67	36°50	36.00 6.67	37:00 8:42	35°83	28.50 2.00	31.58 7.83	33, 83 8, 50	29.83 0.83	65° 14′ 25″·22
+ 188° 40' - 123° 26'	26.33	21.00	19.17	21.33	26.00	29.33	28.28	26.33	26.20	23.75	25.33	29.00	Prob. = 0:91

## At XIII (Nipania)

February 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

Angle				Circl	e readin	gs, teles	cope bei	ng set or	ı XI	•			General Means
between	150°	<b>330°</b>	160°	<b>340°</b>	170°	<b>8</b> 50°	180°	0°	190°	10°	200°	<b>2</b> 0°	and Probabilities
XI & XII	+ 100 00 - 56 33	2	97°50 56°33	107:17 52:33	•	7 105°50 53°50	-	107:33 50:17	97:17 46:67	103:83 54:67	×	53,50	55° 46′ 47″·82 Prob. = 1·72
+209° 40′ -153° 54′	43.67	20.00	41.12	54.84	36.52	52.00	50.94	57.16	50.20	49.16	40.20	47 . 67	1100. — 1 /2
XII & XIV	+56.33	52:33 650	56°33 14°67		55°58		•	50.17	-	54.67 9.33	50°33	11, ⁸ 20	57° 47′ 39″·51
+ 153° 54' - 96° 7'	46.11	45.83	41.66	38.19	38.08	49.00	28.39	37.34	27.00	45°34	35.16	42.00	Prob. ⇒ 1.91
XIV & XV	+70.55 -10.00	8	74.67 22.67	74°17 23°83	-	64:50	_	-	79.67 17.00	~	75°17	71.50 27.83	62° 33′ 50″·46
+ 96° 6′ - 33° 33′	54.33	41.20	52.00	50.34	55.33	37.50	49.67	5+.33	62.67	44.33	60.00	43.67	Prob. = 2.09

At XIV (Husapura)

February and March 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

Angle between				Circle	reading	s, telesc	ope being	g set on :	XVI				General Means
, DOI W 0011	850°	170°	0•	180°	10°	190°	20°	200°	80°	<b>2</b> 10°	40°	220°	and Probabilities
XVI & XV	+ 25.67 + 7.50	30.83 9.83	" 39.92 9.00	23.50 10.33	34:00 9:17	28.75 4	36:17 8:67	27:00 27:00 6:67	35.00 10.67	27;33 15;50	34:17 13:83	26°17 211°17	57° 49′ 41″'00 Prob. = 1'53
+ 47° 17' + 10° 32'	33.17	40.66	48.92	33.83	43.17	39.92	44.84	33.67	45.67	42.83	48.00	37.34	1100. — 1 33
XV & XIII	+55,17	56.67 30.83	. 54°00 39°92	56:17 23:50	51.56 34.00	55;33 28;75	-	62:00 8 27:00	58.00 35.00	61.67	50.83 34.17	59.83 26.17	53° 7′ 26″·17
+ 100° 24′ - 47° 17′	29.50	25.84	14.08	32.67	17.56	26.28	25.16	35.00	23.00	34.34	16.66	33.66	Prob. = 2 .00
XIII & XII	+59.00 -55.17	57,25 56,67	67:00 54:00	62:50 56:17	64:17 51:56	59°33 55°33	64:17 61:33	62.67 8 62.00	28,00 28,00	63.17 61.67	63°50 50°83	74°50 59°83	68° 32′ 6″·22
+ 168° 56' - 100° 24'	.3.83	0.28	13.00	6.33	13.61	4.00	2.84	0.67	2.00	1,20	12.67	14.67	Prob. = 1.30

## At XV (Gandaspur)

March 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

Angle between				Circle	reading	s, telesc	ope being	g set on	XIII				General Means and Probabilities
Detwoon	205°	25°	215°	<b>3</b> 5°	<b>2</b> 25°	45°	285°	55°	245°	<b>65°</b>	255°	75°	and Probabilities
XIII & XIV	" +92 33 -49 67	96°33 46°33	89:17 48:00	" 94.00 53.50	97.00 8 56.17	90.00 3 50.83	89:67 52:50	92:33 44:33	98:00 98:17	96:83 49:00	91,30 55,00	98;33 50;67	64° 18′ 42″ 94 Prob. = 1.25
+ 155° 12' - 90° 54'	42.66	50.00	41.14	40.20	40.83	39.17	37:17	48.00	43.83	47.83	36.20	47.66	3
XIV & XVI	+49,67	46;33 39;83	48:00	53,5° 4°,67	56:17 41:67	50.83 36.33	52:50 42:33	44°33 36°83	54:17 42:83	49°00 40°33	55°00 34°66	50:67 30:33	51° 16′ 12″·31
+ 9c° 54' - 39° 38'	9.17	6.20	11.83	12.83	14.20	14.20	10.12	7:50	11.34	8.67	20.34	20.34	Prob. == 1.25
XVI & XVII	+40,50	39.83 45.17	36:17 53:50	40°67 50°00	41.67 41.17	36:33 48:83	42;33 50;67	36.83 45.50	42.83 43.50	40°33 51°00	34.66 44.67	3°;33 49;25	61° 21′ 26″.04 Prob. == 1.25
+ 39° 38′ + 21° 42′	27:17	25.00	29.67	30.67	22.84	25.16	33.00	22.33	26.33	31.33	19.33	19.28	1100, = 1 25

At XVI (Atsu)

March 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

· Angle				Circle	readings	, telesco	pe being	set on :	XVIII				General Means
between	357°	177°	7°	187°	17*	197°	27°	207°	87°	217°	47°	227°	and Probabilities
XVIII &	+ 33;67 + 13;33	35,00 14,83	" 25 83 19 67	32.83 19.17	" 24:00 16:00	28:83 213:33	26:17 24:00	30°33 20°67	26:00 22:67	33 33 12 67	29:83 22:67	34°17 18°17	58° 5′ 48″·10 Prob. = 1·12
+ 2° 53' +55° 12'	47.00	49.83	45.20	52.00	40.00	42.16	50.12	21.00	48.67	46.00	52.20	52.34	
XVII & XV	+33;67 -13;33	26.83 14.83	2	27:50 19:17	34°33 16°00	26.00 13.33	33.00	28:33 20:67	35°17 22°67	21.42 12.67	33°17 22°67	26.83 18.17	56° 11′ 11″.40 Prob. = 1.14
+ 111° 23' - 55° 12'	20.34	13.00	8.00	8.33	18.33	12.67	9.00	7.66	12.20	8.75	10.20	8.66	
XV & XIV	+39,00	41:33 26:83	36.83 27.67	41.00 27.50	44°50 34°33	36.00 36.00	41.50 33.00	37°17 28°33	42:17 35:17	36°17	40°17 33°17	43°33 26°83	7.0° 54′ 10″.44 Prob. = 0.98
+ 182° 17' - 111° 23'	5.33	14.20	9.16	13.20	10.12	10.00	8.50	8.84	7.00	14.75	7.00	16.20	110 <i>b</i> . <b>4</b> 0 90

## At XVII (Seontára)

March 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L.

Angle				Circ	le readir	gs, teles	cope bei	ng set or	ı XV				General Means
between	127°	307°	137°	<b>3</b> 17°	147°	<b>3</b> 27°	157°	837°	167°	847°	177°	857°	and Probabilities
XV & XVI	" +54.00 -24.00	57;00 24;33	56:50 26:67	55; 17 29; 67	58:00 20:83	58:67 27:50	52:00 25:67	" 53;33 25;33	" 49°67 29°00	63:08 4 31:33	47 67 30 83	54°50 27°50	$62^{\circ} \ 27' \ 27'' \cdot 24$ Prob. = 1.28
+232° 57′ -170° 30′	30.00	32.67	29.83	25.20	27:17	31.17	26.33	28.00	20.67	31.42	16.84	27.00	1700. = 1 20
XVI &	+24.00 - 9.83	24°33 14°67	26.67 8.67	29.67 17.17	30.83 14.33	27:50 12:50	25.67 9.67	25;33 12;17	29.00	31,33	30.83	27:50 14:17	64° 27′ 14″·33 Prob. = 0·72
+ i70° 30' - 106° 3'	14.12	9.66	18.00	12.20	16.20	15.00	16.00	13.16	12.67	12.33	18.66	13.33	1100. = 0 /2
XVIII &	+69:83 -54:00	74°67 57°83	68.67 56.67	77°17 56°83	74°33 53°33	_	69.67 47.00	72:17 55:00	76·33 58·67	79°00 57°50	72:17 57:00 8	74°17 57°33	65° 16′ 17″-54
+106° 2' - 40° 46'	15.83	16.84	12.00	20.34	21.00	13.20	22.67	17.17	17.66	21.20	15.12	16.84	Prob. = 0.91

### At XVIII (Birona)

*March and April 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, L. †March 1840; observed by Mr. J. W. Armstrong with Harris and Barrow's 15-inch Theodolite.

Angle				Circl	e readin	gs, telesc	ope bein	g set on	XX				General Means
between	31°	211°	<b>4</b> 1°	221°	51°	<b>2</b> 31°	61°	241°	71°	251°	81°	261°	and Probabilities
+ XX & XIX	52:00	57°33	54.83	55:16	57 ^{.8} 3	54 <u>.</u> 66	58;33	54.83	55,00	57°16	61.33	,, 58.83	58° 33′ 56″·44 Prob. = o·69
		•		Circle	reading	s, telesco	pe being	set on	XIX				
	87°	267°	97°	277°	108°	288°	117°	<b>297°</b> .	127°	807°	137°	817° ·	
* XIX & XVII	+95;50	98.11	99,50	97:50	96;50	93.67	96,33	98.83	96.67	88:83	97:17	95 33	
AIA & AVII	-35 33	40.33	36.00	37:00	30.50	35:00		41,33	34,33	29.00	37:67	36.83	57° 53′ 0″·31
+ 145° 19' - 87° 27'	60.12	57.84	63.20	60.20	66.00	58.67	59.41	57 . 50	62*34	59.83	59.50	58.20	Prob. = 0.69
				Circle	reading	s, telesco	ope bein	g set on	xvII				
	135°	815°	145°	825°	155°	835°	165°	845°	175°	855°	185°	5°	57° 26′ 56″ 91
xvii & xvi	55 75	55,33	55,00	54,00	55,33	57,00	56.17	59.83	58,50	57,83	60.83	57,33	Prob. = 0.57

### At XIX (Kalsán)

‡ November 1837; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M. O. § February 1840; observed by Mr. J. W. Armstrong with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	reading	s, telesco	pe being	set on	X <b>V</b> II				General Means
between	343°	163°	<b>353°</b>	173°	8°	183°	13°	193°	23°	203°	33°	218°	and Probabilities
xvii ‡xviii	+33°78 +10°78	28:17 28:17 12:67	35;50 8;33	32 17 11 33	28.67 10.33	25;17 17;33	28:50 13:25	36:33 8:00	36:17 4:63	32 67 2 67	32.00 8 4.63	35 °50 3 °58	56° 50′ 41″°01 Prob. = 0.83
+ 16° 39′ + 40° 11′	44.26	40.84	43.83	43.20	39.00	42.20	41.75	44.33	40.80	35.34	36.63	39.08	
			_	Circle 1	readings	, telesco	pe being	set on :	XVIII				
	42°	222°	52°	232°	62°	242°	72°	252°	82°	<b>2</b> 62°	92°	272°	·
	+75.00	75 33	74:66	76.66	70.16	77:16	73.16	71.20	72.83	72.66	72:83	73.16	
xviii [§] & xx	+75.00 -66.00	•		-	-	66.00	73°16 61°22 8	_	72.83 60.00	72.66	64.25	64:66	59° 18′ 9″.69 Prob. = 0.75

· · · · · · · · · · · · · · · · · · ·					At XI	K (Kal	sán)—	(Conti	nued).		•	•.	T
Angle between	42*	2220	52°	Circle	readings	, telesco	pe being 72°	set on I	82°	262°	92°	272°	General Means and Probabilities
xx & xxi	+35.83 -15.00	38.83 38.33	37:16 14:66	36.66 36.66	34,33 10.16			36.22 8	" 40.33 12.83	39°16	35;00 12:83	35.66 12.16	54° 11′ 23″ 03 Prob. = 0.68
+ 155° 51' - 101° 40'	20.83	23.20	22.20	20.00	24.16	21.34	19.67	24.72	27.50	26.20	22.17	23.20	

# At XX (Bisungarh)

* February 1839; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M. O.
† January 1841; observed by Mr. J. W. Armstrong with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	readings	, telesco	pe being	set on 1	XXIII				General Means
between	00	180°	10°	190°	20°	200°	80°	210°	<b>4</b> 0°	220°	50°	230°	and Probabilities
XXIII & XXII	+ 18.67 + 9.33	20;17 8;50	" 19.00 10.12	20.00 8 10.67	" 18.83 11.17	" 14°17 9°50	" 17.00 13.83	22 67 8 50	" 20;33 8:83	22.67 211.67	" 19.67 11.67	" 20.17 20.17	3° 23′ 29″·78 Prob. = 0·70
+ 0° 21' + 3° 2'	28.00	28.67	29.17	30.67	30.00	23.67	30.83	31.12	29.16	34.34	31.34	30.34	
XXII & XXI	+75;50 - 9;33	73°17 8°50	75.83	80°17 10°67	74:33	74°17 9°50	70.67	78;67 8;50	78:17 8:83	72:33 11:67	76°17	76.83	57° 15′ 5″·17
+ 60° 16′ - 3° 2′	66.17	64.67	65.66	69.20	63.16	64.67	56.84	70.12	69.34	60.66	64.20	66.66	Prob. = 1.05
				Circle	readings	s, telesco	pe being	g set on	XXI				
	22°	202°	32°	Circle 212°	readings	s, telesco	ppe being	g set on 232°	XXI 62°	242°	72°	252°	
XXI & XIX	22°  " +70°17 -36°67	202°  " 82;33 39;50	82°  " 76;33 40:77		•	222°	_	_		242°  75 35° 43 35°	72°  " 75° 38° 38° 200	252°  " 76:17 36:33	65° 54′ 36″•19
* XXI & XIX + 87° 40' - 21° 46'	" +70°17	82;33 39;50	76 <u>°</u> 33	212° // 72:00	42°  78:83 40:50	322° " 80:50	52°  " 69°50 37°50	232°  74.5° 36.83	62°  74,67. 45,17	75°5°	75.00	76:17	65° 54′ 36″·19 Prob. = 1·14
	" +70°17 -36°67	82;33 39;50	76;33 40;77	212°  72;00 37;67	78:83 40:50 38:33	80°50 38°83 41°67	69°50 37°50 32°00	232°  74 25° 36 83 37 67	62°  74,67. 45,17	75°5° 43°5° 32°0°	75 00 38 00 37 00	76°17 36°33	· ·

#### At XXI (Chandanpur)

*January and February 1839; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M.O. †February 1841; observed by Mr. J. W. Armstrong with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	reading	gs, telesc	ope bein	g set or	XIX	•			General Means
between	0•	180°	10°	190°	20°	200°	<b>3</b> 0°	<b>210°</b>	40°	220°	<b>50</b> ⁰	230°	and Probabilities
	"	"	"	"	"	"	ii	"	"	"	"	"	
XIX &	+56.67	58.50	62:33	62.00	60.17	57,00	62.83	61.33	57:83	62:17	58.00	57.83	59° 54′ 3″°03
	+ 1.00	8:17	2:67	° 83	4.83	3,17	g.00	4;83	1,33	5,83	o.83	0.20	Prob. = 1.13
+ 0° 14′ +59° 39′	57.67	66.67	65.00	62.83	65.00	60.12	68.83	96.19	59.16	68.00	58.83	58.03	
	·			Circle	reading	gs, telesc	ope bei	ng set or	ı XX				
	800°	120°	<b>8</b> 10°	130°	<b>320°</b>	140°	830°	150°	840°	160°	<b>8</b> 50°	170°	
<b>+</b>	+77:33	75,92	70.33	71.33	73:17	78 33	76.17	77:50	69:67	80,30	74.67	79:83	
XX & XXII	-14:25	16.83	9:00	12.83	12:50	13.83	18.00	15:00	14:33	14:17	11.67	16.20	51° 1′ 1″·32
+ 110° 36′ - 59° 36′	63.08	59.09	61.33	58.50	60.67	64.20	58.17	62.50	55.34	66.33	63.00	63.33	Prob. = 0.67
+	+57;83	57;17	48,67	53,00	56.67	58,00	61.83	59 83	59°44	62:17	53 33	58.83	
XXII &	-17:33	15:92	10:33	11.33	13:17	18:33	16:17	17:50	9:67	20.50	14.67	19.83	15° 31′ 41″·84
+ 126° 8' - 110° 37'	40.20	41.25	38.34	41.67	43.20	39.67	45.66	42.33	49`77	41.67	38.66	39.00	Prob. = 0.91
			-;-	Circle	readings	s, telesco	pe being	set on I	XXIII				
	126°	806°	136°	816°	146°	826°	156°	336°	166°	846°	176°	856°	
* XXIII &	+ 100,33	100,17	94:33	98,00	99:42	97:83	94.83	94:17	89,50	95 ,50	89,11	97;33	
XXIV	- 43,67	46.83	43,17	45,50	-	-	44.83	44.33	44.00	42 [.] 44	46:33	38.83	56° 33′ 51″.69
+ 182° 44′ - 126° 11′	56.66	53.34	51.16	52.20	52.75	54:16	20.00	49.84	45.20	53.06	42.48	58.20	Prob. = 1.20

#### At XXII (Muhammadabad)

January 1841; observed by Mr. J. W. Armstrong with Harris and Barrow's 15-inch Theodolite.

Angle		•		Circle	reading	s, telesco	pe being	g set on	R. M.				General Mean
between	o	180°	10°	190°	<b>2</b> 0°	200°	<b>30°</b>	<b>210°</b> .	40°	220°	50°	<b>23</b> 0°	Gonoral Mean
R.M. & XXI	" 45°67	// 43.00	43.67	." 44.78	36.83	" 42:33	#4.00	" 42.50	" 40°33	" 42:17	36°92	42°50	102° 48′ 42″·06

R. M. denotes Referring Mark.

				At XX	XII (M	<b>I</b> uham	madab	ad)—(	Contin	ued).			
Angle between	0°	180°	10°	Circle	reading	s, telesco	pe being	set on	R.M. 40°	<b>22</b> 0°	50°	<b>23</b> 0°	General Means and Probabilities
XXI & XX	+74;33 -23;16	77:00 20:17	76:33 23:67	75 ²² 19 ²²	83:17 26:00	77:67 24:17	-	." 77;50 23:83	79°67 23°33	77;83 22;66		77:50 25:83	71° 43′ 54″ 98 Prob. = 0.71
+257° 10′ -185° 27′	51.12	56.83	52.66	56.00	57.17	53.20	55.44	53.67	56.34	55.17	60.08	51.67	,
XX & XXIII	+83;16 -18;33	80°17 15°17	83.67 21.17	•	-	-	80.56	-	-	-	-	85°83 17°89	168° 22′ 3″.62 Prob. = 0.77
+ 185° 26' - 17° 5'	64.83	65.00	62.20	59.56	66.34	66.17	60.26	63.00	62.33	59.50	65.67	67.94	. From = 0 //
XXIII & XXI	+45.67	20	43.67	44.78 19.66	-		44.00 20.00 20.00	_	40°33 21°00 8	42:17 23:16	36.92 17.33	42°50 17°89	119° 54′ 1″•41 Prob. = 0•99
+ 102° 48' + 17° 5'	64.00	58.17	64 84	64.44	56.49	60.33	64.00	63.33	61.33	65.33	54.5	60.39	1100. = 0 99

## At XXIII (Pothári)

*December 1838, and January 1839; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M. O. †January 1841; observed by Mr. J. W. Armstrong with Harris and Barrow's 15-inch Theodolite.

Angle				Circle	readings	, telesco	pe being	set on	XXV				General Means
between	854°	174°	<b>4°</b>	184°	14°	194°	24°	<b>2</b> 04°	34°	214°	44°	224°	and Probabilities
XXV & XXIV	12.83 2 23.58	7:33 19:00	16.50 17.00		" 11.17 21.22	9;67 21;50	" 10:83 19:67	" 12:17 14:67	" 12.67 19.83	" 11.83 14.83	" · 15.83 13.67	11:22 3 16:00	59° 36′ 30″·17 Prob. = 0.88
+ 5° 37' + 53° 59'	36.41	26.33	33.20	29.00	32.39	31.12	30.20	26.84	32.20	26.66	29.20	27.22	
XXIV & XXI	72.00 8 23.58	66.83 2 19.00	69:17	67 ·83	75°17 21°22 8	72:30 21:50	-	65 300 14.67	70:67 19:83	70:00 14:83	73°50 13°67	66.67 16.00	63° 44′ 52″ 03
+ 117° 43' - 53° 59'	48:42	47.83	52.12	51.33	53.95	50.20	53.33	50.33	50.84	55.17	59.83	50.67	Prob. = 0.90
				Circle	reading	s, telesco	pe being	g set on	XXI				
	86°	216°	<b>46°</b>	<b>2</b> 26°	56°	236°	66°	246°	76°	256°	86°	266°	
XXI & XXII	64.67 14.33	56.67 17.33	67:33		68.83	69:50		.59°50			64.00 13.83	65:83	44° 34′ 17″·53
+ 35° 55' + 8° 38'	79.00	74:00	80.00	75.17	84.10	81.67	74.67	70:33	76.67	77:33	77.83	79`50	Prob. = 1.03

R. M. denotes Referring Mark.

Angle				Circle	reading	s, telesco	pe being	set on	XXI				General Means
bet ween	36°	216 ⁶	46°	226°	56°	286°	66°	<b>246°</b>	76°	<b>2</b> 56°	86°	266°	and Probabilities
XXII & XX	+36.00 -14.33	40°50 17°33	38:83 12:67	38.83 11.00	43°17 15°33		" 39,00 12,50		" 44.00 15.17		41:50 13:83	40°17 13°67	8° 14′ 27″ 04 Prob. = 0°71
+ 16° 52' - 8° 38'	21.67	23.17	26.16	27.83	27.84	31.33	26.20	28.20	28.83	28.20	27.67	26.20	·

### At XXIV (Mau)

April and May 1838; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M. O.

Angle				Circle	readings	, telesco	pe being	set on	XXI				General Means
between	176°	356°	186°	6°	196°	16°	206°	26°	216°	36°	226°	46°	and Probabilities
XXI & XXIII	+87.83 $-63.83$	81:50 60:33	80°50 64°83	90:17 66:00	84;50 58;83	80°17 56°67	82:83 55:67	86:67 58:33	86.00 2 62.83	89:17 63:50	88:78 63:33	84.83 63.83	59° 41′ 23″ 75 Prob. = 0.93
+ 183° 55′ - 124° 14′	24.00	21.12	15.67	24.12	25.67	23.20	27.16	28.34	23.17	25.67	25.45	21.00	
XXIII & XXV	+63;83 -48;67	60:33 52:33	64.83 49.67	66.00 54,50	58.83 48.17	56.67 50.33	55°67 47°50	58;33	62 83 47 16	63°50 52°50	63°33 49°50	63:83 54:83	64° 29′ 10″-99
+ 124° 14′ - 59° 45′	15.19	8.00	15.16	11,20	10.66	6.34	8.17	7.33	15.67	11.00	13.83	0.00	Prob. = 0'92
XXV & XXVI	+48.67	52;33 23;33	49 ² 67 31 ⁶ 7	54 ² 5° 34 ⁶ 7	48:17 31:83	50;33 31;33	47°50 33°00	51:00 25:00	47:16 32:17	52;50 33;67	49,50 29,00	54°83 35°33	53° 37′ 20″·06 Prob. = 1·21
+ 59° 45′ - 6° 8′	24.17	29.00	18.00	19.83	16.34	19.00	14.20	26.00	14.99	18.83	20.20	19.50	

## At XXV (Guri)

*December 1837, January 1838; and †April 1838; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M.O.

Angle				Circle 1	readin <b>g</b> s	, telescop	e being	set on Y	IIVX				General Means
between .	357°	177°	7°	187°	17°	197°	27°	207°	37°	21 <b>7°</b>	<b>47°</b>	227°	and Probabilities
	"	"	*	"	*	"	*	"	"	7	7	7	
*XXVII &	+67:17	67:50	66.56	69,00	68.83	<b>8</b> 91.89	67 .83	.58.00	64.67	60.83	59 25	57,67	
XXVI	+ 22:00	18.20	21,00	19,17	21.00	15.17	16.33	19.83	22.00	21.20	21.83	19.83	$74^{\circ} 42' 23'' 95$ Prob. = 1.30
+ 72° 7' + 2° 34'	89.17	86.00	87.56	88.17	89.83	77.06	84.16	77.83	86.67	82.33	81.08	77.20	1100. — 1 30

$\mathbf{A}\mathbf{t}$	XXV	(Guri)	—(	Continued	).
------------------------	-----	--------	----	-----------	----

Angle between				Circle :	readings	, telesco	pe being	set on X	IIVX				General Means and Probabilities
Detween	357°	177°	7°	187°	17°	197°	27°	207°	37°	21 <b>7°</b>	47°	2270	and I localities
XXVI &	+97;00 -67;17		•	69.00 111.00	97:17 68:83	_	" 102:33 67:83	" 101.83 28.00		98:17 60:83	97 :83 59 : 25	" 101:33 57:67	59° 3′ 37″ o 1 Prob. = 1°54
+ 131° 10′ - 72° 7′	29.83	39.83	29.88	42.00	28.34	41.78	34.20	43.83	34.20	37.34	38.28	43.66	1100. — 1 54
				Circle	readings	s, telesco	pe being	g set on	XXIV				
	6°	186°	16°	196°	26°	206°	36°	216°	466	226°	56°	236°	
XXIV & XXIII	+25,50	•	22:00 8:50	24:50 4:00	30°17	29:17 8:33	20:17 7:83	24:17 4:50	28:33 12:17	22:33 4. 4:83	18.67 8.17	23;33 3;00	55° 54′ 16″.83 Prob. = 1.03
+ 61° 40′ - 5° 46′	19.00	12.44	13.20	20.20	19.17	20.84	12.34	19.67	16.16	17.20	10.20	20.33	1100. — 1 03

# At XXVI (Dháka)

January and February 1838; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M. O.

Angle between	;			Circle	readings	telesco	pe being	set on 2	XXIV				General Means and Probabilities
	321°	141*	881°	151°	841°	161°	851°	171°	1°	181°	11°	191° .	and 1700someres
XXIV & XXV	" +39.67 +22.67	31.00 8 25.83	" 41:17 26:22 3	36.00 26.67	35:17 28:00	36.00 26.50	38:17 20:67	" 35;00 25;83	36.67 25.17	" 32:83 23:83	" 41.00 2 22.17	39;67 25;83	67° 19′ 1″.81 Prob. = 0.88
+ 38° 44′ + 28° 34′	62.34	56.83	67:39	62.67	63.17	62.20	58.84	60.83	61.84	56.66	63 · 17	65.20	
XXV & XXVII	+68:33	66:50 25:83	69:17 26:22	66:67 26:67		68:33 26:50		69°50 25°83	71:33 25:17	65:33	65:33	67:83 25:83	55° 20′ 43″·26
+ 83° 54' - 28° 34'	45.66	40.67	42.02	40.00	42.00	41.83	49.50	43.67	46.16	41.20	43.16	42.00	Prob. = 0.74
XXVII & XXVIII	+62.67 $-8.33$	63°67 6°50	67:33 9:17	65;33 6;67	63;33	7°:33 8:33	60:33	59,75 9,50	65.00 11.33	62:67 5:33	56.50 5.4 5.33	62:58 7:83	51° 57′ 55″ 08
+ 135° 52′ - 83° 55′	54.34	57.17	28.19	58.66	53.33	62.00	20.19	50.52	53.67	57:34	51.12	54.75	Prob. = 1.01

At XXVII (Saipur)

February 1838; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M.O.

Angle				Circle	readings	, telesco	pe being	set on	XXIX				General Means
between	1°	181°	11°	191°	21°	201°	310	211°	41°	<b>2</b> 21°	51°	231°	and Probabilities
XXIX & XXVIII	" +80.00 -30.00	83:17 33:67	78;33 29;67	77:00 32:33	83 · 83 30 · 67	79°17 33°33	· ·	81:33 32:67	79:50 35:11	81.67 32.67	85;33 28;50	81:17 4 32:50	59° 5′ 49″.55 Prob. = 1.07
+59° 35′ - °° 30′	20.00	49.50	48.66	44.67	53.16	45.84	55.16	48.66	44.39	49.00	56.83	48.67	•
XXVIII & XXVI	+75,67	73 : 50	~~	66.00	70°00 23°83	69:33	-	71:16	69°50 19°50	70.67 21.67	67;33 25;33	64:17	66° 36′ 48″•01
+ 126° 12′ - 59° 36′	55.67	20.33	49.17	49.00	46.17	50.16	42.34	49.83	49.20	49.00	42.00	43.00	Prob. = 1.10
XXVI & XXV	+67;33 -15;67	67:67	62:50 7:50	68:83 6:00	67:50	71.83 9.33	60.00 8.17	68. ⁵ 20	66.83 9.00	61.67 10.67	62:50 7:33	64°50 4°17	49° 56′ 56″·43 Prob. = 1·12
+ 176° 9' - 126° 13'	51.66	54.17	55.00	62.83	57:50	62.20	51.83	57:34	57.83	21.00	55.17	60.33	1100. — 1 12

## At XXVIII (Kasrak)

February and March 1838; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M.O.

Angle				Circle	readings	s, telesco	pe being	set on 2	XXVI				General Means
between	175°	355°	185°	5°	195°	15°	205°	25°	215°	<b>3</b> 5°	225°	45°	and Probabilities
XXVI & XXVII + 184° 40′	+61:17 -40:17	" 64;00 45;83	62:67 45:17	" 64:83 54:50	62:66 2 43:83	59°50 51°00	62:67 . 2 48:17	" 65;00 55;83	*		72;00 53;33	51.67	61° 25′ 14″·92 Prob. = 1·27
XXVII & XXIX	+40°17 -34°67	45 ⁸ 3 40 ¹⁷	45; 17 40; 67	54,50 45,00	43 °83 35 °00	51,00 39,33	48:17 35:83	9°17 55°83 46°83	50°50 35°83	55;08 40;33	18.67 53,33 44,50	9.00 51.67 40.67	60° 39′ 9″.69 Prob. = 0.93
+ 123° 15' - 62° 36'	5.20	5.66	4.20	9.20	8.83	11.67	12.34	9.00	14.67	14.75	8.83	11.00	
XXIX & XXX	+34.67	40°17 30°50	40°67 35°50	45°00 37°17	35,00	39;33 37;67	35°83	46.83 39.17	35.83 32.67	40°333 33°67	44°50 33°83	40°67 34°00	$57^{\circ} 34' 5'''92$ Prob. = 0.77
$\begin{array}{cccc} + & 62^{\circ} & 36' \\ - & 5^{\circ} & 2' \end{array}$	4.84	9.67	5.17	7.83	4.67	1.66	2.33	7.66	3.19	6.66	10.62	6.67	2203.

At XXIX (Janjíri)

March 1838; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M. O.

Angle				Circle	reading	s, telesco	pe being	set on	IXXX		•		General Means
between	844°	164°	854°	174°	<b>4°</b>	184°	14°	194°	24°	204°	34°	214°	and Probabilities
XXXI &	+ 1:83	35;67 4;00	" 20.50 12.00	24;67 6:50	27:33 3:33	21.83 8 6.17	" 29:67 7:00	" 24,83 5,33	28:83 11:17	25:83 7:83	21.00 2 15.67	" 19:83 12:00	7° 35′ 33″.53 Prob. = 1.07
+ 54° 5′ + 16° 30′	31.33	39.67	32.20	31.17	30.66	28.00	36.67	30.19	40.00	33.66	36.67	31.83	2333.4 2 3,
XXX & XXVIII	+47;00 -29;50	53;17 35;67	44 33 20 50	45;83 24:67	52:00 27:33	47°17 21°83	-	49:00	_	46°50 25°83	43;33 21:00	41.66 19.83	64° 37′ 21″·26 Prob. = 0·85
+ 118° 42' - 54° 5'	17.20	17.20	23.83	21.19	24.67	25.34	15.83	24.17	20.34	20.67	22.33	21.83	2100. — 6 05
XXVIII & XXVII	+110.62 +110.62		~		_		103°50 45°50	-	-		95°22 43°33	107.00 41.66	60° 14′ 59″·62 Prob. = 1°02
+ 178° 56' - 118° 42'	63.67	59.83	57.00	63.20	58.00	62.00	28.00	59.83	57:00	59:33	51.89	65.34	1100. = 1 02

## At XXX (Gajnera)

*March 1838; and †March 1839; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M. O.

Angle				Circle r	eadings,	telescop	e being	set on X	XVIII				General Means
between	o°	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	40°	220°	50°	230°	and Probabilities
XXVIII & XXIX	+91:83 -58:17	95°50 57°50	90°50	93°67 59°33	88;50 57;67	-	90°50 54°33	94:17 59:17	96:33 57:33	90°50 55°67	94;33 57;83	91:00 55:83	57° 48′ 35″·25 Prob. = 0·64
+ 57° 51' - ° 3'	33.66	38.20	36.20	34.34	30.83	32.20	36.12	35.00	39.00	34.83	36.20	35.17	
XXIX &	+ 61.20 + 61.30	-	62:33 30:50		-	57.00 31.00	57;33 30;50	-	63,50 36,33	61.00 30.50	56:17 34:33	58:33 31:00	58° 59′ 27″·51 Prob. = 0.85
+ 116° 51' - 57° 52'	29.67	25.67	31.83	23.16	29.67	26.00	26.83	30.20	27.17	30.20	21.84	27.33	1100. — 5 05
				Circle	readings	, telescoj	pe being	set on X	XXXI				
	302°	122°	812°	132°	322°	1420	832°	152°	342°	162°	352°	172°	
xxxi & xi	+23:50 +28:60	33°17 22°00	31°17 20°50	37°17 19°11	24:17 20:83	23:00	30.00	31.00	31.00	33°67 19°83	32.67 19.00	34°33 20°33	57° 55′ 52″·17 Prob. = 0·84
+ 57° 40' + 0° 15'	52.10	55.17	51.67	56.58	45.00	54.20	50.17	51.20	49.83	53.20	51.67	54.66	- ·

Note.—XI appertains to the North-East Longitudinal Series.

### At XXXI (Fatehganj)

*March and April 1838; and †March 1839; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M. O

∆ngle				Circ	le readi	ngs, tele	scope bei	ing set or	n X				General Means
between	853°	173°	8°	183°	13°	193°	23°	203°	83°	213°	<b>43°</b>	<b>223°</b>	and Probabilities
† X & XI	+22:75 +22:50	31:33 26:50	" 33°50 22°33	" 35°50 24°00	29:17 22:17	31:50 23:50		×	" 29:83 19:50	32:50 17:33	33:84 18:83	34.00 17.00	53° 17′ 52″.97
+ 6° 57' + 46° 20'	45°25	57.83	55.83	59.20	51.34	22.00	50.20	57.50	49°33	49.83	52.67	21.00	Prob. = 1.16
t XI & XXX	+33,00	38°50 26°50	-	-	35°67 22°17	-	36.83 19.67	•	34,00 19,50	26.83 17.33	30°33 18°83	26.00 3 17.00	59° 1′ 11″-83
+ 105° 21' - 46° 20'	10.20	12.00	14.34	<b>6.00</b>	13.20	10.12	17.16	10.83	14.20	9.20	11.20	0.00	Prob. = 0.71
				Circle	reading	s, telesco	pe being	set on	XXX				
	252°	72°	<b>2</b> 62°	82°	272°	920	282°	102°	292°	112°	302°	122°	
XXX & XXIX	- 50°17	_	118.83 59.17	-	-	-	114,50 60,33	~	-	-	-	-	50° 25′ 1″'35 Prob. = 1·19
+ 108° 7' - 57° 43'	65.00	61.67	59.66	58.33	63.34	67:33	54.17	60.00	59:33	55.33	64.83	67 · 16	1100. — 1 19

## At X (Sisgarh)

April 1839; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M. O.

Angle				Circl	le readin	gs, teles	cope bein	ng set on	XI				General Means
between	106°	286°	116°	<b>2</b> 96°	126°	306°	136°	816°	146°	<b>326°</b>	156°	<b>3</b> 36°	and Probabilities
XI & XXXI	+72:00 9 -45:17	69:83 44:00	68.00 2 42.33	68:17 41:17	68:33 41:00	73:17 46:33		69°50 41°83		69:66 37:33	62:83 40:83	68:33 40:17	69° 55′ 26″·19 Prob. = 0.84
+ 175° 38' - 105° 43'	26.83	25.83	25.67	27.00	27.33	26.84	24.34	27.67	20.33	32.33	22.00	28.19	

#### At XI (Atária)

March and April 1839; observed by Mr. J. W. Armstrong with Cary's 18-inch Theodolite, M.O.

Angle				Circle	reading	s, telesco	pe being	set on	XXX				General Means
between	178°	<b>3</b> 58°	188°	8°	198°	18°	208°	28°	218°	38°	228°	48°	and Probabilities
XXX & XXXI	+65°17	65:17 7:50	68:67 11:50	67:17 7:56	62:67 2:17	64:33 10:33	68:67 9:83	69:17 8:89	60:67 8:83	63;33 12:50	64:83 1:50	" 70.00 2 11.67	63° 2′ 57″·53 Prob. = 1.01
+ 181° 43' - 118° 41'	58.00	57.67	57.17	59.61	60.50	54.00	58.84	60.28	51.84	50.83	63.33	58.33	

Note.—X and XI appertain to the North-East Longitudinal Series.

	At XI (Atária)—(Continued).													
Angle between	178°	358°	188°	Circle 8°	reading	s, telesco	pe being	g set on 28°	XXX 218°	38°	228°	48°	General Means and Probabilities	
XXXI & X	+67:17 -27:33	67:50 33:00	71:50 32:33	u			69:83 25:33			-	61.50 28.50	-	56° 46′ 39″•93 Prob. = 1°11	
+118° 40' - 61° 54'	39.84	34.20	39.17	37.73	39.34	45.00	44.20	37.39	44.16	44.67	33.00	39.83	2.00, — 1.1	

Note.—X and XI appertain to the North-East Longitudinal Series.

August 1877.

J. B. N. HENNESSEY,

In charge of Computing Office.

#### RANGIR MERIDIONAL SERIES.

#### PRINCIPAL TRIANGULATION. ADDENDUM TO DESCRIPTION OF STATIONS.

Note.—Consequent on modern alterations of district and other boundaries, the sites occupied by the stations are in some instances now included in civil divisions of territory which differ from the district, pargana, or village, recorded in the descriptions of stations: a complete list of all the stations of the Series including a suitably modified statement of the altered subdivisions in question is accordingly given in the following table, and is derived chiefly from the annual reports, up to 1881, made by the Civil Officials to whose care the stations have been committed. The statement also gives the present condition of certain of the stations; where no entry regarding present condition is made against a station it is to be assumed that the station when last reported on by the district Official was in good order.

The spelling of names is in accordance with that given in the lists of more important places published under the orders of Government whenever such names occur in the lists.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Construction	as on the and Condition Station
VII*	•••	Saugor	Thá., Tah. and P. Banda	Tinsi		
<b>X</b> *		Damoh	Tah. Damoh	Rangír		
I	•••	Bundelkhand Political Agency	P. Bakswáho	Kusmár	<b></b>	•••
II	•••	,,,	P. Bijawar	Dálípur		•••
111	•••	"	Ditto.		•••	
ıv	Bhojraj	,,,	P. Baldeogarh	Sarkanpur		
v	Chabútara	Hamírpur	Thá. Ajnár, Tah. Kul- pahár, P. Panwári-Jait- pur	Narwara		
VI	• • • •	Bundelkhand Political Agency	P. Chhatarpur	Sela		
VII	Chabútara '	Hamírpur	Tah. and Thá. Kulpahár, P. Panwári-Jaitpur	Salat Malat of Garhauli Jágír		
VIII		Jhánsi	Tah. Garotha	Gura	•••	•••
IX ·	Chabútara	Hamírpur	Thá. Jariya, Tah. and P. Ráth	Phára		

NOTE.—Stations VII* and X* appertain to the Calcutta Longitudinal Series of the South-East Quadrilateral. P. stands for pargana, Tah. for tahsil, and Thá. for thána.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Remarks on the Construction and Condition of the Station
x	Firangi-ka-Cha- bútara	Jhánsi-Gursarai State	Tah. Garotha	Gokulphára	
ХI	Sorái	Jálaun	Thá. and Tah. Orai	Gura Khurd	In 1872, the District Officer reported the station as completely destroyed by the rains of 1871. In 1873, a paka platform was built by the same Officer for the protection of the mark-stone.
XII	,,	"	Thá. and Tah. Jálaun	Kanwa	
XIII	,,	"	Thá. Damrás, Tah. Kálpi	Nipania	
XIV	. ,,	"	Thá. Kuthaund, Tah. Má- dhogarh	Husapura	<u>.</u> .
ХV		Cawnpore	Thá. and P. Derapur	Gandaspur	The mark-stone in the floor of the arched passage was found intact. The corners at the base of the pillar and the interior of the arched passage much injured by the digging out of bricks.
XVI		Etáwah	Tah. and P. Auraiya, Táluka Bhareh, Thá. Ajítmal	Atsu	
XVII		<b>,</b>	Thá. Sahail, Tah. and P. Bidhúna	Seontára	The corners at the base of the pillar and the interior of the arched passage were found considerably injured as at (XV) Gandaspur Station. The hollow in the passage was filled in with burnt bricks.
XVIII	Barona Kalán	<b>33</b>	Thá. Kudarkat, Tah. and P. Bidhúna	Barona Kalán	The mark-stone in the floor of the arched passage was found all right, the corners of the pillar injured at the base.
XIX	Minára	Farrukhabad	Tah. and P. Tirwa	Kalsán	The mark-stone in the floor of the arched passage was found all right, the pillar above the arch cracked.
XX	Mastúl or Minár	29	Tah. and P. Chhibramau	Bisungarh	The mark-stone in the floor of the arched passage was found perfect, as also the pillar.
XXI	Minára or Gar- gaj	"	P. Bhojpur, Tah. Far- rukhabad	Rájípur	The mark-stone in the arched passage was found perfect, the arch cracked on one side by the digging out of bricks.
XXII	"	"	P. Muliammadabad, Tah. Farrukhabad	Muhammadabad Khás	The tower considerably dug into at the base, on the east face the excavation reaching the central pillar, the tower was repaired with burnt bricks.

Note.—Stations XV to XXXI, also X and XI of the North-East Longitudinal Series, were visited in 1866 by Mr. W. Ivey, Assistant Surveyor, especially deputed for the purpose. The perforated masonry pillars at these stations were found more or less dug into at their bases and bricks extracted from the interior of the arched passages, and otherwise injured by cracks. These pillars were protected by Mr. Ivey as follows:—the arched passages were closed, platforms of sun-dried bricks built around the bases of the pillars to height of from 10 to 14 feet, and the openings at their summits capped by conical mounds to carry off the rain fall; after which all these stations were transferred to the charge of the chief local Official. Digitized by Google

P. stands for pargana, Tah. for tahsil, and Thá. for thána.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Remarks on the Construction and Condition of the Station
XXIII	Minára or Gar- gaj	Farrukhabad	P. Muhammadabad, Tah. Farrukhabad	Pothári	The mark-stone in the floor of the arched passage was found perfect, the interior of the passage and its floor injured.
XXIV	Minára	<b>33</b> °	P. Imratpur, Tah. Aligarh	Mau Rasúlpur	The mark-stone in the floor of the arched passage was found dug out, the pillar much injured and dug into.
xxv	Gundi	Sháhjahánpur	Tah. and P. Jalálabad	Gundi	The mark-stone in the floor of the passage was found perfect, the pillar injured at the base on all sides, and its arch cracked on the east side.
XXVI	Dháka	"	Ditto.	Dháka	Ditto.
XXVII	Sháhpur	Budaun	Thá. and P. Hazratpur, Tah. Dátaganj	Sháhpur	The mark-stone in the floor of the arched passage was found cracked, its central iron pin extracted though the stone appeared to be firmly imbedded, the pillar was slightly injured at the base.
XXVIII		Sháhjahánpur	Tah. Tilhar, P. Mirán- pur Katra	Kasrak	The station was found completely destroyed down to the very foundation; below the debris the markstone was found lying loose, this was embedded below the ground level and a conical pillar, 12 feet in height, built over it to mark the site of the station.
XXIX	Chanjiri	Bareilly	P. Ballia	Chanjiri	The mark-stone in the floor of the arched passage was found all right, the base of the pillar much injured by the digging out of bricks.
xxx		"	P. Farídpur	Gajnera	Ditto.
XXXI		,,	P. Karor	Fatehganj	
x		"	P. Sirsáwán	Sísgarh	
XI		,,	P. Richha	Atária	····

NOTE.—Stations X and XI appertain to the North-East Longitudinal Series.

P. stands for pargana, Tah. for tahsil, and Thá for thána.

September, 1882.

J. B. N. HENNESSEY,
In charge of Computing Office.

# RANGIR MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Observed Angles			Equati	ions to be satisfied	[	Factor
No. Value igo	Weight = (Probability) ³	x ₁ x ₄ x ₇	+ x ⁸ + x ²	+ x ₈ + x ₆ + x ₉	$= e_1 = + e_2 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_3 = + e_$	ο·30, λ,
	-3·59	x ₁ +	+x ₄ - ·64x ₉	$+x_{7}$ $+1.015x_{8}$ $-6.905x_{8}$	$= e_4 = +$ $= e_5 = +$	
	98		Equation	ns between the fac	etors	
6 44 34 17.53 1.	82 06 No. of 60	Value of e			cients of	
	251	+0.30	+ 2·06	λ ₂ /	+o.20	λ _ε
	3 4	+0·30 +0·34 +0·01		+ 2 · 86 + 1 *	+0.98 +0.60 +2.08	-1·875 +4·578
Values of the Factors	5	+1.01	Angul	ar errors in secon	ds	+173.461
$\lambda_1 = + 0.144$ $\lambda_2 = + 0.144$		$\mathbf{x}_1 = -\cdot \mathbf{o}_2$		$x_6 = + .15$	$x_7 = +$ $x_8 = +$	
$\lambda^{8} = + 0.189$ $\lambda^{9} = + 0.568$		$x_8 = + \cdot 0$	7	$[mx_3] = 0.18$	x, = +	•18

^{*} In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth term in the qth line being always the same as the co-efficient of the qth term in the pth line.

October 1877.

J. B. N. HENNESSEY,

In charge of Computing Office.

## RANGIR MERIDIONAL SERIES.

# PRINCIPAL TRIANGULATION. TRIANGLES.

No. of	triangle	<b>a.</b> .•	Spherical Excess	Cor	rections to (	bserved A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Sphe	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
			"	"	4	*	*	0 1 11			
1		VII X I	.80 .80	- '18 - '09 - '07	10. — 80. — 60. +		- '09 - '17 - '08	37 36 19°43 54 24 15°62 87 59 24°95	4.9667210,1 5.0914026,8 5.1809675,5	92623.47 123424.88 151693.69	17.542 23.376 28.730
			2.40				- '34	180 0 0.00			
2		VII I II	·89 ·90 ·89	+ '93 + '37	- '44 -1'10 +1'54		+ :49 - :73 +2:54	44 20 35.26 71 53 48.36 63 45 36.38	4.9830825,7 5.1165854.2 5.0914026,8	96179°50 130793°29 13424°88	18°216 24:771 23°376
			2.68				+2.30	180 0 0.00			1
3		I II III	·86 ·87 ·86	- '24 - '14 - '59	-1.20 + .64		-1.83 + .81 + .02	55 51 12.69 80 31 15.94 43 37 31.37	5.0620943,3 5.1383004,4 4.9830825,7	115370°38 137499°28 96179°50	21.850 26.042 18.216
			2.20				<b>–</b> '97	180 0 0.00			
4		II III IV	1 · 28 1 · 28 1 · 27	+ '02 + '04 + '03	+ '07 - '94 + '87		+ .00 00 + .00	73 16 38·22 62 27 41·37 44 15 40·41	5.1995153,0 5.1660587,8 5.0620943,3	158312°55 146574°62 115370°38	29.983 27.760 21.850
	İ		3.83				+ .00	180 0 0.00			
5		III IV V	1'72 1'73 1'73	+1.20 +2.20 +1.20	-1.48 + .54 +1.48		- '25 +3'03 +3'25	49 14 58.45 74 12 4.19 56 32 57.36	5.1575789,1 5.2614378,1 5.1995153,0	143740°43 182573°53 158312°55	27.224 34.578 29.983
			5.18				+6.03	180 0 0.00		•	

NOTES.—1. The values of the side are given in the same line with the opposite angle.

2. Stations VII and X appertain to the Calcutta Longitudinal Series.

No. of	triangle		ical	Cor	rections to (	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
<b>`</b> 6		III V VI	" 1.67 1.67	" -2.59 -3.49 27	- '31 + '30 + '31	"	-2·90 -3·19 - ·26	0 , " 45 37 4 34 59 12 50 20 75 10 5 46	5.1302726,4 5.2101902,9 5.2614378,1	134981°01 162252°09 182573°53	25°565 30°730 34°578
7		V VI VII	1,13 1,15 1,15	+ '19 + '14 + '07	+ '24 - '24 '00		-6·35 + ·43 - ·10 + ·07	180 0 0.00 52 50 21.48 62 33 38.94 64 38 59.58	5.0756724,3 5.1222159,9 5.1302726,4	132500.03 132500.03	22.244 25.262 25.262
8		V VII VIII	3·37 1·19 1·18 1·18	-1.11 22 22	+ '10 - '40 + '30		+ .08 08 40	64 59 46 94 54 52 5 33 60 8 7 73	5'1413569,6 5'0967571,1 5'1222159,9	138470°40 124956°00 132500°03	26.225 23.666 25.095
9		VII VIII IX	3.22 1.36 1.36	- '46 - '32 - '27	- ·37 + ·34 + ·03		-2·52 - ·83 + ·02 - ·24	180 0 0.00 59 42 20.81 62 6 26.85 58 11 12.34	5'1482904,9 5'1584221,6 5'1413569,6	140698 · 83 144019 · 79 138470 · 40	26.648 27.276 26.225
10		VIII IX X	4'07 1'10 1'11	+2·35 +1·17 +2·11	- ·86 + ·86		+2·35 + ·31 +2·97	60 8 12·15 49 51 38·08 70 0 9·77	5 ¹¹³ 4244,5 5 ⁰ 586622,1 5 ¹ 482904,9	129844·76 114462·24 140698·83	24°592 21°678 26°648
11	`	IX X XI	3·31 ·92 ·93	+ '33 + '56 + '53	- '74 + '72 + '02		+5.63 41 +1.28 + .55	57 38 8.55 51 11 50.56 71 10 0.89	5.0640036,5 5.0290306,8 5.1134244,5	115878°71 106913°04 119844°76	21'947 20'249 24'592
12		X XI XII	2 · 77 · 82 · 82 · 82	- '57 - '92 - '29	- '08 - '54 + '62		65 -1.46 + .33	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.0090505,4 5.0502589,8 5.0640036,5	102105.83 112268.48 112878.41	19·338 21·263 21·947
13		XI XII XIII	2·46 · 74 · 74 · 74	+ ·50 + ·68 + ·88	- ·63 + ·61 + ·02		-1.18 -1.29 +1.29 + .30	72 58 44.57 51 14 27.45 55 46 47.98	5.0721535,1 4.9835810,4 5.0090505,4	118073.79 96289.96 118073.79	22°362 18°237 19°338
14.		XII XIII XIV	:80 :80 :81	+ '47 +1'01	+ ·21 - ·71 + ·50		+ .08 + .08 + .03	53 40 13 44 57 47 39 64 68 32 6 92	5.0095019,7 5.0308130,0 5.0421535,1	107352.43 107323.43 102213.03	19.328
15		XIII XIV XV	2.41 .65 .65	+1.04 + .38	- ·69 + ·84 - ·15		+ 3.12 + 35 + 1.80 + 23	62 33 50°16 .53 7 27°32 .64 18 42°52	5.0028778,3 4.9577536,6 5.0095019,7	100664.84 90730.28 102212.02	19.328 13.184
16		XIV XV XVI	1.95 .56 .56	- 1.00 90 41	+ '23 - '49 + '26		+2·38 - ·77 -1·15 - ·15	57 49 39 67 51 16 10 60 70 54 9 73	4'9550639,9 4'9196119,4 5 0028778,3	90170°39 93102°08 90170°39	17.078 15.739 19.065
17		XV XVI XVII	1.68 .53 .52 .53 1.58	-1.13 00 -1.13	- ·25 + ·38 - ·13		-1.32 -1.36 -3.10	61 21 24 19 56 11 10 36 62 27 25 45 180 0 0 00	4 [.] 9506117,0 4 [.] 9268274,9 4 [.] 9550639,9	89250.31 84434.31 80250.41	16.003 10.003

No. of	triangle		rical	Cor	rections to	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
18		XVI XVII XVIII	" '57 '57	" +1.42 + .59 + .36	+ '09 - '16 + '07	"	" +1.51 + .43 + .43	58 5 49°04 64 27 14°19 57 26 56°77	4°9537073,7 4°9801501,1 4°9506117,0	89889°18 95532°27 89250°71	17.024 18.003
		XVII	. 59	+1.50	- '07		+1.13	92 19 18.08 180 0 0.00	4.0801121,7	97524.12	18:470
19		XVIII XIX	.59	+1.01	+ :17		+ '91	57 53 0.58 56 50 41.34	4.9587495,0	99889 · 18	17.024
20		XVIII XIX XX	1.76 .62 .63	+ '57 + '69 + '99	+ '13 - '17 + '04		+ '70 + '52 + 1'03	58 33 56·52 59 18 9·59 62 7 53·89	4.9737187,7 4.9770840,0 4.9891121,7	94127.99 94860.20 97524.15	17.827 17.966 18.470
21		XIX ·	:59	- '07 - '20	- ·02 + ·13		+2·25 - ·09 - ·07	180 0 0 00 54 11 22 35 65 54 35 52	4°9456218,4 4°9970493,3	88231°13 99322°89	16.410
21		XXI	1.40	10	— ·II		- ·30 - ·46	59 54 2·13 180 0 0·00	4.9737187,7	94127.99	17.827
22		XX XXI XXII	.42 .42 .43	- '15 - '07 + '02	+ '01 + '01		- ·o ₃	57 15 4.68 51 1 0.74 71 43 54.58	4.8929037,1 4.8586873,9 4.9456218,4	78145°45 72224°97 88231°13	14.800 13.679 16.710
23		XXI XXII XXIII	1·27 ·16 ·16 ·16	- ·19 + ·01 - ·12	- °05 + °06 - °01		- '20 - '17 + '07 - '20	180 0 0.00 15 31 41.51 119 54 1.32 44 34 17.17	4°4743603,3 4°9846573,7 4°8929037,1	29809·89 96528·90 78145·45	5.646 18.585 14.800
	574	XX XXII XXIII	·48 · ·03 · ·04 · ·03	- '18 - '04 - '12		+ '02 - '07 + '05	- '30 - '16 - '11	3 23 29 59 168 22 3 47 8 14 26 94	4.4743604,6 5.0068961,2 4.8586873,9	29809·89 101600·57 72224·97	5.646 19.243 13.679
24		XXI XXIII	· 10 · 63 · 64	-2·58 -1·44	- '02 + '11		- :34 -2:60 -1:33	180 0 0.00 56 33 48.46 63 44 50.06	4.9699195,9	93308:15	17.672 18.382
		XXIV	1.01	-1.24	00		-5.26	180 0 0.00	4.9846573,7	96528.90	
25		XXIV XXV	·65 ·65 ·64	+1.14	+ '12 - '10 - '02		+1.24	59 36 30 78 64 29 11 49 55 54 17 73 180 0 0 00	4.9876363,8 5.0072718,6 4.9699195,9	93308.12 93308.12	18.408 19.529 17.672
26	·	XXIV XXV XXVI	55 56 56	+ ·89 + · 43 + · 47	- '03 + '03 '00		+ 3.95 + .86 + 1.46 + .47	53 37 20 37 59 3 37 91 67 19 1 72	4.9284610,2 4.9559387,1 4.9876363,8	84812.73 90352.19 97193.31	16.063 14.115
27		XXV XXVI XXVII	1·67 ·59 ·59 ·58	- '91 - '30 - '67	- '01 - '02 + '03		+2·79 - ·92 - ·32 - ·64	74 42 22 44 55 20 42 35 49 56 55 21	5.0288748,6 4.9597182,7 4.9284610,2	106874.69 91141.93 84815.43	20°241 17°262 16°063
28		XXVI XXVII XXVIII	.74 .74	+1.13	+ .01 01		+1.12 +1.33 +1.15	180 0 0.00 51 57 55.46 66 36 48.60 61 25 15.94	4.9816287,7 5.0480724,7 5.0288748,6	95858.08 111704.95 106874.69	18°155 21°156 20°241
		AA 1 111	2.22	+1.76	.00	<u> </u>	+4.51	180 0 0.00	2200/40,0	33374 39	·

## RANGIR MERIDIONAL SERIES.

34___K.

No. of	triangle	<b>a.</b>	rical	Cor	rections to	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
29		XXVII XXVIII XXIX	'62 '63 '62	" +1.13 + .86 +1.02	10 01 + .11	"	" +1.24 + .85 + .92 +3.01	59 5 50°17 60 39 9°91 60 14 59°92	4 [.] 9765173,9 4 [.] 9833,594,6 4 [.] 9816287,7	94736°52 96240°86 95858°08	17.943 18.227 18.152
30		XXVIII XXIX XXX	·63 ·64 ·64	- '18 - '22 - '12	+ '11 - '03 - '08		- '07 - '25 - '20	57 34 5 22 64 37 20 37 57 48 34 41	4'9753599,5 5'0049315,3 4'9765173,9	94484°36 101142°01 94736°52	17·895 19·156 17·943
31		XXIX XXX XXXI	74 74 73	- '06 - '04 - '08	- '60 + '58 + '02		- ·66 + ·54 - ·06	70 35 32 13 58 59 27 31 50 25 0 56	5°0630679,9 5°0214986,0 4°9753599,5	115629°33 105074°81 94484°36	21.899 19.901 17.895
32		XXX XXXI XI	·85 ·86 ·86	+ '33 + '23 + '48	+ '35 - '36 + '01		+ .68 13 + .49 + 1.04	57 55 52 00 59 1 10 84 63 2 57 16	5'0410910,3 5'0461524,2 5'0630679,9	109923.63 111212.50 109923.63	20.810 21.800 21.800
33		XXXI XI X	2 · 57 · 68 · 68 · 68 2 · 04	+ . 64	18 + .10 + .18		+1.03 +1.20 + .72 +2.95	53 17 53 32 56 46 40 45 69 55 26 23	4 ⁹ 723578,3 4 ⁹ 908089,8 5 ⁰ 410910,3	93833°48 97905°93 109923°63	17.771 18.243 20.819

Norm.—Stations X and XI appertain to the North-East Longitudinal Series.

February 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.

# RANGIR MERIDIONAL SERIES.

# PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
1	VII* ,, X	Tinsmál " " Rangír	)) ))	"	248 14 20.28	5·0914026,8 5·1165854,2	23 57 39.96	X I II I
2	. <b>I</b>	Kusmár	24 14 44 92	79 22 51 · 13	140 16 36.97	4.9830825,7	320 12 2.69	II
. 3	" II " III	Dálípur ,, Chandla	"	79 11 45·87 "79 29 45·12	196 7 50·52 239 40 45·88 166 24 6·38 122 15 56·60 171 30 56·77	5·0620943,3 5·1660587,8 5·1995153,0	59 48 13·95 346 21 30·36 302 5 48·68	III IV IV V
,,,	" IV V "	Bhoraj Datiára		79 <b>24</b> 52·04	217 8 2·78 227 53 42·76 292 16 1·70 239 25 39·10 174 25 50·97	5·1575789,1 5·1302726,4 5·1222159,9	48 1 52·66 112 25 36·20 59 34 28·37	VI V VI VII VIII

Note.—Stations VII* and X appertain to the Calcutta Longitudinal Series of the South-East Quadrilateral.

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Asimuth at A	Log. Feet	Azimuth at B	Series No.
			0 ' "	0 ′ ″	0 / //		0 / //	
4	VI	Thanela	24 57 53 79	79 47 29.61	174 56 16.26	5.0756724,3	354 55 27.66	VII
5	VII	Manang	25 17 28.38	79 45 35 16	114 26 34.88	5.1413569,6	294 16 45.56	VIII
"	,,	,,	,,	"	174 8 57.05	5.1584221,6	354 7 47 98	IX
	VIII	Nágonáth	25 26 54.19	79 22 39 73	232 10 17.35	5.1482904,9	52 19 1.67	IX
	"	"	,,	,,	172 2 4.10	5.0586622,1	352 0 49.11	X .
6	IX	Phára	25 41 7:57	79 42 54.66	102 10 40.85	5.1134244,5	282 0 38.23	x
22	"	,,	,,	,,	159 48 50.32			XI
	X	Gokulphára	25 45 37.06	79 19 46 22	230 48 46.75	5.0640036,5	50 55 56.05	XI
	"	,,	,,	"	177 40 8.83			XII
7	XI	Gura	25 57 41 39	79 36 10.40	112 32 55.04	5.0090505,4	292 25 21.40	XII
,,	,,	,,	,,	"	185 31 40.35	4.9835810,4	5 32 25.15	XIII
J	XII	Kanwa	26 4 8.19	79 18 56 14	241 10 53.21	5.0721535,1	61 19 13.87	XIII
	"	,,	,,	,,	187 30 38.97	1	7 31 47.13	XIV
8	XIII	Nipania	26 13 30.70	79 37 52.27	119 6 54.31	5.0095019,7	298 59 39.40	XIV
"	"	"	"	"	181 40 45.12	4.9577536,6	1 40 58.11	XV
	XIV	Husapura	26 21 42.37	79 21 30.43	245 52 11.43	5.0028778,3	65 59 41.28	xv
	2)	,,	,,	,,	188 2 31.30			XVI
9	XV	Gandaspur	26 28 28.98	79 38 21 . 53	117 15 52.44	4.9550639,9	297 9 18.01	XVI
,,	"	"	,,	,,	178 37 17.16	4.9268274,9	358 37 7.13	XVII
	XVI	Atsu	26 35 17.34	79 23 38.51	240 58 7.13	4.9506117,0	61 4 33.11	XVII
	,,	"	"	,,	182 52 17.52			XVIII
10	XVII	Seontára	26 42 25.60	79 37 59:11	125 31 47.87	4.9537073,7	305 25 43.99	XVIII
"	· ,,	"	"	,,	_		10 49 31.55	XIX
ł	XVIII	Birona	26 51 2.33	79 24 31 . 35			67 40 13.47	XIX
	· ,,	,,	"	"	188 58 45.68	4.9770840,0	9 0 0.03	XX
11	XIX	Kalsán	26 57 10:27	79 41 7:48	126 58 23.68	4.9737187,7	306 52 5.50	xx
"	"	<b>"</b>	,,	"	181 9 46.62	4.9970493,3	1 9 56.79	XXI
	XX	Bisungarh	27 6 30 27	79 27 15.21	240 57 29.38	4.9456218,4	61 3 59.52	XXI
1	,,	"	,,	"			3 42 47 89	XXII
	"	,,	"	"	180 18 54.66	5.0068961,2	0 18 57.50	XXIII
12	XXI	Chandanpur	27 13 33 73	79 41 29.81	112 5 0.68	4.8929037,1	291 58 52.88	XXII
"	"	"	,,	"	127 36 42.35	4.9846573,7	307 30 13.20	XXIII
,,	"	,,	,,	,,			4 11 8.72	XXIV
	XXII	Muhammadabad	27 18 24.05	79 28 6.98	172 4 51 40	4.4743603,3	352 4 30.53	XXIII
	XXIII	Pothári	27 23 16.45	79 27 21 41	243 45 22.50	4.9699195,9	63 52 30.84	XXIV

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
13 ", 14 ",	XXIII XXIV  XXV  XXVI  XXVII  "	Pothári Mau ,, Guri ,, Dháka ,, Saipur	27 30 4·20 27 40 0·84	79 42 50·90 ,,, 79 28 43·22 ,, 79 43 25·73	237 54 38.35	4.9876363,8 4.9559387,1 4.9284610,2 4.9597182,7 5.0288748,6 5.0480724,7 4.9816287,7	308 15 10·51 1 59 20·04 69 18 22·32 354 28 23·48 304 31 27·69 356 36 27·03	XXV XXVI XXVII XXVIII XXVIII XXVIII XXIX
15	XXVIII	Kasrak	28 3 22.65	79 42 12 15	118 40 54.25	1		XXIX
" 16 "	XXIX "XXX	,, Janjíri ,, Gajnera ,,	,,	,,	176 15 0·10 233 56 15·54 163 20 42·67 113 2 28·22 170 58 21·07	4.9753599,5 5.0214986,0 5.0630679,9	343 18 2·59 292 53 1·30	XXX XXXI XXXI XXXI
17	XXXI X XI	Fatehganj " Sísgarh Atária	28 43 38·07	,,	180 33 55·60 233 51 49·60 290 38 33·89	5.0410910,3	53 59 45 68	X XI XI

Note.—Stations X and XI appertain to the North-East Longitudinal Series.

April 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.

### RANGIR MERIDIONAL SERIES.

### PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument &c., in pairs of horizontal lines, the first line of which gives the data for the 1st or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction, and the height of the 2nd station above or below the 1st, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results". The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit leveling operations, whenever a junction between the two has been effected. The spirit leveled determinations are always accepted as final, and the trigonometrical heights of stations lying between those fixed by the leveling operations are adjusted—usually by simple proportion—to accord with the latter. In the table the spirit leveled values are printed thus, 1145'63 &c., or, when not very exactly identified, thus, 1146, to distinguish them from the adjusted trigonometrical values. The column in which the mean trigonometrical heights are given is barred across where necessary, as after deduction of Stn. VII from Stn. VI, page 39-K, to indicate that one set of adjustment ends and another begins. The trigonometrical heights always refer to the upper mark-stone, or to the upper surface of the pillar on which the theodolite stood; when a spirit leveled height does not refer to either of these surfaces, it is given in combination with a correction, thus  $\begin{cases} 501.22 \\ +23.1 \end{cases}$  and the sum of these two quantities, in this case 524.3, represents the value with which the corresponding trigonometrical mean height 493.0 is comparable. Descriptions follow these tables, exactly indicating the positions of the leveling staff during the determinations of the spirit leveled heights.

When the pillar of the station is perforated, the height given in the last column, is that between the upper surface of pillar and ground level mark-stone in floor of passage; otherwise it is the approximate height of the structure, above the ground at the base of the station.

The heights of the initial stations are taken from the Calcutta Longitudinal Series of the South-East Quadrilateral, page 179—B, Vol. VI, and are as follows:—

VII 2139·2 1184·2 } feet above Mean Sea Level at Karáchi.

Astronomical	Date			ions	Height	in feet			estrial action	ation	Height ir	n feet of 2nd	d Station	Tower
	Mean of	Station	Observed	observations		at t	ed Arc	ęį	of Aro	Height of 2nd Station — 1st Station in feet	above	Mean Sea	Level	Pillar or J
1834	Times of obser-	Station	Vertical Angle	o	Signal	Instrument	Contained	1 seconds	Decimals Contained	Heig Station	Trigono Res	metrical ults	Final	t of Pil
	vation			Number		<b>A</b> .		In	Con	2nd	By each deduction	Mean	Result	Height of
42.	h. m.		0 1 11				"							feet
(1) (2)		VII I	Do 18 4.4	8 8	1.86	4.81	1219	76	.063	- 326.6	1815.9	.00		
1864 Ap. 11, 13, 14 " 9	3 32 3 33	X I	E o 16 3.3	12	2.21	5.52	915	13	.014	+ 634.8	1819.0	1815.8	1815	7
" 1834 June 28 Jul <del>y</del> 2	1 " 1	VII II	D o 23 45 2 E o 4 43 5	4	1,00	5.17	1292	82	.063	- 541.7	1597.5	i		
June 23	14 0	I	D o 14 53.9	4	1.00	4.39	950	46	.049	- 213.4	1602.4	1599.9	1599	†
Jul <del>y</del> 2	10 0	II	E 0 0 20.4	4	1.00	4.84	930	70	1 249	325 4				

(1). The mean of observations taken on 29th June 1834 at 134 30m and 28th March 1864 at 34 1m. 

† Not forthcoming.

(2). Do. Do. 24th , at 14 0 and 8th April 1864 at 3 0.

Astronomica	d Date			tions	Height	in feet			estrial action	tation		n feet of 2n		Tower
1834	Mean of	Station	Observed Vertical Angle	of observations	Signal	Instrument	Contained Aro	In seconds	nals of ned Aro	Height of 2nd Station — 1st Station in feet	Trigono		Level	Height of Pillar or
,	of observation			Number of	Sign	Instr	ပိ	In se	Decimals Contained	I d Stat		oults 	Final Result	ght of
	_			ž						2n	By each deduction	Mean		Hei
T 01	h. m.	_	0 1 11				•"							feet
June 26		I	Do 0 50.0	8	4.22	4.65	1359	99	.073	<b>—</b> 17.4	1798.4			
July 2, 5 June 16	1 -	III	D o 2 41.2	8	1,00	4°94 4°65	1140	64	.026	+ 196.7	1796.6	1797.5	1796	†
July 3	10 0	II IV	D o 16 5.5	10	1,00	4°94 4°82	1448	103	.071	- 540.0	1359.0			
June 20 July 6		III IV	D o 1 47.4	6	1,00	4.82	1564	112	.072	- 435.4	1362.1	1360.6	1358	<b>†</b>
June 20 July 8	9 0 8 30	III V	D o o 52.6	4	1.00	4·65	1804	122	•067	- 647.9	1149.6			
(3) (4)		IV V	D o 14 50.5 D o 2 6.0	8 6	1.00	4·82	1420	117	.083	- 203.2	1157.1		1151	† 
June 20 July 1		III VI	D 0 25 55.4	6	1,00	4.65	1603	131	.082	- 692.3	1105.3	1101.4	1008	,
(5) (6)		v vi	D o 8 14.2	6	1.00	4·76	1334	91	.069	- 55·8	1097:5	1101 4	1098	†
(7) (8)		VI VII	Do 10 5.4	8 8	1,00	5·15	1176	78	.067	+ 51.4	1152.8	1149'4	1145'63	3
(9) (10)		v vii	Do 936.6	8 8	1.00	4.16	1309	95	.073	- 7:3	1146.0			
(11) (12)		V	Do 119.1	6	2.43	4.48 4.88	1235	88	.071	- 168.3	982.8	984.6	987	.   .   †
(13) (14)		VII VIII	D o 13 36 4	6 6	1,00	4·76 4·88	1368	111	180.	- 159.3	986.3			.,
(15) (16)		VII IX	D o 22 36.1	6 8	1,00	4·76	1423	98	•069	- 514.2	631.1	631.0	637	,
(17) (18) 1836		VIII	D o 1 30.4	8	1,00	4·88 4·97	1390	95	•068	- 351.8	632.8			
Dec. 26	,	VIII X	D o 17 4.3 E o o 53.3	4	1.00	5·12	1131	87	.077	- 299.0	685.6	691.3	. 699	12

In some instances, the dates and mean of times of observations taken at two different hours either of the same day or on different days could not be entered in their proper places in columns 1 and 2 from want of space, this information is as follows:—the year of observation being 1834 throughout. (3) 10^h 0^m and 15^h 0^m 5th July; (4) 8^h 30^m 8th July, and 12^h 30^m 9th July; (5) 8^h 30^m 8th July; (6) 9^h 0^m and 14^h 0^m 11th July; (7) 9^h 0^m and 14^h 0^m 11th July; (7) 9^h 0^m and 14^h 0^m 11th July; (8) 8^h 0^m and 14^h 0^m 16th July; (12) 8^h 0^m and 14^h 0^m 18th July; (13) 8^h 0^m and 14^h 0^m 16th July; (14) 8^h 0^m and 14^h 0^m 18th July; (16) 8^h 0^m and 13^h 0^m 20th July; (17) 8^h 0^m and 14^h 0^m 18th July; (18) 8^h 0^m and 13^h 0^m 20th July.

[†] Not forthcoming.

Astrono	mical	Dat	e			tions	Height	in feet		Terre Refra		tation		feet of 2nd		Tower
1837			an of	Station	Observed Vertical Angle	of observations	Signal	Instrument	Contained Arc	In seconds	nals of ned Arc	Height of 2nd Station — 1st Station in feet	Trigono	metrical		Height of Pillar or Tower
1007		ı	bser- tion			Number	Sig	Instr	Ğ	In 96	Decimals Contained	2nd Stat	By each deduction	Mean	Final Result	Height o
Jan. 1886 Dec.	2 23	<b>h</b> . 5	m. 1 15	IX X	0 1 " D 0 7 25.6 D 0 10 52.6	4	1,00	5.07 5.04	1283	99	•077	+ 65.1	697.0			foot
1840 April "	16 16	7 7.	43 43	IX XI	D o 10 23.7 D o 0 29.8	10	1.88	4·96	1056	197	.189	<b>—</b> 160.3	471.6	466.3	477	33
n n	18 18	7	44 44	X XI	D o 12 39.4	8	1,04 13.00	2.89 4.06	1145	208	182	- 230.5	460.8			
<b>n</b> n	21 21	9	1	X XII	Do 140.2	10	11.64	4.80 4.80	1109	172	.155	- 157.6	533°7	526.6	540	† 28
"	11 11	9	2 2	XI XII	E o 1 15.0	14	13.00 2.08	4.86 4.80	1009	471	.467	+ 53.0	519.5			
79 13	8 8	8 8	32 32	XIII	D o 2 34.2	12	5°54 13°60	4. <b>9</b> 6	951	329	•346	- 3:3	462.9	461.1	477	39
77	6 6	9	26 26	XII XIII	Do 148.5 E o 224.4	12	2.21	4.96 4.89	1166	574	.492	- 67.2	459*4	•	,	
"	4 4	8 8	12 12	XII XIV	Do 3 21.8	10	6.17	5·89 4·96	1060	439	.414	- 58.1	468.2	481.0	500	34
n	1 1	7	54 54	XIII XIV	E o o 31 7 D o 1 28 7	12	5.38	4·96	1010	469	•464	+ 34.3	495.3	75.9	<b>3</b> .1	
Mar.	29 29	7	49 <del>1</del> 9	XIII XV	Do 122.2	12	5°46	5·89 4·96	896	356	*397	+ 4.6	465.4	461.4	482	28
n n	26 26	1 -	47 47	XIV XV	Do 139.4	8 8	5.46	5·89 4·96	994	324	*326	- 24'9	457.0			
n n	24 24	1	33 33	XIV	D o 2 51.0	1	19.09 3.81	5·89 4·96	821	178	.212	+ 26.0	508.8	503.3	527	‡ 26
"	18 18	1 -	48 48	xv xvi	Do 015.5	8 8	22.14	4.89 2.89	891	313	.351	+ 36.3	497.7			
"	9		57 57	XV XVII	E o 2 10.9	14	2.20	l -	834	386	•463	+ 30.1	491.5	492.0	518	•
73 29	7 7	1 -	48 49	XVI XVII	D o 2 48 · 1	14	2.13 2.89	i _	881	272	-309	- 10.8	492.5			
n n	4	1.	32 32	xvi xviii	Do 111.5	12	5.13	1 -	944	347	•368	+ 15.2	518.8	213.1	542	† 23
Feb.	29 29	1 '	7 54 7 54	XVII XVIII	Do 145.0		14.25 5.42	I .	888	375	.422	+ 12.3	507.3	323 2	34-	

[†] Above the terreplein of the fort on which the tower stands. ‡ Above the level of the elevated platform on which the station is placed.

* Above the level of summit of the fort tower on which the station is placed.



Astrono	omical	Date			tions	Height	in feet			estrial action		tation		n feet of 2n Mean Sea		Tower
1837	7	Mean of Times of obser-	Station	Observed Vertical Angle	er of observations	Signal	Instrument	Contained Arc	seconds	Decimals of Contained Are	Height of	2nd Station — 1st Station in feet	Trigono	metrical	Final	Height of Pillar or Tower
		vation			Number	<b></b>	Inst	8	ų	Cont		S pag	By each deduction	Mean	Result	Heigh
Nov.	19 19 13	h. m. 6 30 6 30	XVII XIX XVIII	Do 2 38.4 Do 3 0.3 Do 1 34.1	8 8	12.32 5.28	4.96 2.90	" 898	272	*302	+	1.0	493°0	493.0	{ 501.53	feet
" "	13	7 1 6 59	XIX	Do 0 25.4	10	2.33	5.00 4.03	963	415	*430	-	30.3	492.9			
" "	9	6 59	XX	Do 0 2.7	8	2.33	5.00	937	346	370	-	<b>0.</b> 6	541.4	534.8	{ 518'88 +23'8	23.8
,,	7 28	7 40 6 48	XX	Do 131.4	14	6.03	5.00 2.00	930	435	*468	+	3.9	528.3			
n	28 4	6 48 7 13	XXI XX	Do 3 21.0	8	13.33	4.96	981	329	378		40.3	502.2	505.4	508	38
1	4 0, 31	7 13	XXI XX XXIII	Do 1 16.2	10	1.24	4.0 ₂	1004	380	378	+	26.8	269.2			,
1839 Jan.	0, 31 9 8, 10 8, 10	7 2 5 4 I 5 4 I	XXII	Do 241.7 Do 241.7	18	11.89	5.06 4.92 5.89	953	253	.266	+	<b>61.</b> 0	567.6	568.6	574	38
1845 Jan.	2 16 16	4 3 ² 4 3 ²	XX XXII	Do 3 18.7 Do 5 47.2	12	2.13	5°54 5°43	713	84	.118	+	26.3	261.0			,
37 39	12 12	23 51 23 51	XXI XXII	Do 8 29 4	12 8	2.00	5.13	772	- 7	.000	+	43.6	549°3	559.9	565	. <b>*</b> 17
" " 183	19 19	1 28 1 28	XXIII	Do 2 5'4	14	5.46	5°50 5°43	294	27	.091	+	o.8	569.4			
Jan. " 1838	27	4 13 4 13	XXI	Do 241.8	10	12.31 5.00	5·89 4·93	990	134	.132	-	3.1	503.6	508.7	516	38
" 1840	27 9	20 11	XXIII	Do 8 50.7	12	11.89	5·89 4·96	922	60	•065	-	54'9	513.7			
" 188	81 7	8 3 8 3	XXIII	Do 4 8.1	12	16.20	4.96 5.89	1004	323	.322	-	49°3	219.3	522.9	533	38
Dec.	29 29 8	3 45	XXIV	Do 544'4	12	9.03	4·96 5·44	960	89	•093	+	17.9	526.6			
April "	26 26	18 34	XXIV	Do 5 42 0	10	11.40	5.88	892	88	.099	+	10.8	519.5	522.3	535	38
"	19 19	11 12	XXVI	Do 3 8.4	8	4.38	5·89 4·96	838	217	*259	+	2.3	525.2			

[•] Above the bastion of the fort on which the tower stands.

Astronon	nical	Date		·	observations	Height	in feet	Lro		estrial action	•	Station		feet of 2n		or Tower
1838		Mean of Times of observ	Station	Observed Vertical Angle	umber of obser	Signal	Instrument	Contained Arc	In seconds	Decimals of Contained Aro	Height o	2nd Station — 1st Station in feet	Trigonor Res	netrical ults	Final Result	Height of Pillar or
		vation			N .		I			Col		<b>%</b>	By each deduction	Mean		Heig
(1) (2)		h. m.	XXV XXVII	Do 4 3'9	18	3°79	5·67	900	198	*220	+	5.3	528.2		·	fee
Jan.	29 29	4 57 4 57	XXVI XXVII	Do 2 12.0	6	3.00 8.30	5°44 4°92	1056	202	.101	-	1.7	520.6	524°4	539	38
Feb.	26 26	8 24 8 24	XXVI XXVIII	E o 2 46.6	10	5.08	4°93 5°92	1103	550	.498	+	83.0	606.3	590.0	<b>б08</b>	38
"	20 20	7 46 7 46	XXVII XXVIII	E o o 25.9 D o 249.7	8 8	2.12	5·88	947	395	.417	+	49.5	573.9			:
"	16 16	9 7 9 7	XXVII XXIX	Do 3 9.1	10	5.63	4.8g	951	340	357	+	32.1	556.2	563.0	584	33
Mar. "	2 2	7 43 7 43	XXVIII	D o o 23.4	8	2°29	5.00 2.03	936	358	*383	_	18.8	571.5			
"	5 5	7 33 7 33	XXVIII XXX	D o 4 o.o	8	5°25	5.92 4.83	999	312	.312	+	33.0	623.0	608.1	63 I	38
"	8 8	7 53 7 53	XXIX	Do 126.5	12	5.00	4.8 ₅	933	405	*434	+	31.4	595.3			
"	18 18	14 29 14 29	XXIX	Do 013.4	01	5.08	5.0 ₂	1038	518	·499	+	13.0	577.8	585.0	{ <b>572.12</b> { +37.9	37
" " 1839	23 23	12 20	XXX XXXI	Do 430.0	8	5.39	4·98	1142	259	.227	-	15.9	592.5		(13/9	e ri
Mar.	12 12	13 26	XXX XI	D o 0 44.2	6	4.88	4.46	1098	443	.404	+	34.5	665.3	659.1	{ <b>619 3</b> 2 { +37 8	37
"	19 19	10 8	XXXI	Do 4 12.1	10	12.04	5.9 ₂	1086	213	.196	+	42.0	652.9			
"	23 23	441	XXXI	D o 4 30.4 D o 8 41.9	14	13,04	5.36 2.35	967	84	•087	+	64.8	674.8	673.9	670	
(3) (4)			XI X	Do 4 3.6	14 20	5·8 ₅	l l	927	184	.198	+	15.9	673.0			

In some instances, the dates and mean of times of observations taken at two different hours either of the same day or on different days could not be entered in their proper places in columns 1 and 2 from want of space, this information is as follows:—(1) 4^h 28^m 11th January, and 8^h 3^m 16th April 1838; (2) 4^h 28^m 11th January, and 8^h 3^m 16th April 1838; (3) 13^h 53^m 28th March 1839 and 3^h 47^m 17th, 18th, 21st, March 1851.

Note.—Stations X and XI appertain to the North-East Longitudinal Series.

## Descriptions of Spirit-leveled Points.

The spirit-leveled heights given on pages 39_____, 41____ and 42____ were determined by the operations either of the G. T. Survey or the Revenue Survey; these connections are hereafter indicated in the former case by the letters (G. T. S.), and in the latter by (R. S.) immediately following the name of each station; the surface on which the leveling staff stood is also described.

VII	or	Manang Hill Station,	(R. S.)	;	On the upper surface of the circular paka platform.
XIX	,,	Kalsán Tower Station,	(G. T. S.)	;	On the mark-stone imbedded at the level of the ground, over which the perforated masonry column has been built.
XX	,,	Bisungarh Tower Station,	99	;	On the mark-stone imbedded at 1 foot above the level of the ground, over which the perforated masonry column has been built.
XXXI	,,	Fatehganj Tower Station,	99	;	On the mark-stone imbedded at 2 feet above the level of the ground, over which the perforated masonry column has been built.
XI	**	Atária Tower Station, (Of the North-East Longitudinal Series	», »).	;	On the mark-stone imbedded at 2 feet above the level of the ground, over which the perforated masonry pillar has been built.

For further particulars of these stations, see pages 5_K, to 10_K.

May 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.

## RANGIR MERIDIONAL SERIES.

### PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

## At XXII (Muhammadabad)

Lat. N. 27° 18′ 24″.05; Long. E. 79° 28′ 6″.98=5 17 52.5; Height above Mean Sea Level, 565 feet.

December 1840; observed by Mr. J. W. Armstrong with Harris and Barrow's 15-inch Theodolite.

Star observed
Mean Right Ascension 1840.0
Mean North Polar Distance 1840.0
Local Mean Times of Elongation, Dec. 26

δ Ursæ Minoris (West and East).

18^h 23^m 56^s
3° 24′ 31″ 22

{ Western 5^h 56^m
Eastern 18 8

3			s of		PACE LEFT	·	7.	ACE RIGHT	
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark – Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark — Star at Elongation
Dec.	26	w.	0 1 & 0 1	+ 12 59 40 co 59 50 67 60 29 67	m s , , , , , 19 18 + 0.49.00 0.38.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0	+ 13 0 29 00 28 69 29 68 29 34	0 1 0 0 1 0 0 1 0 0 1 0 0 1 5 · 67 1 2 45	+ 0 10.13 0 6.20 0 12.84 0 21.29	+ 13 0 34 · 12 37 · 50 32 · 84 36 · 96
,	26	E.	0 I & 180 I	+ 5 21 44 67 21 25 00 19 56 33 19 56 00 20 18 00 20 26 00	27 21	+ 5 19 66 91 55 86 52 35 54 32 55 55 58 90	+ 5 20 42 00 18 41 16 50 20 5 00 5 35	1	+ 5 19 56.28 60.27 58.44 60.90
"	27	w.	190 t & 10 t	+ 13 0.31.67 0.35.33 0.24.00	6 44 + 0 5 95 5 23 0 3 81 7 41 0 7 7 7 4 9 1 0 10 67	+ 13 0 37.62 39.14 35.07 34.67	+ 12 59 57 00 17 33 60 2 67 15 57 60 36 67 0 38 60 34 33 2 7		+ 13 0 37.53 36.13 36.72 34.92
"	27	E.	10 t	+ 5 20 38.67 20 31.67 19 59.00 20 7.67 20 14.00	15 58 - 0 33 38 14 7 0 26 11 1 45 0 0 40 6 19 0 5 24 0 10 74	+ 5 19 65 29 65 56 58 60 62 43 63 26	+ 5 20 8.67 7 2 20 7.67 5 37 20 2.67 0 37 20 34.00 13 59 20 36.00 15 8	0 4.14	+ 5 19 62 · 19 63 · 53 62 · 62 68 · 27 65 · 85
,,	28	W.	20 I & 200 I	+ 12 60 28:33 60 29:67 60 31:67 59 59:67 59 52:67	8 50 + 0 10°24 7 7 0 6°66 0 29 0 0°03 16 45 0 36°72 0 43°04	+ 13 0 38·57 36·33 31·70 36·39 35·71	+ 12 59 54.00 15 51 60 1.67 14 16 60 28.00 2 21 60 22.00 7 38 60 18.00 11 23	0 0 72	+ 13 0 27 03 28 44 28 72 29 65 34 98

5			is of		FACE	LEFT			FACE BIGHT	
Astronomical Data		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark-Star	E 3 80 A	Arc to Time of   Ref. M	Observation ark — Star ongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark — Star at Elongation
Dec.	. <b>2</b> 8	<b>E</b> .	20 2 & 200 1	+ 5 20 44 00 20 34 67 20 6 33 20 11 00 20 14 67	m s 16 38 15 7 2 13 7 29 8 44	, " - 0 36.25 0 29.90 0 0.65 0 7.35 0 10.02	7 " 19 67 ' 75 64 ' 77 65 ' 68 63 ' 65 64 ' 65	+ 5 20 7.67 20 7.00 20 3.33 20 38.00 20 43.00	m s , , , , , , , , , , , , , , , , , ,	64·78 63·33 72·20
"	29	w.	30 I & 210 I	+ 13 0 17:33 0 22:67 0 38:67 0 24:67	13 4 11 44 2 47 6 36 9 21	+ 0 22.46 0 18.10 0 1.02 0 5.72 0 11.45	o 39.79 40.77 39.69 34.05 36.12	+ 12 60 23 33 60 28 33 60 33 00 59 58 00 59 53 00	5 59 + 0 4.70 4 25 0 2.57 0 27 0 0.03 16 44 0 36.66 18 25 0 44.37	30.00
"	29	<b>E</b> .	30 I & 210 I	+ 5 19 59 67 19 56 67 19 58 33 20 40 67 20 48 00	6 23 4 50 1 23 17 3 18 11	- 0 5 33 + 5 0 3 0 7 0 0 25 0 38 26 0 43 46	19 54.34 53.60 58.08 62.41 64.54	+ 5 20 32.67 20 28.33 20 2.67 20 9.00 20 10.33	16 25 — 0 35 32 14 51 — 0 28 89 3 40 — 0 1 77 7 36 — 0 7 58 9 6 — 10 88	+ 5 19 57 35 59 44 60 90 61 42 59 45
n	80	W.	40 I & 220 I	+ 13 0 15 33 0 19 00 0 38 67 0 26 00 0 18 00	14 16 12 51 2 26 7 58 9 44	+ 0 26.74 0 21.73 0 0.78 0 8.33 0 12.40	0 42.07 40.73 39.45 34.33 30.40	+ 12 60 27·33 60 30·00 60 35·67 60 8·00 59 59·00	6 41 + 0 5.88 5 8 0 3.46 0 30 0 0.03 15 22 0 30.90 16 53 0 37.30	+ 13 0 33 21 33 46 35 70 38 90 36 30
"	30	В.	40 I & 220 I	+ 5 20 13 33 20 10 33 20 1 00 20 36 33 20 46 67	8 9 - 6 48 1 40 16 17 18 9	- 0 8.73 + 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61.42 63.33	+ 5 20 34.00 20 31.33 20 7.67 20 12.33 20 18.67	16 57 - 0 37.62 15 38 0 31.98 1 33 0 0.32 7 65 0 8.25 10 26 0 14.33	+ 5 19 56.38 59.35 67.35 64.08 64.34
<b>"</b>	81	<b>W</b> .	50 I & . 230 I	+ 13 0 33 00 • 41 • 67 • 28 • 67 • 18 • 67 • 20 • 33	6 33 5 25 7 17 11 0 12 4	+ o 5.64 • 3.85 • 6.95 • 15.86 • 19.06	0 38.64 45.52 35.62 34.53 39.39	+ 12 60 27 00 60 32 33 60 29 33 59 58 67 59 52 00	0 41 + 0 0.06 0 9 0 0.00 5 14 0 3.59 16 15 0 34.61 17 34 0 40.37	+ 13 0 27 06 32 33 32 92 33 28 32 37
"	<b>31</b>	R.	50 I & 230 I	+ 5 20 7.00 20 5.33 20 57.00 21 10.33	5 26 4 16 2 10 20 19 22 13	- 0 3.87 0 2.38 0 0.62 0 54.28 1 4.96	62.71 62.72 65.37	+ 5 20 27.67 20 24.00 20 7.67 20 18.67 20 25.33	14 22 — 0 27 06 13 11 — 0 22 78 4 10 — 0 2 28 10 43 — 0 15 10 12 17 — 0 19 86	+ 5 19 60 61 61 22 65 39 63 57 65 +7

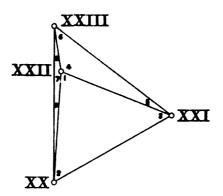
# Abstract of Astronomical Azimuth observed at XXII (Muhammadabad) 1840.

# 1. By Eastern Elongation of δ Ursæ Minoris.

Face	${f L}$	R	${f L}$	R	${f L}$	R	${f L}$	R	${f L}$	R	L	R
Zero	0°	180°	10°	190°	20°	200°	80°	210°	<b>4</b> 0°	<b>2</b> 20°	50°	<b>2</b> 30°
Date	Decem	ber 26	Decem	ber 27	Decem	ber 28	Decem	ber 29	Decem	ber 30	Decen	ber 31
	"	"	"	"	"	"	"	"	"	<i>"</i>	"	"
	66.91	56.58	65.29	62.19	67.75	61.57	54.34	57:35	64.60	56.38	63.13	60.61
Observed difference of Circle-Readings,	55·86 52·35	60°27 58°44	65°56 58°60	63 · 53	64·77 65·68	64·78 63·33	53.00 28.08	59°44	64·26 60·63	59°35 67°35	62.21 62.21	65.39 61.33
Ref. M.—Star	54·33	90.00	62.43	68.52	63.65	72.50	62.41	61,43	61.47	64.08	62.72	63.22
reduced to Elongation	58.90 28.30		63.56	65.85	64.65	68.60	64.24	59.45	63.33	64.34	65.37	65.47
Means	57:32	58.98	63.03	64.49	65:30	66.10	58.29	59.71	62.86	62.30	63:38	63.52
	0 1	,,		<i>ıı</i>		,,		<i>''</i>		"		"
Means of both faces +		. 12		.76		. 70		59.15		•58		.32
Az. of Star fr. S., by W. Az. of Ref. M	183 50 16 189 10 14	·63		·97 ·73	-	.31 .01		. ² 6		. 10 . 10		·44 ·76
Az. or iver. id. ,,	109 10 14	70	20	7.3	4.5	0.1	10	у.		00	21	/-

# 2. By Western Elongation of δ Ursæ Minoris.

Face	${f L}$	${f R}$	${f L}$	${f R}$	${f L}$	R	$\mathbf{I}$	R	L	R	${f L}$	R
Zero	0°	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	40°	220°	50°	<b>230°</b>
Date	Decem	ber 26	Decem	iber 27	Decen	iber 28	Decem	ber 29	Decem	ber 30	December 31	
	•	*	•	*	. *	*	*	•	"	"	"	n
	29.00	34.12	37.62	37.53	38.57	27.03	39.79	28.03	42.07	35.51	38.64	27.06
Observed difference	28.69	37.20	39.14	36.13	36.33	28.44	40.77	30.00	40.73	33.46	45.2	32.33
of Circle-Readings,	29.68	32.84	35.07	36. 72	31.40	28.72	39.69	33.03	39 45	35.40	35.63	32.02
Ref. MStar	29.34	36.96	34.67	34.93	36.39	29.65	34.05	34.66	34 33	38.90	34 53	33.58
reduced to Elongation					35.71	34 98	36.13	37.37	30.40	36.30	39.39	32.37
Means	29.18	35.36	36.62	36.33	35.74	29.76	38.08	32.80	37.40	35.21	38.74	31.29
	0 1	,		,		•		•		,		"
Means of both faces	- 13 0 32	• 27	36	· ₄ 8	32	75	35	·44	36	•46	35	. 17
Az. of Star fr. S., by W.	176 9 43			· i4		·80		35	_	02		·68
Az. of Ref. M. ,,	189 10 15		19	. 62	15	55	17	.79	18	·48		· 85


•	(by Eastern Ele	ongation	•••	•••	•••	•••	189° 10	19.64
Astronomical Azimuth of Referring Mark	by Western	**	•••	•••	•••	•••	>>	17'34
	( Me	an	•••	•••	•••	•••	,,	18.49
Angle Referring Mark and XXI (Chandanpu	r) <i>see page</i> 21	<u>.</u>	•••	•••	•••	•••	+102 48	42.06
Astronomical Azimuth of Chandanpur by of			•••	•••	•••	•••	291 59	
Geodetical Azimuth of ,, by ca	dculation from th	at adopte	ed (V	ol. II,	page 1	l <b>41</b> )		
at Kaliánpur, see page 36 ante	•••	•••	•••	•••	•••	•••	291 58	52.88
Astronomical — Geodetical Azimuth at XXII	(Muhammadaba	d)	•••	***	•••	•••	+	7.67

J. B. N. HENNESSEY,
In charge of Computing Office.

May 1878.

PRINCIPAL TRIANGULATION-RANGIR MERIDIONAL SERIES





Scale 1 Inch = 12 Miles or 760320

Pholosincographed at the Office of the Superintendent Great Trigonometrical Survey, Dehra Dan, March 1878

C. G. OLLENBACH, ZINCO

## AMUA MERIDIONAL SERIES-(LONG. 80° 32').

### INTRODUCTION.

The Amua Series is the third in order, reckoning from west to east, of the meridional chains of triangles included in the North-East Quadrilateral. It follows, as closely as the nature of the country traversed would admit of, the meridian of 801° East Longitude. It was begun contemporaneously with the series immediately to the westward—the Rangír—and was executed throughout its length as a single chain of triangles. It emanates in the Native State of Nagode and the modern district of Jubbulpore, at the side Amua-Lakanpura of the Calcutta Longitudinal Series; and for the first 11 degrees of its length, it is carried across the hills which, generally speaking, may be said to form the outliers of the Great Vindhya Range—the southern watershed of the Gangetic plain. In this section, the Series traverses the Native States of Panna and Chhatarpur at the south-east extremity of Bundelkhand, the states reckoned under the political control of the Baghelkhand Agency, and the British district of Banda; and the triangulation fixes the important towns of Maihar and Panna, the capitals of the Native States respectively so named. It then descends into the valley of the Jumna; and, passing through the Fatehpur and Cawnpore districts in the Doáb, strikes the right bank of the Ganges in parallel 26½° N. lat.: in this section, it fixes the position of the towns of Banda and Cawnpore. The Series, after crossing the Ganges, is carried through the north-western portion of Oudh, traversing the modern districts of Unao, Lucknow, Hardoi, Sitapur and Kheri, and is now held to terminate at the side Kokra-Dahlelnagar (xxIII-xxv) of the North-East Longitudinal Series; but it also furnished the two triangles north of this side which have been incorporated in the former series. It was brought to a close in the year 1838-39. Its direct length is 282 miles, covering 4 meridional degrees.

The execution of this Series was entrusted to Lieutenant T. Renny of the Bengal Engineers, who had shortly before been appointed to the Great Trigonometrical Survey, on the recommendation of the Surveyor General, Major Everest, by a General Order in the Military Department dated 23rd July 1832. Lieutenant Waugh, of the Bengal Engineers, was also appointed to the Department about the same time. Both officers were then in Calcutta; they were directed to proceed to Central India to acquire an insight into their new duties by sharing in the operations which were then being carried out on the extensive chain of triangles

known as the Great Arc, under the immediate superintendence of Major Everest. But as in marching from Calcutta to Central India they would have to pass through a region of which it has been said that as little was then known "as of the heart of Africa", Major Everest instructed them to carry a route-survey through this region and draw up a report of it for submission to the Government. Extracts of his instructions—which are interesting for the evidence they furnish of the urgent demand then existing for every sort of information obtainable for immediate geographical requirements—will be found at pages  $IV \longrightarrow_K$  and  $V \longrightarrow_K$  of the Introduction to the Rangír Meridional Series.

With two European Assistants; a native establishment consisting of a nucleus of 24

Season 1833-84.
PERSONNEL

Lieut. T. Renny, Bengal Engineers, 2nd Assistant.

Mr. R. C. Tulloh, 3rd Class Sub-Assistant.

" C. Lane, 8rd " "

flagmen, 23 carriers for the large theodolite, 1 native doctor, and 2 harkaras (letter carriers), also 1 havildar, 1 naib, and 12 barkandazes for the protection of the instruments and Government property, and about 130 others for general employment; also with 50 head of baggage cattle, and an

elephant for the office tent,—Lieutenant Renny started from Agra on the 30th November 1833. He was furnished with an 18-inch theodolite* (No. 1) by Troughton and Simms for the principal observations, and such other instruments as were needed for the preliminary operations. The party marched to its ground vid Gwalior, Datia, Jhánsi and Saugor in company with the party which was proceeding under Lieutenant Waugh to the Rangír Series. The co-operation of the Governor General's Agent in Bundelkhand as well as of the Political Agent for Baghelkhand having been secured, an escort of a duffadár's party of horse and a náik's party of foot was obtained at Saugor. The party reached its first station, Amua (XVII, of the Calcutta Longitudinal Series), on the 13th January 1834.

There Lieutenant Renny commenced operations by taking a series of circumpolar star observations for azimuth; his assistants were detached to select forward stations, and while he remained at Amua, he took observations to such hills in the distance as appeared to be suitable for eventual adoption as principal stations. The selection of stations in the direction of the meridian of Amua proved however to be a very difficult matter, because of an elevated table land in front, which was covered with low forest and jungle and could only be crossed by having towers of considerable height built at the stations of the triangulation and clearing the rays between them, as in the plains. After carefully reconnoitering the ground, Lieutenant Renny decided on giving the Series a bend to the east, avoiding the table land and entering a tract of country which presented fewer difficulties, and had the further advantage of enabling him to place his stations "in a cultivated tract rather than on jungly flats." Sending Mr. Tulloh to the Kaimúr range—where he fixed the station of Patra (II), and Mr. Lane to the hill of Dharkána (IV), he himself returned to Lakanpura (XIX, of the Calcutta Longitudinal Series) and on 20th February began and completed the measurement of the angle between Amua and Maihar (1). Lieutenant Renny next explored the country to the north-east, and proceeded vid Dharkána (IV) to the Vindhyáchal range, selecting Sárang (VI) and Dágri (v) stations near the northern confines of Baghelkhand and bringing the Series

^{*} For the history and description of this instrument, see page 65 of Appendix No. 2 to Vol. II. of the Account of the Operations of the Great Trigonometrical Survey of India.

back to its own meridian. Mr. Tulloh having succeeded in selecting a station in the plains, proceeded to select the stations of Kartár (VII), Marpha (VIII), and Sihonda (IX) which are situated in the Banda district. Lieutenant Renny now considered that his presence was no longer needed on the approximate series, and accordingly returned to resume the final observations, selecting en route the station of Potenda (III). He began observations on the 19th March at Maihar (I); and proceeding thence in order to Amua, Lakanpura, Patra (II), Potenda (III), Dharkána (IV), Sárang (VI), Dágri (V), Marpha (VIII), Kartár (VII), Sihonda (IX), and Pavia (X), he was able by 23rd June to complete the first ten triangles of the Series, thereby spanning a meridional distance of 100 miles and reaching the extremity of the hill tract through which the Series passes.

Lieutenant Renny had hoped to have a large amount of secondary triangulation executed in connection with the principal operations by one of his assistants. The country passed through possesses many places of considerable interest, prominent among which are the celebrated forts of Ajaigarh and Kalinjar which date back for their origin to the Chandel rule nearly 1000 years ago, and the fancied impregnability of whose walls induced their defenders to defy to some purpose even the British arms in the early portion of the present century; Nagode or Unchehra, a rája of which subsequently proved his loyalty by spontaneous support in the critical times of the Indian Mutiny; Panna, a place of considerable beauty and wealth; Maihar, Kothi and Sohawal, all the capitals of the Native States or jagirs named after them; and Chitarkot, a notable place of pilgrimage and boasting a sanctity the date of whose origin is lost in the mythical ages of Hindu legendary lore. But in these years the supply of instruments was very inadequate for the requirements of the Survey Department. Lieutenant Renny applied more than once to the Mathematical Instrument Office in Calcutta for a small theodolite for the execution of the proposed secondary triangulation, but on each occasion his application could not be complied with; and late in the season, when the 7-inch theodolite which was employed in the preliminary site selection became available for the secondary triangulation, the hot winds were setting in and the atmospheric conditions were such as to make observing impossible, otherwise than to luminous signals, which were only sufficiently numerous to be employed in the principal triangulation. Thus the secondary determinations, this season, were almost wholly restricted to such as could be made from the principal stations.

Towards the end of the season the approximate series passed out of the hill tracts into the plains. The cutting of lines to clear the rays between the stations became necessary. This at first aroused much opposition on the part of the villagers, and retarded the progress of the operations until such time as the District Officers were able to interfere. Further inconvenience was caused by the people of the country in digging up and carrying away the mark-stones, about which they appear to have entertained superstitious misgivings.

Lieutenant Renny continued his operations into the middle of June, when sickness broke out among the natives in his camp from constant exposure to the vicissitudes of the climate, the rainy season having now commenced. Earnestly commending his last four stations to the care of the Collector of Banda, he turned his steps towards the recess quarters at Cawnpore, which he reached on the 1st of July.

Season 1884-35.

PERSONNEL

Lieut. T. Renny, Bengal Engineers, 1st Assistant. Mr. R. C. Tulloh, 3rd Class Sub-Assistant. 8rd " " C. Lane,

During the recess of 1834, Lieutenant Renny received full instructions from the Surveyor General regarding a new system of selecting stations in the plains by, what was called, ray-tracing, which was to be adopted for laying out the triangulation in advance, and which consisted in running a traverse with a small theodolite and perambulator in the required direction, and

as nearly as possible in a straight line, as described at page 41 of Vol. II. The operations of the ensuing field season were solely directed to the selection of stations, and no principal triangulation was attempted, as Lieutenant Renny's services were required elsewhere for the greater portion of the field season, in assisting at the measurement of the Dehra Dún Base-Line. Leaving in the Ordnance depôt at Cawnpore his large theodolite and such of his equipment as was required for the principal observations, Lieutenant Renny took the field with his party on the 13th of October. Happily he had at last succeeded in obtaining a second small theodolite, now indispensably necessary for the ray-tracing and other preliminary operations. After fairly starting the work of the field season, he proceeded by dak to Dehra Dún, where he remained until the end of April, when the measurement of the base-line was completed; he then marched down country to rejoin his party, which he reached early in June, and found still at work on the Gangetic plains between Cawnpore and Lucknow.

The operations had unfortunately been greatly retarded for want of sufficient authority from the Government to support the surveyors in the necessary operations of cutting down all trees and removing all obstacles on the lines between the principal stations. Hitherto the District Officers had generally been ready to aid the surveyors by giving the requisite instructions to the local native officials to co-operate to such extent as might be necessary, and more particularly to assist the surveyors in ascertaining the owners of the removed trees and other obstacles and in estimating the proper amount of compensation to be paid them. But the Collector of Cawnpore, considering that the aid required of him far exceeded his powers to grant, referred the matter to the Commissioner of the Division, by whom it was forwarded for orders to the Secretary to Government in the Judicial Department. The reply was such as to paralyze, for a time, all vigorous prosecution of survey work. The Vice President in Council ruled that "The Officers in charge of the Trigonometrical Survey are not authorized "to remove trees or other property without the sanction of the owners previously obtained, "and it will rest with those officers to offer such remuneration as will induce the owners to "comply with their wishes." Now in order that the principal triangulation might be advanced at a fairly rapid rate, it was necessary to lay out and complete at least ten new triangles in the course of each field season; the sides of the triangles being of an average length of 14 miles, the clearing of at least twenty perfectly straight 14-mile lines was essentially necessary, and it was generally desirable that this work should be completed during the first half of the field season, so as to allow of the final observations being taken during the remainder of the season. To have raised the tower stations sufficiently high to overlook all intermediate obstacles would—as previous experience had shown—have much retarded, and increased the cost of the operations. Thus line clearing was absolutely necessary; but obviously a number of perfectly straight lines—of an aggregate length of, say, 280 miles—could not be

cleared without cutting down a considerable number of trees, more or less valuable; and if this might not be done without obtaining the sanction of the owners in every instance, the operations would be liable to be so enormously retarded, that they would have to be abandoned. The Surveyor General pointed out these facts to the Government, and prayed for the immediate issue of such orders as would effectually remove the evil. It was then ruled that "the "Tehsíldár or Peshkár or other native officials of the district, should invariably accompany "the surveyors, on the grounds that their presence will no doubt, from their superior knowledge "of the inhabitants and of the value of the property, greatly facilitate and expedite agreements "for permission to remove such trees as may interrupt the operations of the survey." arrangement had the desired effect, by investing the operations of the surveyors with sufficient authority to silence all further opposition.

By the operations of the present season, the Series stood practically laid out to a little beyond the parallel of 27° in N. lat., having been carried through that portion of Oudh which lies south of the river Gumti. Some delay had occurred in obtaining the requisite authority to carry the operations into the Oudh territory; but the most serious obstacle to progress was the action of the Collector of Cawnpore as already described; thus the out-turn of work was less than Lieutenant Renny had expected his two assistants to accomplish in his absence. Stations were selected over a direct meridional distance of 120 miles, involving the execution of over 250 miles of ray-tracing by the route-survey method.

Season 1835-36. PRESONNEL.

Lieut. T. Renny, Bengal Engineers, 1st Assistant. Mr. C. Lane, 2nd Class Sub-Assistant.

Before the recess of 1835, Mr. Tulloh resigned his appointment in the Survey Department. No other assistant was available to take his place until towards the close of the following field season. Lieutenant Renny took the field earlier than usual in order to make up as well as he could both for the backwardness

in the state of the ray-clearing and for the diminished strength of his party. He took care also to pave the way for an uninterrupted prosecution of the work in prospect by sending copies of the recent orders of Government, on the subject of cutting trees, to the His progress was accordingly uninterrupted; but the want of a several Civil officials. second assistant was much felt, now that all opposition was at an end and the operations could be carried on with vigour. Lieutenant Renny brought several old mud forts into use, by repairing and raising their bastions so as to convert them into principal stations, in doing which he was always careful to fix the lower centre mark in a solid portion of the original structure. Further, as regards the question of the advantages of lofty and expensive towers without line cutting, relatively to low and cheap towers with line cutting which was still a moot point-Lieutenant Renny found that he could construct towers of earthwork and sundried bricks set in mud, 25 feet high, 16 feet square above and proportionately larger below, with mark-stones at intervals from the basement to the upper surface, at a cost not exceeding Rs. 3 for each foot of height, that is to say for less than Rs. 100 for the highest tower that it was found necessary to erect*. The average cost of clearing the lines between the stations was also found not to exceed Rs. 100, including the

^{*} For details regarding the construction of these towers, see note on page 13 of Part I of Volume VII.

payment of compensation to the owners of the trees felled on the lines*. Thus the cost of each new tower station and of clearing the two rays leading to it did not exceed Rs. 300; whereas a tower sufficiently high to overlook all obstacles on the lines must have been built of the best masonry, and would probably have cost not less than Rs. 2,000; and the time occupied in its construction would have much exceeded what was required for building the simpler structures designed by Lieutenant Renny, and for clearing the rays between them.

Lieutenant Renny cleared the rays up to the side Barauli-Nimkár (xxv-xxvi), and then proceeded with the selection of the stations remaining to complete the Series up to the northern confines of the Oudh territory. And as permission to enter Nepal was withheld by the Government of India, of whom it had been solicited, the selection of stations was brought to a close at the side Rámuápur-Rámnagar (XXII-XXIV) of the North-East Longitudinal Series. During the latter end of April, the party was strengthened by the arrival of Mr. C. Murphy, 2nd Class Sub-Assistant, transferred from the operations on the northern section of the Great Arc, too late however to be of much help during the present field season. Writing from Cawnpore on 3rd June, Lieutenant Renny reported that he had continued clearing the rays between the stations, as long as the atmosphere was sufficiently clear to enable him to see the blue-lights which were burnt at the forward stations, to indicate their position; these blue-lights, when burnt on lofty poles, were usually visible over all intermediate trees and obstacles at the back stations, more particularly if observed at midnight, when very considerable refraction is generally prevalent; their employment thus frequently enabled the required direction of a ray to be exactly determined, without any other procedure; but as this method of operation was not always to be relied on, and depended for its success very much on the condition of the atmosphere, it was eventually superseded by raytrace triangulations—described at page 42 of Volume II—which, though sometimes more laborious, were always feasible and certain in their results. Lieutenant Renny's subsequent operations, after finding further ray-clearing impossible, are quoted as follows from his report to the Surveyor General. "I conducted a route-survey for the selection of points for prin-"cipal stations up to the Nepal Hills. At this period, being the middle of last month, fever "and other complaints prevalent in the Tarái broke out in my camp, and before I had "returned to Sitapur both my Sub-Assistants were dangerously ill, and a great portion of my "establishment laid up. As the dimness of the atmosphere at this season would have pre-"vented me doing any more work until the commencement of the rains, and to detain my "establishment in camp would only have been exposing them to relapses, I proceeded here "as soon as my party was sufficiently convalescent to travel, and am happy in being able to "state that my Sub-Assistants are now out of danger, and the Native establishment daily "acquiring strength."

The operations of the season enabled Lieutenant Renny to construct two general maps of the country in which the operations had been carried on, compiled from information acquired in the course of the route-survey ray-traces between the principal stations.

^{*} The compensation paid for trees felled on sixteen rays in the Oudh territory was under Rs. 70 per ray on the average: the amount of this award was fixed by an official of His Highness the King of Oudh who had been specially deputed to accompany the party.

The party resumed field operations on the 1st October, Lieutenant Renny commencing

Season 1836-37. PERSONNEL.

Lieut. T. Renny, Bengal Engineers, 1st Assistant. Mr. C. Murphy, 2nd Class Sub-Assistant.

operations by taking observations at the station of Jájmau (XVIII) which was only 4 miles distant from his recess quarters at Cawnpore, to the three stations, xvi, xvii and xix, at which towers had already been built. He proceeded thence to Máwa (xvi), where he found it necessary to give an addi-

tion of 6 feet to the height of the tower; observing there both by day and night*, he was able by the 17th of the month to complete all the observations, horizontal as well as vertical. The next points visited were the hill stations of Sihonda and Pavia (IX and X) which form the side of continuation of the triangulation completed in the first field season; the single angle remaining to be observed at Sihonda (IX) was completed; at Pavia (X) the angle between Sihonda (1x) and Paprendi (x1) was partially observed, the remaining angle being wholly unobserved because the signal at the tower station at Músapur (XII) was invisible. observation of the principal angles was then discontinued, as the sides of the triangles were of so great a length for operations in the plains that it appears to have been considered hopeless to attempt to measure them until the season of clear atmosphere which occurs during and shortly after the monsoons.

Having deposited in store at Cawnpore his large theodolite and such other portions of the materiel as he would not need, Lieutenant Renny devoted the remainder of the season to clearing rays, building new towers and raising the old ones wherever necessary. About 270 miles of rays were cleared, carrying this portion of the work up to the extreme northern limit of the Series; the heights of the towers at xxI, XXIV and xxV were increased 15 feet, 30 feet towers were erected at stations xxvi, xxviii and xxix, and one of 28—subsequently increased to 35—feet at xxvII.

Season 1887-38 PRESONNEL

Lieut. T. Renny, Bengal Engineers, 1st Assistant. Mr. C. Murphy, 1st Class Sub-Assistant. " C. Lane, lst "

The services of Lieutenant Renny were lost to the party until the 1st of March 1838, being required at the measurement of the Sironj Base-Line. Mr. Murphy accordingly took charge at the commencement of the field season, under the general direction of Lieutenant Renny, and proceeded on the 5th October towards Pavia (x) distant about 70 miles from Cawnpore

where the recess quarters were established. On his march thither, he ascertained that the mark at Jahánabad station (xv), on the roof of a paka building, had been removed, and that the owners of the building would not allow it to be replaced. This difficulty was however got over with the assistance of the Magistrate of Fatehpur without retarding the progress of the work. Mr. Murphy arrived at Pavia (x) on the 14th October; and by the 20th he was able to complete all observations of horizontal angles which he believed to be necessary; the vertical angles were not observed as the signals were only visible during the night when refracted very considerably and very irregularly, so that the observations would be worthless unless reciprocated by others taken at the same time at the station under observation. The horizontal angles at Paprendi (XI) were then undertaken and completed; afterwards those at Kánákhera

^{*} The night signals used were either vase-lights or blue-lights, the latter having superseded the former, to be in turn superseded a few years afterwards by powerful lamps with parabolic reflectors.

(XIII) which were all but completed. Mr. Murphy next proceeded to Músapur (XII), where he completed all the horizontal angles in three days, and measured reciprocal verticals with Mr. Lane at Pavia(x), who employed a 7-inch theodolite; these simultaneous verticals were observed on the 4th November to blue-lights, burnt an hour after sunset. Mr. Murphy reached Jáfrabad (xIV) on the 7th November, and by the 11th the three horizontal angles as well as simultaneous verticals on the ray to Músapur (XII) (observed to heliotropes an hour before sunset) were measured. The station of Jahánabad (xv) was reached on the 17th: by the 20th the horizontal angles were all disposed of; here simultaneous verticals were observed to lamps on the ray to Jáfrabad (xIV), but though the observations extended over an interval of nearly 21/2 hours beginning at an hour after sunset, the results of the means of the measures differed so considerably inter se that they were rejected and reserved for future re-measurement. Mr. Murphy remained at Jahánabad while Mr. Lane was marching to Dewarsán (xvII) for simultaneous verticals; they were taken on the 24th at the time of minimum refraction. Lane proceeded the same day to Jájmau (xvIII), while Mr. Murphy advanced to Dewarsán (XVII), and succeeded on that and the following night in completing the two horizontal angles at this station as well as in taking simultaneous verticals on the ray to Jájmau (xvIII) with Mr. Lane. On the completion of the observations at Dewarsán (xvII) Mr. Murphy fell ill, and had to proceed to Cawnpore for three weeks, at the end of which he returned to find that the favorable season for observing had ended. Crossing the Ganges into Oudh he resumed work on the 21st December at the station of Rau (xx), where he also took observations for fixing Christ's Church Cawnpore, which was then being built. He waited there five days without being able to obtain complete measures of even a single horizontal angle, though he succeeded in taking simultaneous verticals with Mr. Lane on the ray to Jájmau (xvIII). He then recrossed the river and proceeded to Namana (xix) on the right flank of the Series. The winter rains had now set in, and the conditions of the atmosphere became so unfavorable that though he remained at that station from the 4th to the 28th of January, and worked whenever possible both by day and night, he could only obtain complete observations of two of the three horizontal angles; such few measures as were taken of the third angle were rejected and reobserved later on in the season. Pushing on to Jhalotar (xxi) the horizontal angles occupied him from the 3rd to the 14th of February; and thence returning to Rau (xx)—the observations at which had been left unfinished nearly two months before—he finished the work there by the 19th of February. He then proceeded to Etora (xxIII) where the horizontal observations occupied him from the 24th February to the 3rd March; after this he went to Bakseria (XXII) where by the 8th of the month he had completed the three horizontal angles as well as simultaneous verticals with Mr. Lane on the ray to Rau (xx). At this time Lieutenant Renny returned from the Sironj Base-Line and resumed the direct charge of the operations, examining the work performed by Mr. Murphy, affording him incidental aid in the measurement of the angles at Bakseria (xxII), and accompanying him to his next station Asu (xxIV); there the three horizontal angles as well as the simultaneous verticals on the ray to Bakseria (XXII) were measured between the 10th and 14th of March.

An examination of Mr. Murphy's work brought to light the circumstance that certain of his angles were deficient in respect to the number of zeros on which the measurements

had been taken. Lieutenant Renny reported that otherwise his arrangements for conducting the details of the work both expeditiously and economically appeared to have been very good. That no loss of time might be incurred in returning to observe such zeros of his angles as were deficient, Mr. Murphy volunteered to undertake the work during the ensuing rains, at a season of the year not usually devoted to field operations. Mr. Lane's share of the work was also favorably commented on by Lieutenant Renny.

On leaving Asu (xxiv), the party proceeded successively to Barauli (xxv) and Fatehnagar (xxvII), and by the end of March the three horizontal angles at each of these stations were disposed of.

Lieutenant Renny had meanwhile been apprized by the Surveyor General that his services would shortly be needed in carrying on the triangulation of the Great Arc to the south of Sironj; he was directed to proceed to Head Quarters as soon as his presence could be dispensed with on the Amua Series. He was anxious before leaving the party to establish some sort of check on the work that had been already executed; and for this purpose he determined to measure an azimuth of verification at the station of Nimkár (xxvI). He arrived there on the 2nd of April; and by the 16th of the month he completed the azimuthal observations and the measurement of two of the three horizontal angles at that station. The reduction of the azimuthal observations, and various necessary arrangements for the future conduct of the work, occupied Lieutenant Renny till the 1st of May, when he proceeded to Dehra Dún, marching vid Bareilly and Hardwar.

Mr. Murphy, now again left to his own resources, resolved to finish at once the insufficiently measured angles to the south in preference to continuing his progress northwards; for he considered that a severe rainy season might possibly set in, and, by forcing him into recess quarters, prevent him from bridging over the gap that then existed in the work. He accordingly retraced his steps to Namana (xix), where a few months previously he had spent several weeks without the weather admitting of his completing the measures of more than two of the three angles; the third angle was now measured in the course of two days. party then moved southwards to Pavia (x), where all that remained to be done was the completion of a single angle—between IX and XI—by measures on two zeros: this was effected on the 14th June; and by the 23rd of the same month, the deficiencies in the angles at x1 and x111 were also made good. Thus, the Series stood complete up to the side (xxvI)-(xxvII), with the exception of the angle at xxvi (Nimkár) between xxiv and xxv. In addition to the towerbuilding already indicated, seven new tower stations, each 24 feet high, had been constructed at the northern end of the Series, thereby completing this troublesome portion of the operations.

During the field season of 1838-39 Lieutenant Renny merely exercised a general supervision over the operations without taking any per-Season 1838-39. PERSONNEL. sonal share in them, as he was engaged on the measurement Lieut. T. Renny, Bengal Engineers, 1st Assistant. of the principal angles of the section of the Great Arc, to Mr. C. Murphy, 1st Class Sub-Assistant.
,, C. Lane, 1st ,,

the south of Sironj, between the parallels of 18° and 24°.

The programme for this season's operations was as follows:—to measure the horizontal angles at nine principal stations to complete the Series; to observe an azimuth at Rámuápur,

Digitized by Google

the most northerly station on the Amua meridian, which was subsequently allotted to the North-East Longitudinal Series; and lastly, to take simultaneous vertical angles over a distance of nearly 200 miles in the length of the Series, so as to form a continuous chain of relative heights of which only seven links stood supplied by the observations of the previous season. With favorable weather all this might be completed in one field season.

Mr. Murphy moved into camp on the 15th October; and, having crossed the Ganges into Oudh, he proceeded to his first station, Nimkár (xxvI), where the angle between xxIV and xxV was duly observed on the 21st idem. The party proceeded thence in succession to the several northern stations, the horizontal angles at which were all disposed of by the 9th of December. The prescribed azimuth was then undertaken by observations to δ Ursæ Minoris at both elongations. By the end of the month the whole of the programme of work was completed, with the exception of the vertical observations. Mr. Lane had fallen ill at the commencement of the field season, and been unable to render any assistance, in consequence of which Mr. Murphy had engaged the temporary services of Mr. C. D. Campbell, a young candidate for employment in the Survey Department. A collision occurred between the men of the native establishment and a large body of armed men in Oudh—who were said to be desperate freebooters, and inhabited a small fort of their own in a jungle on the banks of the Gumti in the vicinity of the survey operations—which might have been attended with much loss of life had not Mr. Murphy been at hand to interpose and protect his people. But otherwise the operations in Oudh seem to have met with no opposition.

The vertical angles, whose measurement was the one thing remaining to complete the Series, were observed simultaneously at the opposite extremities of the rays, by Mr. Murphy at one end with Troughton and Simms' 18-inch theodolite No. 1—with which the whole of the horizontal angles of this Series were measured—and at the other end by either Mr. Lane or Mr. Campbell with a 7-inch theodolite. These operations were carried, under instruction, over the diagonal sides only of the Series, zigzagging from flank to flank, so as to fix every station in turn, but without giving check determinations on the flank sides as well, as that would have doubled the amount of work to be performed. The field operations were concluded on the 2nd of April. The party then proceeded vid Cawnpore to the Surveyor General's Head Quarters at Dehra Dún.

On the completion of the Simultaneous Reduction of the North-East Quadrilateral, it was found that the errors which had actually been dispersed over the Amua Series, between its origin Amua-Lakanpura and terminus Dahlelnagar-Kokra, were as follows:—

In Logarithm of the latter side + 0.000,0043,8 = 0.6 inches per mile nearly.

,, Azimuth ,, — 1"·286 ,, Latitude of Dahlelnagar + 0 :077 ,, Longitude ,, — 0 ·173

The trigonometrical heights were checked at several points in subsequent years by connection with the Spirit Leveling Operations in the Trigonometrical and Revenue branches

of the Survey, see page 38 [of Vol. VII]. The sections into which the Series has thus been divided exhibit the following errors:—in the southern section ending at xvIII, the maximum discordance was found to be + 7 feet; in the next, ending at the side xxVIII—xxIX, it was — 14 feet; and in the last section, it was + 4 feet. The errors were dispersed in the manner indicated at pages 38 and 39 of Part I of Volume VII.

### Secondary Triangulation.

It will be seen on reference to the chart of this Series that little secondary triangulation was done in connection with the principal operations, excepting what was accomplished from the hill stations at the southern end of the Series. More could not have been done in the plains excepting by carrying chains of minor triangles for which neither the requisite agency nor instrumental equipment were at the time forthcoming. The positions of Sháhjahánpur and other secondary points, near the northern end of the Series, were fixed in the year 1849-50 by Mr. J. O. N. James, in connection with the operations of the North-East Longitudinal Series; it has been found convenient to exhibit the results with those of this Series; they will therefore be found in the Synoptical Volume for this Series.

Compiled, with Addenda by the Surveyor General, by

DEHRA DON:	`	C. WOOL	D.
	}	Surveyor 2nd	Grade.
November 1881.	)	·	

# ALPHABETICAL LIST OF STATIONS.

Amúa (of Calcutta Long	itudin	al Series	). ).		٠	XVII.	Kartár	٠	•	•	•	•	VII.
Asu	•		•	٠	•	XXIV.	Kokra (of North-East l	Longitu	dinal Se	ries).	•	•	XXIII.
Bakseria	•	•	٠	٠		XXII.	Lakanpúra (of Calcutta Lor	• noitudin	al Series	٠.	•	•	XIX.
Baraoli	•	•		٠	٠	XXV.	Maihar		•		٠	•	L
Bulandpúr	•	•	•	•	•	XXXI.	Marfa			•	٠	• ,	VIIL
Dágri	•	•	٠	٠	•	v.	Máwa	•				•	XVL
Dalılelnagar (of North-East L	ongitu	dinal Se	ries).	٠	•	XXV.	Músápúr	٠	٠	•	•		XII.
Daráwal	•		•	•	•	XXVIII.	Namána	•			٠	•	XIX.
Dewars.in	•	•		•	•	XVIL	Nimkár	٠	•	•	٠	٠.	XXVI.
Dharkána	•	•	•	•	•	IV.	Paprendi	٠	•		•	•	XI.
Etora		•	•	•	•	XXIII.	Parser	•	•	•	•	•	XXX.
Fatenagar	•	•	•	•	•	XXVII.	Patra	•	•	•	•	•	п
<b>J</b> afrábád	•	•		•	•	XIV.	Pavia	•	•	•	•	•	X.
Jájmáo	•	•	•	•	é	XVIII.	Potenda	•	•	•	•	•	щ
Jalhotr	•	•	ė	•	•	XXL	Ráo	•	•	•	•	•	XX.
Jarúra	•	•	•	•	•	XXXII.	Sárang	•	•	•	•	•	AT
<b>J</b> ehánábád		•	•	•	•	XV.	Seonda	•	•	•	•	•	IX.
Kánákhera	•	•	•	•	•	XIII	Sirwaia	•	•	•	•	•	XXIX.

## NUMERICAL LIST OF STATIONS.

XVII	•	•	. (0:	f Calcutt	a Lo	Amúa. ngitudinal Series).	XVII	•	•		•	•	Dewarsán.
XIX				_		Lakanpúra.	XVIII	•	•	•	•	•	Jájmáo.
<b>A11</b>	•	•	(o	Calcut	a Lor	ngitudinal Series).	XIX	•	•	•	•	•	Namána.
I	•	•	•	•	•	Maihar.	XX		. •		•		Ráo.
II	•	•	•	•	. •	Patra.	XXI	•					Jalhotr.
III	•	•	•	•	•	Potenda.	XXII				•		Bakseria.
IV	•	•	•		•	Dharkána.	XXIII			·	·	•	Etora.
$\mathbf{v}$	•	•		•	ě	Dágri.	XXIV		•	•	•	•	
VI	:		•	•		Sárang.	•	•	•	•	•	•	Asu.
3717						_	XXV	•	•	•	•	•	Baraoli.
VII	•	•	•	•	•	Kartár.	XXVI	•	•	•	•		Nimkár.
VIII	•	•	•	•	•	Marfa.	XXVII						Fatenagar.
IX	•	•	•	•	•	Seonda.	xxvIII						Daráwal.
$\mathbf{X}$	•	•		•	•	Pavia.	XXIX	•					Sirwaia.
XI	•	•	•	•		Paprendi.	XXX	•	•	•	•	•	Parser.
хп						Músápúr.	•	•	•	•	•	•	
	•	•	·	·	·	_	IXXX	•	•	•	•	•	Bulandpúr.
XIII	•	•	•	•	•	Kánákhera.	IIXXX	•	•	•	•		Jarúra.
XIV	•	•	•	•	•	Jafrábád.	XXIII	•					Kokra.
xv	•		•	•	•	Jehánábád.		•	•	(of N	orth-Ea	st Lor	ngitudinal Series).
xvi	•	•	•	•	•	Máwa.	XXV	•	•	of N	orth-Ea	. I	Dahlelnagar. ngitudinal Series).

### DESCRIPTION OF STATIONS.

XVII.—(Of Calcutta Longitudinal Series). Amúa Hill Station, lat. 24° 0′, long. 80° 32′, is situated in the Maihar district, and stands on the southernmost extremity of the Kaimúr range, immediately to the E. of the village of Amúa. The encamping ground of Siwaganj, on the high road from Mirzapore to Jubbulpore, is distant about 3 miles to the N.

The station is marked by the centre of a circle engraved on a stone which is fixed on the surface of a platform, and placed perpendicularly over a similar stone at the base. The same point was used on the original as well as revised triangulation of the Calcutta Longitudinal Series.

XIX.—(Of Calcutta Longitudinal Series). Lakanpúra Hill Station, lat. 24° 3′, long. 80° 50′, is situated in the Maihar district, and stands on a peak of a small range of hills, at a distance of about 1½ miles to the N. of the small village of Lakanpúra.

The station is marked by the centre of a circle engraved on a stone which is fixed on the surface of a platform, 2 feet 4½ inches perpendicularly over the mark which was used on the original triangulation of the Calcutta Longitudinal Series. It was found in good preservation when visited in April, 1865, in the course of the revision of the Calcutta Longitudinal Series.

I. Maihar Hill Station, lat. 24° 17′, long. 80° 46′, is situated in the Maihar district, and stands on the eastern extremity of the Bîrapáhár, at a distance of about 1½ miles to the N.W. of the town of Maihar.

The station is marked by the centre of a circle engraved on a stone which is fixed in the middle of a platform about 2 feet high.

II. Patra Hill Station, lat. 24° 17′, long. 81° 11′, is situated in the Rewah district, and stands on the Kaimúr range, about 2 miles E. of the small village of Patra, and 10 miles S.E. of Amarpatan.

The station is marked by the centre of a circle engraved on a stone which is fixed in the middle of a platform, 2 feet perpendicularly above a similar mark engraved on the rock in situ.

4-Z.

III. Potenda Platform Station, lat. 24° 37′, long. 81° 0′, is situated in the Rewah district, and stands on an open plain, about ‡ of a mile from the village of Potenda, and 6 miles E. of Mádhogarh.

The station is marked by the centre of a circle engraved on a stone which is fixed in the middle of a platform, 2 feet perpendicularly above a similar mark engraved on the rock in situ.

IV. Dharkána Hill Station, lat. 24° 28′, long. 80° 36′, is situated in the Nagode district, and stands on a detached hill of that name, about 3 miles S. of the small village of Chúnba, and 8 miles from the station of Nagode.

The station is marked by the centre of a circle engraved on a stone which is fixed in the middle of a platform, 1½ feet perpendicularly above a similar mark engraved on the rock in situ.

V. Dágri Hill Station, lat. 24° 51′, long. 80° 44′, is situated in the Nagode district, and stands on the south face of the Bindráchal range, distant about 8 miles to the N. of Koti, and immediately above the small village of Dágri.

The station is marked by the centre of a circle engraved on a stone which is fixed in the middle of a platform, about 6½ feet perpendicularly above a similar stone well imbedded in the ground.

VI. Sárang Hill Station, lat. 24° 46′, long. 80° 24′, is situated in the Panna district, and stands on a peak of that name in the Bindráchal range, distant about 3 miles S.W. of Ethwáñ, and 11 miles E. of Panna.

The station is denoted by the centre of a circle engraved on a stone which is fixed in the middle of a platform, about 3 feet perpendicularly above a similar stone flush with the natural surface of the ground.

VII. Kartár Hill Station, lat. 25° 2′, long. 80° 23′, is situated in the Banda district, and stands on a three-peaked isolated hill, close to the high road from Banda to Ságar.

The station is denoted by a dot engraved in the centre of a hole 1½ inches deep cut in the middle of a large boulder about 9 feet square.

VIII. Marfa Hill Station, lat. 25° 7′, long. 80° 44′, is situated in pargana Badaosa of the Banda district, and stands on an isolated hill of that name, on the north face of the Bindráchal range, at a distance of about 10 miles to the W. of Chitarkoti, a place of Hindoo pilgrimage. The hill was formerly fortified, and pretty considerably inhabited, judging from the several large tanks and ruins of buildings which are to be seen.

The station is on the ruins of an old building, and is denoted by the centre of a circle engraved on a stone which is fixed in the middle of a platform, about 5 feet perpendicularly above a similar mark at the level of the ground.

IX. Seonda Hill Station, lat. 25° 18′, long. 80° 24′, is situated in pargana Seonda of the Banda district, and stands on the eastern extremity of an isolated wedge-shaped hill immediately above the village of that name.

The station is denoted by the centre of a circle engraved on a long stone sunk to within 3 inches of the urface of a slightly elevated platform.

X. Pavia Hill Station, lat. 25° 27', long. 80° 47', is situated in pargana Sconda of the

Banda district, and stands on a low hill immediately S. of the village of that name. A platform in front of a small temple was used for the station.

The station is denoted by the centre of a circle engraved on a stone which was fixed in the middle of the platform and about 6½ feet perpendicularly above a similar stone imbedded below. The station subsequently required an additional elevation, and an earthen platform 11 feet in height was erected.

XI. Paprendi Tower Station, lat. 25° 38′, long. 80° 27′, is situated in pargana Pailáni of the Banda district, and stands on the centre tower on the east face of the mud fort of Paprendi.

The tower was first repaired, and heightened about 10 feet. This station is full 50 feet above the level of the surrounding country.

XII. Músápúr Tower Station, lat. 25° 47′, long. 80° 41′, is situated in pargana Gházípúr of the Fatepúr district, and stands on a mound, elevated about 20 feet above the level of the surrounding country, and lying to the south of the small village of Músápúr.

An earthen platform 23 feet high has been constructed at this station.

XIII. Kánákhera Tower Station, lat. 25° 51′, long. 80° 28′, is situated in pargana Pailáni of the Banda district, and stands on a solid building in the S.E. corner of a fort attached to the village of Kánákhera.

The building was repaired, and heightened about 12 feet, giving it an elevation of full 40 feet above the level of the surrounding country.

XIV. Jafrábád Tower Station, lat. 26° 1′, long. 80° 38′, is situated in pargana Bindki and district Fatepúr, and stands on the N.E. tower of the mud fort adjoining the village of Jafrábád.

The tower was repaired, and heightened 17 feet, and the station is full 40 feet above the level of the surrounding country.

XV. Jehánábád Tower Station, lat. 26° 6′, long. 80° 24′, is situated in pargana Kora and district Fatepúr, and stands on the eastern of two small buildings raised about 9 feet above the roof of a house within a garden, at the S.E. extremity of the town of Jehánábád.

The station is full 40 feet above the level of the surrounding country.

XVI. Máwa Tower Station, lat. 26° 16′, long. 80° 34′, is situated in pargana Sarh Salempúr of the Cawnpore district, and stands on a mound, about 20 feet in height, situated to the N. of the village of Máwa.

An earthen platform 24 feet high has been constructed at this station.

XVII. Dewarsán Tower Station, lat. 26° 16′, long. 80° 21′, is situated in pargana Sarh Salempúr of the Cawnpore district, and stands on the N.W. tower of the inner line of the mud fort attached to the village of Dewarsán.

The tower has an elevation of upwards of 25 feet above the surrounding country, and the station is raised an additional 7 feet.

XVIII. Jájmáo Tower Station, lat. 26° 26′, long. 80° 27′, is situated in pargana Jájmáo

of the Cawnpore district, and stands on the eastern extremity of the high ground overlooking the Ganges, where formerly stood the fort attached to the village of Jajmáo.

The station is on an earthen platform raised about 8 feet in height.

XIX. Namána Tower Station, lat. 26° 28′, long. 80° 39′, is situated in the Harha district, and stands on a mound, 25 feet high, distant about } of a mile to the S. of the village of Namána.

The station is on a earthen platform 18 feet in height.

XX. Ráo Tower Station, lat. 26° 39′, long. 80° 30′, is situated in the Rasúlábád district, and stands on a mound, 25 feet high, distant ‡ of a mile N.W. of the village of Ráo.

The station is on an earthen platform 16½ feet in height.

XXI. Jalhotr Tower Station, lat. 26° 42′, long. 80° 41′, is situated in the Rasúlábád district, and stands on the S.W. tower of the fort attached to the village of Jalhotr.

The tower is about 20 feet high, and an additional elevation of 15 feet was obtained by the erection of an earthen platform.

XXII. Bakseria Tower Station, lat. 26° 51′, long. 80° 32′, is situated in the Lassípúr district, and stands on the ruins of an old fort 1 of a mile S. of the small village of Bakseria.

An earthen platform 15 feet in height has been erected, which gives an elevation of about 40 feet above the surrounding country.

XXIII. Etora Tower Station, lat. 26° 54′, long. 80° 42′, is situated in the Sandaila district, and stands on a mound, about 15 feet in height, distant  $\frac{1}{2}$  of a mile W. of the village of Etora.

An earthen platform 18 feet high has been constructed.

XXIV. Asu Tower Station, lat. 27° 5′, long. 80° 31′, is situated in the Sandaila district, and stands on a mound, 25 feet in height, close to the village of Asu, and distant 2 miles N. of the town of Sandaila.

A platform 30 feet high has been constructed.

XXV. Baraoli Tower Station, lat. 27° 8′, long. 80° 43′, is situated in the Sandaila district, and stands on a mound, 20 feet in height, adjoining the village of Baraoli.

A platform of sun-dried bricks and mud cement 30 feet high has been erected.

XXVI. Nimkár Tower Station, lat. 27° 21′, long. 80° 32′, is situated in the Khairábád district, and stands on a mound, 15 feet high, distant ½ of a mile N.W. of the town of Nimkár, and ¼ a mile N. of the Gúmti river.

A platform of paka bricks and mud cement 30 feet high has been erected.

XXVII. Fatenagar Tower Station, lat. 27° 24′, long. 80° 43′, is situated in the Khairábád

district, and stands on an open plain 21 miles S.E. of the large town of Macherhata, and 1 of a mile S.E. of the village of Bulandpur.

A platform of sun-dried bricks and mud cement 35 feet high has been erected.

XXVIII. Daráwal Tower Station, lat. 27° 34′, long. 80° 31′, is situated in the Khairá-bád district, and stands on a mound, about 20 feet high, distant 1 of a mile N.E. of the village of Daráwal.

A tower of sun-dried bricks and mud cement 30 feet high has been erected.

XXIX. Sirwaia Tower Station, lat. 27° 38′, long. 80° 41′, is situated in the Khairábád district, and stands on the highest point of a mound on which, to the N.E. of the station, extends the village of Sirwaia.

A tower of sun-dried bricks and mud cement 30 feet high has been erected.

XXX. Parser Tower Station, lat. 27° 46′, long. 80° 32′, is situated in the Mahamdi district, and stands on a low mound, close to a large tank, distant about ½ a mile to the S.W. of the village of Parser.

A tower of sun-dried bricks and mud cement 24 feet high has been erected here.

XXXI. Bulandpúr Tower Station, lat. 27° 51′, long. 80° 43′, is situated in the Khairábúd district, and stands within a small dilapidated mud fort, lying to the S. of the village of Bulandpúr.

A tower of sun-dried bricks and mud cement 24 feet high has been erected here.

XXXII. Jarúra Tower Station, lat. 28° 0′, long. 80° 31′, is situated in the Mahamdi district, and stands within a small dilapidated mud fort, to the west of, and hard by, the village of Jarúra.

A tower of sun-dried bricks and mud cement 28 feet high has been erected here.

XXIII.—(Of the North-East Longitudinal Series). Kokra Tower Station, lat. 28° 12′, long. 80° 31′, is situated in tehsíl Haidarábád of the Mahamdi district, and stands on flat ground on the verge of an extensive jungle. The village of Kokra is distant about 1½ miles to the S.W.

The station was constructed in 1833 for the triangulation of the Amúa Meridional Series, as a tower of sun-dried bricks and mud cement, 25 feet in height, with two mark-stones, one 2 feet below the level of the ground, the other at the surface of the tower. The upper mark was found wanting, and the tower in a dilapidated condition when the station was visited in 1843, in the course of the triangulation of the Pilibhít Terai Series. The old structure was then dismantled to the level of the lower mark, and a new tower 26 feet high constructed, with an isolated central pake pillar which contained mark-stones at distances of 2, 6, 12, 18, 24, 27, and 28 feet, respectively, above the lowest mark-stone. When the station was subsequently visited in 1850, in the course of the North-East Longitudinal Series, the upper portion of the pillar and tower were found to have been destroyed. The structure was again dismantled to within 10 feet of the surface of the ground, and a mark-stone having been found there, it was used as a centre over which a new pillar, with an earthen tower around it, was constructed to the height of 26 feet above the level of the ground, which carried a mark-stone at its surface placed in the normal of the lower mark.

Digitized by Google

XXV.—(Of the North-East Longitudinal Series). Dahlelnagar Tower Station, lat. 28° 4′, long. 80° 41′, is situated in tehsíl Alíganj of the Mahamdi district, and occupies the highest part of the mound on which the village of Dahlelnagar stands.

A tower of sun-dried bricks and mud cement, 28 feet high, was erected here. It was found in good preservation when the station was visited in 1850, in the course of the triangulation of the North-East Longitudinal Series.

#### PRINCIPAL TRIANGULATION. ADDENDUM TO DESCRIPTION OF STATIONS.

Note.—Consequent on modern alterations of district and other boundaries, the sites occupied by the stations are in some instances now included in civil divisions of territory which differ from the district, pargana, or village, recorded in the preceding descriptions of stations: a complete list of all the stations of the Series including a suitably modified statement of the altered subdivisions in question is accordingly given in the following table, and is derived chiefly from the annual reports, up to 1881, made by the Civil Officials to whose care the stations have been committed. The statement also gives additional information as to position, construction, and present condition of certain of the stations; where no entry regarding present condition is made against a station it is to be assumed that the station when last reported on by the district Official was in good order.

The spelling of names is in accordance with that given in the lists of more important places published under the orders of Government whenever such names occur in the lists.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	surro	Villages ounding the Station	Remarks on the Construction and Condition of the Station			
XVII	Amua	Baghelkhand Agency	Maihar State	Amua						
XIX	Lakhanpura	Jubbulpore	Thá. Bijerágho- garh, Tah. Murwára	Lakhanpura						
I	Maihar	Baghelkhand Agency	Maihar State	Maihar						
II	Patra	"	Tál. Amarpá- tan, Rewah State			•••				
	Potenda	"	Tál. Mádhogarh, Rewah State	Potenda			Reported in 1874. "The sto of this station thrown av A new platform was m on the same spot."	way.		
IV	Dharkána	"	Nagode State	Chunaha		·				
$\mathbf{v}$	Dágri	"	Kothi State	Dágri						
VI	Sárang Pahár	Bundelkhand Political Agency	P. Panna	Ahargawa						
VII	Khairar	Bánda	P. Bánda	Khairar	Kartal Khora	miles N. N. E. 1/2 E. 51/2		*		
VIII	Marpha	"	P. Badausa	Kúlhúan			Reported in 1867. "The profession fell down last year."			

Note.—Stations XVII and XIX appertain to the Calcutta Longitudinal Series. P. stands for pargans, Tah. for tahsíl, Thá. for tháns, and Tál. for táluka.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
IX	Sihonda	Bánda	P. Sihonda Gir- wan	Sihonda Girwan	miles Sihonda Girwan S. 1 ³ / ₄ Bahádarpur W. S. W. 3 Gobindpur N. W. 2 ³ / ₄	
X	Pauia	,,	P. Augási	Pauia		
XI	Piprenda	"	P. Pailáni	Piprenda		Portions of the tower washed down by the rain in 1867 and the upper mark-stone re- ported as lost in 1870.
XII	Músapur	Fatehpur	Tah. Gházipur, P. Mutaur	Músapur <i>alias</i> Deogaon	Mutaur N. by E. 11 Simási E. S. E. 2 Paigambarpur N. W. by N. 21	The pillar tumbled down during the heavy rains of 1872-73 as reported in 1874.
XIII	Kánákhera	Bánda	Tah. and P. Pai- láni	Kánákhera	Narauli N. E. by E. 1½ Rámpur W. by S. 3	Portions of the tower washed down by the rain in 1867, and the upper mark-stone re- ported as lost in 1870.
XIV	Jáfrabad	<b>Fate</b> hpu <b>r</b>	Tah. Kalianpur, P. Kutia Gu- nír	Jáfrabad	Bindki N. N. W. 2 Kadjua N. W. by W. 5	A part of the tower fallen down, and no mark-stone found, as reported in 1872.
XV	Jahánabad	,	Tah. and P. Kora	Jaliánabad	Kora N. ½ Sháhjahánpur W. N. W. 1 Sakrabad E. by N. 2	 . · ·
XVI	Mahowa	Cawnpore	P. Salímpur	Mahowa	Sirsol W. 1 Kharauli N. N. E. 11 Domanpur E. S. E. 2	Reported in 1872. "The pillar requires to be rebuilt."
XVII	Deor Sandáh	,,	Ditto.	Deor Sandáh	Sárh S.E. 3 Simra E. by N. 1½ Sultánpur N. W. by W. 1	Ditto.
XVIII	Jájmau	,,	P. Jájmau	Jájmau	Cawnpore Railway Station W. by N. 4½ Pokarpur W. 1½	v.
XIX	Newarna	Unao	Tah. Unao, P. Harha, Thá. Achalgauj	Newarna	Newarna Rám- sahai N. by E. 1 Pareri Kalán E. 3 Korári Kalán W. by N. 4	Reported in 1873. "Only the foundation exists."

Note.—P. stands for pargans, Tah. for tahsil and Thá. for thána.

	.			Village in which	Villages	Remarks on the
No. of Station	Local name	District	Pargana, &c.	the Station lies	surrounding the Station	Construction and Condition of the Station
XX	Rau Kirna	Unao	Tah., P. and Thá. Unao	Rau	miles Makhi N. E. 1½ Thána S. 2¾	Reported in 1873. "Only the foundation exists."
XXI						Reported in 1870. "Demolished with the fort (on which it stood) after the Indian Mutiny, and there is no trace of it."
XXII	Garhi Baksar	Unao	Tah. Mohán, P. Asíwan, Thá. Achalganj, Tál. Tikar	Chak Bíreshar	Haidarabad S. by E. 2½ Ajgain N. E. 3	Reported in 1873. "There is nothing remaining of it except a few marks of its former existence."
XXIII	Etora	Lucknow	Tah., P. and Thá. Maliha- bad, Tál. Sai- lamau	Etora	Bakhtiárnagar E. by S. 3½ Mirzaganj E. N. E. 3½ Biárigaon W. S. W. 3½	Platform washed away by rain as reported in 1875.
XXIV	Asu Sarai	Hardoi	Tah., P. and Thá. Sandíla	Asu Sarai	Sandîla E. by S. 21	Reported in 1874 as being 24 feet high.
XXV	Barauli	. ,,	Tah. Sandîla, P. Bálamau, Thá. Kachhona		Barwan N.E. $2\frac{1}{2}$ Atrauli N.by W. $2\frac{3}{4}$	Reported in 1874 as being 22 feet high.
XXVI		Sitapur	Tah., P. and Thá. Misrikh, Tál. Aurang- abad	Nimkár	Aurangabad E. by S. 4 Beniganj S. W. by S. 43	
XXVII		"	Tah. Misrikh, P. Machhreh- ta, Tál. Baria- mau, Thá. Si- tapur	Bulandapur	Kurauna S. W. by W. 4	
XXVIII		,,	Tah. Misrikh, Thá. Maholi, Tál. Dundá- wal	Dundáwal	Bihat E. by S. 1 Pisáwan W. N. W. 5½	
XXIX		,,	Tah., P. and Thá. Sitapur, Tál. Haina- pur	Sahrohi	Town of Sitapur S. E. by S. 4	
XXX		,,	Tah. Misrikh, P. and Thá. Maholi, Tál. Baragaon	Parsera	Baragaon S. S. E. 2 Mitauli N.N.W. 3½	
IXXX	Bhulanpur	Kheri	Tah. and Thá. Lakhímpur, P. Basarah, Tál. Raja Oel		Basarah N. W. 1½ Oel E. by S. 5	
	Didianpur	Kucri	Lakhímpur, P. Basarah, Tál.			

Note.—P. stands for pargans, Tah. for tahsil, Thá. for thána and Tál. for táluka.

No. of Station	Local name	District	Pargana, &c.	Village in which the Station lies	Villages surrounding the Station	Remarks on the Construction and Condition of the Station
XXXII	Jaraura	Kheri	Tah. Muham- di, P. Haidar- abad, Tál. Ilá- hibaksh Khán, Thá. Gola		miles Alipur S. by W. 2½ Haidarabad N. W. 4½	The station fallen down as reported in 1877.
IIIXX	Kokra	,, et in height, wi	Tah. Muhamdi, P. Haidar- abad		Hardua W. 2 Khamaria S. 1½	

cement, 25 feet in height, with two mark-stones, one 2 feet below the level of the ground, the other at the surface of the tower. The upper mark-stone was found wanting, and the tower in a dilapidated condition when visited in 1843, in the course of the operations of the Pilibhít Tarái Series. The old structure was then dismantled to the level of the lower mark, and a new tower 26 feet high constructed, with an isolated central paka pillar which contained mark-stones at distances of 2, 6, 12, 18, 24, 27, and 28 feet, respectively, above the lowest mark-stone. When the station was subsequently visited in 1850, in the course of the North-East Longitudinal Series, the upper portion of the pillar and tower were found to have been destroyed. The structure was again dismantled to within 10 feet of the surface of the ground, and a mark-stone having been found there, it was used as a centre over which a new pillar, with an earthen tower around it, was constructed to the height of 26 feet above the level of the ground, which carried a mark-stone at its surface placed in the normal of the lower mark. Pillar partly fallen down as reported in 1871.

XXV		Kheri	Tah. Lakhim- pur, P. Ali- ganj	•••	Bhúrpur S. W. 1½ Aliganj N. W. 4 Khánpur E. N. E. 1	closed in a tower of sun-dried
-----	--	-------	--------------------------------------	-----	--------------------------------------------------------------	--------------------------------

Note.—Stations XXIII and XXV appertain to the North-East Longitudinal Series. P. stands for pargana, Tah. for tahsil, Thá. for thána, and Tál. for taluka.

August, 1882.

J. B. N. HENNESSEY,
In charge of Computing Office.



#### OBSERVED ANGLES.

At	IIVX
----	------

March 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle		Means of Circle-readings, telescope being set on I											
between	38°	218°	48°	228°	58°	238°	68°	<b>24</b> 8°	78°	258°	88°	268°.	General Means.
I & XIX	30.000 "	38·833	36·667	39.000	32.200 g	" 37 [°] 333		38·667	35 ⁸ 33	38·333	" 44.000 8	31.992	Probability=0.895

#### At XIX

February and March 1834, observed by Lieutenant T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle				Probabilities and									
between	0,	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	40°	220°	50°	230°	General Means.
XVII & I	43 ^{.8} 33	50 ^{.8} 33	" 44.500	55 ^{.8} 33	" 47 ^{.66} 7	50·833	54.000 8	55.000 "	58·833 "'	55 [°] 333	54 ^{.8} 33	50.833	Probability=1.289 86° 34′ 51″.861

Note.—XVII and XIX appertain to Calcutta Longitudinal Series.

#### At XIX—(Continued.)

February and March 1834, observed by Lieutenant T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle				Probabilities and									
between	00	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
I & II	61.833 "	" 46 [.] 500	59 [°] 000	20°167	58.333 "	58°333	# 48 [.] 500	50.662	" 47.500	51.000 2	" 44 [*] 333	,, 22, ² 00	Probability = 1.573 67° 44′ 52″.639

#### At I

March 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle				Probabilities and										
between	0°	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.	
IV &	"	"	"	"	ii .	"	11	"	"	"	"	"	Probability=1.843	
III	20.833	25.000	20,200	33.833	14,333	34.833	31,333	32,000	30.200	31.833	24.007	33.162	72° 14′ 26″ 903	
III & III	80.162	72.833	81.200	66.667	87.000	10.000	77.833	67.333	71.200	68.833	73.833	67:500	Probability=2'016	
111 & 11	3	7 - 255	3	2	3	3 8	77 255	7 300	, š	2 3	70 23	, , , , , , , , , , , , , , , , , , ,	59° 35′ 12″.583	
II &	8.400	15.667	6.200	14,000	12.662	21.162	11.667	13.667	8.200	11.162	11,333	8.833	Probability=1.099	
XIX	2 300	13 90 /	2	3	23 207	3	3	2 3	3	3	2 3.73	3	76° 16′ 12″ 056	
XIX &	43,333	27.162	43,000	34,500	25.222	24:167	41.822	40:667	46.333	44.822	47.000	42.200	Probability=1'248	
XVII	42.333 37.167		3	34,300	33 333	34 107	<b>4</b> . 055	75 35 /	4° 333	255	7, 300	73 ,30 <b>0</b>	51° 12′ 40″.806	

#### At II

April 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle				Probabilities and									
between	0°	180°	10°	190°	20°	200°	210°	30°	50°	230°	40°	<b>22</b> 0°	General Means.
XIX &	"	"	// 0.0	"	11	11	"	"	11	"	11	11	Probability=1.205
I	50.200	51,000	48.833	59.000	51-107	5 <b>8</b> .167 5	333	53 500	50.333	9	50 107	57 107	35° 58′ 55″·486

Note.—XVII and XIX appertain to Calcutta Longitudinal Series.

#### At II—(Continued.)

# April 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle				Probabilities and									
between	00	180°	10°	190°	20°	200°	210°	80°	50°	230°	40°	<b>2</b> 20°	General Means.
I &	12.162	10.333	18.333	18.333	18.200 3	22·167	17:167	17.000	24.000 2	13.000	23.833	3,333	Probability=1.579 61° 58' 17".264

#### At III

# April 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mea	ns of (	Circle-re	adings,	telesco	pe beir	ng set o	n II		-	Probabilities and
between	00	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	280°	General Means.
II &	37°111	33 ^{.8} 33	34 [.] 667	40.667	35 ^{.66} 7	43 ⁸ 33	37.667 <b>3</b>	43 ^{.66} 7	37 ^{.8} 33	41.333	43.833	44.300	Probability = 1.076 58° 26′ 39″.551
I & IV	21.162	26·833	25 [.] 000	26.200	25 [.] 667	29 [°] 167	27 ^{.66} 7	20 [.] 667	29:333	24 [.] 667	27:500	19.333	Probability = 0.914 35° 55′ 25″ 292
IV &	46.000	38.500	44.833	38.500	36.000	39.167	33.833	40.330	28.000	42'333	31.667	39,200	Probability = 1.443 67° 18′ 38″.222

#### At IV

# April 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mea	ns of C	ircle-re	eadings,	telesco	pe bein	g set or	ı VI			Probabilities and
between	00	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
VI &	18.200	18.000	" 14 [.] 500	23.667 23.867	" 14.000 3	22.000 8	23.667 23.667	25.667 25.867	" 20.200	25.162	" 17:500	25.667	Probability = 1.162 50° 0' 20".736
V & III	10,000	8.000	18 [.] 167	30. 200	20·167	22.333	18.333	14.000	27 [.] 167	14.333	27 ^{.8} 33	4.833	Probability = 1.821 48° 12' 17".972

#### At IV—(Continued.)

April 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mea	ns of Ci	rcle-re	adings,	telescoj	pe being	set or	VI			Probabilities and
between	0.	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
III & I	" 20'333	16.200	14.162	" 14.662	9 ⁸ 33	10.333	7.833	15.667	6.162	" 11.667	7°167	15.333	Probability = 1.195

At ₹

May 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle `			Mear	as of C	ircle-re	adings,	telesco	pe bein	g set or	ı III			Probabilities and
between	0.	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
III &	5.000	3 11,000	9. ² 00	" 12.000	9'333	17.833	11.833 "	16.000 "	" 14.200	17.833	16. ³ 33	21.000 3	Probability = 1.253 64° 29′ 13″.514
IV & VI	50.833	45 ^{.16} 7	47.000	43°167	54. <mark>8</mark> 33	37 ^{.66} 7	52.000	36.200	47 ^{.66} 7	39.333	45.667	42.000	Probability = 1.584 55° 17′ 45″ 153
VI & VII	43.667	47 ^{.66} 7	43.333	52.167	31.000	44'333	41.833	23.000	34.162	51.162	37 ^{.66} 7	36·833	Probability = 1.980 44° 9′ 43″.070
VIII &	19.333	13.200 2	1.333 2	0'333 2	7°167 :	23.333	23.167	15 [.] 667 3	32.333 1	1.833	26.333	18·167	$\frac{\text{Probability} = 1.635}{63^{\circ}  6'  21'' \cdot 042}$

At VI

April and May 1834, observed by Lieutenant T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	ns of C	ircle-re	adings,	telesco	pe being	g set on	VII			Probabilities and
between	0.	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
VII &	62·833	58.333	58·167	68 [.] 500	" 54 [·] 333	" 65 [.] 667	63·167	66.333	72.667	73.000	, 69. ³ 33	65.662 %	Probability = 1.601 77° 31′ 4″.833

#### At VI—(Continued.)

April and May 1834, observed by Lieutenant T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mear	ns of Ci	rcle-re	adings,	telesco	pe being	g set or	ı VII			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
V &	,, 70. ³ 333	ر ورنځون	% 68.000	″ бо [.] 833	у б9 [.] 000	63.000 8	бз:000 2	63.162	55°§33	54 [.] 833	55°3333	66.000 "	$\frac{\text{Probability} = 1.473}{74^{\circ} \ 42' \ 2''.528}$

#### At VII

June 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mea	ns of C	ircle-re	adings,	telesco	pe bein	g set o	n IX			Probabilities and
between	0•	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
IX & VIII	" 24.333	23.667 23.867	22.667 23.667	31.667 3	20°167	37 ^{.66} 7	25. <b>6</b> 67	,, 29 [.] 667	36·167 "	33.200	" 32 [.] 833	32.833	Probability=1.589 69° 48′ 29″.236
VIII &	54 ^{.66} 7	59 ^{°16} 7	57 ^{.8} 33	52 [.] 667	63 ^{.8} 33	44.222	63.000	45.162	20.1QJ	40.667	52.833	45.000	Probability = 2.109 43° 32′ 52″ 435
V & VI	21.162	3 10.200	13.833	24 [.] 167	9'333	22'000 8	ð.000	24°500	10,200	22.000	16 [.] 167	15 [.] 667	Probability=1.651 58° 19′ 16″.57°

#### At VIII

June 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Me	ans of (	Circle-re	adings,	, telesco	pe beir	ng set o	n V			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
V & VII	43 ^{.8} 33	" 49 [:] 333	" 49 ^{.8} 33	,, 56.667	33 ^{.1} 62	" 54.200	3 20,000	" 54.333	24. ² 00 "	" 60:667	1, 21,000	51.333	Probability = 1.928 73° 20' 50".764
VII &	30.1QJ	32.200	26.200	20, 200	38.200	24 [.] 667	35.200	8.000	32.667	12,000	26.000	29.000	Probability = 1'959 46° 31' 27"'417

#### At VIII—(Continued.)

June 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Me	ans of	Circle-r	eadings,	telesco	pe bein	g set on	<b>V</b>			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40	220°	50	230°	General Means.
IX &	39.coo	" 43°167	" 41°333	" 47 ^{.8} 33	34 ^{.8} 33	45 ^{.8} 33	36.000 3	" 46 [.] 333	38·833	" 44 [.] 667	" 44 [.] 667	" 43 ^{.8} 33	Probability = 1.157 64° 32′ 42″.194

#### At IX

June 1834, and November 1836, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mea	ns of (	Circle-r	eadings,	telesco	pe bein	g set on	XI			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XI &	50·167	" 54 ⁻ 333	" 52 <b>.</b> 912	″ 60·583	50.000 1	и 61·833		" 60 <u>5</u> 83	54·167	" 57 [.] 4 ¹ 7	" 59 [.] 667	57 [°] 500	Probability = 1.154 $58^{\circ} 51' 55''.972$
X & VIII	30.66 <i>2</i>	28 [.] 833	26 [.] 500	28.500	24 [°] 333	31.000	28·667	39.167	29:333	37.16 <b>7</b>	32.667	<b>3</b> 4 ⁻ 333	Probability = 1.186 54° 58′ 30″.931
VIII &	71°000	75.500	81.333	70°167	76.167	69.167	79.000	58.000	77°167	67.833	69 [.] 667	69.333	Probability=1.730 63° 40′ 12″.028

#### At X

June 1834, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Cir	rcle-rea	lings, 1	telescop	e being	g set on	VIII			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
VIII &	" 40° 167 2	" 44 [.] 167	" 43 [°] 333	" 47 ^{.8} 33	39 [.] 833	" 54 [.] 167	" 47 [.] 500	" 53 ^{.66} 7	" 47.000 3	" 53:500	50.1Q2	21.000 "	Probability = 1.391 60° 28′ 47″.695

#### At X—(Continued.)

October 1837, and June 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Me	ans of C	Circle-re	adings,	telesco	pe being	g set on	IX			Probabilities and
between	65°	245°	75°	255°	86°	266°	96°	276°	106°	286°	116°	<b>2</b> 96°	General Means.
IX &	# 48 [.] 167	" 39 [.] 417	" 40 [.] 667	36·167	" 47.000 8	" 29 [.] 250	47.667	" 25'917	31.200	" 3 <b>6</b> ·667	33. ² 00	" 41 [.] 833	Probability = $2.027$ 53° 53′ 38″ 146
XI & XII	39.333	61.333	43.162	48'917	40.000	26.111	46.320	53.833	47.583	54,333	52.417	52.083	Probability=1.837 44° 37′ 49″.655

#### At XI

October 1837, and June 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Cir	cle-rea	dings, t	elescop	e being	set on	XIII			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XIII &	" 34 [°] 333	45 ^{.8} 33	34.459	50.083 %	32°167	42.917	34 [.] 667	49 ^{.8} 33	38·267 5	43 [°] 375	37.667 8	41.000 "	Probability = 1.693 50° 18' 40".383
XII &	33 [.] 667	37.000	30.412	24.017	41.833	29.917	53.333	19.583	33.650	28.792	33 [.] 667	29:500	Probability=2.357 64° 53′ 33″.023
X & IX	+60.72	2 56.08 7 37.000	3 66.33; 3 66.33;	3 57'94 ₀ 7 24'91	4 63 [.] 66 7 41 [.] 83	7 66°08; 3 29°91;	3 <b>62</b> ·66; 7 <b>53</b> ·333	7 59.917 3 19.583	64 [.] 278 33 [.] 650	60.008 28.792	33.667 33.667	65'083 29'500	Probability=2.409
+ 132° 7′ - 64° 53′	27.05	5 19.08	3 35.010	5 33.02	7 21.83	3 36.16	7 9:333	3 40.333	30.628	31.508	3 28.333	<b>35</b> .283	67° 14′ 29″ 042

#### At XII

Novr. 1837, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mea	ans of (	Circle-r	eadings	, telesco	pe beir	ıg set o	n X			Probabilities and
between	0°	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
X & XI	35.139	43 [.] 083	35 ^{.8} 33	44 ^{.1} 6 ³	29`500 2	49°083	36·833	40 ^{.8} 33	39 [°] 917	41 [.] 167	47 ^{.08} 3	36.083	Probability = 1.532 $70^{\circ} 28' 39''.893$

### At XII—(Continued.)

Novr. 1837, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mea	ans of (	Circle-re	eadings,	telesco	pe being	g set or	X			Probabilities and
between	00	180°	i0°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XI &	"	"	11	"	"	.6:4.5	"	"	"	"	"	"	Probability=1.301
XIII	50 003	3	00 917	49 333	00 417	40 417	54 750	55 333	31 250	57 917	49 917	55'333	57° 22′ 54″·146
XIII &	48.583	<b>4.5 20</b>	41'417	55.833	36.012	ζ1'000	44.750	۲1°500	46.420	50.283	51.283	48.417	Probability=1.485
XIV	, 3	2. 2		22 2	ž ,	2	3	2 8	. ,2	2 8 3	2 8 2		57° 42′ 48″·465

#### At XIII

October 1837, and June 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Ci	rcle-rea	dings, t	elescop	e being	set on	x٧			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XV &	"	<b>"</b> *	"	"	"	"	"	"	"	"	<i>''</i>		Probability=1'479
XIV	17.833	30.333	17.194	30,000	10,333	31,333	20,333	22.750	23'017	25,000	29'083	23.833	56° 50′ 23″*995
XIV &	64.083	61.833	66:5:6	63.000	73'017	57:083	71.400	66.11	66.000	63.012	58·333	64.812	Probability=1'317
XII	2	2,33	3.7	2	75 3 7	37 2 3	, s, s	2 ,	2	-3 -7	J- 355	- 7 3 7	68° 11′ 4″.796
XII &	23.012	30.583	53,777	20.667	16.667	30.102	27.500	25'417	: 22.333	23.333	32.667	20°167	Probability=1.387
IX	-3 9.7	3-31-5	/ 3	8	2	3 3 7	2, 3	-5 7 7	J = 13.7J	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3 2	3	72° 18′ 26″ 322

### At XIV

Novr. 1837, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	as of Ci	rcle-rea	dings, t	elescop	e being	set on	XII			Prot	mbilities and
between	58°	238°	67°	247*	77°	257°	87°	267°	97°	277°	107°	287°	Gen	eral Means.
XII &	61.520 8	" 61:667	" 67·583	71.167	53°333	" 67:417	" 69 [.] 917	73 ⁸ 33	" 67 [.] 695 8	" 64. ² 83	69:017	и 61.083	Proba 54°	bility = 1.567 6' 5".787
XIII &	33.000	38.833	38·667	46·583	27 [.] 667	45.000	41.012	41.583	42.583	40,300	40.012	43'017	Proba 69°	bility=1.448 1′ 40″.097

# At XIV—(Continued.)

November 1837, observed by  ${\it Mr.\,C.\,Murphy}$  with an 18-inch Theodolite by  ${\it Troughton}$  and  ${\it Simms.}$ 

Angle			Mea	ns of C	ircle-rea	adings, t	telescop	e being	set on	XII			Probabilities and
between	58°	238°	67°	247°	<b>7</b> 7°	257°	87°	267°	97°	277°	107°	287°	General Means.
XV &	"	11;	"	11	"	"	"	"	<i>II</i>	"	"	"	Probability=1.970
XVI	41.583	40-750	40 917	54.007	42 500	59 550	54 503	57 750	52 633	8	49 333	53.778	52° 37′ 51″·354

#### At XV

November 1837, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Ci	rcle-read	dings, to	elescope	e being	set on	XVII			Probabilities and
between	121°	801°	131°	311°	141°	321°	151°	331°	<b>1</b> 61°	341°	171°	851°	General Means.
XVII &	" 27.333	31.083	" 25 [.] 556	" 32 [.] 667 8	" 21.017	33.667	26 [.] 417	33.000	" 26·583	" 25:333	32·167	" 28:778	Probability = 1.039 59° 0′ 28".708
XVI &	65.283	54.833	70 [.] 833	21.320	63.520	57.250	63.167	59. ² 00	59.306	71.833	56.667	62.305	Probability=1.680 72° 29′ 1″.356
XIV &	54.333	65.472	38 [.] 444	70 [.] 667	52.417	63 [.] 417	48.083	ξ6.000	63·861	51 ^{.2} 77	59.350	47.817	Probability=2.509 54° 7′55″.928

#### At XVI

October 1836, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Cu	rcle-rea	dings, t	elescop	e being	set on	ΧΙΨ			Probabilities and
between	0•	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XIV &	62. ⁷ 50	" 77'017	" 65'333	73.083	" 54.380	73.833	" 65°583	" 74.667	" 67:500	" 76:833	" 69:583	" 63 [.] 778	Probability=1'900
XV &													54° 53′ 8″.771 Probability=1.501
XVII	63.667	3	07917	99 600	71 300	05 503	09.300	0/91/	80 000	30 007	4	4	48° 41′ 7″.237

#### At XVI—(Continued.)

October 1836, observed by Lieutenant T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Ci	rcle-rea	dings, 1	telescop	e being	set on	XIV			Probabilities and
between	00	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	40°	220°	80°	230°	General Means.
XVII &	39°167	" 32·583	″ 33.600 ₽	" 29.083	" 26·667	36. ² 00	" 25 [.] 667	29.833	" 21.283	" 35'917	25.017	" 35.333	Probability = 1.481 59° 21' 30".988
XVIII & XIX	28 [.] 250	30 [.] 667	30.750	30 [.] 708	38.333	31.000	41.50	30.200	38.833	27.833	<b>42.</b> 778	30°167	Probability = 1.461 51° 36' 33".422

#### At XVII

November  ${f 1837}$ , observed by  ${m Mr}.\ C.\ {m Murphy}\ with an {f 18}-inch\ Theodolit\ eby\ Troughton\ and\ Simms.$ 

Angle			Means	of Circ	le-read	ings, tel	lescope	being s	et on X	VIII			Probabilities and
between	0•	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	280°	General Means.
XVIII & XVI	" 6 [.] 333		" 7 [.] 167	" 17 [.] 667	" 5 ⁷ 7 ⁷ 8	23 [.] 667	9'000	,, 19 [.] 667	" 6·167	18.000 "	16.083	" 5. ² 83	Probability = 1.837 59° 2′ 12".750
XVI &	26.417	26.750	28.583	19.667	28.000	14.417	20.083	18·167	31,000	24.417	23.750	23'417	Probability = 1.341 72° 18' 23".722

#### At XVIII

November 1837, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle		÷	Mean	as of C	ircle-re	adings,	telesco	pe bein	g set on	XX			Probabilities and
between	0°	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	40°	220°	50°	230°	General Means.
XX &	35. ² 00	# 48 [.] 250	39.320 "	#7 ^{.8} 33	" 34 ^{.8} 33	# 46 [.] 917	36·333	45.750	" 42 ⁻ 417	" 39 [°] 917	44.833	41.333	Probability=1'337 67° 44′ 41″'931

#### At XVIII—(Continued.)

October 1836, observed by Lieutenant T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Ci	rcle-rea	dings,	telescop	e being	set on	XIX			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XIX &	" 48 [.] 389	37.500	48·167	30.1Q2	47 ^{.8} 33	35 333	" 45 [.] 667	" 41.056	38·833	" 40. ⁵ 83	// 40.coo 8	36 [.] 444	Probability = 1.586 71° 13' 40".831
XVI &	4.255	20 [.] 778	8.500	10.083	12,000	10.333	18 [.] 167	9.444	10.000	15.417	12.000	13.500	Probability = 1.358

#### At XIX

January and May 1838, observed Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Ci	rcle-rea	dings,	telescop	e being	set on	XVI			Probabilities and
between	0.0	180°	10°	190°	20°	200°	<b>8</b> 0°	210°	40°	220°	50°	230°	General Means.
XVI & XVIII	43.000	51.50 2	" 44 ^{.8} 33	56·167	38·083	54 [.] 167	41.500	57.500	" 43 [.] 583	% 50 [°] 667	48 [.] 417	40.412	Probability = 1.791 57° 9′ 47″.465
XVIII & XX	54.162	40.333	55'750	33.520	44.750	33.000	51.083	42 ^{.8} 33	50.417	49.350	37.000 2	21.162	Probability = 2.195 64° 18' 45" 250
XX & XXI	14.583	31.320	14.083	31.667	15.320	28.417	17:250	26.417	16.750	25 [.] 417	18:017	18 [.] 417	Probability = 1.823 44° 33′ 21″.577

#### At XX

December 1837, and February 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Cir	cle-read	lings, te	elescope	being	set on :	IIXX			Probabilities and
between	116°	296°	126°	306°	136°	316°	146°	826°	156°	836°	166°	846°	General Means.
XXII &	22.417	29.917	13.283	30.333	77.750	" 27.417 8	13,200	28·167	23.500	28 [.] 333	28.017 8	19.083	Probability = 1.727 63° 41′ 23″.576

#### At XX—(Continued.)

December 1837, and February 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mear	ns of Cir	rcle-rea	dings, t	elescope	e being	set on	XXII			Probabilities and
between	116°	296°	126°	806°	136°	816°	146°	826	156°	836°	166°	846	General Means.
XXI &	17 ^{.8} 33	10.083	" 25.083	" 15.000	8.417	20.833	18 [.] 333	" 17 [.] 667	18·167	15.778	· " 20.278	9°250	Probability=1.389 68° 29′ 16″.394
XIX & XVIII	39.750	43.833	27.583	39.750	43,417	34.000	38.833	39.500	37.167	31.38¢	34.306	40°667	Probability = 1.342

#### At XXI

February 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Ci	rcle-rea	dings, t	telescop	e being	set on	XIX			Probabilities and
between	128°	808°	133°	813°	143°	323°	153°	833°	163°	843°	178°	353°	General Means.
XIX &	11.333	" 27 [.] 083	" 15 [.] 083	29°250	" 13.520		22.083	" 29 [.] 000	29.111	" 25 [.] 778	" 28:250	" 20.833	Probability=1.830 66° 57′ 23″.199
XX & XXII	33.583	20 [.] 833	33.500	17.833	36.50	22°583	27 [°] 333	29.750	19.722	25.583	10.000	26 [.] 722 8	Probability = 1.726
XXII &	19.000	32 [.] 833	14'917	26.333	4.083	24.750	17.000	23.667	20.528	16.520	21.583	20.722	Probability = 1.949

#### At XXII

March 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Circ	cle-read	ings, to	elescope	being	set on	XXIV			Probabilites and
between	108°	288°	118°	298°	128°	808°	138°	818°	148*	328°	158°	338°	General Means.
XXIV &	" 25.667	" 32 [.] 917	" 24.083	" 41'000	25.833	" 41.412	" 23 [.] 833	" 34 [.] 917	" 27.056	37.417	35.389	" 31 583	Probability=1.770
AAIII	3	3		2	9 9	4	3	3			8	. 3	71° 59′ 31″·759

## At XXII—(Continued.)

March 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	as of Ci	rcle-rea	dings, t	elescop	e being	set on	XXIV			Probabilities and
between	108°	288°	118°	298°	128°	808°	138°	818°	148°	828°	158°	838°	General Means.
XXIII &XXI	69 [.] 667	,, 55.167	80°250	62.750	" 68 [.] 333	# 5+ ² 333	" 64 [.] 833	63:417	63.017	66.278	63 [.] 417	во. 00. 11	Probability = 1.872 70° 46′ 5″.114
XXI &	69.722	77:333	58.528	71.250	65.000	78·500	73.083	72.083	77.333	72.389	75.250	68.333	Probability=1.578 49° 29′ 11″.567

#### At XXIII

February and March 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Ci	rcle-rea	dings, t	elescope	e being	set on	XXI			Probabilities and
between	117°	297°	127°	807°	137°	817°	147°	327°	157°	337°	167°	847*	General Means.
XXI &	11	n .	Į)	"	"	"	11	11	"	"	"	11	Probability=1'494
XXII	28.007	40.323	25.420	34.007	31.017	42.283	20.500	30.833	34.083	34.417	40'000	31,520	63° 6′ 33″ 907
XXII &	67.333	52'417	71.046	¿1,000	QT. 283	20.833	57.333	21.083	۲۲٬000	55'750	<b>48</b> .667	59°¢83	Probability=1'992
XXIV	9 333	3- 4-7	8	3 3	94 393	30 333	37 333	J- 3-3	33 4	33 73	2 7	39 203	67° 18′ 57″.012
XXIV &	41'750	52.417	27.861	24.283	45'250	51.750	40'417	61.306	<b>41.02</b> 6	57'000	55.833	45.320	Probability=1.867
XXV	1 7 75	J7	3, 3	3+3-3	13 23	J- <b>7</b> J-	75 4-7	8	8	3, 3	33 373	43 230	46° 56′ 50″·289

#### At XXIV

March 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Circ	cle-read	lings, te	lescope	being	set on	XXVI			Probabilities and
, between	110°	290°	120°	300°	130°	<b>8</b> 10°	140°	820°	150°	830°	160°	340°	General Means.
XXVI&	″ 26.200	" 40'500	" 27:000 8	37.000 3	" 26 [.] 833	" 41.083	26·250	" 34.083	" 32.944	37.111	" 38.51.2	31.200	Probability=1.567 70° 9' 33".310

# At XXIV—(Continued.)

March 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle	•		Means	of Cir	cle-read	ings, te	lescope	being s	et on 3	XXVI			Probabilities and
between	110°	<b>2</b> 90°	120°	800°	180°	810°	140°	820°	150°	830°	160°	840°	General Means.
XXV &	18·333 18	" 1.162	" 21.083	" 5'917	" 20.083	1.162 3	8.611 8	°.167	" 8.917	10.333	" 6.200	11.380 11	Probability = 2.002
XXIII & XXIII	27 [.] 7 ² 3	35.083	27:333	33.750	23.083	35.667	29:306	36.017	24 [.] 667	38.667	27.000	34 ¹ 94	Probability=1.453

#### At XXV

March 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Cir	cle-read	ings, te	lescope	being s	et on I	IIIX			Probabilities and
between	118°	298°	128°	808°	133°	818°	148°	823°	153°	833°	163°	848°	General Means.
XXIII	" 62:167	" "	# 48:417	11	"	" 65'417	# 47:822	(12.000 (1	11	" 61:417	" 67. 200	" "	Probability=1.836
& XXIV	33 207	399.1	40,4.7	9	33 330	23 4-7	47 433	•• ••	د≃ر ∓ر	97-,	عور و	61.283	67° 20′ 58″·297
XXIV &	29.083	19,333	34,333	19.750	28 [.] 000	15.417	23 083	23 [.] 667	22 [.] 833	27.750	19.000	27 [°] 417	$\frac{\text{Probability} = 1.479}{70^{\circ} 2^{\prime} 24^{\prime\prime}.139}$
XXVI & XXVII	24·583	32 556	21.667	30,583	25°500	30.012	29.083 8	28.833	26.017	24,000	27 [.] 750	24.583	Probability = 0.905 37° 59′ 27″.248

#### At XXVI

April and October 1838, observed by Lieutenant T. Renny and Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle		]	Means o	of Circle	e-readir	ngs, tel	escope	being s	et on X	XVIII			Probabilites and
between	105°	285°	115°	295°	125°	805°	135°	815°	145°	325°	155°	335°	General Means.
XXVIII	"	"	"	"	"	"	"	"	# TO: 500	* 0.1.800	" "	11	Probability=1.260
XXAII	15 500	31 333	11 333	19917	3	23 41/	13 303	44 333	12 300	21 033	20 003	31.200	75° 18′ 17″ 958

#### At XXVI—(Continued.)

April and October 1838, observed by Lieutenant T. Renny and Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Circ	le-read	ings, te	lescope	being se	et on X	XVIII			Probabilities and
between	105°	285°	115°	295°	125°	805°	135°	315°	145°	325°	155°	835°	General Means.
XXVII & XXV	56.083	" 49 [.] 083	59.333	" 47 [.] 000	59 [.] 667	" 43°,583	55.350	" 44.‱	" 48 [.] 917	51.833	" 43 [°] 500	" 52 [.] 750	Probability = 1.602 66° 46′ 50″.958
XXV & XXIV	49.750	52.52	53.417	66.750	53.520	69:500	63.750	71.50 8	69.917	63.167	69 [.] 500	63.000	Probability = 2.164

#### At XXVII

March 1838, observed by Lieut. T. Renny with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Cir	cle-rea	dings, t	elescop	e being	set on	<b>xxv</b>			Probabilities and
between	105°	285°	115°	<b>2</b> 95°	125°	805°	185°	815°	145°	825°	155°	835°	General Means.
XXV &	42.083	46.667	39.500	43.083	34.283	44.525	39.583	21.833	35.200	50.000 %	47.583	48·250	Probability = 1.533 75° 13′ 43″.574
XXVI &	37.000	32.417	37 ^{.88} 9	29 [,] 222	38.333	22.667	35 ^{.16} 7	22.750	30 [.] 250	26 [.] 833	27 ^{.8} 33	31.278	Probability = 1.503 58° 38′ 30″.970
XXVIII & XXIX	50.833	56.750	54 [.] 861	62·278	29.320	66.333	91.333	67:083	64.000	71.611 8	60.320	66.944	Probability = 1.621 39° 34′ 1″.785

#### At XXVIII

October 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Cir	cle-rea	dings, t	elescop	e being	set on	XXX			Probabilities and
between	120°	800°	180°	810°	140°	820°	150°	330°	160°	840°	170°	850°	General Means.
XXX &	16.162 "	12.750	13.017	11.012	16.083 1	10.1Q2	10.750	10.000 "	13,200	13.750	14.750	12.250	Probability=0.560 59° 40′ 13″.500

#### At XXVIII—(Continued.)

October 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Cir	cle-read	lings, to	elescop	e being	set on	xxx			Probabilities and
between	120°	800°	130°	810°	140°	320°	150°	830°	160°	840°	170°	350°	General Means.
XXIX &	" 28'917	" 27.000 8	" 26.000 3	" 17'017	" 27:500	" 23.200	" 21. ² 83	" 28 [.] 250	" 27 [.] 667	" 28·167	" 29 [.] 250	" 24.083	Probability = 0.939 68° 45′ 25″.820
XXVII &XXVI	7*333	12'000	14 [.] 667	7.000	13'417	13.750	14.083	14.333	12.283	9.162	10.520	12'417	Probability = 0.743

#### At XXIX

October 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Circ	le-readi	ngs, tel	евсоре	being s	et on 2	XVII			Probabilities and
between	108°	288°	118°	298°	128°	308°	138°	818°	148°	328°	158°	838°	General Means.
XXVII& XXVIII	36·583	" 29 [.] 917	" 28.500	" 31'250	31.083	" 26·500	" 28 [.] 750	,, 24.667	" 27 ^{.8} 33	29.833	" 31·167	32.000 3	Probability = 0.835
X XVIII	45'750	46 [.] 083	44.833	51'417	44'917	48 [.] 417	49.833	51.667	51.333	50.417	51. <b>6</b> 67	50.833	Probability = 0.768 74° 27' 48".922
XXX &	33.833	34 ^{.2} 50	35.417	28.333	35.333	27 [.] 500	35.750	25.833	28.017	26.012	34.750	27.017	Probability=1.085 47° 55′ 31″.229

#### At XXX

October and November 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Circ	le-read	ings, te	lescope	being a	et on 2	XXXII	•		Probabilities and
between	113°	293°	123°	802°	132°	812°	142°	322°	152°	832°	162°	342°	General Means.
IXXX 3	32.417	35.1 <u>8</u> 2	31. ³ 20	" 26·750	33.083 33.083	" 30 [.] 417	" 26 [.] 250	4 25'417	28.417 28.417	″ 29`333	32.417	34·167	Probability = 0.892 68° 2′ 30":465

#### At XXX—(Continued.)

October and November 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Circ	le-read	ings, te	lescope	being s	et on X	XXII			Probabilities and
between	113°	293°	123°	302°	132°	812°	142°	322°	152°	332°	162°	342°	General Means.
XXXI &	10,000 "	" 22.750	17.083 2	" 18·167	" 16·667 8	" 17 ^{.8} 33	" 21.012	19.000	21.320 3	" 22.667	" 20. ² 56	" 16·417	Probability = 0.641 77 4' 19".359
XXIX &	56.320	52.250	62.333	58.250	64.389	58·083	58.833	54.200	55.417	56.512	60.750	57.51.2	Probability = 0.923 45° 51' 58" 032

#### At XXXI

Novr. 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Circ	cle-read	ings, te	lescope	being s	et on	XXIX	-		Probabilities and
between	125°	805°	135°	815°	145°	825°	155°	835°	165°	845°	175°	855°	General Means.
XXIX &XXX	11.283	10.000	8·167	9.000	12.417	6·167	9.250	8.000	2°167	11.667 2	8 10.000	10.000	Probability = 0.768  55° 0' 9".035
XXX &	57.667	59°167	66·278	66.917	58.003	62.333	68.583	63.200	67.750	64.750	67.417	66.833	Probability = 1.091 67° 51′ 4″·100
XXXII & XXV	41.750	39.110	30.555	34.083	36.512	37.750	35.000	36.000	29.667	33.162	35.139	30.420	Probability = 1.015 44° 55′ 34″ 963

#### At XXXII

Novr. 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Circ	le-readi	ings, tel	lescope	being s	et on X	IIIX			Probabilities and
between	115°	295°	125°	805°	135°	815°	145°	825°	155°	835°	165°	345°	General Means.
XXIII & XXV	32.283	37.750	35.200		36 [.] 500	33.333	30°583	25.000	36·417	33.000	31.833	32.083	Probability = 0.934 65° 10′ 33″.222

Note.—XXIII and XXV appertain to North-East Longitudinal Series.

IIXXX

#### At XXXII—(Continued.) Novr. 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms. Means of Circle-readings, telescope being set on XXIII Probabilities and Angle General Means. 115° 295° 125° 305° 135° 825° 835° 165° 845° XXV & Probability=0.85 64.200 61.833 62.283 64.833 59.750 61.750 57.417 57.750 58.283 55.417 56.283 58.217 64° 22′ 59″ 993 XXXI &XXX Probability=1'32 31.833 21.412 32.520 50.412 58.520 50.412 31.662 54.520 54.683 59.162 51.520 18.833 44° 6′ 25″ 945 Novr. 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms. Means of Circle-readings, telescope being set on XXXI Probabilities and Angle between General Means. 109° 289° 119° 129° 829° 159° 839° XXXI& Probability=0.752 22.017 26.583 20.333 22.083 23.833 25.167 22.333 24.000 24.667 29.583 25.583 28.833 IIXXX 70° 41′ 24″.660 XXXII Probability=0.872 17.083 17.500 17.000 10.012 22.500 14.833 15.583 12.520 12.012 13.662 22.750 17.750 & XXIII 64° 55′ 17″ 229 At XXIII Novr. 1838, observed by Mr. C. Murphy with an 18-inch Theodolite by Troughton and Simms. Means of Circle-readings, telescope being set on XXV Probabilities and Angle between General Means. 178° 128° 138° 318° 148° 158° 168° 348° 308° 8589 XXV & Probability = 1.15 8.520 3.200 10.000 14.520 10.200 8.200 15.283 14.520 10.520 14.520 2.014 4.520

Note.—XXIII and XXV appertain to North-East Longitudinal Series.

49° 54′ 10″ 250

## PRINCIPAL TRIANGULATION. TRIANGLES.

No. of	triangle	Station	Spherical Excess	Cor	rections to (	bserved A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Sphe	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
45		XVII XIX I	71 71 71	-1·56 -3·24 -3·05	- '11 + '20 - '09	*	-1.67 -3.04 -3.14	0 , 7 42 12 34 93 86 34 48 11 51 12 36 96	4'9453592,1 5'1173153,8 5'0098779,4	88177.80 131013.31 102300.22	16.700 24.813 19.375
46		XIX I II	2 · 13	+1°26 + °62 + °74	+ '08 - '27 + '19		-7.85 $+1.34$ $+35$ $+93$ $+2.62$	180 0 0.00 67 44 53.04 76 16 11.47 35 58 55.49 180 0 0.00	5'1427169,3 5'1637365,3 4'9453592,1	138904°71 145792°96 88177°80	26.308 52.308
47		I II II	1.36	-2·80 -1·71 - ·80	- ·35 + ·20 + ·15		-3.12 -1.21 -3.12	59 35 8 07 61 58 14 39 58 26 37 54	5'1479144,2 5'1580292,6 5'1427169,3	140577°06 143889°56 138904°71	26.624 27.252 26.308
48		I III IV	.96 .96	-1:07 -:26 -:45	- ·18 + ·18		08 08 08	72 14 24 75 35 55 24 25 71 50 11 00	5.1590215,9 4.9486462,9 5.1580292,6	144218.70 88847.71 143889.56	27°314 16°827 27°252
49		III IV V	2·88 1·25 1·25 1·25	-1.34	+ '30 + '01		-1.78 -1.77 -3.14 -1.04 -5.95	67 18 35.20 48 12 13.58 64 29 11.22	5.1685976,5 5.0760415,7 5.1590215,9	147434°00 119135°61 144218°70	27.923 22.564 27.314

Notes.—1. The values of the side are given in the same line with the opposite angle.

2. Stations XVII and XIX appertain to the Calcutta Longitudinal Series.

No. of	triangle		ical 886	Cor	rections to (	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
50		IV V VI	1.12 1.13 1.13 1.14	" -1:13 -2:11 -1:82	- '39 + '33 + '06	11	-1.22 -1.28 -1.26	50 0 18·10 55 17 42·25 74 41 59·65	5.0685557,3 5.0991918,1 5.1685976,5	117099°68 125658°47 147434°00	22°178 23°799 27°923
51		V VI VII	·86 ·87 ·86	- '80 - '52 - '56	+ '44 - '33 - '11		- '36 - '85 - '67	44 9 41.85 77 31 3.11 58 19 15.04	4.9816613,7 5.1282360,4 5.0685557,3	95865.58 134349.49 95865.58	18°156 25°445 22°178
52		V VII VIII	2.23 - 31 - 31 - 31 - 31	- '37 - '62 - '52	+ '11 - '35 + '24		- 1.88 26 97 28	180 0 0 00 63 6 19 87 43 32 50 56 73 20 49 57 180 0 0 00	5.0971315,1 4.9850343,7 5.1282360,4	134349°49 96612°73 125063°78	23.686 18.298 25.445
53		VII VIII IX	.94 .93 .94	-1.28 -2.42 -1.88	- ·35 + ·27 + ·08		-1.80 -1.80	69 48 26 37 46 31 24 34 63 40 9 29	5.1171545,9 5.0054337,7 5.0971315,1	130964·80 101259·03 125063·78	24.804 19.178 23.686
54		VIII IX X	1.12	+ .75 + .79 + 1.09	+ ·o ₃ - ·ıo + ·o ₇		+ · · · · · · · · · · · · · · · · · · ·	64 32 41.82 54 58 30.47 60 28 47.71	5 1331945,6 5 0907764,0 5 1171545,9	135892.51 135892.51	25°737 23°342 24°804
55		IX X XI	3.45 1.09 1.09	+ '02 + '04 + '06	- '09 + '13 - '04		+ 2·63 - ·07 + ·17 + ·02	58 51 54 81 53 53 37 23 67 14 27 96	5 ¹⁰⁰⁸ 474,5 5 ⁰⁷⁵⁷⁶⁸² ,5 5 ¹³³¹⁹ 45,6	135892.51 136138.44 136138.44	23.890 22.549 25.737
56		X XI XII	3·28 ·84 ·85 ·85	10, — 10, — 10, —	+ '09 - '18 + '09		+ .08 10 + .08 + .08	180 0 0.00 44 37 48.90 64 53 31.98 70 28 39.12	4'9732254,4 5'0834550,3 5'1008474,5	94021°12 121186°72 126138°44	17.807 22.952 23.890
57		XI XII XIII	2·54 ·47 ·48 ·48	+ ·26 + ·15 + ·17	- '05 + '07 - '02		+ '21 + '22 + '15	50 18 40·12 57 22 53·89 72 18 25·99	4 ^{8804913,7} 4 ^{9197257,0} 4 ⁹⁷³²² 54,4	75943°63 83123°87 94021°12	14·383 15·743 17·807
58		XII XIII XIV	1 · 43 · 44 · 44 · 44	+ '78 + '61 + '87	- '02 + '03 - '01	•	+ · · · · · · · · · · · · · · · · · · ·	57 42 48 79 68 11 5 00 54 6 6 21	4 [.] 8990307,6 4 [.] 9397034,5 4 [.] 8804913,7	79 ² 55 [*] 75 87 ⁰ 36 [*] 91 75943 [*] 63	15.011 16.484 14.383
59		XIII XIV XV	1·32 ·48 ·48 ·48	+ ·29 + ·28 + ·84	- ·16 - ·01 + ·17		+ '13 + '27 + 1'01	56 50 23.65 69 1 39.89 54 7 56.46	4 [.] 9131469,3 4 [.] 9605784,3 4 [.] 8990307,6	81874°18 91322°63 79255°75	15.200 12.200 12.200
бо		XIV XV XVI	1 · 44 · 49 · 49 · 49	.00 .00 .01	+ '10		+ '03	52 37 50 95 72 29 0 74 54 53 8 31	4 [.] 9006163,8 4 [.] 9797707,8 4 [.] 9131469,3	79545°64 95448°87 81874°18	15.200 18.022
бі		XV XVI XVII	34 34 34 34	+ '29 + '59 + '47	+ '02 '00 - '02		+ '31 + '59 + '45	180 0 0.00 59 0 28.68 48 41 7.49 72 18 23.83	4.8547636,6 4.7973572,6 4.9006163,8	71575°38 62712°95 79545°64	13°556 11°877 15°065

No. of	triangle		rical cas	Cor	rections to (	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
62		XVI XVII XVIII	" 34 34 34	" + '89 +1'36 + '74	+ ·01 + ·01 + ·01	11	" + '85 + 1'37 + '77	0 / " 59 21 31 50 59 2 13 78 61 36 14 72	4·8451256,5 4·8436724,1 4·8547636,6	70004°44 69770°60 71575°38	13.528 13.529
<b></b>		XVI XVIII XIX	34 34 34	- '19 - '22 - '29	- '10 + '07 + '03		+2·99 - ·15 - ·26	51 36 32 79 71 13 40 34 57 9 46 87	4.8134820,2 4.8955420,2 4.8436724,1	65085.11 18631.62 69440.60	13.314 14.800 13.314
64		XVIII XIX XX	38 38 37	- '76 -2'°5 - '76	+ '02 - '07 + '05		-0.4 4 -2.12 21	67 44 40 81 64 18 42 75 47 56 36 44	4.9091738,1 4.8976001,3 4.8134820,2	81128.27 78992.10 65082.17	15°365 14°961 12°327
65		XIX XX XXI	37 37 37	- '02 - '02 - '02	- ·08 + ·10 - ·08		-3·57 - ·04 + ·08 - ·10	180 0 0.00 44 33 21.17 68 29 16.10 66 57 22.73	4.7913808,2 4.9139299,3 4.9091738,1	61855.86 82021.91 81128.57	11.212 12.234 12.302
66		XX XXI XXII	33 33 33	- :08 - :08 - :06	+ ·02 - ·13 + ·11		-0.06 06 21 + .05	63 41 23 · 19 66 49 25 · 52 49 29 11 · 29	4.8629282,9 4.8738794,7 4.7913808,2	72933°71 74796°18 61855°86	13.813 14.160 11.412
67		XXI XXII XXIII	· 99 · 32 · 33 · 32	+ '72 + '67 + '42	- ·10 + ·20 - ·10		+ '62 + '87 + '32	46 7 20.44 70 46 5.65 63 6 33.91	4°77°4534,7 4°887687°,1 4°8629282,9	58945.89 77212.39 72933.71	11.164 14.654 13.813
68		XXII XXIII XXIV		+ '41 + '53 + '28	+ .00		+ 1.81 + .51 + .34 + .37	71 59 31 90 67 18 56 98 40 41 31 12	4 9343982,0 4 9212455,5 4 7704534,7	85980°16 83415°26 58945°89	16·284 15·798 11·164
69		XXIII XXIV XXV	1'11 '42 '42 '43	+1.00	- ·12 + ·28 - ·16		+ '91 + '91 + 1'46 + '84	46 56 50.78 65 42 10.51 67 20 58.71	4.8330122,4 4.9289772,2 4.9343982,0	68078:85 84913:59 85980:16	12.894 16.085 16.584
70		XXIV XXV XXVI	1.52 .21 .21 .20	+ '50 + '45 + '95	+ '09 - '23 + '14		+ 3.51	70 9 33 39 70 2 23 85 39 48 2 76	5.0001741,5 4.9998468,2 4.8330122,4	100040°10 99964°73 68078°85	18·947 18·933 12·894
71		XXV XXVI XXVII	1.52 .46 .47 .47	- ·o5 - ·17 - ·16	- '10 + '14 - '04		+ 1.00 12 03 03	180 0 0.00 37 59 26.64 66 46 50.46 75 13 42.90	4.8040218,4 4.9780865,2 5.0001741,5	63682·76 95079·42 100040·10	12.001 18.001
72		XXVI XXVII XXVIII	1 · 40 · 37 · 37 · 37	+ ·16 + ·22 + ·05	+ ·03 - ·10 + ·07		-0.38 + .13 + .13	75 18 17 78 58 38 30 72 46 3 11 50	4 · 9322553,1 4 · 8781216,8 4 · 8040218,4	85556°96 75530°38 63682°76	16.302 14.302
73	·	XXVII XXVIII XXIX	·36 ·36 ·37	+2·27 + ·76 + ·61	- '06 + '09 - '03		+0.43 +2.21 + .85 + .58	39 34 3.64 68 45 26.31 71 40 30.05	4'7589891,7 4'9242982,2 4'9322553,1	57410°22 84003°65 85556°96	10.843 12.010
73		XXVIII	.36	+ 76	+ '09		+ .85	68 45 26.31	4.9242982,2	84003.65	

No. of	triangle	Station	Spherical Excess	Cor	rections to	Observed A	ingle	Corrected Plane		Distance	
Circuit	Non- circuit		Sphe	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
74		XXVIII XXIX XXX	30 30 30 30	" + '08 + '15 + '22	+ ·02 - ·05 + ·03	"	+ '10 + '10 + '25	59 40 13:30 74 27 48:72 45 51 57:98	4.8391158,7 4.8868711,4 4.7589891,7	69042°39 77067°47 57410°22	13°076 14°596 10°873
75		XXIX XXX XXXI	33 34 33 1.00	+ '74 + '26 + '37	- '02 + '07 - '05		+ ·72 + ·33 + ·32	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.7963020,0 4.9145877,0 4.8391158,7	62560·76 82146·25 69042·39	11.840 12.228
76		XXX XXXI XXXII	.37 .37 .37	+ '13 + '19 + '27	+ .00 12 + .00		+ ·19 + ·04 + ·36	68 2 30·29 67 51 3·77 44 6 25·94	4 9209843,9 4 9203988,2 4 7963020,0	83365·11 83252·79 62560·76	15°789 15°768 11°849
77		XXXI XXXII XXV	38 38 39	+ '68 + '48 + '38	- ·o5 + ·10 - ·o5		+ ·63 + ·58 + ·33	180 0 0.00 4+ 55 35.21 64 23 0.19 70 41 24.60 180 0 0.00	4:7950568,1 4:9011955,8 4:9209843,9	62381.64 79621.80 83362.11	15.480 12.080
78		XXXII XXV XXIII	33 33 33	+ '09 + '07 + '13	+ ·07 - ·15 + ·08		+1.24 + .16 08 + .21 +0.20	65 10 33.05 64 55 16.82 49 54 10.13	4·8693168,3 4·8684193,0 4·7950568,1	74014°51 73861°69 62381°64	14.018 13.080 11.812

Note.—Stations XXIII and XXV appertain to the North-East Longitudinal Series.

March 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.

# PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

		Station A				Station B		
Circuit No.	Series No.	Name .	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Asimuth at B	Series No.
	xvII	Amúa	0 , " 23 59 56·24	o , " 80 31 44·44	o / // 260 4 20·44	5.0098779,4	o / // 80 11 43 06	XIX
23	" XIX	Lakanpúra	,, 24 2 49 92		217 51 44·80 166 46 31·88		37 57 40·29 346 45 2·62	I I
"	" T	,, Maihar	,,	,,	234 31 25.86	5.1637365,3	54 40 11.17	II
			,,,				30 59 12.24	III
	" " II	" Patra	<b>"</b>	,, .	138 39 15.07	4.9486462,9	318 34 52.86	IV III
24 25	111	Potenda	1	ł .	66 54 37.45	5.1590215,9	332 32 33.34	IV
"	"	"	"	22			314 6 45.97	▼ ′
·	IV "	Dharkána "	,,	80 35 38:29	198 <b>32 26·</b> 07 148 <b>32 6·</b> 85		328 27 10·43	V
26	<b>V</b>	Dágri "	24 51 5.38	80 44 7:31			253 45 9·66 297 54 20·97	VI VII
"	"	"	"	1	181 9 45.30	1 -		<b>VIII</b>

Norm.—Stations XVII and XIX appertain to the Calcutta Longitudinal Series of the South-East Quadrilateral.

•		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
			0 / 1/	0 , 11	0 ' "		0 , "	
ļ	VI	Sárang	24 45 42.20	80 23 46.62	176 14 5.68	4.9816613,7	356 13 36.87	VII
į	VII	Kartár	25 1 29.85	80 22 38 18	254 21 29.50	5.0971315,1	74 30 44.79	VIII
1	"	,,	,,	,,	184 33 2.19	5.0054337,7	4 33 39.42	IX
27	VIII	Marfa	25 7 2.29	80 44 28.64	121 2 10.06	5.1171545,9	300 53 29.19	IX
"	"	"	,,	,,		1	5 35 48.89	X
	IX	Seonda	25 18 9.78	80 24 5.73	245 <b>54</b> 57°57	5.1331945,6	66 4 37.75	X
1	"	,,	,,	,,	187 3 1.67			XI
28	X	Pavia	25 27 17:39	80 46 39.44	119 58 16.07			XI
,,	<b>))</b>	,,	,,	,,			344 33 33.61	XII
	XI	Paprendi	25 37 40.25		234 56 8.44	1		XII
	,,	,,	,,,	,,	184 37 27.85	4.9197257.0	4 37 59.71	XIII
29	XII	Músápúr	1	1	112 25 7.95		292 19 33 24	XIII
,,	,,	,,	,,	,,,			350 6 45.77	XIV
"	XIII	Kánákhera	25 51 20.95				44 12 52.42	XIV
	<b>))</b>	<b>&gt;&gt;</b>	,,	"	1		347 16 27 20	xv
30	XIV	Jafrábád	26 0 43 97	80 38 3.87	113 14 32.79	4.9131469,3	293 8 30.26	xv
,,	,,	,,	,,	,,			345 50 31.48	XVI
	XV	Jehánábád	26 6 3.35	80 24 18.54			40 43 40.28	XVI
	,,	,,	,,	,,			341 37 24.30	XVII
31	XVI	Máwa	26 16 0.74		* *		269 19 0.13	XVII
,,	"	,,	,,	,,	148 46 19.95	4.8436724,1	328 43 23.31	XVIII
,,	. ,,	,,	,,	,,	200 22 53.08	4.8955420,2	20 25 6.92	XIX
	XVII	Dewarsán	26 15 52.89	80 20 41 . 64	210 16 46 01	4.8451256,5	30 19 38.37	XVIII
	XVIII	Jájmáo	26 25 51 . 52	80 27 9.98	257 29 42.63	4.8134820,2	77 34 54 13	XIX
	"	"	<b>33</b> .	"	189 45 1.44	4.8976001,3	9 46 7.32	XX
32	XIX	Namán <b>a</b>	26 28 10.63	80 38 49 28	141 53 37.26	4.9091738,1	321 49 30.21	ХХ
,,	,,	,,,	,,	l	1	1	6. 27 44.26	XXI
	XX	Ráo	l l	80 29 37:44	253 20 14.04	4.7913808,2	73 25 7.36	XXI
	,,	,,	,,	1			9 39 52.81	XXII
33	XXI	Jalhotr	26 41 37.85	80 40 30.88	140 14 33.21	4.8629282,9	320 10 41.19	.XXII (.
"	,,	,,	,,	,,,	186 21 53.97	4.8876870,1	6 22 36:61	xxIII
	XXII	Bakseria	, <b>i</b>	80 31 55.84	249 24 35.21	4.7704534,7	69 29 10.84	XXIII
	"	,,	,,	"		1	357 24 44.08	XXIV
34	XXIII	Etora	26 54 17.85	80 42 5'44			316 43 12.59	
"	"	,,	,,	,,	183 44 59:39	4.9289772,2	3: 45 27:32	<b>XXV</b>
				1		<b>l</b> .		

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
35 "	XXIV  XXV  XXVI  XXVII	Asu ,, Baraoli ,, Nimkár ,, Fatenagar	,,	80 43 6·92 "80 31 30·85		4·9998468,2 5·0001741,5 4·9780865,2 4·8040218,4 4·8781216,8 4·9322553,1	0 51 35·35 321 3 32·09 359 8 10·65 74 21 54·02 358 58 16·08 312 55 4·21	XXV XXVI XXVII XXVII XXVIII
"	XXVIII	Daráwal	27 33 35·96	% 80 31 15·81	172 34 29·11 244 9 37·54 184 29 23·94	4.7589891,7		XXIX XXIX XXX
37 " 38	XXIX XXX XXXI	Sirwaia ,, Parser ,, Bulandpúr	,,	% 80 32 22·98		4.9145877,0 4.7963020,0 4.9203988,2	353 30 17.46	XXXII XXXII XXXII
39	XXXII XXIII* XXV*	Jarúra ,, Kokra Dahlelnagar	27 59 55 94 28 12 7 34 28 4 16 46	% 80 30 35·80		4·8684193,0 4·7950568,1		XXV* XXIII* XXV* XXV*

Note.— Stations XXIII* and XXV* appertain to the North-East Longitudinal Series.

June 1878.

J. B. N. HENNESSEY,

In charge of Computing Office.

#### PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument, &c., in pairs of horizontal lines, the first line of which gives the data for the 1st or the fixed station, and the second line the data for the second or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction, and the height of the 2nd station above or below the first, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results". The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit leveling operations, whenever a junction between the two has been effected. The spirit leveled determinations are always accepted as final, and the trigonometrical heights of stations lying between those fixed by the leveling operations are adjusted—usually by simple proportion—to accord with the latter. In the table the spirit leveled values are printed thus, 429.42 &c., or, when not very exactly identified, thus 429, to distinguish them from the adjusted trigonometrical values. The column in which the mean trigonometrical heights are given is barred across where necessary, as after deduction of Stn. XIII from Stn. XII page 36—L to indicate that one set of adjustment ends and another begins. The trigonometrical heights always refer to the upper mark-stone, or to the upper surface of the pillar on which the theodolite stood; when a spirit leveled height does not refer to either of these surfaces, it is given in combination with a correction, thus \{ \frac{429.42}{+16.5} \text{ and the sum of these two

When the pillar of the station is perforated, the height given in the last column, is that between the upper surface of pillar and ground level mark-stone in floor of passage; otherwise it is the approximate height of the structure, above the ground at the base of the station.

The heights of the initial stations are taken from the Calcutta Longitudinal Series of the South-East Quadrilateral, page 179___, Vol. VI, and are as follows:—

XVII XIX  $2113\cdot3$   $1780\cdot1$  feet above Mean Sea Level at Karáchi.

Astrono	Astronomical Date				ions	Height in feet			Terrestrial Refraction		Station	Height in	Tower		
		Mean of	of Station	Observed	observations		nt	ned Aro	98	of Aro	tht of -1st St feet	above	Level	Pillar or	
1884		Times of obser-	nes	Vertical Angle	ber of	Signal	Instrument	Contained	In seconds	Decimals Contained	Height of 2nd Station – 1st in feet	Trigonometrical Results		Final	۱ م
		vation			Number		a		П	Cop	2nd S	By each deduction	Mean	Result	Height
March	27	h. m. 9 45	XVII	0 / " D 0 12 47.2	4	0*.50	4.75	"							feet
"	21	9 45	I	D o 2 24.0	4	0.20	4.75	1295	93	.072	- 131.0	1982.3	1081.3	1983	2
"	<b>3</b> 0 <b>2</b> 0	8 30 8 30	XIX I	Do 14 17.1	4 4	0.20	4°75 4°75	871	57	.065	+ 200.3	1980.3	1901 3	1903	
" Ap <del>r</del> il	30 2	8 15 8 15	XIX II	E o o 45.6 D o 21 27.9	4	0.20	4°75 4°75	1440	105	.073	+ 471.3	2251.4			
March April	21 2	9 15 9 15	I II	D o 16 21.4	4	0.20	4 [.] 75	1372	111	.081	+ 269.4	2250.2	2251.0	2249	2

Astronor	nical	Date			tions	Height	in feet	0	Terre Refra		tation		feet of 2nd		Tower	
		Mean of	Station	Observed	of observations		nt	ned Aro	ę g	of Arc	Height of 2nd Station — 1st Station in feet	above	Mean Sea	Tevel	5	
1884		Times of obser-		Vertical Angle	ber of	Signal	Instrument	Contained	In seconds	Decimals Contained	Heig Station in	Trigono Res	metrical sults	Final	Height of Pillar	
		vation			Number		Ä		<u>н</u>	C S	2nd	By each deduction	Mean	Result	Heigh	
March April	<b>22</b> 5	. h. m. 9 0	I	o ' " D o 33 11 1 E o 14 22 2	4	o.20	4°75 4°75	1422	153	•107	— 995°1	986.3	202:5	002	feet	
"	2 5	8 o 8 o	III	D o 40 17.2 E o 20 52.1	4	o.20	4°75 4°75	1389	118	·085	-1250.3	1000.2	993.2	993	2	
March April	21 19	10 0	I IV	Do 1 50.0	4	0.20	4°75 4°75	878	75	•085	- 126.5	1855.1	1860.3	1860		
"	5 19	8 45 8 45	IV III	E o 11 33.9	4 +	0.20	4°75 4°75	1425	165	.119	+ 872.0	1865.2	1800 3		1.2	
,, May	5 5	8 30 8 30	V V	E o 951.5	4 4	0.20	4°75 4°75	1177	165	140	+ 590.6	1584.1	1587.4	1588	6.2	
April May	24 5	8 o 8 o	v v	D o 16 57.7	4 4	0.20	4°75 4°75	1457	94	•064	<b>— 269·5</b>	1590.8	1507 4			
April "	19 <b>2</b> 9	9 15 9 15	IV V <b>r</b>	D o 13 36.2	4	0.20		1241	84	.068	- 166.3	1694.1	1691.7	1692	,	
May "	5 1	8 15 8 15	V VI	Do 11 6.0	4 4	0.20		1157	99	.086	+ 101.8	1689.3	1091		3	
" June	5 15	9 45 9 45	VII V	Do 21 6.2 E o 2 37.7	4	0.20		1327	116	.087	- 463.7	1123.4	1122.6	1123		
April June	<b>8</b> 0 <b>1</b> 5	9 30 9 30	VI VII	D o 27 25.6	4	0.20		947	64	.067	- 570.3	1121.2				
Ma <b>y</b> June	5 4	9 30	V	Do 19 4.5	4	0.20		954	89	.093	- 349.8	1237.6	1238.3	1240	5	
"	15 4	9 15 9 15	VIII VII	D o 12 10.6	4	0.20		1236	86	.069	+ 116.1	1238.7				
"	15 18	1	VII IX	Do 16 42.6	4	0.20		1000	63	.063	- 273.6	849.0	851.4	849	+	
<b>39</b>	4 18	1	VIII IX	E o o 30.0 D o 10 30.0	4	0.20		1294	88	·068	- 384.3	853.9				
" " 1836	4 24	8 45 8 45	VIII X	D 0 30 9.5 E 0 13 24.5	4 4	0.20 \$10.20	4°75 \$6°25	1218	114	.093	- 769.7	468.5	475.9	481	17.5	
Novr. " 1839	7 10	3 30	IX X	D o 19 7.1	4 4	0.20		1343	90	.067	- 368.2	483.2	1739		-/ 3	
March	24	*4 36 *4 35	IX XI	D o 20 55.0	1	o. 67	_	1176	55	*047	- 413.7	437.7	437`7	{ <b>427</b> 39	10‡	

^{*} In these instances the chronometer error was not recorded, and hence the times here given have no reference necessarily to the time of day, but are mere chronometer readings. \$ These heights are to be combined with negative signs, because the platform at X, Pavis, had an earthese platform of 11 feet in height temporarily erected over it so as to overlook a temple in the ray to VIII, Marfa. † Not forthcoming. ‡ Above the tower of the fort on which the station is built.

1837		Date			observations	Height	in feet	Αro		estrial action		Station		ı feet of 2: Mean Sea		E
		Mean of Times of obser- vation	Station	Observed Vertical Angle	Number of obser	Signal	Instrument	Contained A	In seconds	Decimals of Contained Aro	Height of 2nd Station — let Station in feet		Trigonometrical Results  By each Mean		Final Result	Maight of Bills of
					4					1			deduction	Mean		<u>                                   </u>
		h. m.		• 1 11				"						,		fe
Novr.	4	6 8 6 8	X XII	Do 7 5.6	4 2	0.00	4°55 4°86	1197	325	.271	_	84.6	391.3			
" 1839 March	26		XI	Do 9 12.0	6						}			408.8	406	2
	26	5 33 5 34	XII	Do 2526.0	8	0.21	4·38 4·88	929	122	.131	_	11.4	426.3			
"	28	5 3	XII	D o 5 6.0	وا	0.40	4.88							_	( 415'62	2
" 1837	28	5 3	XIII	Do 546.9	8	0.40	4.20	750	59	.079	+	7.7	416.2	416.2	1 + 12	1
lovr.	10	4 28	XII	Do 5 12.7	8	0179	4.53	860	<b>y</b> o	104	+	15.1	421'1			
″ 18 <b>39</b>	10	4 31	XI▼	D o 6 26.0	8	0.80	4.86		<b>J</b>	7		<i>3</i> -	7	423.6	423	1
	29 29	7 17	XIII XIV	Do 1 40.2	12	1.20	4·67	783	286	.365	_	2.0	426.0	423	4*3	
,	30		XIV	, , ,		1.20	4.88							}		
"	30	7 19 7 17	XV	Do 1 52.6	12	2.22	4.67	809	268	.332	+	11.7	435.3	435.3	435	
18 <b>37</b> Tovr.	24	3 10	xγ	Do 453.3	12	0.83	4 43	_				_			Ì	
" 1839	24	3 10	XVII	Do 5 24.3	12	1.03	4.86	620	13	.022	+	4.6	439'9	439'9	439	
March	31	4 40	ΧV	Do 6 10.3	8	0.42	4.75	786	22	.028	+	4.5	400:5			
"	31	4 40	XVI	Do 633.6	12	0.12	4.88	70.3		020	'	4 2	439.5	441.1	440	
.pril	1	3 37	XVII XVI	D o 6 22 o	12	0.42	4.67	707	<b>–</b> 26	.036	+	2.0	442.8	, ,	"	
" 1837 Novr.		3 39		D o 6 39.4	13	0.42	4.88						.,			
,,	25 25	4 0	XVII XVIII	Do 3 42.2	10	o. 23	4·28 4·86	692	62	.000	+	24.3	464.2			
" 18 <b>39</b> April	2	3 32	XVI	Do 430.0	8	0.42	4.67							463.0	461'67	
"	2	3 31	XVIII	D o 6 33.6	8	0.12	4.88	689	24	.032	+	20.6	461.7			-
Peb.	9	4 17	XVIII	Do 5 5.4	8	0.12	4.88	6.0		••••				446.6	1	
" 1837	9	4 17	XIX	Do 3 29.1	8	0.28	4.20	643	<b>7</b> 7	120		12.1	446.6	440 0	449	
Jec.	21 21	6 2	XVIII	D o 3 30.0	8	0.00	4.63	780	250	.320	_	22.1	439.6			
1839		5 55	XX	Do 132.1	8	0.00	4.86							440.3	1429·42	1
eb. "	6	6 14 6 17	XIX XX	Do 5 14.4	8	1,52	4.88	801	261	.326	-	5.7	440.0		1+14.2	
,,	8	4 53	XX	Do 4 12.5	8	0.28	4.20	_								
,,	3	4 54	XXI	D o 3 14.0	9	0.42	4.88	611	96	157	-	8.8	431.2	431.2	440	1
18 <b>3</b> 8 Iarch	6	5 18	XX	D o 4 o o	3	0.42	4.79	700	180	• • • •	_	***	406.0			
," 18 <b>3</b> 9	6	5 18	XXII	Do 240.0	4	0.04	4.86	739	100	*244	_	14.3	426.0	400.0		
eb.	2	6 56	XXI	D o o 23.7	12	1.52	4.88	720	383		_	12.0	418.6	432.3	430	
"	2	6 56	XXII	E o 0 49.7	8	1.52	4.67	720	303	.233	_	12 9	410 0			

^{*} Above the summit of the building on which the station is built. † Above the tower of the fort on which the station is built. ‡ Not forthcoming.



Astrono	mical	Date			tions	Heigh	t in feet			estrial action	tation		n feet of 2		or Tower
1839		Mean of Times	Station	Observed Vertical Angle	of observations	Signal	Instrument	Contained Arc	In seconds	nals of ed Arc	Height of 2nd Station — 1st Station in feet	Trigono	Mean See	Level	Height of Pillar or
1099		of obser- vation			Number	Sig	Instru	Con	In se	Decimals Contained	d Stat	Results		Final Result	ght of
					ź					0		By each deduction	Mean		Hei
Jan.	24 24	h. m. 4 42 4 40	XXII XXIII	Do 2 58.1 Do 2 7.5	8 6	0.28	4·67 4·88	582	153	.565	- 7.3	414.0	414.0	429	feet 18
1838 March " 1839	11 11	7 7 7 2	XXII XXIV	E o 131.9	8	0.33	4·46 4·86	824	382	•464	+ 53.2	475`7	468.8	480	
Jan.	23 23	4 40 4 44	XXIII XXIV	Do 250.8	8 8	o·58	4·88 4·58	849	151	178	+ 46.9	461.8	400 0	400	30
"	22 22	4 3 ² 4 3 ²	XXIV XXV	D o 3 57.4	11	o.28	4·58 4·88	672	19	.001	- 16.6	452.3	452.2	464	30
"	21 21	7 31 7 26	XXV XXVI	Do 257.5	12 8	1.52	4·67	988	368	372	+ 21.3	473.5	473 5	486	30
"	17 17	*5 4 *5 3	XXVI XXVII	D o 3 35.6	8 8	o·75	4·67 4·88	629	56	.089	- 17.4	456.1	456.1	469	35
"	16 16	*5 33 *5 30	XXVII XXVIII	D o 6 36.6	8	o·67	4·88 4·54	845	116	•137	+ 33.2	489.6	489.6	{ <b>473</b> '28 { +30	30
"	. 10 10		XXVIII XXIX	D o 4 38 4 D o 4 27 5	8 10	o·75	4°54 4°88	567	25	•044	— 1.Q	501.4	201.7	{ <b>47</b> '61 + 30	30
"	9	*4 35 *4 30	XXIX XXX	D o 4 52.0	8	0.28	4·88 4·50	682	40	.059	+ 7.1	508.8	508.8	{ <b>484</b> '70 { + 24	24
"	8	*3 48 *3 52	XXX XXXI	D o 4 59.4	10	o·75	4.88	618	14	.022	- 2.0	505.8	505.8	504	24
"	7 7	4 40 4 36	XXXI XXXII	D o 4 12.8	10 8	o.2c	4.88 4.42	823	246	•299	+ 32.7	538.2	538.5	536	28
"	6 6	6 7	XXXII †XXV	E o o 59.3	8	1.52	4.20 4.88	616	305	*495	- 22.2	516.0	216.0	512	28
"	5 5		+XXV +XXIII	Do 114.1	8	0.52	4·88 3·42	731	314	·429	+ 5.0	521.9	221.0	519	26

^{*} In these instances the chronometer error was not recorded, and hence the times here given have no reference necessarily to the time of day, but are mere chronometer readings.

Note.—Stations †XXIII and †XXV appertain to the North-East Longitudinal Series.

#### AMUA MERIDIONAL SERIES.

### Descriptions of Spirit-leveled Points.

The spirit-leveled heights given on pages 35—_L to 37—_L, were determined by the operations either of the G. T. Survey or the Revenue Survey; these connections are hereafter indicated in the former case by the letters (G. T. S.), and in the latter by (R. S.) immediately following the name of each station; the surface on which the levelling staff stood is also described.

<b>XI</b> .	or	Paprendi Tower Station,	(₹R. S.);	On a mark-stone found at 13 feet above the tower of the fort, height = 427.39 feet. From this value, 3 feet (the approximate quantity by which the upper mark used in the triangulation is below the mark-stone connected with by spirit-leveling) being subtracted, the height of the upper mark-stone of the triangulation is found to be 424 feet.
XIII	<b>?</b> ?	Kánákhera Tower Station,	,, ,	On the lower mark-stone imbedded at summit of the building on which the tower is raised, height = 415.62 feet. To this value, 12 feet (the approximate height to which the tower was originally carried up) being added, the height of the upper mark-stone of the triangulation is found to be 428 feet.
XVIII	"	Jájmáo Tower Station,	(G. T. S.);	On the mark-stone let into the upper surface of the platform.
XX	22	Ráo Tower Station,	(R. S.);	On the mark-stone imbedded at the level of the ground, over which the platform has been built.
XXVIII	"	Daráwal Tower Station,	(G. T. S.);	
XXIX	"	Sirwaia Tower Station,	<b>33</b>	On the mark-stone imbedded at the level of the ground, over which the tower has been built.
XXX	,,	Parser Tower Station,	**	)

For further particulars of these stations, see pages 5_L, to 7_L,

July 1878.

J. B. N. HENNESSEY,

In charge of Computing Office.

### AMUA MERIDIONAL SERIES.

# PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

### At XXVI (Nimkár)

Lat. N. 27° 21′ 8″.09; Long. E. 80° 31′ 30″.85 = 5 22 6.1; Height above Mean Sea Level, 486 feet. April 1838; observed by Lieutenant T. Renny with Troughton and Simms' 18-inch Theodolite No. 1.

Star observed
Mean Right Ascension 1838:0
Mean North Polar Distance 1838:0
Local Mean Times of Elongation, April 2

a Ursæ Minoris (West and East).

1h 1m 38s
1° 33' 16" 72

Western 6h 16m
Eastern 18 20

3			s of		ACE LEFT	FACE RIGHT
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation Ref. Mark — Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star  Reduction in Arc to Time of Elongation Reduced Observat Ref. Mark—Sta
Apr.	2	W.	0 , 103 28 & 283 28	- 0 31 18 67 14 43 31 28 33 18 32 33 4 67 43 34 33 17 50 46 5	+ 0 12 95 0 20 54 1 53 09 2 6 44 - 0 30 65 72 67 79 71 58 71 06	31 10 83 5 32 0 1 83 69 64 6
"	2	E.	103 28 & 283 28	- 3 59 55.50 32 39 60 7.50 3 11 61 5.00 0 36	- 1 3.60 - 4 0.59.10 0 52.93 0 0.61 61.61 65.02	0 45 50 14 41 0 12 90 58 4
,,	8	w.	113 28 & 293 28	- 0 31 10 50 0 40 31 7 17 2 43 31 31 33 21 17 31 41 00 23 43	+ 0 0.03 0 0.44 0 27.08 0 33.61	31 10.33 8 32 0 4.36 65.0
,,	4	w.	123 28 & 303 28	- 0 31 36.00 21 32 31 29.83 18 12 32 31 8.83 0 43	+ 0 27 ·81	31 8.67 8 22 0 4.19 64.4 31 10.00 8 37 0 4.45 65.5

ate	_		k of		F	CE LEFT	. FACE EIGHT
Astronomical Date		Elongation	Zoros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Interval in Time from Elongation	Reduction in Arc to Time of Elongation  Reduced Observat Ref. Mark—St at Elongation	tar Die of Paudings Arc to Time of Ref. Mark-Star
Apr.	5	W.	313 29 & 313 28	0 , "  - 0 31 20.83 31 18.83 31 10.00	m 8 14 54 12 12 2 13 3 52	+ 0 13 · 31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<b>&gt;&gt;</b>	5	E.	133 29 & 313 28	- 4 0 31°50 0 35°83 0 59°67 0 59°00	21 2 19 4 3 56 2 10	- 0 26.44 - 4 0 57.5 0 0.93 50.0 0 0.28 59.2	56 0 46 83 10 42 0 6 85 53 6
"	6	<b>W</b> .	153 29 & 333 29	- • 31 9.33 31 6.83 31 19.17 31 28.33	5 38 3 44 16 6 18 31	+ o t'90 - o 30 67'4 o 0'84 o 15'52 o 20'49 65'9 67'8	199     31 11.20     14 9     0 12.00     59.5       65     31 1.17     4 38     0 1.20     59.8
,,	6	E.	113 28 & 293 28	- 4 0 59°50 1 0°83 0 50°00 0 47°17	4 39 2 52 12 38 14 40	- 0 1'30 - 4 0 60'0 0 0'49 61'3 0 0'2'88 60'0	132     042.50     15 12     013.84     56.3       156     054.33     421     01.14     55.4
"	7	w.	143 29 & 323 29	- 0 31 7 50 31 6 33 31 31 33 31 35 83	5 9 3 3 19 34 21 23	+ o 1.58 - o 30 65.5 o 0.56 65.5 o 22.89 68.5 o 27.34 68.5	77 31 12 00 12 48 0 9 82 62 1
"	7	E.	123 29 & 303 28	- 4 0 40.67 0 46.50 0 57.83 0 54.83	16 20 14 25 2 30 4 22	- 0 15.60 - 4 0 56.	194 0 54'33   5 22   0 1'73   50'0
,,	8	Е.	143 29 & 323 29	- 4 0 37 67 0 38 83 0 56 50 0 54 50	17 56 15 32 1 32 3 33	- 0 19.23 - 4 0 56.	128     0 53.83     5 59     0 17.30     55.9       0 40.00     16 59     0 17.30     57.3
"	9	Е.	153 29 & 333 29	- 4 0 39 50 0 40 17 0 58 00 0 58 83	19 8 17 45 3 30 1 55	- 0 21 '91 - 4 0 61 '. 0 18 '84 59' 0 0 '74 58' 59'	0 51 50 9 52 0 5 83 57 3.

## Abstract of Astronomical Azimuth observed at XXVI (Nimkár) 1838.

## 1. By Eastern Elongation of a Ursæ Minoris.

Face	<b>L</b>	${f R}$	L	R	${f L}$	${f R}$	L	R	L	${f R}$	${f L}$	R
Zero	103°	283°	118°	293°	128°	803°	183°	813°	143°	32 <b>3°</b>	153°	333°
Date	Арг	il <b>2</b>	Apı	ril 6	A p	ril 7	April 5 April 8		ril 8	April 9		
	"	"	"	"	"	11	"	n .	"	n	"	"
Observed difference	59.10	56.87	60.80	56.01	56.57	56.41	57.94	53.16	56.90	56.18	61.41	57.84
of Circle-Readings,	60.43	58.40	61.33	56.34	58.94	56.06	57.26	53.68	53.28	55.98	20.01	57:33
Ref. M.—Star	61.61	54.03	59.26	55.47	58.30	54.81	60.60	54.55	56.64	57:30	58.74	58.64
reduced to Elongation	65.03	53.59	60.05	56.66	55.97	53.38	59.58	53.54	55.36		59.05	56.78
Means	61.24	55.43	60.43	56.13	57.35	55.24	58.85	53.65	55.22	56.49	59.55	57.65
	0 1 1	,		"		"	1	"	,	,	,	,
Means of both faces	- 4 0 58	·63	58	28		29		25		OI.	58	· 60
Az. of Star fr. S., by W.	181 44 54	.86	56	14	56	44	55	87	56		57	. 1 I
Az. of Ref. M. "	177 43 56	23	57	86	60	15	59	62	ნი ე	76	58	· 5 1

# 2. By Western Elongation of a Ursæ Minoris.

L .	R	L	R	L	R	L	R	L	R	L	${f R}$
103°	283°	113°	<b>2</b> 93°	123°	80 <b>3°</b>	133°	313°	143°	323°	158°	333°
Арг	ril 2	Ap	ril 8	Ap	ril 4	Ap	April 5 April		ril 7	7 April	
"	"	"	n	"	n	11	"	"	"	n	"
65.72	71.37	70.47	68.30	68.10	66.36	67:52	63.77	65.92	63.01	67:43	61.05
				99.98	04.48	68.41 60.60	63.63	05.77 68.44			59·50 59·88
71.06	65.12	67.39	63.21	68.80	65.91	99.11	64.30	68.49	61.99	67.84	Q1.52
69.04	67:39	67.21	65.40	68.47	65.28	68.77	64.05	67.16	62.27	66.53	60.65
<b>6</b> 1 1	,		<i>,</i> ,	<del></del>	'n		"		"		"
<b>-</b> 0 30 68	. 22	66	.30			66	<b>.</b> 41	64	·71	63	44
178 15 5:31 177 43 57:09		4 97 58 67		4.63 57.61		4°30 57°89		3 · 73 59 · 02		3·97 60·53	
	103°  Apr  65.72 67.79 71.58 71.06  69.04  - 0 30 68 178 15 5	103° 283°  April 2  " " 65.72 71.37 67.79 69.00 71.58 64.03 71.06 65.15  69.04 67.39  - 0 30 68.22 178 15 5.31	April 2 Ap  " " "  65.72 71.37 70.47  67.79 69.00 66.73  71.58 64.03 64.25  71.06 65.15 67.39  69.04 67.39 67.21  - 0 30 68.22 66  178 15 5.31 4	April 2 April 8  " " " " "  65.72 71.37 70.47 68.20 67.79 69.00 66.73 65.97 71.58 64.03 64.25 63.90 71.06 65.15 67.39 63.51  69.04 67.39 67.21 65.40  - 0 30 68.22 66.30 178 15 5.31 4.97	April 2 April 8 April 2 April 8 April 2 April 3 April 2 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 4 April 2 April 3 April 3 April 4 April 2 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April 3 April	April 2 April 8 April 4  " " " " " " " " " " " " " " " " " "	April 2 April 8 April 4 April 2 April 3 April 4 April 2 April 8 April 4 April 2 April 8 April 4 April 2 April 8 April 4 April 2 April 8 April 4 April 65.72 71.37 70.47 68.20 68.19 66.36 67.52 67.79 69.00 66.73 65.97 69.98 64.48 69.90 71.58 64.03 64.25 63.90 66.91 65.55 68.54 71.06 65.15 67.39 63.51 68.80 65.91 69.11 69.04 67.39 67.21 65.40 68.47 65.58 68.77	April 2 April 8 April 4 April 5  " " " " " " " " " " " " " " " " " "	103° 283° 113° 298° 123° 803° 138° 813° 143°  April 2 April 8 April 4 April 5 Ap  " " " " " " " " " " " " " " " " " " "	April 2 April 3 April 4 April 5 April 7  " " " " " " " " " " " " " " " " " "	103° 283° 113° 293° 123° 303° 138° 313° 143° 323° 158°  April 2 April 8 April 4 April 5 April 7 April 65:72 71:37 70:47 68:20 68:19 66:36 67:52 63:77 65:92 63:01 67:43 67:79 69:00 66:73 65:97 69:98 64:48 69:90 63:93 65:77 62:18 65:99 71:58 64:03 64:25 63:90 66:91 65:55 68:54 64:21 68:44 61:90 63:65 71:06 65:15 67:39 63:51 68:80 65:91 69:11 64:30 68:49 61:99 67:84  69:04 67:39 67:21 65:40 68:47 65:58 68:77 64:05 67:16 62:27 66:23

## At XXVI (Nimkár)—(Continued).

							• •	~
	(by Eastern Ele	ongatio	n	•••	•••	•••	177 43	58.86
Astronomical Azimuth of Referring Mark	$\begin{cases} \mathbf{by} \ \mathbf{Western} \end{cases}$	"	•••	•••	•••	••	<b>"</b>	58.47
	( Me	ean	•••	•••	•••	•••	"	58.67
Angle Referring Mark and XXVIII (Daráwa	al) see below	•••	•••	•••	•••	+	- 1 14	28.99
Astronomical Azimuth of Daráwal by observ	vation	•••	•••	•••	•••	•••	178 58	27.66
Geodetical Azimuth of ,, by calcul	lation from that	adopte	ed (Vol	. II, pa	ge 141	) at		
Kaliánpur, see page 33 an	te	•••	•••	•••	•••	•••	178 58	23.01
Astronomical—Geodetical Azimuth at XXVI			•••	•••	•••	+	•·	4.65

## At XXVI (Nimkár)

### April 1838; observed by Lieutenant T. Renny with Troughton and Simms' 18-inch Theodolite No. 1.

Angle			Me	ans of C	ircle-rea	dings, t	elescope	being se	et on <b>R</b> .	М.			General Mean
between	283° 28′	10 <b>8° 28</b> ′	<b>298° 28′</b>	118° 28′	808° 28′	12 <b>3°</b> 28′	31 <b>3° 2</b> 8′	188° 28′	323° 29′	1 <b>43° 2</b> 9′	333° 29′	15 <b>3°</b> 29′	Other Mean
R.M. & XXVIII	28°42	30°17	28:50	″ 30°58	29:00 8	30°58	29°50	27:83	27:58	29°50	27 42	28°75	1° 14′ 28″·99

July 1878.

J. B. N. HENNESSEY,

In charge of Computing Office.

#### AMUA MERIDIONAL SERIES.

#### ALPHABETICAL LIST OF PROPER NAMES.

The major portion of the text of this Series having been printed prior to 1871, the spelling of Indian proper names occurring therein was necessarily in accordance with the rules introduced by Colonel Everest for use in the Survey Department. Subsequently the Government issued a modification of these rules, but as it was not desirable to introduce a change of system in the middle of the publication, Colonel Everest's method was adopted throughout the Series, excepting in the Addendum, beginning with page 9*____, which, being printed only recently, is in accordance with the Government method. Now that the publication of the Series is finished, it appears desirable to give the proper names in question by both systems of spelling; this is accordingly done in the following table, where the first column of each pair states the spelling adopted and the second column gives the corrected orthography as required by Government rules. Where the methods are identical the second column is left blank.

Овтно	OGRAPHY	Овтн	OGRAPHY	Овтносварну					
By old or Survey rules	By new or Government rules	By old or Survey rules	By new or Government rules	By old or Survey rules	By new or Government rules				
Alíganj Amarpatan Amúa Asu Badaosa Bakseria Banda Baraoli	Aliganj Amarpátan Amua Badausa Bánda Barauli	Gházípúr Gúmti Haidarábád Harha Jafrábád Jájmáo Jalhotr Jarúra	Gházipur Gumti Haidarabad Jáfrabad Jájmau Jhalotar	Máwa Mirzapore Músápúr Nagode Namána Nimkár Pailáni Panna	Mirzapur Músapur				
Bindki Bindráchal Bírapáhár Bulandpúr Cawnpore Chitarkoti Chúnba	Vindhyáchal Bírapahár Bulandpur Chitarkot	Jehánábád Jubbulpore Kaimúr Kánákhera Kartár Khairábád Kokra	Jahánabad Khairabad	Paprendi Parser Patra Pavia Pilibhít Potenda Ráo	Rau				
Dágri Dahlelnagar Daráwal Dewarsán Dharkána Ethwáñ	Ethwán	Kora Koti Lakanpúra Lakna Lassípúr Macherhata	Kothi Lakhanpura Lassípur Machhrehta	Rasúlábád Rewah Ságar Sandaila Sárang Sarh Salempúr	Rasúlabad Saugor Sandíla Sárh Salímpur				
Etora Fatenagar Fatepúr Ganges	Fatehnagar Fatehpur	Mádhogarh Mahamdi Maihar Marfa	Muhamdi Marpha	Seonda Sirwaia Siwaganj Terai	Sihonda Síwáganj Tarái				

August, 1882.

J. B. N. HENNESSEY,
In charge of Computing Office.



#### INTRODUCTION.

The Karára Series is the fourth in order—reckoning eastwards from the Northern Section of the Great Arc—of the Meridional chains of triangles included in the North-East Quadrilateral. It emanates at the side Karára-Marwás of the Calcutta Longitudinal Series—in Baghelkhand, south of the river Son, (Soane)—and follows the meridian of Karára, 81° 18′, as closely as the nature of the country permitted. It spans a meridional distance of about 250 miles, and though commenced in the field season of 1837-38 was not brought to a close until 1844-45.

For the first 110 miles of its length, the Series is carried as a double chain of triangles traversing portions of the Districts of Allahabad, Banda and Fatehpur, and of the Native States of Rewah, Soháwal and Panna. The first 90 miles are situated on the Kaimúr range and the high land which, generally speaking, forms the southern watershed of the Gangetic plain between the meridians of 81° and 82°: the remaining 20 miles cross the lower end of the Doáb between the Jumna and the Ganges. The Series is thereafter continued as a chain formed for the most part of single triangles, through portions of the Districts of Rae Bareli, Bara Banki, Sitapur and Partabgarh, in the Province of Oudh, and it terminates at the side Khánpur-Mási of the North-East Longitudinal Series, in the plains at the feet of the Himalayan Mountains.

In January 1838 Lieutenant Jones of the Bengal Engineers, who was then employed on the measurement of the Sironj Base-Line, was directed by the Surveyor General to organize a small native establishment and make all other necessary preparations with a view to commencing the Karára Series before the close of

the current field season. Owing to the paucity of officers available only one assistant could be attached to the party.

The party arrived at Karára on the 1st of March, when Lieutenant Jones and Mr. Scully immediately commenced selecting stations for the required triangulation. In those early days of the survey the opinion was generally held that the links composing a chain of principal triangles should be the fewest possible, and therefore that the sides of the triangles should not be less than 20 miles in length. This restriction, coupled with the prescribed

conditions for securing symmetry, hampered Lieutenant Jones greatly and materially retarded his progress. Thus, writing to the Surveyor General on the 18th May, he reports that "both the result of a minute examination of the ground as far as 60 miles to the north of "Karára and the repeated failures I have met with in my attempts to procure good and "symmetrical triangles compel me to state that I do not expect to succeed in producing such "work as I could wish, and as I feel that you will expect from me". Of one side Kaimúr-Jaliádhar, the shortness of which—seventeen miles—seems to have been a source of considerable concern to him, he says "it was not adopted until I had used every endeavour "during six weeks to get a better one,—until I had myself visited every part of the range "that appeared to offer the remotest chance of success, and cleared much of the heavy jungle "which considerably increases the difficulty of finding two points on this range mutually "visible and yet sufficiently distant". Eventually these difficulties led him to recommend the extension of the "work to the northward by a double series or succession of polygons using short sides"; this was assented to by the Surveyor General as being "very feasible and proper". Five principal stations had been selected by the commencement of June, when the rainy season commenced and sickness broke out in the camp. Lieutenant Jones thereupon proceeded to recess quarters at Allahabad.

Season 1838-39.

PERSONNEL.

Lieut. W. Jones, Bengal Engineers, 1st Asst. Mr. J. Scully, 1st Class Sub-Assistant.

Lieutenant Jones marched out of Allahabad on the 1st October; but before he had fairly resumed work, the whole camp was seized with jungle fever which compelled him to return to Allahabad. Mr. Scully fell a victim to the disease, and died on the 18th November: Lieutenant Jones himself and the entire

native establishment were reduced to such a state of prostration as to leave the Surveyor General no alternative but to suspend the operations, and direct Lieutenant Jones to proceed when sufficiently recovered to join him at Kaliána, where he might be suitably employed in learning the use of the Great Astronomical Circles which were employed on the Great Arc in obtaining determinations of latitude for geodetic requirements; one of these instruments was then being employed there, simultaneously with another at Kalianpur, in determining the differential latitude, or arc of amplitude between the two stations.

At the commencement of the field season of 1839-40 Lieutenant Jones again proceeded to resume the Karára Series, with the aid of two assistants, Messrs. C. Lane and J. W. Rossenrode; but on the third march from the Head Quarters in Dehra Dún he was taken so seriously ill with jungle fever, that he had to abandon the undertaking, take sick leave, and eventually resign his appointment in the Survey Department.

During the recess of 1841 Captain R. Shortrede—of the Bombay Army—was appointed

Season 1841-42. PERSONNEL.

Captain R. Shortrede, 2nd Bombay European Regiment, 1st Assistant. Babu Ramdial De, 3rd Class Sub-Assistant. Mr. D. Kirwan, do. do.

to conduct the Series, and to organize an establishment for the resumption of the work from the point where it had been left by Lieutenant Jones three years previously. The party left the Head Quarters in Dehra Dún early in October; but, owing to various delays and mishaps, it did not reach the first station of operation, Jaliadhar, until the 8th of February, when

Digitized by Google

the most favorable season of the year for observing had already gone by, and the opportunity was thus lost for pushing the work across a malarious tract of country in which an outbreak of sickness might at any time compel the party to leave the field. The remainder of the month was spent in clearing hill summits of forest. The next month was for the most part spent at the station of Marwas, where Captain Shortrede hoped to commence the observations of the principal angles; but the haziness of the atmosphere rendered all the signals both lamps and heliotropes—to be wholly invisible. Captain Shortrede therefore moved on to Karára, where the atmosphere proved to be even worse than at Marwás, so that no terrestrial angles could be observed. "On some days", wrote Captain Shortrede, "I could scarcely see the hill at about two miles distance on which I had the referring-mark". On one day the Marwas heliotrope was seen, but it was flaring and unsteady to such a degree that not a single satisfactory measure of the angle between it and the referring-mark could be got. A complete set of angles between a referring-mark and a circumpolar star was however measured here, in order to obtain a direct astronomical determination of the azimuth at Karára, to be employed as the fundamental azimuth of the Series in lieu of the value of azimuth which had been brought up from Sironj through the Calcutta Longitudinal Series. It consisted of two measures of the angle between the mark and the star on each of 12 'zeros', or settings of the horizontal circle of the principal theodolite, Troughton and Simms' 18-inch No. 1.* Complete sets of observations were taken at both elongations of the star, and very satisfactorily; but they form the sum total of the work of final observing which was accomplished during this season. They were concluded on the 8th of April, when Captain Shortrede proceeded to recess quarters at Allahabad, reporting that in the existing state of the weather and with a sick list continually increasing (he had already lost 7 men of his establishment, and had 20 others sick in hospital) he felt that it would be an unwarrantable exposure of human life to remain longer in the field, and that it was his duty to move for the recess season into Allahabad, where the sick might have a better chance of recovery.

In the following field season the party, strengthened by Mr. J. W. Armstrong—who

Season 1842-43.
PERSONNEL.

Captain R. Shortrede, 2nd Bombay European Regiment, 1st Assistant.

Mr. J. W. Armstrong, 1st Class Sub-Assistant.

Babu Ramdial De, 3rd do.

Mr. D. Kirwan, do. do.

had acquired considerable experience in the principal triangulation, having been employed for some time on the Rangír Series—left Allahabad on the 15th of November 1842, and made such good progress that by the end of the field season all the stations south of the Jumna had been selected, and the principal observations had been completed

for a distance of about 65 miles from the side of origin.

But the general design of the triangulation as laid out by Captain Shortrede differed materially from what had originally been intended by Colonel Everest, in that it consisted of a continuous net-work of triangles in which mutual observations were taken between all stations—however far apart—that happened to be mutually visible, instead of forming a succession of simple polygonal figures in which the mutual observations were restricted to the

^{*} For a description of this instrument see pages 61 to 64 of the Appendices to Vol. II, and for an account of its peculiarities see page 96, and Appendix No. 4 of the same volume.

stations lying contiguous to each other. Theoretically of course the net-work is the best, as it ties the triangulation together more thoroughly; but practically it is far the most trouble-some and tedious, to execute originally, and to treat eventually in the course of the general reduction of the triangulation; it is moreover very variable in its influence, tending to strengthen some portions of the net-work much more than other portions. For these reasons it had been deliberately rejected by Colonel Everest in favour of the simpler system of successive independent geometrical figures, which had been introduced on all the other chains of triangles executed up to that time, and has since been uniformly adopted.

On the termination of the field season the party retired to recess quarters at Allahabad where it arrived on the 2nd of June.

Field operations were resumed on the 1st November, Captain Shortrede having mean-

Season 1843-44.
Personnel

Captain R. Shortrede, 2nd Bombay European Regiment, 1st Assistant. Mr. J. W. Armstrong, 1st Class Sub-Assistant. ,, D. Kirwan, 2nd ,, ,, Babu Ramdial De, 3rd ,, ,, while suggested that the triangulation should be extended over the plains to the north as a chain of single triangles, thus departing not only from his original net-work which had become quite impracticable, but from the simple polygonal form which might have been adopted. Captain Waugh, who had then succeeded Colonel Everest as Sur-

veyor General, directed that the polygonal system should be adhered to as far as practicable; but that if much progress had already been made in laying out the Series as a chain of single triangles, it would not be right to incur the expense and delay which the abandonment of work already performed would occasion; otherwise, as there was no special difficulty in carrying the polygonal system over the country in which the operations were being conducted, he particularly wished that that system should not be departed from.

The selection of stations for a principal triangulation over a perfectly level plain more particularly when richly cultivated and covered with towns, villages and trees—is, however, an undertaking which requires considerable practical experience, so that surveyors who have been operating for years with great success in a hilly country, may find themselves completely baffled and unable to advance, when they enter on an extensive plain covered with obstacles to distant vision and wholly devoid of commanding eminences. Thus in the early days of this Survey some years elapsed before the most appropriate method of operating in such plains was fully elaborated, as will be seen on reference to Section 3 of Chapter II of Volume II which gives a historical sketch of the successive methods adopted for the selection of stations. Captain Shortrede and his assistants had not as yet become sufficiently acquainted with the proper methods of procedure, and thus the selection of stations and the clearing of the lines between them proceeded very slowly; thus, during this season only five new stations were selected and prepared, by the construction of a tower* at each, as points of observation, and of these stations two were afterwards rejected; the measurement of the principal angles was correspondingly retarded, observations being taken at three stations only, viz., Lálapur, Bagála and Pabhosa.

^{*} Note.—The average height of these five towers was 32 feet; the average time occupied in their construction was a month and twenty days; and their average cost 440 Rupees.

Captain Waugh, having called for copies of the angle books containing the observations of the last two seasons, found that Captain Shortrede had departed from the system of observing which had been introduced by Colonel Everest and was then generally practised in this Survey,* and of which it was a leading feature that two or more observations of every angle should be made at each zero-setting of the azimuthal circle, and the mean taken, the whole being recorded separately from the observations at the other zero-settings. Captain Shortrede took only one observation of an angle at each zero-setting, and he combined the pairs of single observations which were taken at 180° apart—with reversed faces—into one, as if both had been taken on a single zero. By this means his observations escaped criticism, as they were never repeated on the same divisions of the circle, and they became to all appearances much more accordant, having been combined together in a way that—as it so happened t—concealed a large portion of the instrumental error, which was obviously objectionable.

Captain Waugh moreover found that the reduction of the net-work of triangulation, which has already been mentioned, would require the simultaneous solution of about 200 equations of condition, the labour of which would be quite out of proportion to the value of the results; he therefore directed the exclusion of certain stations and the omission of all observations which were redundant, thereby reducing the principal triangulation of the Series to the form in which it now appears; all redundant stations were treated as secondaries.

In order to expedite the completion of the Series, Captain Waugh deputed a second

Season 1844-45. PERSONNEL.

Captain R. Shortrede, 2nd Bombay Euro-pean Regiment, 1st Assistant. Mr. J. W. Armstrong, 3rd Principal Sub-Assistant. Mr. D. Kirwan, 2nd Class Sub-Assistant.
"J. B. N. Hennessey, 3rd Class Sub-

(Captain J.S. Du'Vernet, 2nd Madras European Regiment, 1st Assistant.

Mr. J. Mulheran, 1st Class Sub-Assistant.

W. Glynn, 2nd ,, ,,

attention to symmetry and elegance".

party, under Captain J. S. Du'Vernet, to operate at the northern end during the field season of 1844-45, commencing at a side of 'the North Connecting Series'—now known as the North-East Longitudinal Series-which had been established during the previous field season, in close proximity to the Karára meridian. He also directed the abandonment of polygonal figures and the adoption of single triangles, in both sections of the Series, "whereby the operations will be greatly accelerated, although this object will be only obtained at the sacrifice of some degree of precision"; he enjoined however that the single triangles were to be laid out "with every

The direct distance between the parallel up to which the triangulation had been completed, and the side of the 'North Connecting Series' on which it was intended to close, was about 160 miles. In this distance about 25 miles had been already prepared in the southern section by the construction of tower stations, and opening the lines between them, during the previous field season. In the northern section however no preparations had been made; nevertheless Captain Du'Vernet succeeded in carrying his triangulation down to the side Sora-Janai, thus completing a chain of 15 triangles which extended over a

^{*} For full particulars of this system see Section 2 of Chapter II, Volume II, and for a brief outline see Section 1 of Chapter II of Volume VII.

[†] For an explanation of this see page 96 and Appendix 4 of Volume II.

direct distance of about 90 miles in a single field season, and executing much more than half the amount of work which remained to be accomplished.

In the southern section matters did not at first progress equally satisfactorily. When the better part of the field season was over, Captain Shortrede's services were placed at the disposal of the Bombay Government for other duties, and the charge of the party was made over to Mr. J. W. Armstrong. He set to work with great vigour to complete this section by carrying it up to the side to which the northern section was being brought down by Captain Du'Vernet; and by dint of great perseverance, and continuing to operate in the field until the middle of July, long after the hot weather had set in, he succeeded not only in accomplishing the task which he had undertaken, but in revising some angles of which the previous measures were discordant and unsatisfactory, and in improving a group of single unsymmetrical triangles by converting it into a tetragon. He also observed an azimuth of verification at Pabhosa.

The 18-inch Theodolite by Troughton and Simms which had hitherto been used by Captain Shortrede, was replaced at the commencement of this season by an 18-inch Theodolite by Cary, which had originally been obtained from the Madras Observatory and is described at page 68 of the Appendices to Volume II. But this instrument being also deemed unsatisfactory was replaced, in the month of April, by Harris and Barrow's 15-inch Theodolite, which had given very satisfactory results in Mr. Armstrong's hands on the Rangír Series, and is described at page 72 of the Appendices to Volume II.

The measurement of the principal angles in the northern section was executed by Captain Du'Vernet, with Saiyad Mir Mohsin's 18-inch Theodolite, described at page 67 of the Appendices to Volume II.

By the completion of the Karára Series the circuit of triangles which is formed by the Northern Section of the Great Arc and the Karára Series, and the sections of the two longitudinal chains at their extremities by which the two meridional chains are connected together, was also completed. The values of the closing errors as derived from the calculations of that time-which however were only approximate and preliminary to the final reductions—were small in latitude and longitude, but so large in side and azimuth that Captain Waugh proceeded in person to the station of Sora, at the side of junction between the two sections of the series, and determined an azimuth of verification there, by astronomical observations with the theodolite used by Captain Du'Vernet. The results led him to the conclusion that the southern portion of the Karára Series was the more defective of the two. Still however he was of opinion that the closing errors were "evidently of an accu-"mulative character, arising in fact from a want of minute precision in the instrumental "means employed, and therefore only to be remedied by a revision of the work with superior "means". The errors however were insignificant from a geographical point of view, and would exercise no effect on the Indian Atlas; they were also too minute to influence local topographical and revenue survey operations. Thus the Surveyor General, though distressed by their magnitude, concluded that he would not be "justified in recommending a revision "of the work, because an urgent necessity exists for extending the trigonometrical opera"tions over other parts of the country remaining to be triangulated".

On the completion of the Simultaneous Reduction of the North-East Quadrilateral, it was found that the errors which had actually been dispersed over the Karára Series, between the origin Karára-Marwás and terminus Khánpur-Mási, were as follows:—

In side   
{ Logarithm ... ... + 0.000,0508,7 } giving a ratio of about 
$$7\frac{1}{3}$$
 inches per mile.  
, Latitude ... ... + 0".826  
, Longitude ... ... + 0.047  
, Azimuth ... ... - 7.833

The trigonometrical determinations of the heights of the stations of this Series above the mean sea level, have been corrected by connecting the stations, wherever possible, with the lines of spirit levels which have been executed of late years in the course of operations in the Trigonometrical and the Revenue branches of the Survey Department. A list of the stations which have been so connected will be found on page  $55-\mu$ ; a statement of the several sections into which the Series is divided, as well as the method of adjustment employed is detailed on page 39 of Part I of Volume VII. It will here suffice to state that the spirit levels show that occasional errors of a magnitude which reaches a maximum of 7.7 feet have been made in the trigonometrical determinations of differences of level between contiguous stations; but in the long run these errors have a tendency to cancel each other, the total error generated between the sides of origin and terminus being less than the maximum single error.

#### Secondary Triangulation.

In the southern portion of the Series the principal stations are all situated on hills, and here therefore the secondary triangulation consists of the measurement of angles at those stations to fix all the most prominent and important points visible from them, such as the temples in Rewah. The angles were measured with the 18-inch theodolite which was employed for the principal triangulation. Usually two angles only of each triangle were measured, the point itself being unvisited; but in a few instances the points are stations of the net-work of triangulation which was primarily designed by Captain Shortrede and afterwards converted into a chain of simple consecutive figures by the elimination of superfluous stations; in these instances the third angle also was measured with the 18-inch theodolite.

On entering the plains it became necessary to fix points in and around the important city of Allahabad, lying about 20 miles to the east of the Series. Observations were taken from the stations of Bagála (XII) and Singraur (XV), with the 18-inch theodolite, which fixed a station in the Fort and the steeple of the Church, and thus furnished a base around which a minor triangulation was executed—probably with a 12-inch theodolite—by Mr. Mulheran when residing in Allahabad during the recess of 1845. In the following field season a chain of secondary triangles was carried up the Ganges from Mirzapore to Allahabad—

as a part of the operations of the Gurwáni Series—and extended to Singraur (XV), by Mr. Glynn; a branch chain was carried by Mr. Mulheran from Allahabad to Bagála (XII), passing through and connecting with his triangulation of the preceding year; both chains were executed with 12-inch theodolites. These triangulations have been adjusted to fit between the finally determined position-values of the principal stations of the two series on which they rest; the portion including and lying to the west of Allahabad is now published as appertaining to the Karára Series, while that to the east has been allotted to the Gurwáni Series.

A few secondary points were fixed in the vicinity of the side Karra (XVI) to Pariáon (XVIII) by a ray-trace triangulation executed by Mr. Mulheran in 1845. In the same year a point in the town of Rae Bareli, and a few other secondary points, were fixed by ray-trace triangulations depending on the sides Sora (XXIV) to Janai (XXV), Thána (XXXVII) to Imlia (XXXVI), and the terminal side Khánpur to Mási, in connection with Captain Du'Vernet's operations.

In 1845 Mr. Glynn was deputed by Captain Du'Vernet to carry a series of triangles with a 12-inch theodolite, from the side Pesar (XXX) to Utiámau (XXXII) up to the city of Lucknow, in order to fix points of importance in and around that city. It was supplemented and extended a few months subsequently by Mr. Mulheran. The stations of the triangulation not having been permanently marked are not now forthcoming; consequently the usual data of the triangles are not given, but merely the latitudes and longitudes of the domes, buildings and other permanent marks of which the positions were determined*.

In season 1852-53 a chain of secondary triangles was carried up the Gogra River, in connection with the operations of the Huríláong Meridional Series; it crosses the terminal side of the Karára Series, and connects with the station of Mási, at the eastern extremity of that side. The details appertaining to stations No. 164 to 217 of this river triangulation are now published as a portion of the Karára Series. The angles were measured with a 12-inch theodolite by Mr. Belletty. This triangulation has been adjusted to fit exactly between the finally determined position-values of the station Mási and the station Orejhár, the latter being No. XXIV of the Gurwáni Series.

C. WOOD,

MUSSOOREE: May 1881.

Surveyor 2nd Grade.

Longitude 80 59 11 4, by observations on moon culminating stars in 1841.

The corresponding trigonometrically deduced values are

{
 Lat. 26° 51′ 12″9
 Long. 80 58 57 6

J. T. W.



^{*} One of these was the site of the transit telescope in the Royal Observatory, the astronomically determined position of which—as deduced by Lieut-Colonel Wilcox—was as follows:—

Latitude 26° 51' 17"'8, by observations with the mural circle in 1842.

Thus the astronomical determination of latitude exceeds the trigonometrical by 4"9, which shows that—assuming both to be exact—the proximate local attractions to the south are more influential on the direction of the plumb line in Lucknow than the attraction of the distant Himalayan ranges to the north. The astronomical determination of longitude differs from the trigonometrical by less than 14"; the latter rests on an astronomical determination at Madras which was made within a few years of the one at Lucknow—see Chapter XI of Vol. II—and is now known to be about 2' 30" in excess of the true longitude from Greenwich; thus it seems probable that the astronomical longitudes of Madras and Lucknow were both affected in a nearly equal degree by the errors of the then existing Lunar Tables.

### ALPHABETICAL LIST OF STATIONS.

Amoli		•	•	•	XXXIII.	Marwás (of Calcutta Longi	tudinal	Series).	•	•	XXVI.
Asrafpúr	•.	•	•	•	XXXVIII.	Mhao	•	•	•	•	Χ.
Bagála	•	•	•	•	XII.	Munai	•		•		XXIII.
Basantpúr	•	•	•	•	XXIX.	Nagdílpúr		•			XIV.
Burwa	•	•	•	•	٧.	Náru			•	•	IV.
Dádar	•	•	•	•	III.	Pabhosa		•	•	•	XIII.
Doñri	•	•	•	•	VII.	Parewa			•	_	XXVIII.
Horesa	•	•	•	•	XIX.	Pariáoñ	•	•		•	XVIII.
Imlía	•	•	•	•	XXXVI.	Pesar	•	•	•	•	XXX.
Jalíádhar	•	•	•	•	п.	Ragaopúr	•	•	•	•	XXXV.
Janai	•			•	XXV.	Sálaon		•	•	•	XX.
Kachár	•	•		•	IX.	Samnadío	•	•	•	•	XXXIV.
Kaimúr	•	•	•	•	I.	Singraor	•	•	•	•	XV.
Karára (of Calcutta Longitu	dinal Se	ries).	•	•	XXIII.	Sirmaol	•	•	•	•	VIII.
Karra	•	•	•	•	XVI.	Sora	•	•	•	•	XXIV.
Khánpúr (of North-East Long		•	•	•	XXXIV.	Tángan	•	•	•	•	XXI.
Khára	ituamai	Series	).		XXII.	Taoli	•	•	•	•	XXVI.
Kotar Kaimái	· ·i	•	•	•	VI.	Thána	•	•	•		XXXVII.
Lálápúr		•	•	•	XI.	Tikiri	•	•	•	•	XXVII.
Majilgáon	•	•	•	•	XVII.	Turkani	•	•	•	•	XXXI.
Mási (of North-East Long	gitudina	1 Serie	s).	•	XXXV.	Utiámáo	•	•	•	•	XXXII.

## NUMERICAL LIST OF STATIONS.

XXIII	•	•	of Calc	ntta Tono	Karára. gitudinal Series).	XX	•	•	•	•	Sálaon.
xxvi			(or Calc	2012	Marwás.	XXI .	•		•	•	Tángan.
AAVI	•	•	(of Calc	utta Long	gitudinal Series).	XXII		•	•	•	Khára.
I	•	•	•	•	Kaimúr.	XXIII			•	•	Munai.
п	•	•	•	•	Jalíádhar.	XXIV	•			•	Sora.
m	•		•	•	Dádar.	XXV		•	•	•	Janai.
IV	•	•	•	• ,	Náru.	XXVI	•,	•	•	•	Taoli.
V		•	•	•	Burwa.	XXVII		•		•	Tikiri.
VI	•	•	•	Kota	r Kaimári.	XXVIII	•			•	Parewa.
VII	•		•	•	Doñri.	XXIX	•				Basantpúr.
VIII		•	•	•	Sirmaol.	XXX					Pesar.
IX	•	•	•	• ,	Kachár.	XXXI	•		•	•	Turkani.
X	•	•		•	Mhao.	XXXII.				_	Utíámáo.
<b>XI</b> .	•	•	•	•	Lálápúr.	xxxIII		_			Amoli.
ХII	•	•	•	•	Bagála.	XXXIV	•	•	•	•	Samnadío.
XIII			•	•	Pabhosa.	XXXV	•	•	•	•	Ragaopúr.
XIV	•		•	. ]	Nagdílpúr.	XXXVI	•	•	•	•	Itagaopur. Imlía.
xv			•	•	Singraor.		•	•	•	•	
XVI			•		Karra.	XXXVII	•	•	•	•	Thána.
XVII	•	•	•	•	Majilgáoñ.	XXXVIII	•	•	•	•	Asrafpúr.
	•	•	•	•	Pariáon.	XXXIV	•	•	of No	rth-East I	Khánpúr. Longitudinal Series).
XVIII	•	•	•	•		XXXV			•		Mási.
XIX	•	•	•	•	Horesa.				(of No	rth-East I	congitudinal Series).

#### DESCRIPTION OF PRINCIPAL STATIONS.

Of the 38 Principal Stations composing this Series, the 13 southernmost, as also the 2 initial stations, are on hills, and consist generally of low solid platforms, each carrying a mark at its upper surface and having a corresponding mark below; in a few instances the station is denoted by a pile of stones, on which the usual mark of a circle and dot is fixed, or in the absence of any platform this mark is engraved on the rock in sittle. When the Series entered on the plains, suitable artificial elevations had to be constructed, as usual, to admit of overlooking the curvature of the globe. At the first 10 stations, each of these structures consists of a basement 28 to 32 feet in diameter and 3 to 6 feet high, with a mark-stone fixed in its upper surface; this surface carries a masonry pillar, which in some instances is solid and includes at least one mark-stone and in others is perforated throughout its length: the pillar is either square or circular at base and 7 to 8 feet in width, terminating at top in a circle 4 feet in diameter; it is enclosed in a tower of unburnt bricks varying in diameter from 20 to 27 feet at base and from 16 to 21 feet at top: the tower is commonly faced with burnt brick as a protection against rain. At each of the remaining 15 stations of the Series as well as at the 2 terminal stations, the internal masonry pillar is without exception of the solid kind, while the external diameter of the tower varies from 17 to 22 feet at base and from 11 to 14 feet at top: the structure at one of these terminal stations, viz. Mási, underwent considerable alteration when revisited in course of the operations of the North-East Longitudinal Series.

The following descriptions have been compiled from those given in the original MS. General Report and other original records of this Series, supplemented in respect to the neighboring villages by information obtained from the Revenue and Topographical Survey maps of the country traversed. The information as to the local sub-divisions in which the several stations occur has been derived from the latest Annual Reports received from the District officers to whose charge the stations have been committed.

XXIII.—(Of the Calcutta Longitudinal Series). Karára Hill Station, lat. 24° 5′, long. 81° 18′—′ observed at in 1827, 1842 and 1865—is situated on the highest point of a small range of hills running north-east and south-west, and is distant about 3 miles E.N.E. of the village of Karára; pargana Mádhogarh of the

#### Rewah territories.

The pillar is solid and contains two marks, the upper 3.0 feet above the lower, which is engraved on the rock in sita, having been placed there in 1827. The station was revisited in 1842 for the purpose of originating the Karára Meridional Series, but no alteration in its construction appears to have been made. On again visiting it in 1865, the upper mark was found displaced, and a new pillar carrying a mark-stone at summit in the normal of the old lower mark was then built to the same height as before. The distances and bearings of surrounding villages are:—Dal 1.6 miles W. by N.; Harai 1.8 miles E. by S.; and Mer 1.4 miles S.W.

XXVI.—(Of the Calcutta Longitudinal Series). Marwas Hill Station, lat. 24° 5′, long. 81° 49′— observed at in 1827, 1828, 1842 and 1865—is situated on a range of hills running east and west about 2 miles S.S.W. of the town of Marwas; pargana Marwas of the Rewah territories.

The pillar is solid and contains two marks, the upper 3.6 feet above the lower which is engraved on the rock in sita, having been placed there in 1827. The station was revisited in 1842 for the purpose of originating the Karára Meridional Series, but no alteration appears to have been made in its construction. On again visiting it in 1865, the upper mark-stone was found undisturbed, and a new pillar was then built to the same height as before. The distances and bearings of neighboring villages are:—Amarha 0.9 mile N.W. by N.; and Sondia 2.2 miles N.E. by E.

I. Kaimúr Hill Station, lat. 24° 17′, long. 81° 12′—observed at in 1843—is situated on the flat top of a hill so called, and is distant about half a mile S.W. of a tank; pargana Gurha of the Rewah territories.

The station consists of a pile of stones 6 feet high, and is marked as usual with a circle and dot. The distances and bearings of surrounding villages are:—Bagdhari 1.8 miles S.W. by S.; Chanin 2.2 miles N.W.; Bhitarri 2.2 miles E.S.E.; and the hamlet of Hasthar 0.9 mile E. by N.

II. Jaliádhar (Jaliádhar) Hill Station, lat. 24° 22′, long. 81° 27′—observed at in 1843— is situated on the summit of a long hill so called which is the highest in that part of the range; pargana Gurha of the Rewah territories.

No description of the construction of the station is forthcoming in the original records, but it may be assumed that it is marked by a structure somewhat similar either to that at Kaimúr or at Dádar. The distances and bearings of surrounding villages are:—Katra 2.7 miles W.N.W.; Mau 2.2 miles S.E.; and Birpur 1.9 miles S. by E.

III. Dádar Hill Station, lat. 24° 36′, long. 81° 15′—observed at in 1843—is situated on the summit of a small detached hill about 1½ miles 8. by W. of the village of Dádar; pargana Rewah of the Rewah territories.

The station consists of a platform which has a mark-stone at its upper surface. The distances and bearings of surrounding villages are:—Bankunia 0.2 mile E.S.E.; Sakarwar 1.4 miles W.; Murárpur or Marha 1.5 miles N.W.; and Banjára about 1½ miles E.N.E.

IV. Náru Hill Station, lat. 24° 30′, long. 81° 0′—observed at in 1843—is situated at the north-eastern extremity of a large flat-topped hill called Nárugarh on which there are some tanks and several springs of water, and whose summit is enclosed by a stone wall from 5 to 7 feet in height and 4 feet in thickness: in the Soháwal state.

No description of the construction of the station is forthcoming in the original records, but it may be assumed that it is marked by a structure somewhat similar either to that at Kaimúr or at Dádar. The distances and bearings of surrounding villages are:—Gurhuru 1·1 miles E.; Richari 1·6 miles N.; Kaitha 2·8 miles S.W.; and Beharra 2·2 miles S.S.E.

V. Burwa Hill Station, lat. 24° 33′, long. 81° 31′—observed at in 1843—is situated on a detached hill about half a mile E. of Burwa: pargana Raipur of the Rewah territories.

The station consists of a pile of stones—the remains of a small Hindu temple—and is marked as usual with a circle and dot. The distances and bearings of surrounding villages are:—Buradi 0.8 mile S.S.W.; Barhái 1.1 miles N.; Gurgaon 2.2 miles E.; and the town of Raipur 2.6 miles N.W.

VI. Kotar Kaimári Hill Station, lat. 21° 43′, long. 81° 3′—observed at in 1843—is situated on a block named Dongi at the western and highest part of the hill called Kaimári, and is distant somewhat more than 2 miles N.E. of the large village of Kotar; the block itself is held in much veneration in the neighbor-



hood, for tradition affirms that it is the spot from which the father of Rámchandra shot an arrow across a distance of 15 or 16 miles. Pargana Simurria of the Rewah territories.

The station is marked on a large block of laterite being the southern and lower of two blocks which project conspicuously. The distances and bearings of surrounding places are:—Kotar Kaimári hill fort 0.8 mile E. by N.; Bhamaun 1 mile N.; Umri 1 mile W.; and Abair 1.4 miles S.S.E.

VII. Donri (Doñri) Hill Station, lat. 24° 54′, long. 81° 14′—observed at in 1843—is situated on the summit of a hill 13 miles N.N.E. of Donri village, and stands on the boundary between the Rewah and Panna territories; pargana Simurria of the Rewah territories.

The station consists of a square platform about 1 foot high, and is marked as usual with a circle and dot. The distances and bearings of surrounding villages are:—Kataik 2.5 miles S.W.; Majnaha 2.3 miles N. by W.; and Barua 1 mile N.N.E.

VIII. Sirmaul (Sirmaol) Hill Station, lat. 24° 53′, long. 81° 26′—observed at in 1843—is situated on the highest part of the hill, and is distant about 31 miles N. by E. of the village of Sirmaul: pargana Sirmaul of the Rewah territories.

The station consists of a square platform about 2 feet high which has a mark-stone at its upper surface. The distances and bearings of surrounding villages are:—Itma 12 miles W.N.W.; Pathera 21 miles N. by E.; Luk 26 miles N.E.; and Bagha 2 miles S.

IX. Kachár Hill Station, lat. 24° 57′, long. 81° 5′—bbserved at in 1843—is situated on the highest part of a hill so called, and is distant about 3 miles from Amua the residence of the Raja of Chaurasi. A stream in a rocky dell is about a mile to the S.E., and at 2 or 3 miles distance there is a waterfall which was formerly used as a place of Hindu pilgrimage: in the Panna state.

The station consists of a square platform about 1 foot high, and is marked as usual with a circle and dot. The distances and bearings of neighboring villages are:—Amama 3.4 miles S. by W.; Chutairi 3.5 miles S.W.; and Kulkaria 4.1 miles S.E.

X. Mau (Mhao) Hill Station, lat. 25° 1′, long. 81° 18′—observed at in 1843—is situated on the highest part of the north-eastern knob of a hill, and is distant about 2 miles N.E. of Mau village: tahsíl Mau, pargana Chlíbu, district Banda.

The station consists of a square platform, and is marked as usual with a circle and dot. The distances and bearings of surrounding villages are:—Gurdari 14 miles N.W. by N.; and Uba 26 miles S.E.

XI. Lálapur (Lálápúr) Hill Station, lat. 25° 14′, long. 81° 8′—observed at in 1844—is situated on the top of Valmík's math (a low temple) on an isolated hill, and is named after the village of Lálapur which lies close to its north-eastern foot: tabsíl Karwi, pargana Tarhawan, district Banda.

The station mark is engraved at 3 inches to the west of the intersection of lines joining the corners of the walls—15 inches high—of the terrace the internal dimensions of which are 8 feet by 7 feet. The distances and bearings of surrounding villages are:—Bagrahi (on the left bank of the Ohan nadi) nearly 0.5 mile W.; Ajaura 0.4 mile N. by E.; Kairi Kutnassa 1 mile E. by N.; and Urwara 1 mile S.S.W.

XII. Bagála Hill Station, lat. 25° 14′, long. 81° 39′—observed at in 1844—is situated on the highest part of a hill, and is named after the village of Bagála which lies at three quarters of a mile to the N.E.: thána, tahsíl and pargana Bárah, district Allahabad.

The station is marked on the rock in sitd. The distances and bearings of surrounding villages are:—Unturi 1·1 miles E.S.E.; Londh Kalán 1·4 miles E.N.E.; Burgarh 2·3 miles W.; and Baisa and Shiurajpur 1·2 and 2·3 miles, respectively, S. by E.

XIII. Pabhosa Hill Station, lat. 25° 21′, long. 81° 22′—observed at in 1844—is situated on the ruins of an old temple at the highest part of a hill, elevated about 300 feet above the level of the Jumna (which flows at ‡ mile to the south) and remarkable from the circumstance of its being the only hill in the Doab; it is named after the village of Pabhosa which is distant 0.4 mile E.S.E.: thána Pachchhim Saríra, tahsíl Manjhanpur, pargana Atharban, district Allahabad.



The station is marked on a long block of stone imbedded in the mound. The distances and bearings of surrounding villages are:—Barehri 1 mile W.; Amind 1 6 miles N. by E.; and Singwal 2.3 miles E. by N.

XIV. Nagdílpur (Nagdílpúr) Tower Station, lat. 25° 34′, long. 81° 12′—observed at in 1845—is situated close to the west of the small village of Nagdílpur: tahsíl Khakhreru, pargana Ekdala, district Fatehpur.

The station consists of a tower of unburnt bricks 33 feet high—with diameters at top and bottom, respectively, of 17 and 23 feet—enclosing a central hollow pillar of masonry 7 feet in diameter at bottom and 4 feet at top; the whole standing on a basement 31 feet in diameter and 6 feet high, having the central portion (diameter 8 feet) of masonry and carrying a mark-stone at its upper surface. The distances and bearings of surrounding villages are:—Kabra 0.4 mile W. by S.; Ratanpur 0.6 mile N.W.; and Birsinghpur 1 mile E.S.E.

XV. Singraur (Singraor) Tower Station, lat. 25° 35′, long. 81° 41′—observed at in 1844—stands on the left bank of the Ganges, and is distant 0.6 mile S.S.W. of the village of Singraur: thána and pargana Nawábganj, tahsíl Soraon, district Allahabad.

The station consists of a tower of unburnt bricks 32 feet high—with diameters at top and bottom, respectively, of 16 and 23 feet—enclosing a central hollow core of masonry 7 feet in diameter at bottom and 4 feet at top; the whole standing on a basement 32 feet in diameter and 6 feet high, having the central portion (diameter 8 feet) of masonry and carrying a mark-stone at its upper surface. The distances and bearings of surrounding villages are:—Jhaupurwa 0.9 mile S.W.; Patna 1.2 miles N.W.; Mansúrabad 1.7 miles E. by N.; and Rámnagar 1.3 miles S.E.

XVI. Karra Tower Station, lat. 25° 42′, long. 81° 25′—observed at in 1844 and 1845—is situated on the highest part of the old fort of Karra not far from the right bank of the Ganges which is depressed about 135 feet below it: tahsil Siráthu, thána and pargana Karra, district Allahabad.

The station consists of a tower of burnt bricks 27 feet high—with diameters at top and bottom, respectively, of 21 and 27 feet—enclosing a central hollow pillar of masonry 7 feet in diameter at bottom and 4 feet at top; the whole standing on a basement 28 feet in diameter and 4½ feet high, which carries a mark-stone at its upper surface. The distances and bearings of surrounding villages are:—Karra 0.3 mile N.E.; Kamálpur 0.9 mile N.W.; Sultáupur 0.7 mile S.W.; and Akbarpur 1.5 miles E.S.E.

XVII. Majilgaon (Majilgáoñ) Tower Station, lat. 25° 45′, long. 81° 13′—observed at in 1845—is situated on a mound adjoining the western side of the village of Majilgaon and distant about half a mile N. of the Grand Trunk Road: tahsil Khága, pargana Hathgaon, district Fatehpur.

The station consists of a tower of unburnt bricks 25 feet high—with diameters at top and bottom, respectively, of 16 and 20 feet, and faced with burnt brick—enclosing a central solid pillar of masonry 8 feet square at base and 4 feet diameter at top; the whole standing on a basement 29 feet in diameter and 3 feet high, having at its upper surface a mark-stone in the normal of which other mark-stones have been fixed in the solid pillar at distances from it of 5, 10, 15, 20 and 25 feet. The distances and bearings of surrounding villages are:—Kathogan 1.9 miles W. by S.; Búdwán 1 mile N. by W.; Kurhaha 1.1 miles E.S.E.; and Purain 2.1 miles S. by E.

XVIII. Pariáon (Pariáoñ) Tower Station, lat. 25° 50′, long. 81° 25′—observed at in 1845—is situated on a mound adjoining the village of Pariáon: thána and tahsíl Kunda, pargana Mánikpur, district Partabgarh.

The station consists of a tower of unburnt bricks 25 feet high—with diameters at top and bottom, respectively, of 16 and 20 feet, and faced with burnt brick—enclosing a central solid pillar of masonry 8 feet square at base and 4 feet diameter at top; the whole standing on a basement 29 feet in diameter and 3 feet high, having at its upper surface a mark-stone in the normal of which other mark-stones have been fixed in the solid pillar at distances from it of 5, 10, 15, 20 and 25 feet. The distances and bearings of surrounding villages are:— Murussapur 1.2 miles S.S.W.; Gauri 0.8 mile N.W.; Kiraudi 1 mile N. by E.; and Sayyid Yasimpur 1.4 miles S.E.

XIX. Horesa Tower Station, lat. 25° 55′, long. 81° 17′—observed at in 1845—is situated on a mound adjoining the western side of the village of Horesa, and is distant about 1½ miles E. of the left bank of the Ganges: than Jagatpur Tanghan, tahsil, pargana and district Salon.

The station consists of a tower of unburnt bricks 25 feet high—with diameters at top and bottom, respectively, of 16 and 20 feet, and faced with burnt brick—enclosing a central hollow pillar of masonry 8 feet square at base and 4 feet diameter at top; the whole standing on a basement 29 feet in diameter and 3 feet high, having at its upper surface a mark-stone to which access was had by means of a small arched passage. The distances and bearings of surrounding villages are:—Madáripur 0.3 mile S.W. by S.; Puchkura 1.1 miles N.N.E.; and Gangauli 0.6 mile S.E. by S.

XX. Salon (Sálaon) Tower Station, lat. 26° 2′, long. 81° 30′—observed at in 1845—is situated near a temple standing on the highest part of the mound on which the town of Salon is built: thána, tahsíl, pargana and district Salon.

The station consists of a tower of unburnt bricks 25 feet high—with diameters at top and bottom, respectively, of 16 and 20 feet, and faced with burnt brick—enclosing a central solid pillar of masonry 8 feet square at base and 4 feet diameter at top; the whole standing on a basement 29 feet in diameter and 3 feet high, having at its upper surface a mark-stone in the normal of which a second mark-stone has been fixed on the summit of the solid pillar. The distances and bearings of surrounding villages are:—Saindhia 1 mile S.W.; Rájapur 1·1 miles N.W. by W.; Sanda Saidun 1·3 miles N.E.; and Aunasudra 1·1 miles E.

XXI. Tánghan (*Tángan*) Tower Station, lat. 26° 3′, long. 81° 19′—observed at in 1845—is situated on a mound adjoining the village of Tánghan: thána Jagatpur Tánghan, tahsíl Lalganj, pargana Dalmau, district Rae Bareli.

The station consists of a tower of unburnt bricks 25 feet high—with diameters at top and bottom, respectively, of 16 and 20 feet, and faced with burnt brick—enclosing a central solid pillar of masonry 8 feet square at base and 4 feet diameter at top; the whole standing on a basement 29 feet in diameter and 3 feet high, having at its upper surface a mark-stone in the normal of which other mark-stones have been fixed in the solid pillar at distances from it of 5, 10, 15, 20 and 25 feet. The distances and bearings of surrounding villages are:—Jingna 0.8 mile S.W.; Jagatpur 0.4 mile N.W.; Pura Bijai Kalán 0.8 mile E.; and Bairihar 0.8 mile S.S.E.

XXII. Khára Tower Station, lat. 26° 8′, long. 81° 13′—observed at in 1845—is situated on a mound about 350 yards N.N.W. of the large village of Khára or Bela Khára: thána Jagatpur Tánghan, tahsíl, pargana and district Rae Bareli.

The station consists of a tower of unburnt bricks 25 feet high—with diameters at top and bottom, respectively, of 16 and 20 feet, and faced with burnt brick—enclosing a central solid pillar of masonry 8 feet square at base and 4 feet diameter at top; the whole standing on a basement 29 feet in diameter and 3 feet high, having at its upper surface a mark-stone in the normal of which another mark-stone has been fixed in the summit of the solid pillar, others being fixed intermediately. The distances and bearings of surrounding villages are:—Jalálpur 0.4 mile N.W.; Habíb-ka-purwa 1 mile N.E. by E.; and Gaura Umarní 0.9 mile S.W.

XXIII. Munai Tower Station, lat. 26° 11′, long. 81° 23′—observed at in 1845—is situated on a small mound about 300 yards S. by W. of the village of Munai: than Mau, tahsil, pargana and district Rae Bareli.

The station consists of a tower of unburnt bricks 25 feet high—with diameters at top and bottom, respectively, of 16 and 20 feet, and faced with burnt brick—enclosing a central solid pillar of masonry 8 feet square at base and 4 feet diameter at top; the whole standing on a basement 29 feet in diameter and 3 feet high, having at its upper surface a mark-stone in the normal of which other mark-stones have been fixed in the solid pillar at distances from it of 5, 10, 15, 20 and 25 feet. The distances and bearings of surrounding villages are:—Goyindwara 0.6 mile W. by S.; Nathuapur 1 mile E.N.E.; Banihapurwa 1.2 miles S.E.; and Sehi-ka-purwa 0.7 mile S.S.W.

XXIV. Sora Tower Station, lat. 26° 17′, long. 81° 15′—observed at in 1845—is situated on an elevated mound distant about 500 yards S.S.W. of the village of Sora: thána, tahsíl, pargana and district Rae Bareli.

The station consists of a tower of unburnt bricks 24 feet high—with diameters at top and bottom, respectively, of 14 and 19 feet—enclosing a central solid pillar of masonry having a mark-stone at its base, and others at 8, 16 and 24 feet respectively above it. The distances and bearings of surrounding villages are:—Tandu 0.5 mile S.E.; Majhgawan Ráo 1.3 miles W. by N.; Katkan-ka-purwa 0.8 mile N.; and Suranwán 1.4 miles E. by S.

XXV. Janai Tower Station, lat. 26° 22′, long. 81° 24′—observed at in 1845—is situated on a mound distant 600 yards N.W. by N. of the village of Janai: thána and tahsíl Digbijaiganj, pargana Simrauta, district Rae Bareli.

The station consists of a tower of unburnt bricks 24 feet high—with diameters at top and bottom, respectively, of 14 and 20 feet—enclosing a central solid pillar of masonry having a mark-stone at its base, and others at 8, 14, 20 and 24 feet respectively above it. The distances and bearings of surrounding villages are:—Chandapur 1.5 miles W.; Domapur 0.3 mile N.; Maharajpur 1.4 miles E. by S.; and Balipur 1.1 miles S.S.W.

XXVI. Tauli (Taoli) Tower Station, lat. 26° 27', long. 81° 15'—observed at in 1845—is situated on

high ground distant about half a mile N.W. of the village of Tauli: thana and tahsil Digbijaiganj, pargana Inhauna, district Rae Bareli.

The station consists of a tower of unburnt bricks 30 feet high—with diameters at top and bottom, respectively, of 14 and 19 feet—enclosing a central solid pillar of masonry having a mark-stone at its base, and others at 9, 17, 24 and 30 feet respectively above it. The distances and bearings of surrounding villages are:—Pahnasa 1.3 miles W.S.W.; Unchauri 0.6 mile N. by W.; Puránaganj 1.1 miles E.; and Ghorauna 1.2 miles S.

XXVII. Tikiri Tower Station, lat. 26° 33′, long. 81° 25′—observed at in 1845—is situated about 350 yards S.S.E. of the ruined village of Tikiri: thána Mohanganj, tahsíl Digbijaiganj, pargana Inhauna, district Rae Bareli.

The station consists of a tower of unburnt bricks 30 feet high—with diameters at top and bottom, respectively, of 12 and 20 feet—enclosing a central solid pillar of masoury having a mark-stone at its base, and others at 8, 14, 20, 26 and 30 feet respectively above it. The distances and bearings of surrounding villages are:—Rámpur 1.8 miles W.; Sewapur 1.2 miles N.; Jaitpur 1.4 miles E.; and Kadupur 0.8 mile S.S.E.

XXVIII. Parewa Tower Station, lat. 26° 38′, long. 81° 15′—observed at in 1845—is situated on low ground and is distant nearly 1 mile E. of the village of Parewa: district Bara Banki.

The station consists of a tower of unburnt bricks 30 feet high—with diameters at top and bottom, respectively, of 14 and 19 feet—enclosing a central solid pillar of masonry having a mark-stone at its base, and others at 10, 20 and 30 feet respectively above it. The distances and bearings of surrounding villages are:—Dahírapur 0.2 mile N.W.; Khaira Kunku 1.2 miles E. by S.; Sonbaba 0.8 mile S.S.E.; and Khajuria 0.6 mile S.W.

XXIX. Basantpur (Basantpúr) Tower Station, lat. 26° 43′, long. 81° 25′—observed at in 1845—is situated on slightly elevated ground within a couple of hundred yards S.S.W. of the village of Basantpur: thána Zaidpur, tahsíl Haidargarh, pargana Siddhaur, district Bara Banki.

The station consists of a tower of unburnt bricks 24 feet high—with diameters at top and bottom, respectively, of 14 and 19 feet—enclosing a central solid pillar of masonry having a mark-stone at its base, and others at 8, 14, 20 and 24 feet respectively above it. The distances and bearings of surrounding villages are:—Dandiya 0.8 mile W.; Simrawan 0.7 mile N.E. by N.; Dih Rámpur 0.7 mile E.S.E.; and Janipur 1 mile S.S.W.

XXX. Pesar Tower Station, lat. 26° 49′, long. 81° 15′—observed at in 1845—is situated on elevated ground adjoining the village of Pesar, and is distant a few yards from the left bank of the Reth river: thána and tahsíl Nawabganj, pargana Satrikh, district Bara Banki.

The station consists of a tower of unburnt bricks 25 feet high—with diameters at top and bottom, respectively, of 14 and 19 feet—enclosing a central solid pillar of masonry having a mark-stone at its base, and others at 8, 16 and 25 feet respectively above it. The distances and bearings of surrounding villages are:—Nagraura 1 mile W.; Gaiaspur 0.5 mile N.N.E.; Sarai Parsanda 0.6 mile S.E.; and Tehri 0.9 mile S.W. by S.

· XXXI. Turkani Tower Station, lat. 26° 55′, long. 81° 25′—observed at in 1845—is situated on high ground immediately west of the village of Turkani, and is distant 0.4 mile from the left bank of the Kalyáni river: thána Nawabganj, tahsíl Rám Sanehi Ghat, pargana Daryabad, district Bara Banki.

The station consists of a tower of unburnt bricks 24 feet high—with diameters at top and bottom, respectively, of 14 and 20 feet—enclosing a central solid pillar of masonry having a mark-stone at its base, and others at 8, 16, 20 and 24 feet respectively above it. The distances and bearings of surrounding villages are:—Khidrapur 0.7 mile S.E.; Safdarganj 1.6 miles W.; and Auliapur 1 mile N.

XXXII. Utiámau (*Utiámáo*) Tower Station, lat. 27° 0′, long. 81° 15′—observed at in 1845—is situated on the ruins of the village of Utiámau, and is considerably elevated above the level of the surrounding plain: thána and tahsíl Nawabganj, pargana Dewa, district Bara Banki.

The station consists of a tower of unburnt bricks 24 feet high—with diameters at top and bottom, respectively, of 14 and 19 feet—enclosing a central solid pillar of masonry having a mark-stone at its base, and others at 8 and 24 feet respectively above it. The distances and bearings of surrounding villages are:—Shaikhpur 0.5 mile W.; Jiwanpur 0.6 mile N.; Ugeli 0.7 mile E.; and Kumurkha 0.5 mile S.E.

XXXIII. Amoli Tower Station, lat. 27° 6′, long. 81° 24′—observed at in 1845—is situated in low ground, and is distant 0.7 mile S.W. of the village of Amoli Kalán: thána and pargana Rámnagar, tahsíl Fatehpur, district Bara Banki.

The station consists of a tower of unburnt bricks 30 feet high—with diameters at top and bottom, respectively, of 14 and 20 feet—enclosing a central solid pillar of masonry having a mark-stone at its base, and others at 8, 14, 20, 26 and 30 feet respectively above it. The distances and bearings of surrounding villages are:—Khilaura 0.6 mile W.; Manaura 1.3 miles N. by W.; Biknapur 0.9 mile E.S.E.; and Thal Khurd 0.5 mile S.

XXXIV. Samnadio (Samnadio) Tower Station, lat. 27° 10′, long. 81° 14′—observed at in 1845—is situated on ground slightly elevated above the level of the surrounding country, and is at a short distance S.S.E. from the village of Samnadio or Samnadih: thana, tahsil and pargana Fatehpur, district Bara Banki.

The station consists of a tower of unburnt bricks 24 feet high—with diameters at top and bottom, respectively, of 14 and 19 feet—enclosing a central solid pillar of masonry having a mark-stone at base, and others at 8 and 24 feet respectively above it. The distances and bearings of surrounding villages are:—Kiratpur 0.2 mile S.W.; Rasúlpur 0.7 mile N.; Dasrathpur 0.7 mile S.E.; and the town of Fatehpur 0.9 mile E. by N.

XXXV. Ragaupur (Ragaopúr) Tower Station, lat. 27° 18′, long. 81° 23′—observed at in 1845—is situated in the low-lying lands between the Chauka and Sarju rivers, and is distant about half a mile S.W. of the village of Ragaupur: thána and tahsíl Bári, pargana Kundri, district Sitapur.

The station consists of a tower of unburnt bricks 30 feet high—with diameters at top and bottom, respectively, of 12 and 22 feet—enclosing a central solid pillar of masonry having a mark-stone at base, and others at 8, 24 and 30 feet respectively above it. The distances and bearings of surrounding villages are:—Uchlapur 0.8 mile W.; Burwi Burwa 0.4 mile N.; Majhgawán 0.7 mile E.; and Pura Shiughulám Singh 0.2 mile S.E. by S.

XXXVI. Imlia (Imlia) Tower Station, lat. 27° 19′, long. 81° 10′—observed at in 1845—is situated at the S.W. angle of an old fort in the village of Imlia: tahsíl Bári, thána and pargana Mahmudabad, district Sitapur.

The station consists of a tower of unburnt bricks 24 feet high—with diameters at top and bottom, respectively, of 14 and 20 feet—enclosing a central solid pillar of masonry having a mark-stone at base, and others at 8 and 24 feet respectively above it. The distances and bearings of surrounding villages are:—Ináyatpur 0.7 mile W.; Gobindpur 0.5 mile N.; Khwábipur 0.3 mile E.N.E.; and the town of Mahmudabad 2 miles S. by W.

XXXVII. Thána Tower Station, lat. 27° 28′, long. 81° 17′—observed at in 1845—is situated on the S.W. bastion of the fort in the village of Thána, and is distant nearly a mile from the right bank of the Gograriver; thána Thánagaon, tahsíl Biswán, pargana Kundri, district Sitapur.

The station consists of a tower of unburnt bricks 24 feet high—with diameters at top and bottom, respectively, of 12 and 20 feet—enclosing a central solid pillar of masonry having a mark-stone at base, and others at 8 and 24 feet respectively above it. The distances and bearings of surrounding villages are:—Chainpur 1.5 miles S.W. by S.; Wain 1.1 miles N. by W.; Thaura 1.4 miles N.E. by E.; and Dewaria 1.8 miles S.E.

XXXVIII. Ashrafpur (Asrafpúr) Tower Station, lat. 27° 29′, long. 81° 4′—observed at in 1845—is situated on high ground adjoining the southern side of the village of Ashrafpur: thána, tahsíl and pargana Biswán, district Sitapur.

The station consists of a tower of unburnt bricks 24 feet high—with diameters at top and bottom, respectively, of 14 and 20 feet—enclosing a central solid pillar of masonry having a mark-stone at base, and others at 8 and 24 feet respectively above it. The distances and bearings of surrounding villages are:—Pura Ashrafpur 0.4 mile W.; Ukbapur Khurd 1.8 miles E.N.E.; and Ramanbhari 0.2 mile S.E.

XXXIV.—(Of the North-East Longitudinal Series). Khánpur (Khánpúr) Tower Station, lat. 27° 39′, long. 81° 12′—observed at in 1844, 1845 and 1850—is situated in the centre on an old fortress within the village of Khánpur, and its site is elevated about 40 feet above the level of the surrounding country: thána Thánagaon, tahsíl Biswán, pargana Kundri, district Sitapur.

The station consists of an earthen tower 12 feet high—with diameters at top and bottom, respectively, of 13 and 17

feet—enclosing a central solid pillar of masonry having mark-stones at 6 and 12 feet respectively above the base. The station of 1844 was revisited in 1845 at the conclusion of the Karára Meridional Series, and was then apparently found in good preservation. It was again visited in 1850 in the course of the operations of the North-East Longitudinal Series; the mark-stone and pillar having been found intact, it was only necessary to repair the earthen tower. The distances and bearings of surrounding villages are:—Bidaura 1.4 miles S.W.; Mánpur 0.9 mile N.W.; Kunkari 1.5 miles E.; and Maururia Kalán 0.9 mile S. by W.

XXXV.—(Of the North-East Longitudinal Series). Mási Tower Station, lat. 27° 38′, long. 81° 26′— observed at in 1844, 1845 and 1849—is situated in an old fort that stands in the centre of the village of Mási, and its site is elevated about 8 feet above the level of the annual inundation: thána and tahsíl Kurásar, pargana Fakhrpur, district Bahraich.

The station consists of an earthen tower 24 feet high—with diameters at top and bottom, respectively, of 18 and 40 feet—enclosing a central solid pillar of masonry having mark-stones at 3, 8 and 24 feet respectively above the base. The station of 1844—which had the surrounding tower with diameters at top and bottom, respectively, of 11 and 18 feet—was revisited in 1845 at the conclusion of the Karára Meridional Series, and was then apparently found in good preservation. It was again visited in 1849 in the course of the operations of the North-East Longitudinal Series; the mark-stone at summit and the upper 4 or 5 feet of the central pillar which were then found removed were replaced and the surrounding tower extended to its present dimensions, The distances and bearings of surrounding villages are:—Shukulwa 0.9 mile S.W. by S.; Nasírpur 1.1 miles N.W.; Mansa, across the Sarju river, 1 mile E. by N.; and Bishanpur 0.9 mile S.S.E.

Note.—In a few instances, the names of principal stations, occurring in the foregoing descriptions, are given by two methods of spelling, distinguished from one another by the use of Roman and Italic type; as in XV. Singraur (Singraor): the latter spelling is taken from the Alphabetical and Numerical lists, which precede the descriptions and which were printed in 1869: the spelling in Roman type, is in accordance with the method authorized by the Government and illustrated in lists of Indian proper names published in 1874 and subsequently. It will be seen that the two methods differ but slightly; notwithstanding, where differences exist, both renderings are given, so as to remove all possible doubt as to the identity of a station. The method of spelling authorized by the Government, is hereafter exclusively adopted in the publication of this Series.

July 1877.

J. B. N. HENNESSEY,

In charge of Computing Office.

#### PRINCIPAL TRIANGULATION. ADDENDUM TO DESCRIPTION OF STATIONS.

Note.—Consequent on modern alterations of district and other boundaries, the sites occupied by the stations are in some instances now included in civil divisions of territory which differ from the district, pargana, or village, recorded in the preceding descriptions of stations: a complete list of all the stations of the Series including a suitably modified statement of the altered subdivisions in question is accordingly given in the following table, and is derived chiefly from the annual reports, up to 1881, made by the Civil Officials to whose care the stations have been committed. The statement also gives present condition of certain of the stations; where no entry regarding present condition is made against a station it is to be assumed that the station when last reported on by the district Official was in good order.

The spelling of names is in accordance with that given in the lists of more important places published under the orders of Government whenever such names occur in the lists.

No. of Station	Local name	District	istrict Pargana, &c. Village in which the Station lies		Remarks on the Condition of the Station
XXIII		Baghelkhand Agency	P. Mádhogarh	Devardah	
· XXVI		"	Marwás, Rewah State	Marwás	
<b>I</b> .		<b>»</b>	P. Gurha, Rewah State	Satar	The platform partly washed down, and 3 feet high, as reported in 1873.
11		"	Ditto.	Tikar	
III		,,	Rewah State	Bankari	· •••
IV		"	Soháwal State	Durjanpur	
v		,,	P. Raepur	Raepur	
VI	Kotar	,,	P. Semaria	Kotar	
VII	•••	" "	Ditto.	Donri	
VIII	Sirmaur	,,	P. Sirmaur	Sirmaur	
IX		•••		· <b>.</b>	No report received.
X	Garda-ka-Pahár	Bánda	P. Chhibu	Sesa Sub Karra	

NOTE.—Stations XXIII and XXVI appertain to the Calcutta Longitudinal Series of the South-East Quadrilateral.

P. stands for pargana.



#### OBSERVED ANGLES.

# At XXIII January 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle	Means of Circle-readings, telescope being set on I												Probabilities and
between	847°	347° 352° 357° 2° 7° 12° 17° 22° 27° 32° 37° 42°									42°	General Means.	
I & II	29°55	" 24.02 8	28.12 28.13	28:31	31.76	26.30	" 29,47	28:35 28:35	28:88 28:88	33.88 3	" 29,54	28.85	Probability = 0.7.
II &	40.50	44,53	41,20	45°59	41.63	39,92	41.38	42,95	41.67	39°37	40.08	41,41	Probability = 0.5 65° 38′ 41″.71

#### At XXVI

January 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Mea	ns of C	ircle-re	adings	, telesc	ope bei	ng set	on I			Probabilities and
between	0•	5°	10°	15°	20°	25°	80°	85°	40°	45°	50°	55°	General Means.
XXIII &	63.82 8	" 67:40	" 68:32	68 [.] 42	69 <u>°</u> 38	68.08	68·13	" 68:07 8	" 70 [.] 70	" 7°:77	68·18	65 <u>°</u> 95	Probability = 0.5

Note.—XXIII and XXVI appertain to Calcutta Longitudinal Series.

#### At XXVI—(Continued).

January 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Cir	cle-res	dings,	telesco	pe bei	ng set	on I			Probabilities and
between	0.	5°	10°	15°	20°	25°	30°	85°	.40°	45°	50°	55°	General Means.
XXIII &	39 ^{.8} 7	44 ¹ 2	39°98	42.03	37:68 37:68	40°23		42.72 8	44 ¹ 12	44 [.] 63	42'23 8	43°35	Probability = 0.6
I & II	+63.82	67 [.] 40	68·32 39·98	68·42 42·03	69·38 37·68	68·08 40·23	68·13	68·07 42·72	70 [.] 70 44 [.] 12	70 [.] 77 44 [.] 63	68·18 42·23	65 [.] 95 43 [.] 35	Probability = 0.7
+40° 56′ -20° 2′	23.95	23.58	28:34	26.39	31.40	27.85	23.21	25.35	<b>2</b> 6·58	26.14	25.95	22.60	20° 54′ 25″ 99

At I

February and March 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Circ	cle-read	lings,	telesco	pe bein	g set o	n IV			Probabilities and
between	53°	58°	63°	68°	73°	78°	83°	88°	93°	98°	103°	108°	General Means.
IV & III	33.48	35,19	36:48	39,57	39,47	34,52	36·55	40°53	41'45	41'02 3	42 ^{.8} 3	40.13	Probability = 0.8 48° 42′ 38″.43
III & III	43.08	46 [.] 78	47:30	45°46	44 ^{*1} 7	48.28	45.88	44,53	43.18	40 [.] 78	43.62	38:37	Probability = 0.8 60° 27′ 44″.29
II & XXVI	49,72	43,52	39,23	37.74	39 <u>°</u> 58	37 [.] 97	36.77	41.42	39,24	42°05	45.46	42°40	Probability = 1.0
XXVI &	4.18	5,55	9.87	6.03	5,43	5,47	. 8 [.] 35	2.35	2.00 8	3'02	1,45	4.03	Probability = 0.7

Note.—XXIII and XXVI appertain to Calcutta Longitudinal Series.

At II

February 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Ci	rcle-rea	dings,	telesc	ope bei	ng set	on I			Probabilities and
between	00	6°	10°	15°	20°	25°	80°	85°	40°	45°	50°	<b>5</b> 5°	General Means.
XXVI & XXIII	5,25		9 [.] 63	6.36		10.12	15.46	16.00 10.00	7 13.45	" 12.12 8	11,45	11.Q3	Probability = 1.2
XXIII & I	51.03	51'43	4 ⁸ .77	48.92	52.80	50.12	45,12	45.13	45,22	46.13	46·28	48.52	Probability = 0.8
I & III	63.83	64.60	66.68	66 [.] 72	63.02	61.12	8 64.00	64.03	67:58	64.02	62 [.] 70	61.62	$\frac{\text{Probability} = 0.5}{73^{\circ} \text{ 9' 4''.32}}$
I & V	12.02	13.87	8.25	8 10.Q1	8.23	8 [.] 37	13.80	17.50	18.10	13,55	14'17	10,22	132° 32′ 12″ [.] 69
III & V	+15.05 +15.05	13 [.] 87 64 [.] 60	8·25 66·68	10.61 66.43	8·52 63·92	8·37 61·15	13.80 64.00	17.50 64.92	18·10 67·58	64.05 13.22	14 [.] 17 62 [.] 70	10.2 61.67	Probability = 0.9
+ 132° 32' - 73° 8'	11'22	9'27	1.22	3.89	4.60	7.22	9.80	12.28	10.25	9.20	11.42	8.85	59° 23′ 8″·37

At III

April 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by

Troughton and Simms.

Angle		М	eans of	f Circle	-readii	ngs, tel	lescope	being	set on	VIII			Probabilities and
between	0°	5°	10°	15°	20°	25°	80°	35°	40°	45°	50°	55°	General Means.
VIII & V	<b>%</b> 60 [.] 77	# 60.20	<b>7</b> 67:40	% 63.00	61.62	<b>"</b> бо [.] 75	и 61·18	% 60.03	59°40	# 50°70	# 58.47	и б1.43	Probability = 0.9
	3′′	9,5	8,	2	2	3/3	8	8	39,45	39,70	3 9 7	2 3	69° 37′ 1″·94
V & II	13.00	15.32	10.63	11.80	10.10	14.23	12.5	18.13	11.63	11.58	17.81	17.72	Probability = 0.7
V & 11	- 5,90	-3,37	3	2	8	3/3	2,23	3	3 11.Q3	2	2	3,-	40° 29′ 13″.54
II & I	0.44	12.33	13,10	10.03	17.60	17.65	20.32	15.48	31,10	31,18	15'27	16.66	Probability = 1.0
11101	9,55	233	23 49	3	2,80	1,803	2023	2	2.10	2.10	-3,37	16.22	46° 23′ 16″.63

NOTE.—XXIII and XXVI appertain to Calcutta Longitudinal Series.

#### At III—(Continued).

# April 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Cir	cle-reac	dings,	telesco	pe bein	g set o	n VIII	[		Probabilities and
between	0°	5°	10°	15°	20°	25°	80°	85°	40°	45°	50°	55°	General Means.
I & IV	£ £, £0	# 50°70	4	# #	# 62.76	<b>4</b>	47'02	40,00	46:60	# 46:64	۲ ۲ (۱'42	# 40°55	Probability = 0.8
1 & 1 4	33,30	50.70	34,03	3130	32/3	3042	4/3/2	49,99	4009	7907	3,43	49,55	56° 5′ 50″·59
IV & VI	26.02	27:20	33.23	22:48	3 c.Q3	22.40	3Q.Y.E	33.36	27:28	34.76	3 2.30	22.82	Probability = 0.5
1 0 0 1	3007	37.20	33,33	32,40	33,02	32,40	3,43	33,30	372	34,70	33,39	33,52	59° 4′ 34″·86
IIV & IV	6.85	2.87	1,44	4.01	1.08	3.03	2.87	8:07	5.65	6.63	ა.დი	7.75	Probability = 0.6
V1 & V11	3	3	277	7,9-	1,08	2.03	3 <mark>.8</mark> 7	8.07	3,3	6.62	5.60	7,75	53° 50′ 4″·88
VII &	57:30	23.03	20.40	57'41	60.32	61.13	£8:08	24.02	58.35	co.82	c8.03	23.18	Probability = 0.8
VIII	3/830	52.03	J9 40	3/3**	327	3.2	3,00	3+ ₉ 3	3,23	3902	2,93	33,10	34° 29′ 57″ 57

#### At IV

# April 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	s of Ci	rcle-re	adings,	telesco	pe bei	ng set o	n VI			Probabilities and
between	00	5°	10°	15°	20°	25°	80°	35°	40°	45°	50°	55°	General Means.
VI & III	23.05	" 22 [.] 75	,, 22.03	* 23.65	<b>4</b> 22.08	" 25.83	<b>4</b> 26.67	19 <u>°</u> 55	10.10	,, 12.80	# 14.20	14,01	Probability = 1'3
V 1 00 111	3,3	3,7	2	28	2	28	2 '	955	2,	9		2	53° 2′20″.93
III & I	32'78	33.03	31.26	33.47	31'42	33.30	25.23	30.70	33.80	44.12	43.80	30.Q3	Probability = 1.5
	3′	3,3	3	2,1	3'	209	3,5	3′	2	1 '8	2	3932	75° 11′ 34″ 43

#### At ₹

# February 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Cir	cl <b>e-rea</b>	dings,	telesco	pe bein	g set o	n VIII	Ī.		Probabilities and
between	00	5°	10°	15°	20°	25°	80°	35°	40°	45°	50°	55°	General Means.
II & III	37:80	37:33	36.33 8	35 ^{.8} 5	39 <u>°</u> 05	39°55	37 <u>°</u> 97	34.1Q	33 ^{.6} 9	33,42 8	38.01 "	" 43°08	Probability = 0.8  80° 7′37″.18

#### At V—(Continued).

# March 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle		į	Means	of Circ	cle-read	ings, te	elescope	being	set on	VIII			Probabilities and
between	0.	. ₽•	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	General Means.
. III & VIII	35°18	36·10	38·58	35.88	" 37:90	37 [.] 68	39,40	" 44,37	" 45 [.] 03	" 46.30	" 42.02	" 42.00	Probability = 1'0  65° 26′ 40″ 36

#### At VI

# April 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

<b>A</b> ngle			Mean	s of Ci	rcle-rea	dings,	telesco	pe bein	g set o	n IX			Probabilities and
between	27°	82°	87°	42°	47°	52°	57°	62°	67°	72°	77°	82°	General Means.
IX & VII	36.30	36.68	37:65	" 44 ^{.8} 5	38:67	39 <u>.</u> 66	38.10	33.90	35 <u>°</u> 05	38.12	" 37 [°] 95	39°45	Probability = 0.8  33° 39′ 38″.03
VII & III	67:23	66 <u>,</u> 20	66.12	go.89	71 [.] 86	62.54	64.77	71.53	73,75	58.13	65,07	64,65	$\frac{\text{Probability} = 1.3}{80^{\circ} \text{ 1' 6"09}}$
III & IV	62,00	69.60	73,47	75:46	66.35	68 [.] 38	66.80	65:10	57°37	67:03	68.40	70°25	Probability = 1.3 67° 53′ 7″.59

#### At VII

# April 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Mean	ns of C	ircle-re	adings,	telesco	pe beir	g set	on X			Probabilities and
between	00	5°	10°	15°	20°	25°	80°	85°	40°	45°	50°	55°	General Means.
x & viii	" 32.27	" 37 <mark>.</mark> 63	" 39 [°] 42	" 34.48	36.07	36.52	38.47	34 <mark>.8</mark> 7	" 41.04 8	" 40.52	" 40 ^{.8} 7	39°40	Probability = 0.8 $63^{\circ} 21' 37''.63$
VIII & III	12.51	8.72	4,12	11.77	5,96	7:66	13,25	10.11	13.3Q	11.38	12 <b>.</b> 40	13.38	Probability = 0.8  82° 50′ 10″.18
III & VI	46°57	54.50	60.75	54,08	55°55	53 <mark>,8</mark> 7	21.QI	53,64	54 <u>°</u> 45	57 <mark>°</mark> 43	53.28	55,52	Probability = 0.9 46° 8′ 54″.32

#### At VII—(Continued).

# April 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Mear	ns of C	ircle-re	adings,	telesco	pe bein	g set o	n X			Probabilities and
between	00	5°	10°	15°	20°	25°	80°	85°	40°	45°	50	55°	General Means.
VI & IX	39°98	36.05	31.65 "	38:49 38:49	" 29,54		" 27:60		32.40 "	" 25.75	" 34.65	" 25.15	Probability = 1.7 66° 43′ 33″.35
IX & X	48:97	43,40	44,03	40'28	52 [.] 88	48 [.] 38	49,07	35,97	39.85	44,92	38.80	47°65	Probability = 1.4

#### At VIII

# March 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle		Means of Circle-readings, telescope being set on XII												
between	00	5°	10°	15°	20°	25°	30°	85°	40°	45°	50°	55°	General Means.	
V & III	23°25	4 24.10	26.34 26.34	21.87	31.42 8	24.20	24 [.] 89	7 17 [.] 94	19.99	18.80	18.18	" 24.17	Probability = 1.1	
III & VII	53°34	53.18	53.60	59.36	49,52	51.82	50.45	52.88	55°73	52°35	54:30	51.25	Probability = 0.7 62° 39′ 53″.15	
VII & X	13.01	14,79	15.08	13,00	17:43	15.00	15.00	18.63	13.22	19.83	16.52	13,55	Probability = 0.6 42° 17′ 15″.46	
X & XII	3,52	4.03	0,20	1,43	2.65	8·85	7,52	6·88	8·08	1,55	8:33	8.03	Probability = 0.9	

#### At IX

# May 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle				Probabilities and									
between	00	5°	10°	15°	20°	25°	80°	85°	40°	45°	50°	55°	General Means.
XI & X	0	4000	*	40.60	*	"	"	,,,00	*	<i>N</i>	16.00	"	Probability = 0.4
Alaa	44,70	43,07	41.93	43,03	45.70	42'90	43,98	43°00	44-13	45,25	40'80	43,32	62° 1' 44".11

#### At IX—(Continued).

May 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle				Probabilities and									
between .	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	General Means.
	"	"	"	"	"	"	"	"	"	"	"	"	Probability = 0.7
X & VII	52.87	54,12	52.72	52.32	50.07	20.00	52.07	54.38	51.48	53,08	45 55	49,38	38° 40′ 51″ 55
VII & VI	45.63	44.38	41.26	40,14	42.07	44.08	44.33	44.02	48.04	44.24	46.18	46.02	Probability = 0.6
, 22 30 12	43,03	772	41.76 40	4-8-2	2		3	. , , , , ,	9		3	8′	79° 36′ 44″·41

At X

May 1843, observed by Captain R. Shortrede with an 18-inch Theodolite by

Troughton and Simms.

Angle		3		Probabilities and									
between	0°	5°	10°	15°	20°	25°	30°	85°	40°	45°	50°	55°	General Means.
XIII &	18:80	11	"	!! CA: C7	// //://	11	40.53	# 52:07	// // // //	# #	// //****	"	Probability = 1.0
XII	48.80	55°63	55,93	54°57	49,43	47,53	4y ₂ 33	33,57	49;58	46.96	49,23	44,83	46° 21′ 50″·43
X11 & V111	38 <u>'</u> 48	34,05	31.62	32.36	36.02	36.12	35 <mark>,</mark> 89	31,18	36.05	39,09	40,43	41.20	Probability = 0.9 81° 36′ 36″-06
VIII & VII	10'22	4,57	3°07	6.72	2,10	7:27	10 <u>.</u> 20	8.03	7°15	1,20	1,20	3,39	Probability = 0.9 74° 21′ 5″.76
VII & IX	17,12	25.18	24.20	24 [.] 85	27.83	22.05	20.79	21,00	20,98	23,48	23.07	31.0Q	Probability = 0.8 40° 23′ 22″.74
IX & XI	60 [.] 63	57°54	57:48	51,27	54,00	54.60	56,93	59:68	60 <u>°</u> 57	бо <u>:</u> 87	go.30	62.05	Probability = 0.9 75° 18′ 58″.02
XI & XIII	4,73	3.03	7:37	10.03	7:60	11,20	6∙30	6,95	5;67	<b>8</b> .10	5,38	7.17	Probability = 0.6 41° 58′ 6″.98

X & IX	19.81 26.92	20.05	10°  " 13'38 21'89	15°  " 11'10 2 22'77	20° ″ 6;50	25°  " 3°07	30° " 11.50	85°	40°	XIV 45°	50°	55°	Probabilities and General Means.
XIV & XIII XIII & X & IX & Angle	7.62 19.81 26.92	" 14'38 20'05 23'77	13.38 21.89	" 11.10 2 22.77	" 6 <u>°</u> 50	" 3;07	n		"			55°	
XIII XIII & X X & IX X & Angle	19.81 26.92	20.05 23.77	21.89	2 22.77	6,50	3,07	11.20 11.30	12.88		"	"	,,	<del>`                                      </del>
* March ar	26.92	23,77			21.63	_		2	8.85	3.40	3°45	14.27	Probability = 1.2
* March an			19,65	21.57		19.85	19.80	23.15	23,23	27.63	30.20	25 <mark>,</mark> 93	Probability = 0.9 86° 59′ 23″.02
Angle	nd †	Octob		*	² 4;47	23.88	22.68	18.64 2	16.12	17.70	17,35	19.93	Probability = 0.9 42° 39′ 21″.06
Angle between			er 18	14, obs			At XI aptainton an	n R. S		ede w	ith an	18-in	ch Theodolite by
between				Probabilities and									
	18°	23°	28°	38°	<b>3</b> 8°	43°	48°	53°	58°	63°	68°	73°	General Means.
VIII &	" 20'42	" 14.52	7 25.95	22.73	″ 22.60	18.13	" 19 <u>.</u> 03	19:35	20.63	22.09 "	19 <u>°</u> 56	" 16.70	Probability = 0.8
* & XIII	4,58	10.52	2.05	9.58	4.81	10.62 2	10,13	14.15	11.70	10.81	10.03	10.64	Probability = 1:0
			Means	of Circ	le-read	ings, te	elescope	being	set on	XIII			
-	0•	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	
XIII &	" 57 <u>°</u> 40	" 57°15	" 54°97	″ 51.62	II .	"	" 55°42	53°17	48:33	<b>49</b> .03	60.63	51.57	Probability = 1.2 70° 46′ 53″.93
March an	nd A	pril 1	844,	observ		Capt	At XII cain H con an	R. Sho		e with	an 1	B-inch	Theodolite by
Angle			Means	of Circ	cle-read	lings, t	elescope	e being	set on	XII			Probabilities and
between	0°	5°	10°	15°	20°	25°	80°	35°	40°	45°	50°	55°	General Means.
XII &	*	12·48	" 14'17	" 7;59	7:78	3,13	<b>"</b> ნ.80	<b>4</b> ,95	″ 4°90	7'17	" 3.15	6.20	Probability = 1.0

#### At XIII—(Continued.)

March and April 1844, observed by Captain R. Shortrede with an 18-inch Theodolite by Troughton and Simms.

Angle			Means	of Ci	rcle-res	dings,	telesco	pe bei	ng set o	on XII			Probabilities and
between	0.	5°	10°	15*	20●	25°	30°	35°	40°	45°	50°	55°	General Means.
X & XI	26;98	" 26.69 2	" 22 [.] 98	28.19 "	28 [.] 87	" 30.67 2	29°08	" 31.05	31,00	31,31	" 36.62	32.12 32.12	Probability = 0.9 51° 2′ 29″ 63
XI & XIV	11.40	10.23	12.03	8.09	3 11,13	9,48	9,77	11.68	8.07	5°69	8 [.] 45	5,73	$\frac{\text{Probability} = 0.6}{86^{\circ} \text{ 19'} \text{ 9''.36}}$
& IIX VIX	50.03	49,70	49.18	43.87	47,77	43,28	45 ^{.6} 5	47 ^{.68}	43.97	44'17	48.22	44.08	211° 57′ 46″·47
XII & XVI	41.72	44,72	45,38	40'12 8	38.30	37,12	39,93	39,72	35,77	35,43	38.52	38.60	253° 41′ 39″·61
XIV &	-50.03	44°72 49°70	45.38 49.18	40°12 43°87	38·30 47·77	37 [.] 12 43 [.] 28	39 [.] 93 45 [.] 65	39 ⁷² 47 ⁶⁸	35°77 43°97	35'43 44'17	38·52 48·22	38.60 44.08	Probability = c.6
+253°41′ -211°57′	51.69	55.03	56.50	56.5	50.23	53.84	54.58	52.04	51.80	51.50	50.30	54.2	41° 43′ 53″·14
A 1 V X	54,78	52.68	53,92	53°38	56 [.] 71 .	56 [.] 70	54 ^{,8} 7	51.53	55°55	58 [.] 79	57 <u>°</u> 98	55.72	Probability = 0.6
XV & XII	23.50 2	2.60 :	20.70	26.20	24.99	8 26.18	25.20	28°75	28.68 2	25.78	23.50	25.68	Probability = 0.7

#### At XIV

*July 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris. †February 1845, observed by Captain R. Shortrede with an 18-inch Theodolite by Cary.

Angle		M	Ceans o	f Circl	e-readi	ngs, te	lescope	e being	set on	ZVII	<u> </u>		Probabilities and
between	0.	180°	10°	190°	20°	200°	30°	210°	40°	<b>2</b> 20°	<b>5</b> 0°	<b>23</b> 0°	General Means.
*XVII &	39.82	" 40.00	28:72	# 48·8 c	וו 27'זס	11	20:57	48:02	11	וו	# 46:18	11 42.45	Probability = 1.3
XVI	3902	49 ₉ 9°	30,73	43,95	3/2/0	23	3937	4002	45 ₂ °5	32,03	46.18	77,73	49° 48′ 44″·36
+XVI &	52.88	48.30	41'47	<b>21.33</b>	44'20	43.87	48.52	47.03	41,00	45.67	52:30	45.03	Probability = 1'0
XIII	3-2-	48.29	3''	3-833	2	3,7	~~ §)	7/8	2	3,7	, s	13 83	89° 24′ 47″·12
+XIII &	48.22	43.61	23.02	45.02	17.25	46.43	43.33	47'70	41'57	48.00	44.52	42.22	Probability = 0.9
XI		43.QI	2232	73,93	7/2/3	2 2 2	T3,33	7/2/0	2,37	75,90	TT ₂ -3	7933	43° 10′ 46″·31

At XV

December 1844, observed by Captain R. Shortrede with an 18-inch Theodolite by Cary.

Angle			Means	of Cir	cle-rea	dings,	telesco	pe bein	g set or	n XII			Probabilities and
between	63°	243°	73°	253°	83°	263°	93°	273°	103°	283°	113°	293°	General Means.
XIII &	5°.77	" 42.33	" 52.5	" 47 ^{.8} 2	" 49 ^{:6} 3	" 49,72	" 42'12 8	и 45 [.] 60	49°30	" 46·18	" 50 [.] 23	" 49°7°	Probability = 0.9 47° 26' 47".96
XIII &	53,25	73.05	б1.53	60.77	58.08	69.80	67:72	66.52	56.02	66.27	бо.13	62 <b>.</b> 00	Probability = 1.6

#### At XVI

*December 1844, observed by Captain R. Shortrede with an 18-inch Theodolite by Cary. †July 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle			Means	of Cir	cle-rea	dings,	telesco	pe bein	g set o	n XV			Probabilities and
between	00	180°	10°	190°	20°	200°	80°	210°	40°	<b>2</b> 20°	50°	230°	General Means.
XV &	3 1,00	15.58	4.90	3 1.00	13,13	9.88 %	2.83	10.85	4.08	6 [.] 77	7:07	7:97	Probability = 1.3
* XIII &	20.65	12,55	19:57	16.03	18.58	16.43	10.28	19,75	20.88	14,00	22.08	17:70	Probability = 1.0 - 48° 51′ 17″ 52
& VIX +	63:42	71,41	54,10	58.27	58.57	59,33	58.98	go.10	91,11	56.05	62.85	51,53	Probability = 1.4 51° 20′ 59″.63
+ XVII &	69,06	28.12	68:32	63.31	68 <mark>,</mark> 95	61.65	73.56	67:70	67:77	69.08	64.78	69,97	Probability = 1.2 72° 37′ 6″.85

#### At XVII

July 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle		1	Means	of Circ	cle-read	lings,	telescop	e bein	g set o	n XIX			Probabilities and
between	0°	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
WIW 4	"	. 0	<b>#</b>	"		"		"	"	*	"	"	Probability = 1.0
XIX & XVIII	10.50	18.97	8°00	15.05	3	14'08	. 325	10.22	12,18	19,10	10.37	14,12	45° 17′ 13″·86

### At XVII—(Continued.)

July 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle		M	feans of	f Circl	e-read	ings, te	elescop	e being	set or	XIX			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XVIII &	" 53 <mark>:</mark> 88	55 <u>,</u> 13	" 54,33	52 [°] 33	" 54 <u>'</u> 93			19.02 19.02		" 47 <mark>:</mark> 95	" 47.77	" 49 <mark>,2</mark> 5	Probability = 0.8  42° 52′ 52″.03
XVI &	15.62	15.13	15,25	18.45	16.55	14.63	14.35	16.48	14.58	18.38	16.53	14.23	Probability = 0.4 78° 50′ 15″.82

#### At XVIII

March and April 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle		M	leans o	f Circl	e-readi	ngs, te	lescope	e being	set or	xVI			Probabilities and
between	0.	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XVI &	63.13	65.23	58.52	59°48	62.28	и 60 [.] 70	59.85	59°08	57 <mark>.2</mark> 8	″ бо:78	g1.20	62.20 2	Probability = 0.6 64° 30′ 0″.86
XVII &	45 <u>°</u> 58	20°13	52.58	54°26	44.73	45°06	48.13	52.77	44.71	51.73	44.18	42.07	Probability = 1.1 63° 16' 47".97
XIX & XX	34.01	35 ^{,6} 7	36·88	35,49	36.45	37.41	37,23	33,48	33.62	37,47	30,10	38.85	Probability = 0.5

#### At XIX

April 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle	-	М	eans of	f Circle	e-readii	ngs, tel	escope	being	set on	XXII			Probabilities and
between	0°	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XXII &	24.08	" 23,32	" 20.75	" 17:20	" 17:85	" 17:18	" 17:83	" 17:58	" 21.78	20'13	" 18:48	" 19 [°] 42	Probability = 6.7 29° 36′ 19″.71
XX & 1XX	55°47	54.08	,53 <mark>,</mark> 90	56.32	55 <mark>°</mark> 73	59.25	55.18	56 [.] 82	52 [.] 80	63.15	55 <mark>,8</mark> 5	62.05	Probability = 0.9 47° 45′ 56″.72

#### At XIX—(Continued.)

## April 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle			Means	of Circ	le-read	ings, te	lescope	being	set on	XXII			Probabilities and
between	0°	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XX &	6.75	3.68 3	" 2.62	" 4 <u>°</u> 95	" 6·45	5.63	13.03	9.88 9.88	" 12'00 8	" 2.83	" 12.19	9 ^{.8} 3	Probability = 1'0  67° 41′ 7″.49
XVIII &	54.18	57 ^{.6} 5	58.22	55.18	58,45	55 <mark>,</mark> 03	58·82	54,97	52.20	54.32	54.62	23,12	Probability = 0.6

#### At XX

# April and May 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle		:	Means	of Circ	le-readi	ngs, te	lescope	being	set on	XVIII	•		Probabilities and
between	00	180°	10°	190°	20°	200°	80°	210°	40°	<b>2</b> 20°	50°	230°	General Means.
XVIII & XIX	17:18 17:18	" 20.43	18.78	" 20'14 8	" 25'10	" 25,37	16.80 "	" 21,10	" 17:35	" 17:80	14,73	22.00 22.00	Probability = 0.9  39° 20′ 19″.81
XIX & XXI	7:80	4.65	6:73	10,33	8.22	8·67	ნ [.] 20	2:40	11.22	3 ^{.6} 7	9.08	4.58	Probability = 0.8 36° 16′ 6″.97
XXI &	22.30	21.30	24'13	17.62	26°05	20.10	21.53	22 [.] 75	21,45	25.70	21'02	25,15	Probability = 0.7 49° 54′ 22″.42

#### At XXI

## May 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle			Mean	s of Cir	rcle-rea	dings,	telescop	e being	set or	XIX			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XIX &	3.00	" 4.57	2'18	" 5'95	" 3:50	3.08 3.08	8.77 8.77	" 8:54	10°15	" 9 <u>`</u> 45	" 7:18	" 11'43 2	Probability = 0.8  118° 42′ 6″.63
XXII &	40'17	44.62	34'17	38.08	35 <u>°</u> 06	38.02	37:88	39°55	40 <u>'</u> 93	33,12	40°75	29,10	Probability = 1.2 72° 35′ 37″ 62

#### At XXI—(Continued).

# May 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

1													
Angle			Means	of Cir	cle-read	lings, t	elescop	e being	set on	XIX			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XXIII &	16.75 2	" 10,13	" 22.53	" 17:98	22.80	" 21'38	" 18:20 3	23'17	" 12.55	" 20'40	" 17:32	" 18 [.] 92	Probability = 1'1 72° 44′ 18″.51
XX & XIX	20.18	60.20	61.13	57.08	58.63	56.62	22.12	48.75	56.37	57.00	54.75	go, 22	Probability = 0.9
	2	2,	2	37,90	2.8.2	3 2	33,-3	72/3	3-437	3,2	J+73	300	95° 57′ 57 <b>″·2</b> 3

#### At XXII

## May 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle		1	Means	of Circ	le-readi	ngs, te	lescope	being	set on	XXIV			Probabilities and
between	0°	180°	10°	190°	20°	200°	<b>3</b> 0°	210°	40°	220°	50°	230°	General Means.
XXIV &	" 11.71	7 17:20 2	8;45	17.62 2	0.30 4	18.30	8.62 2	17:13	20.00 8	20°58	16.67	" 17.12	Probability = 1.2 61° 32′ 15″.22
XXIII &	64.42	64.18	. 67 [.] 60	64.27	69.75	g1.go	68.83	67:90	57:30	бо [.] 92	· 57°73	60.03	Probability = 1.2 61° 3′ 3″.79
XXI & XIX	31.02	38.00	36·42	31.3Q	32.85	35.63	35,33	35.73	40,42	36 [,] 57	35 <mark>°</mark> 95	33,33	Probability = 0.7 31° 41′ 35″.29

#### At XXIII

# May 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle			Mean	s of Ci	rcle-rea	dings,	telesco	pe bein	g set o	n XX			Probabilities and
between	00	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XX &	78:40	4	****	*	"	,	"	"	"	*	<i>"</i>	"	Probability = 0.7
XXI	10 40	23,55	8	21 02	10.17	17.23	18.05	17.91	17,75	21,39	10.88	17.42	57° 21′ 18″-53
XXI &	16.18	17.55	22.60	31,20	24'25	22.88	24.02	20,30	24.20	10.22	10,13	23.34	Probability = 1.0
XXII	8	, g 5 5	2	800	2 3	8	2	20	3	2,33	-92-3	3,7	46° 21′ 22″.07

#### At XXIII—(Continued.)

May 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle			Means	of Cir	cle-rea	dings, t	elescoj	pe bein	g set o	n XX			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	310°	40°	220°	50°	230°	General Means.
XXII &	"	<i>"</i>	"	"	"	"	"	"	"	"	"	11	Probability = 0.9
XXIA	11.67	18.05	10.67	15.12	13,39	ð. 0.00	9.52	13,43	7.52	2°35	10.67	8 6.33	60° 27′ 11″·55
XXIV &	32.36	39'45	28.60	32.53	26.02	32,33	27.88	37.87	29'09	34.08	35.03	30.73	Probability = 1'1
XXV	3	2,0	2	3	8	2	2	2,8	8	8	2 2	3,0	53° 0′ 32″·37

#### At XXIV

*May 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

†May 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle		:	Means	of Circ	cle-read	lings, t	elescop	e being	set or	XXV			Probabilities and
between	830°	150°	340°	160°	350°	170°	0°	180°	10°	190°	20°	200°	General Means.
*	"	"	"	"	"	"	11	"	"	"	"	"	Probability = 1.4
XXVI & XXV	57,33	55,34	21,00	55.17	50.89 	53 ^{.8} 4	80.80	04,39	59°94	09.84	63,34	62.67	57° 2′ 59″·22
	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	
txxv &	35.70	48:09	36.03	44'17	41.30	45.16	42.07	42.88	44.57	44,07	42.47	37:30	Probability = 1'1
XXIII	3	2	2	3	3	8	2	2	8	2	2	2	71° 7′ 41″•97
+XXIII &	37,35	32.37	33.00	28:17	28.93	30.40	31,42	28 [.] 84	28.08	29.85	29,83	29,34	Probability = 0.7 58° 0' 30".66

#### At XXV

May 1845, observed by Mr. J. W. Armstrong with a 15-inch Theodolite by Harris.

Angle		3	Means	of Circl	e-readi	ngs, tel	lescope	being	set on I	XXIII			Probabilities and
between	0•	180°	10°	190°	20°	200°	80°	210°	<b>4</b> 0°	220°	50°	230°	General Means.
XXIII & XXIV	" 44.18	" 50 [.] 65	" 41'20	" 49°63	" 40.47	" 49'72	″ 41.63	" 52.05	" 45,02	44.68 2	44 ^{,2} 2	47 <mark>.8</mark> 3	Probability = 1'1  55° 51′ 45″.94

#### At XXV—(Continued.)

# April 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle			Means	of Circ	le-readi	ngs, te	lescope	being s	set on 2	XXVII	•		Probabilities and
between	0°	180°	10⁰	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XXIV &	″ 50.50	,, 20,73	20.3T	,, 57:33	" 56·67	″ 57 <b>:</b> 43	″ 50.00	4 4	% %	" 57.25	″ 53.00	″ 52.00	Probability = 1.0
XXVI	3	2	2	27,200	2 %	2.	2	2	2	0,8	2	23	64° 2′ 56″·14
XXVI&	43.34	51.67	45.67	23.34	45.75	52'17	41.5	20.00	47'00	58·8 <b>₄</b>	۲۲.۲ <b>٥</b>	58.67	Probability = 1.6
XXVII	73,37	3 2 7	43,27	JJ 37	73,73	3-2-7	2 2	3	1,2	3 3	33,33	3 2	61° 16′ 50″·27

#### At XXVI

# April 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle			Ceans o	f Circle	-readin	gs, tele	escope l	peing se	et on I	KXVII	I		Probabilities and
between	303°	123°	313°	133°	323°	143°	333°	153°	843°	163°	353°	173°	General Means.
XXVIII & XXVII	5.83	" 10.50	8 6.01	" 13.75	9 ^{.8} 3	3.81 	9°17	″ 12·58	4'39 8	5.67	" 11.84	" 7:42	Probability = 0.8 61° 33′ 8″.90
XXVII &	40,17	35,42	36 <u>·</u> 92	38:17	37,59	27:09 8	35°25	36.21	30 [.] 84	35 <mark>.8</mark> 4	26 [.] 84	31.41	Probability = 1.2 65° 38′ 34″.34
XXV & XXIV	59.84	66,75	60 <u>°</u> 58	58.17	57.08	66 <u>°</u> 58	62.84	65.67	69:92	64.92	76:00	7°.59	$\frac{\text{Probability} = 1.5}{58^{\circ} 54' 4''.91}$

## At XXVII

# April 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		1	Means	of Circ	le-read	ings, te	lescope	being	set on	XXIX			Probabilities and
between	0°	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XXV &	40:09 8	44 <u>,</u> 28	37 ^{.8} 3	# 38:50	34,33	<b>40</b> ,50	29°75	41.25	30.67	38·84 3	33,59	30.00	Probability = 1.3

#### At XXVII—(Continued).

# April 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		М	eans o	f Circl	e-readir	ıgs, tel	евсоре	being	set on	XXIX			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XXVI & XXVIII	#8.61 8	45 <u>°</u> 09	52°50	" 49 ^{.6} 7	54.00 8	53°75	,, 56.04	50°,75	,, 54.00	46.67	50.66	" 56 <mark>:</mark> 75	Probability = 1.0
XXVI &	14.84	13,20	16 [.] 75	19.92	22'42 2	19.20	10.00	23.33	32.00	24.17	18.34	28.66	121° 25′ 21″.04
XXVIII &	+ 14·84 + 14·61	13 [.] 59 45 [.] 09	16.42 52.20	19 [.] 92 49 [.] 67	22'42 54'00	19.50 53.75	19.00 26.04	23.33 50.42	32.00 54.00	24 [.] 17 46 [.] 67	18 [.] 34 50 [.] 66	28·66 56·75	Probability = 1.3
+ 121° 25' - 61° 40'	26.53	28.50	24.52	30.52	28.42	25.75	22.96	32.28	38.00	37.50	27.68	31,01	59° 44′ 29″·50

#### At XXVIII

# April 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		Ŋ	Ieans (	of Circ	le-read	ings, te	lescope	being	set on	XXX			Probabilities and
between	<b>3</b> 19°	139°	329°	149°	839°	159°	349°	169°	<b>359°</b>	179°	9°	189°	General Means.
XXX &	,,	,,	"	. #	"	"	"	"	,,	"	"		Probability = 1'1
XXIX	29'25	29.67	24.50	33.00	24'34 2	36.67	25.25	29.50	33.00	25.00	33.67	29,71	59° 1′ 29″ 47
XXIX & XXVII	22.25	21.17	19:42	16.67 2	24.92	16.08	23.92	14,20	14.75	12.00	13.25	10,33	Probability = 1.2 60° 4′ 18″.20
& IIVXX XXVI	54°39	58.50	57:08	59°,75	51,17	65,33	62:17	65,33	70.42	71:17	69:42	57,76	Probability = 1.8 56° 46′ 1″.87

#### At XXIX

# April 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		1	Means o	f Circ	le-readi	ngs, te	lescope	being	set on	xxx			Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XXVII &	21.04 2	% 8·32 8	18. ² 9	" 9°75	" 21.50	16 <del>.</del> 75	21.33	13.08	23.08	" 11.52 8	" 15.52	12.67	Probability = 1'4 60° 11' 16"'05

#### At XXIX—(Continued).

# Apl. 1845, observed by Capt. J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		•	Means	of Circ	le-read	ings, te	lescope	being	set on	XXX			Probabilities and
between	0•	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XXVIII &	" 24.75	" 29.75	" 24.75	28:34	30.20	33.08 33.08	26.75	35°00	" 31.5	" 36:34 8	" 25:17	" 33 ^{.2} 5	Probability = 1.1 60° 33′ 29″.91
XXX & XXXI	64.42	59,59	68,50	бо <u>:</u> 33	63.92	63:33	70.00 4	57,50	63:42	57,84	g1.3Q	8 64.61	Probability = 1.1 61° 27′ 2″.89

#### At XXX

# Apl. 1845, observed by Capt. J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		3	deans o	f Circle	-readir	ngs, tele	escope	being s	et on 2	XXXII			Probabilities and
between	76°	256°	86°	266°	96°	276°	106°	286°	116°	296°	126°	306°	General Means.
XXXII &	55.00	56.00 3	" 57 <mark>:</mark> 75	и бг.42	" 50.62 8	8 61.41	" 57 ^{.8} 3	" 65 <u>,</u> 54	" 64.32	и 62.42 8	и б <u>2</u> .50	и б1.55	Probability = 1'2  57° 44′ 59″'.72
XXXI & XXIX	67:92	64.84	62.21	51,34	68:67	5 <mark>8</mark> .75	65 [.] 34	63.08	60°54	68,59	56.45	62:54	Probability = 1.4 62° 45′ 2″.55
XXIX &	go.12	60,75	63.08	57:30	63,59	g1.20	62.67	65.09	67:63	62.97	66.25	65:94	Probability = 0.8  60° 25′ 3″.08

#### At XXXI

# Apl. 1845, observed by Capt. J. S. Du' Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		M	leans o	f Circl	e-readi	ngs, tel	евсоре	being s	et on	XXXI	I		Probabilities and
between	0°	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XXIX &	" 56 [.] 67	" 55 <mark>:17</mark>	8 60.10 "	" 53°17	" 51.59		" 51.67			" 47 [°] 99	" 49 [.] 67	59 <u>°</u> 50	Probability = 1.1  55° 47′ 53″.08

## At XXXI—(Continued).

# Apl. 1845, observed by Capt. J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		Me	ans of	Circle	-readin	gs, tel	escope	being	set on	XXXI	I		Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XXX &	39 ^{.8} 4	37°50	35.60	" 40 [.] 67	35 <u>°</u> 99	" 40.33	35°59	# 43.50	26.33 2	" 40°17 8	33.76 33.76	" 41.34	Probability = 1.3 60° 48′ 37″.55
XXXII & XXXIII	10.00	20,34	22 [°] 34	17.25	27:20	26.30	31.00	22.84	31.84	24.58	31,33	20.03	Probability = 1.4  54° 22′ 24″.57

#### At XXXII

## Apl. 1845, observed by Capt. J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		M	eans of	Circle	-readin	gs, tele	escope	being s	et on :	XXXI	I		Probabilities and
between	0°	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XXXIV & XXXIII	43.01 8	" 43.92	38 ⁻ 34	51.50	# 48.00	" 45 [°] 75	" 42.21	" 46.00	" 39°37	" 46'91	40°17	" 42.50	Probability = 1.1 58° 20′ 44″.00
		Me	eans of										
	255°	75°	265°	85°	275°	95°	285°	105°	295°.	115°	305°	125°	
XXXIII &	33.84	" 45'26	37:08	" 41.02	" 42.17	55 [.] 80	" 42.58	48:34	47.58	" 41.25	" 48 [.] 45	" 43 [°] 30	Probability = 1.6 63° 33′ 43″.96
& IXXX	37 ^{.8} 4	31.75	35 <mark>°</mark> 67	31,00	31.12	20.55 <b>3</b>	25°41	21.68	19'42	32.50	17.98	27.62	Probability = 1.8 61° 26′ 27″.72

#### At XXXIII

# Apl. 1845, observed by Capt. J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle	_	M	eans of	f Circle	-readir	ıgs, tel	евсоре	being	set on	XXX	[		Probabilities and
between	301°	121°	811°	131°	321°	141°	331°	151°	841°	161°	351°	171°	General Means.
XXXI &	47;33	51.75	" 41 [.] 84	" 50 [.] 67	" 44.50	" 49 [.] 75	// 43 ²²	,, 58,58	" 53°59	" 49.00	, 58.09	48.67	Probability = 1.5 62° 3' 49*.75

#### At XXXIII—(Continued).

Apl. 1845, observed by Capt. J. S. Du' Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		M	eans of	Circle	e-readi	ngs, tel	escope	being	set on	XXXI	]	-	Probabilities and
between	<b>3</b> 01°	121°	311°	131°	321°	141°	331°	151°	341°	161°	351°	171°	General Means.
3 IIXXX	11	"	// 60:67	11	11	# 6c:84	"	"	# 64:08	11	" "	67:04	Probability = 1.3
VXXXIV	9,42	64.91	0907	2 33	71,23	05,04	70,30	3/242	2	3	58.09	9,34	62° 6′ 4″·96
& VIXXX	52.03	57 <mark>,8</mark> +	53.40	55.00	47.75	54.12	45.00	58.84	58.17	56.00	67.66	56.92	Probability = 1.6
XXXV	2	2	3	2	3, 5	2	3	2	2 .	2	3	2,	60° 4′ 55″·31

#### At XXXIV

Apl. 1845, observed by Capt. J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		Me	ans of	Circle-	reading	s, tele	scope	being	set on	XXX	VI		Probabilities and
between	57*	237°	67°	247°	77°	257°	87°	267°	97°	277°	107°	287°	General Means.
XXXVI &	"	"	"	"	"	"	"	"	"	"	"	"	Probability = 1.2
XXXV	17,70	20.04	1925	21 79 8	15 00	20'07	2 04	19 00	24 20	29°59	23.20 8	22.58 8	67° 49′ 20″·57
XXV &	20,00	16.92	22'42	22.88	25.5	14.5	27:17	17:00	17:05	13.75	17.20	22.34	Probability = 1.1
XXXIII	2	2	2	2	2	2	2		3	2	8	8	70° 5′ 19″ 71
XXXIII&	9.42	10,33	13.50	15.12	10.12	18.28	15.20	19.44	20.08	13.42	0.00	2.83	Probability = 1.2
XXXII	2	2	3	2	2	8	8	3	2	2	2	3	59° 33′ 13″.86

#### At XXXV

Mar. 1845, observed by Capt. J. S. Du' Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		Me	ans of	Circle-	reading	gs, tele	scope	being s	set on	XXXI	II		Probabilities and
between	6°	186°	16°	196°	26°	206°	36°	216°	46°	226°	56°	236°	General Means.
XXXIII &	" 57:58	" 51:85	" 54.5	" 48'04	# 48.35	11 47:24	" 51.46	" 12'41	11	" 42.43	// 45'20	" 44 [.] 37	Probability = 1'3
XXXIV	37,33	323	54,25	7897	40,5	7/257	3-2/0	72,7-	377	7-27-	43,30	44,37	49° 49′ 48″·41
		Mea	ns of	Circle-	reading	gs, tele	scope	being	set on	XXX	IV		
	850°	170°	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	
& VIXXX	23.31	30.38	7 26.46	16·17	20.83	″ 21.48	# 18:75	# 17'50	23,13	# 28:25	73,13 4	12.00	Probability = 1.3
XXXVI	-331	3,30	4	8	- 3	230	2/3	- / 2 ) •	-34-	2 2 3	23.13	-399	50° 53′ 22″·15

### At XXXV—(Continued).

March 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		M	leans of	f Circle	-readir	ngs, tel	евсоре	being s	et on X	XXII	I		Probabilities and
between	6°	186°	16°	196°	26°	206°	86°	216°	46°	226°	56°	236°	General Means.
XXXVI &	" 42.17	" 43°17	" 49 ^{.22}	" 44 <u>°</u> 50	" 54 <u>'</u> 17	" 43,59	" 49°92	" 51.33	21.00 "	" 46 [.] 17	" 49 [°] 39	" 49 <mark>.6</mark> 7	Probability = 1'1

#### At XXXVI

March 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		Me	ans of	Circle-	reading	gs, tele	scope l	eing se	t on X	XXV	III		Probabilities and
between	0.	180°	10°	190°	20°	200°	<b>8</b> 0°	210°	<b>4</b> 0°	220°	50°	230°	General Means.
XXXVIII &XXXVII	71.29	58.17	64.08	5 ⁸ .79	54°33	55,50	бо:28 8	54 <u>°</u> 58	50.83 %	51.33	53.02	50.00 *	Probability = 1.7
XXXVII & XXXV	20 <u>'</u> 96	29.92	24.09 2	27.25	28 [.] 67	28.50	25,00	34,33	31,42	35 <mark>,</mark> 67	31.28	33,42	Probability = 1.3
XXXV &	16.12	10.28	17:33	12.02	23.08	15,34	24°75	10,00	18 [.] 67	11.20	10,00	18.59	Probability = 1.3

#### At XXXVII

March 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		Me	ans of	Circle-	reading	gs, tele	scope l	being s	et on I	XXXV	III		Probabilities and
between	0,	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	280°	General Means.
XXXV &	37°34	32.42 3	46,59	39 <mark>.</mark> 67	41.35	36:67	44.76	29.98 29.98	49:08	37.92	46.34	45°34	Probability = 1.7 61° 23' 40".61

#### At XXXVII—(Continued).

March 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		М	eans of	Circle-	reading	gs, teles	scope b	eing set	on X	XXVII	Ι.		Probabilities and
between	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XXXVI &	16.92 2	29 [°] 17	″ 17.42	″ 25.02	22°59	26·17	24;55	26.08	,, 24.00	" 29 34	" 17 ^{.8} 3	24.00 2	Probability = 1.2
XXXVIII & XXXIV	54.67	5 <b>2</b> ;55	54.86	47 [.] 24	53,08	49,00	53 <u>*</u> 56	52.08	51,29	54°75	5 ⁸ .75	52.00 8	Probability = 0.8  60° 53′ 52″.85
XXXIV &	40,30	44'92 8	43,42	<b>53</b> ,59	47 ^{,6} 7	44°16	41,42	51.68	48.90	49,84	49,17	46 <u>°</u> 42	Probability = 1.1 60° 51' 46".81

#### A XXXVIII

February 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		М	eans of	Circle	-reading	gs, tele	scope b	eing se	t on X	XXVI	I		Probabilities and
between	00	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XXXIV &	33.92	35 ^{.8} 4	33.00	38 [.] 92	29 [.] 00	35 ^{.8} 4	″ 25,25	41.25 8	32.54	" 35.75	" 33 ^{.8} 4	36.5 3	Probability = 1.2  59° 31′ 34″ 28
XXXVII &XXXVI	46 [,] 25	40°50	40°25	39,09	43.08 2	39°75	46 [.] 67	34 ^{.8} 3	39'92	33,58	40'75	36,34	Probability = 1.1 57° 19' 40".08

Note.—XXXIV and XXXV appertain to North-East Longitudinal Series.

#### At XXXIV

February 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		М	eans of	Circle	-readin	gs, tele	всоре 1	being s	et on X	XXXV	I <b>I</b>		Probabilities and
between	00	180°	10°	190°	20°	200°	80°	210°	40°	220°	50°	230°	General Means.
XXXV &	"	"	"	"	11	11	"	"	11	"	"	"	Probability = 1'1
XXXVII	13.20	19,29	19.07	23,28	19,42	23'94	10.30	24.02	22.12	25,34	15,12	31,14	63° 22′ 20″·43
XXXVII&	38.83	31.67	38.58	32.20	35.00	32.00	35.00	28.50	34.20	29'34	33.33	28.17	Probability = 1.0
XXXVIII	3	3 ,	3	3	8	8	8	8	8	28	200	2 '	59° 34′ 33″·1 <b>3</b>

#### At XXXV

March 1845, observed by Captain J. S. Du'Vernet with an 18-inch Theodolite by Syud Meer Mohsin.

Angle		М	eans of	Circle	-readin	gs, tele	escope	being s	et on X	XXVI	I		Probabilities and
between	0•	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°	General Means.
XXXVII	63°17	55°67	59°76	" 49:00	" 49 <u>`</u> 42	50.33	52.89 8	" 48.42	" 48:94	44,34	5 ⁶ .73	46.62	Probability = 1.5

Note.—XXXIV and XXXV appertain to North-East Longitudinal Series.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 9.

	Observed Angles				Equations to	be satisfied		Factor
No.	Value	Reciprocal Weight - (Probability)?		<b>x</b> ₈ +	$-x_{3}$ $+x_{8}$ $-x_{4}$ $+x_{5}$ $+x_{7}$	+ x ₄ + x ₆ + x ₈	$= e_1 =  = e_2 =  = e_3 = +$	5·42, λ ₂
ı	73 24 10.23	1.44		- ·82 + ·99		$+ \cdot 46x_{5}$ $- \cdot 54x_{8}$	= e ₄ = -	4·389, 24
3	20 2 42.12	·49 ·36			Equations	between the fac	tors	
4 5	65 38 41·71 49 8 28·92	·25 ·49	No. of	Value of		Co-effic	cients of	
, 6 7	45 10 4·88 40 51 41·26	1.00	е	e	λ	$\lambda_2$	$\lambda_8$	λ,
8	44 49 48.29	•64	1	-4.52	+2.24	+0.61	+1.63	-0.982
			3	-5·42 +2·76 -4·389		* +1.20	+3.57	+0·938 -2·711 +3·330
v	Values of the Facto	rs			Angular	errors in second	8	
	$\lambda_1 = -3.093$ $\lambda_2 = -3.281$ $\lambda_3 = +3.808$	; ,			$x_3 = +0.35$ $x_3 = -2.29$	$x_6 = x_7 =$	- 0·74 + 1·73	
	λ, = + 1.794	•			[w	$\mathbf{x_8.} = \mathbf{x^2}] = 33.62$	+ 1.83	

In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth term in the qth line being always the same as the co-efficient of the qth line.

Figure No. 10.

				Observed Angle	es 			
No.	Value	Reciprocal Weight = (Probability) ²	No.	Value	Reciprocal Weight = (Probability) ²	No.	Value	Reciprocal . Weight - (Probability) ²
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	6 23 16.63 60 27 44.29 73 9 4.32 40 29 13.54 59 23 8.37 80 7 37.18 69 37 1.94 65 26 40.36 44 56 22.95 34 29 57.57 62 39 53.15 82 50 10.18 53 50 4.88 46 8 54.32 80 1 6.09 59 4 34.86 67 53 7.59 53 2 20.93	1.00 .64 .25 .49 .81 .64 .81 1.00 1.21 .64 .49 .64 .36 .81 1.69 .25 1.69	20 21 22 23 24 25 1 26 27 28 29 30 31 32 33 34	56 5 50·59 75 11 34·43 48 42 38·43 63 21 37·63 42 17 15·46 74 21 5·76 00 55 44·52 40 23 22·74 38 40 51·55 66 43 33·35 79 36 44·42 33 39 38·03 81 36 36·06 72 57 5·21 25 26 20·22 46 21 50·43 59 2 9·14 74 36 7·47	.64 2.25 .64 .64 .36 .81 1.96 .64 .49 2.89 .36 .64 .81 .81 .64 1.00	37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	41 58 6.98 51 2 29.63 86 59 23.02 75 18 58.02 42 39 21.06 62 1 44.11 61 46 25.17 70 46 53.93 47 26 47.96 44 31 55.22 62 26 3.05 73 2 7.16 41 43 53.14 48 51 17.52 89 24 47.12 86 19 9.36 43 10 46.31 50 30 9.20	. 36 . 81 . 81 . 81 . 16 . 49 1 . 44 81 . 36 2 . 56 1 . 60 . 36 1 . 00 . 81 1 . 44
<del></del>		·····	Equations	to be satisfied				Fact
· 30 - · 52 · 52	$2x_{11} + .18x_{16}$ $2x_{11} - 1.452x_{10}$	+ x ₃ + x ₆ + x ₉ + x ₁₃ + x ₁₅ + x ₁₈ + x ₂₄ + x ₂₇ + x ₃₀ + x ₃₃ + x ₄₅ + x ₄₅ + x ₄₅ + x ₅₁ + x ₅₄ + x ₇ + x ₂₉ + x ₃₁ + x ₄₈ + x ₇ + x ₇ + x ₇ + x ₁₈ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁₉ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁ + x ₁		+ x ₁₃ + x ₂₈ + x ₃₇ + x ₄₉ + 1 · 002x ₉ - · 41x ₁₇ + · 28x ₂₄	- ·88x ₂₁ -		$\begin{array}{c} = e_1 = + 3 \cdot 10, \\ = e_3 = - 2 \cdot 44, \\ = e_3 = + 2 \cdot 77, \\ = e_4 = - 0 \cdot 83, \\ = e_5 = + 3 \cdot 67, \\ = e_6 = + 1 \cdot 92, \\ = e_7 = + 1 \cdot 35, \\ = e_8 = - 1 \cdot 84, \\ = e_9 = - 1 \cdot 74, \\ = e_{10} = - 5 \cdot 14, \\ = e_{11} = - 0 \cdot 62, \\ = e_{12} = + 3 \cdot 99, \\ = e_{13} = - 2 \cdot 32, \\ = e_{14} = + 1 \cdot 50, \\ = e_{15} = + 4 \cdot 04, \\ = e_{16} = + 2 \cdot 57, \\ = e_{17} = - 4 \cdot 11, \\ = e_{18} = + 2 \cdot 98, \\ = e_{19} = + 0 \cdot 01, \\ = e_{20} = 0 \cdot 00, \\ = e_{21} = - 0 \cdot 01, \\ = e_{22} = - 0 \cdot 01, \\ = e_{23} = - 7 \cdot 291, \\ = e_{24} = + 3 \cdot 187. \end{array}$	\(\lambda_1\) \(\lambda_3\) \(\lambda_5\) \(\lambda_6\) \(\lambda_7\) \(\lambda_10\) \(\lambda_{11}\) \(\lambda_{13}\) \(\lambda_{14}\) \(\lambda_{15}\) \(\lambda_{16}\) \(\lambda_{17}\) \(\lambda_{18}\) \(\lambda_{21}\) \(\lambda_{22}\) \(\lambda_{22}\) \(\lambda_{24}\) \(\lambda_{25}\)
+ ·28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-1.175x_{96}$ $-1.175x_{96}$ $-0.5x_{89}$	$+1.502x_{80}$ $-1.249x_{97}$ $-81x_{38}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.085x ₄₁ }	••	$= e_{34} = + 3.187,$ $= e_{35} = - 4.788,$	λ ₂
·60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+1.112x^{24} + .01x^{24}$	$- \cdot 05x_{89} - 87x_{60}$	$+ \cdot 92x_{45} - \\ + \cdot 82x_{54} -$	$-1.099x^{23}$	••	$= e_{26} = + 2.817,$	λ

Figure No. 10—(Continued).

					Equ	ations b	etween th	ie factors	3	-	•			
	Value of						Со-е	efficients	of			<del></del>		
е	<u>е</u>	λι	λ	$\lambda_8$	λ,	$\lambda_{5}$	λ ₆	$\lambda_7$	λ ₈	λ	λ ₁₀	λ	λ ₁₈	λ ₁₈
1	+3.10	+1.89								• .				
2	-2.44		+1.94											
3	+ 2.77			+3.03						•				
4	-0.83				+1.22	0.0								
5 6	+3.67					+2.86								
	+ 1.35						+3.63	1 0 . 7 0						
7 8	-1.84							+3.23	+1.81					
9	-1.74								±1.01	± 0:00				
1ó	-5:14					*				+3.09	± a · 80			
11	-0·62										+3.89	+2.26		
12	+3.99						•					1 4 40	+3.00	
13	-2.35												, 3 00	+1.08
14	+ 1.20													' - '
15 16	+4.04													
	+-2.27													
17 18	-4·11										•			
	+2.08													
19	0.00													
21	-0.01			•										
22	-0.01													
23	-7.291													
24	+3.187													
25 26	-4·788							•						
26	+2.817													

No. of							Co-efficie	nts of					
e	λ ₁₄	λ ₁₅	$\lambda_{16}$	λ ₁₇	λ ₁₈	λ ₁₉	λ ₂₀	$\lambda_{g_1}$	λ ₂₃	λ ₂₃	λ ₉₄	λ ₂₅	λ ₉₆
1 2 3 4 5 6 7 8 9 0 1 1 2 13 1 5 6 17 8 9 0 1 1 2 13 1 4 5 6 17 8 9 0 1 1 2 2 3 2 2 3 2 4 5 6 2 2 6 2 6 2 6 6 6 6 6 6 6 6 6 6 6 6	+1.78	+2.74	+4.61	+2.36	+2.61	+1.00 +0.49 +0.81 +0.64 +0.25 +0.64	+0.64 +0.81 +0.64 +1.96 +2.89	+0.81 +0.64 +0.36 +0.36 +0.81	+1.00 +0.81 +0.49 +0.36 +0.36 +3.38	-0.473 +0.575 -0.022	-0.676 -0.041 -0.169 -0.140 +0.897 -0.668 -0.525	+0.076 -0.984 +1.094 -0.320 -0.616 -0.794 -0.376 -1.199 +6.306	-0.350 +0.360 +0.241 -0.860 +0.317 -0.550

Figure No. 10—(Continued).

Values of the Factors	Values of the Factors	Values of the Factors
$\lambda_1 = + 1.642$	$\lambda_{10} = -2.577$	λ ₁₉ = - 0.460
$\lambda_{s} = -1.442$	λ ₁₁ = - 0.071	$\lambda_{20} = + 1.506$
$\lambda_{8} = + 1.433$	$\lambda_{13} = + 1.251$	$\lambda_{31} = + 0.480$
$\lambda_4 = -0.772$	$\lambda_{13} = - 1.417$	$\lambda_{93} = -0.364$
$\lambda_5 = + 0.662$	$\lambda_{14} = + 0.278$	$\lambda_{93} = -1.577$
$y^{8} = + 0.810$	$\lambda_{16} = + 1.508$	$\lambda_{24} = + 0.596$
$\lambda_7 = + 0.456$	$\lambda_{16} = + 0.650$	$\lambda_{98} = - \circ .776$
$\lambda_8 = - 1.676$	$\lambda_{17} = -1.553$	$\lambda_{98} = + 0.364$
$\lambda_9 = - 1.838$	$y^{18} = + 1.148$	

### Angular errors in seconds

$x^1 = + 1.18$	$x_{16} = + \cdot 47$	$x^{39} = - \cdot 96$	$x_{43} = + \cdot 56$
$x_3 = + 1.64$	$x^{16} = + .00$	$x^{30} = - 1.08$	$x^{44} = + 1.08$
$x_3 = + \cdot 28$	$x_{17} = + 2.47$	$x^{81} = + .33$	$x_{45} = + 1.20$
$\mathbf{x}_4 = - \cdot 93$	$\mathbf{x}_{18} = - \cdot 64$	$x_{89} = + \cdot 14$	$x^{49} = + .10$
$x_5 = - \cdot 42$	$x^{10} = \cdot \infty$	$x^{89} = -1.00$	$x_{47} = + 1.17$
$\mathbf{x}^{6} = -1.00$	$x_{90} = + 1.95$	$x_{84} = + 1.39$	$x_{48} = + 1.30$
$x_7 = + .79$	$x_{31} = - \cdot 60$	$x^{88} = + 1.83$	$x_{49} = - \cdot 69$
$x_8 = + 2.16$	$x_{33} = + \cdot 14$	$x_{86} = + \cdot 67$	$x_{50} = -1.87$
$x_9 = - \cdot 18$	$x_{98} = -1.14$	$x_{87} = - \cdot 19$	$x_{61} = -1.55$
$x^{10} = -1.34$	$x_{94} =84$	$x_{38} = - \cdot 93$	$x_{69} = + \cdot 28$
$x_{11} = + \cdot 17$	$x^{32} = - \cdot 36$	$x_{89} = -1.50$	$x_{68} = + \cdot 61$
$x_{13} = + 34$	$x^{39} = -1.31$	$x_{40} = + \cdot 61$	$x_{66} = + 2.09$
$x_{13} = + \cdot 22$	$\mathbf{x}_{27} = - \cdot 07$	$x_{41} = + \cdot 92$	
$x_{14} = + 2.98$	$x^{88} = -3.10$	$x_{42} = - \cdot \circ_3$	

 $[\mathbf{w}\mathbf{x}^{\mathbf{s}}] = 81.78$ 

Figure No. 11.

	Observed An	ıgles			Eq	uations to	be satisfie	d			Factor
No.	Value	Reciprocal Weight = (Probability) ³		x ₁ x ₄ x ₇	+ x ₅ + x ₆ + x ₈	+x ₈ +x ₆ +x ₉		=	$e_1 = + 0.2$ $e_3 = - 1.2$ $e_3 = + 2.96$	3,	λ ₁ λ ₃ λ ₃
1 2 3 4	95 57 57° 47 45 56° 36 16 6° 72 44 18°	23 ·81 72 ·81 97 ·64	1·36 +·55	-	•	+x ₁₃ +x ₇ - ·64x ₈ - · ·76x ₁₃	+x - ·84x -1·62x	= 10 = 16 }	$e_4 = + 1 \cdot 2$ $e_5 = - 0 \cdot 0$ $e_6 = + 1 \cdot 3$	I,	λ ₄ λ ₅ λ ₆
5 6 7	49 54 22.4 57 21 18.5 72 35 37.6	53 '49			<b>E</b> 6	quations be		e factors	f		
8 9	46 21 22·0	79 <b>1.44</b>	No. of	Value of e	λ ₁	λ	λ ₃	λ ₄	λ		λέ
10	31 41 35·2 29 36 19·7	29 •49	1 2 3	+ 0.29 - 1.23 + 2.96	+2.26	+2.19	+3.88		+0.81 +1.31 +1.44	+ -	o.128 o.038 o.133
			4 5 6	+ 1·21 + 1·35		*		+1.62	+4.10	+	o·o68
	Values of the Fa	actors				Angular e	rrors in se	conds			
	$\lambda_1 = + \circ \circ$ $\lambda_3 = - \circ \circ$ $\lambda_4 = + \circ \circ$ $\lambda_5 = - \circ \circ$	· 314 · 932 · 909 · 432		$x_3 = x_3 = x_3 = x_3$	- ·13 + ·06 + ·36 - ·90	x ₈ = x ₇ = x ₈ =	= - ·09 = + ·72 = + ·73	x	$x_{10} = +1.51$ $x_{10} = +.30$ $x_{11} = +.28$ $x_{12} = +.63$		
	$\lambda_8 = + 0$	209				[wx ^s ]	]=4.61				

January 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.

### PRINCIPAL TRIANGULATION. TRIANGLES.

No. of	triangle	a	ical ess	Cor	rections to	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
93		XXIII XXVI II	" I '44 I '44 I '44	" +1.10 +1.14	+ '81 -1'03 + '22	"	+2.00 + .01 +1.36	65 38 42·27 40 57 7·58 73 24 10·15	5.2116206,1 5.0686231,9 5.2336163,3	162787°34 117117°87 1744°38	30.831 22.181 32.433
94		XXIII II I	-58 -58 -58	+1.50	- ·24 - ·28 + ·52		+4.27 + .96 -2.10 47	180 0 0.00 49 8 29.30 44 49 45.61 86 1 45.09	4 [.] 9483767,2 4 [.] 9178545,2 5 [.] 0686231,9	88792°60 82766°48 117117°87	16.817 15.676 22.181
•	580	XXIII XXVI I	1.07	+2·39 +2·29 + ·74		+ '57	+2.96 +1.71 + .75 +5.42	114 47 12 57 20 2 42 82 45 10 4 61	5 ³ 408875,8 4 ⁹ 178545,1 5 ² 336163,3	219223°73 82766°48 171244°38	41.20 15.672 32.433
95		I II II	3°05 '71 '72 '71	-1.64 58 -1.18	- '43 - '75 + 1'18		-2.07 -1.03	60 27 41 51 73 9 2 57 46 23 15 92	5.0281551,9 5.0695674,2 4.9483767,2	106697°74 117372°79 88792°60	20°208 22°230 16°817
96		II III V	2·14 ·51 ·51 ·51	+ '42 + '93 + 1'09	- '77 + '60 + '17		$ \begin{array}{r rrrr}  -3.10 \\  -35 \\  +1.26 \\  +2.44 \end{array} $	180 0 0 0 0 0 180 0 180 0 0 0 0 0 0 0 0	4 9694424,3 4 8470672,2 5 0281551,9	93205°69 70318°12 106697°74	17.653 13.318 20.208

Notes.—1. The values of the side are given in the same line with the opposite angle.
2. Stations XXIII and XXVI appertain to the Calcutta Longitudinal Series.

Digitized by Google

No. of	riangle	<b>a.</b>	ical	Cor	rections to (	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
97		III V VIII	* 83 ·83 ·82 2·48	- '79 -2'16 + '18	+ ·64 + ·64	*	- '48 -3'11 + '82	69 37 0.63 65 26 36.42 44 56 22.95	5.0923326,3 5.0792422,5 4.9694424,3	123689°44 120016°86 93205°69	23°426 22°730 17°653
98		AII AIII III	.57 .58 .58	+1°34 - °17 - °34	- ·85 + ·09 + ·76	·	+ '49 - '08 + '42	34 29 57 49 62 39 52 49 82 50 10 02	4.8357661,7 5.0312218,9 5.0792422,5	68511.03 102423.83 10010.86	12.976 20.321 22.430
99		VIII X	· 23 · 23 · 23	- '14 +1'14 + '84	- ·23 - ·29 + ·52		+ ·83 + ·85 + · ·36	63 21 37 03 42 17 16 08 74 21 6 89	4·8034300,7 4·6800900,2 4·8357661,7	63596·04 47872·94 68511·93	12.048 9.064 12.048
100		XIII X XIII	·69 ·70 ·71 ·70	+1.00 14	-1·17 - ·40 +1·57		+ 1.84 -1.31 73 +2.66 + .62	72 57 3 20 81 36 34 62 25 26 22 18 180 0 0 00	5'1508909,0 5'1657351,7 4'8034300,7	141543·81 146465·44 63596·04	26.808 27.740 12.045
101		X XII XIII	1 '01 1 '02 1 '02	-1.39 -1.33 64	+ ·50 + ·01 - ·51	•	-1.00 -1.02 -1.17	46 21 47 52 59 2 6 20 74 36 6 28	5'0263430,7 5'0999923.9 5'1508909,0	106253°46 125890°34 141543°81	20°124 23°843 26°808
102		XII XIII XV	1.00 1.01 1.01 3.02	-1.20 20 -1.38	- ·60 - ·07 + ·67		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 46 50°34 61 46 23°53 47 26 46°13	5.1341806,5 5.1041030,9 5.0263430,7	136201°11 127087°57 106253°46	25.496 24.040 20.154
103	•	XIII XV XVI	3.02 .95 .95 .96 2.86	- '10 -1'17 -1'30	+ ·20 - ·51 + ·31		+ 10 -1.68 - 99 -2.57	44 31 54 37 62 26 0 42 73 2 5 21	4'9994105,3 5'1011697,8 5'1341806,5	136201.11 136335.00 1364.36	18.914 23.908 25.796
104		XIII XVI XIV	·63 ·63 ·63	+ .69 +1.87 +1.22	- '72 + '37 + '35		- ·03 +2·24 +1·90	41 43 52.48 48 51 19.13 89 24 48.39	4'9244302,9 4'9780165,9 5'1011697,8	84029.31 92064.11	15.008 18.002
	581	I III IV	1·89 ·70 ·70 ·70	+ .60 -00 -1.92		+ .00 10 44	+ · 16 - · 16 - · 16	48 42 37 89 56 5 49 73 75 11 32 38	4.9600983,3 5.0033056,5 5.0695674,2	91221.4 100404.02 114372.49	17.277 19.084 22.230
	582	III IV VI	2.10 .49 .48 .49	- ·o9 + ·64 -2·47		- '25 - '41 + '66	- 1.35 - 34 + 23 - 1.81	59 4 34 ° 03 53 2 20 ° 68 67 53 5 ° 29	4 [.] 9266980,1 4 [.] 8958579,6 4 [.] 9600983,3	84469°12 78678°85 91221°74	15.998 14.301 17.527
	583	III VI VII	1.46 .54 .54 .54	- ·22 - ·47 -2·98		- ·8 ₃ + ·2 ₄ + ·5 ₉	-1.05 -2.39	53 50 3 29 80 1 5 32 46 8 51 39	4'9448882,2 5'0312218,8 4'8958579,6	88082·21 107453·83 78678·85	16.683
	584	VI VII IX	1.62 .31 .31 .32	+ .00 +3.10 +1.08		- :65 :00 + :65	+ .43 +3.10 +1.61 +5.14	33 39 38·15 66 43 36·14 79 36 45·71 180 0 0:00	4'6957877,1 4'9152055,7 4'9448882,2	49634°97 82263°20 88082°21	9°401 15°580 16°682

No. of	triangle		ical	Cor	rections to	Observed A	Ingle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
	585	VIII IX X	" 19 18	+ '36 + '07 + 1'31		" -1.12 + .54 + .58	- '76 + '61 + 1.89	0 , " 100 55 43:57 38 40 51:98 40 23 24:45	4.8762714,5 4.6800900,3 4.6957877,1	75209°28 47872°94 49634°97	14°244 9°401
	586	IX X XI	· 55 · 56 · 57 · 56	+ '03 - '61 - '92		-1.66 + .02 -1.69	+ 1.24 - 1.63 24 + .67	180 0 0.00 62 1 41.92 75 18 56.91 42 39 21.17	4 [.] 9913511,6 5 [.] 0308803,1 4 [.] 8762714,5	98028°24 107369°34 75209°28	18·566 20:335 14·244
	587	X XI XIII	.65 .65 .65	+ .10		- ·26 - ·36 + ·62	- 1.20 07 + .84 + 1.25	180 0 0.00 41 58 6.26 86 59 23.21 51 2 30.53	4'9258368,6 5 0999923,8 4'9913511,6	84301.80 125890.34 98028.24	15.966 18.266
	588	XI XIII XIV	·63 ·63 ·63	-2.09 58 61		- ·28 - ·53 + ·81	+2·32   -2·37   - ·81   + ·20	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9780165,8 5 0897028,2 4 9258368,6	94301.80 152945.43 92064.10	18.002 18.002
105		XIV XVI XVII	1.89 :34 :34 :34	+ ·54 + ·62 + ·05	- ·18 + ·06 + ·12		+ :36 + :68 + :17	49 48 44 38 51 20 59 97 78 50 15 65	4.8157810,1 4.8253621,1 4.9244302,9	65430.01 66890.14 84050.01	12.303 12.303
106		XVI XVII XVIII	1 '02 '24 '24 '24	+ '.58 + '.26 + '.14	- ·15 - ·06 + ·21		+ 1.21 + .43 + .20 + .35	72 37 7 04 42 52 51 99 64 30 0 97	4.8399937,6 4.6931066,2 4.8157810,1	69182°10 49329°49 65430°61	13°103 9°343 12°392
107		XVII XVIII XIX	·72 ·25 ·25 ·25	+1.30 +1.28 + .47	- '39 + '15 + '24		+ '98	180 0 0.00 45 17 14.52 63 16 49.45 71 25 56.03	4 [.] 7148617,3 4 8141667,4 4 [.] 8399937,6	51863°49 65187°86 69182°10	9.823 9.823
108		XVIII XIX XX	.75 .30 .29 .29	- :33 -1:07	- ·18 - ·16 + ·34		+3·35 - ·51 -1·49 - ·73	72 58 35 50 67 41 5 71 39 20 18 79	4.8933818,8 4.8790332,5 4.7148617,3	78231°54 75689°68 51863°49	14.817 14.335 9.823
109		XIX XX XXI	· 88	- ·o6 - ·36 + ·13	- ·22 + ·18 + ·04		-2·73 - ·28 - ·18 + ·17	47 45 56·23 36 16 6·58 95 57 57·19	4.7652078,6 4.6677467.0 4.8933818,8	58238°18 46531°46 78231°54	11.030 8.813 14.814
110		XX XXI XXIII	·63 ·23 ·23 ·23	+ ·24 + ·90 + ·09	- ·24 - ·06 + ·30		- ·29 ·00 + ·84 + ·39	49 54 22 19 72 44 19 12 57 21 18 69	4.7235360,3 4.8198655,7 4.7652078,6	52909°78 66048°90 58238°18	10.030
111		XXI XXIII XXII	· 69 · 18 · 17 · 17	- ·72 - ·73 - ·51	+ .10 + .08 18			72 35 36 54 46 21 21 25 61 3 2 21	4.7611465.8 4.6410274.0 4.7235360,3	57696°12 43754°97 52909°78	10.031 8.382 10.031
	589	XIX XXI XXII	· 52 · 14 · 14 · 14	- ·63 - ·30 - ·28		- ·33 + ·20 + ·13	- 1.31 06 10 12	29 36 18 61 118 42 6 39 31 41 35 00	4.6410274.2 4.8903472,3 4.6677467.0	43754°97 77686°79 46531°46	8·287 14·713 8·813

No. of t	riangle	<b>-</b>	rical	Con	rections to	Observed A	ngle	Corrected Plane		Distance	
Circuit	Non- circuit	Station	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
112		XXII XXIII XXIV	"	" +1.72 + .97 + .59	" - '32 + '12 + '20	"	" +1.40 +1.00 + .79	0 / " 61 32 16 38 60 27 12 40 58 0 31 22	4.7767393,1 4.7721819,3 4.7611465,8	59805.55 59180.95 57696.12	11.327 11.327 10.927
113		XXIII XXIV XXV	·25 ·26 ·26	+ '16 + '17 + '16	- '51 - '28 + '79		- ·35 - ·11 + ·95	53 0 31'77 71 7 41'60 55 51 46'63	4.7612665,9 4.8348710,8 4.7767393,1	57712.06 68370.87 59805.25	10.030
114		XXIV XXV XXVI	·77 ·23 ·23 ·23	+ .18	- '60 + '31 + '29		+ '49 - '44 + '39 + '47	57 2 58.55 64 2 56.30 58 54 5.15	4.7524861,1 4.7824918,2 4.7612665,9	56556.06 60605.68 57715.06	10.418
115	·	XXV XXVI XXVII	·69 ·25 ·25 ·25	- '24 - '13 - '16	- '31 - '44 + '75		+ '42 - '55 - '57 + '59	61 16 49 47 65 38 33 52 53 4 37 01	4·7926892,1 4·8992126,1 4·7524861,1	62042°49 64448°47 56556°96	10.215 12.500 11.220
116		XXVI XXVII XXVIII	· 75 · 28 · 28 · 28	- ·19 - ·30 - ·98	- '37 + '20 + '17		22 20 10	180 0 0.00 61 33 8.06 61 40 51.16 56 46 0.78	4.8143636,9 4.8148905,1 4.7926892,1	65217.43 65296.59 62042.49	12.322
117		XXVII XXVIII XXIX	·84 ·28 ·29 ·29	- '96 - '82 -1'11	- '78 -1'12 +1'90		-1.44 -1.44 -1.64 + .40	59 44 27 48 60 4 15 97 60 11 16 55	4 [.] 8124048,5 4 [.] 8138550,9 4 [.] 8143636,9	64923.03 62141.10 6214.43	12·296 12·337 12·352
118		XXVIII XXIX XXX	·86 ·28 ·29 ·28	- ·6 ₃ - ·6 ₄ - ·3 ₄	- '91 + '39 + '52		-1.24 25 + .18	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4·8062389,2 4·8130083,8 4·8124048,5	64008.69 65014.22 64923.93	13.30Q 13.313 13.133
119		XXIX XXX XXXI	·85	+ .66 + 1.07 + .66	- '31 - '91 - '31		+ :35 + :16 + :16	180 0 0.00 61 27 2.94 62 45 2.40 55 47 54.66	4:8323946,6 4:8376114,7 4:8062389,2	67982°12 68803°65 64008°69	12.133
120		XXX XXXI XXXII	.30 .30	- '92 -1'08 -2'08	-1·27 + ·74 + ·53		-2·19 -34 -1·55	57 44 57 23 60 48 36 91 61 26 25 86	4.8159681,5 4.8297601,2 4.8323946,6	65458.81 67570.97 67982.12	12·398 12·798 12·875
121		XXXI XXXII XXXIII	·91 ·27 ·28 ·28	+ ·74 + ·96 + ·85	- '23 -1'29 +1'52		+ ·51 - ·33 + 2·37	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.7797748,5 4.8217993,8 4.8159681,5	60224.73 66343.65 65458.81	11°406 12°565 12°398
122		XXXII XXXIII XXXIV	·83 ·24 ·25 ·25	- ·91 - ·68 - ·91	- '69 + '40 + '29			180 0 0.00 58 20 42.58 62 6 4.43 59 33 12.99	4 ⁻ 774 ² 597,1 4 ⁻ 79 ⁰ 5574,3 4 ⁻ 7797748,5	59464°77 61738°69 60224°73	11.400 11.203
123		XXXIII XXXIV XXXV	· 74 · 30 · 30 · 29 · 89	- 1·19 - ·56 - ·79	+ '09 - '77 + '68		-1.10 -1.10 -1.10	60 4 53.01 70 5 18.08 49 49 48.01	4 [.] 8289774,8 4 [.] 8643191,5 4 [.] 7742597,1	67449°30 73167°66 594 ⁶ 4°77	12.44 13.828 11.505

No. of	triangle	g	rical	Cor	rections to (	Observed A	igle	Corrected Plane		Distance	
Circuit	Non- circuit	Station .	Spherical Excess	Figure	Circuit	Non- circuit	Total	Angle	Log. feet	Feet	Miles
124		XXXIV XXXV XXXVI	**************************************	+ ·50 + ·58 + ·59	" - '07 + '15 - '08	*	+ '43 + '73 + '51 + 1'67	67 49 20.70 50 53 22.59 61 17 16.71	4 [.] 8525749,9 4 [.] 775779 ¹ ,3 4 [.] 8289774,8	71215°57 59673°17 67449°30	13.488 11.302 12.774
125		XXXV XXXVI XXXVII	· 33 · 34 · 34	+ 1.02	+ '38 - '68 + '30		+1.07 + .28 +1.95	55 37 48.60 62 58 29.18 61 23 42.22	4·8257794,7 4 8588927,3 4·8525749,9	66954°46 72259°14 71215°57	12.081 13.082 13.488
126		XXXVI XXXVII XXXVIII	33 32 32	+ '12 + '12	+ '11 + '36 - '47		+ 3·30 + ·34 + ·48 - ·37	62 10 56.86 60 29 23.75 57 19 39.39	4·8472529,7 4·8402391,2 4·8257794,7	70348°19 69221°20 66954°46	13.110 13.110
127		XXXVII XXXVIII XXXIV•	*35 *34 *34	+ '16 + '36 + '25	+ '47 - '51 + '04		+ '45 + '63 - '15 + '29 + '77	60 53 53 13 59 31 33 79 59 34 33 08	4 ⁸ 529845,3 4 ⁸ 470310,2 4 ⁸ 472529,7	71282·76 70312·25 70348·19	13.201 13.314
128		XXXVII XXXIV• XXXV•	37 37 37 111	+ '45 + '46 + '85	- '09 - '77 + '86		+ :36 + :71 + :76	60 51 46.80 63 22 19.75 55 45 53.45 180 0 0.00	4·8709064,5 4·8809710,4 4·8470310,2	74285·91 76027·55 70312·25	14.069 14.309 13.317

NOTE.—Stations XXXIV* and XXXV* appertain to the North-East Longitudinal Series.

January 1878.

J. B. N. HENNESSEY,

In charge of Computing Office.

# PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
47	XXIII " " XXVI	Karára ,, ,, Marwás	"	81 18 14·47 " 81 49 2·46	154 31 23·14 203 39 53·02 109 35 54·59	4.9178545,2 5.0686231,9 5.3408875,8	89 31 10·76 334 28 45·51 23 43 21·67 289 18 39·88	XXVI I II I
" 48 "	" I " II	Kaimúr ,, ,, Jaliádhar	"	»	248 26 59·84 187 59 17·62 139 16 39·03 141 42 11·15	4.9483767,2 5.0695674,2 5.0033056,5 5.0281551,9	8 0 30·76	II III IV III V
	III " " "	Dádar		81 14 46·40 "" ""	,	4·9694424,3 4·8958579,6 5·0312218,9	357 0 34.10	IV V VI VII VIII

Note.—Stations XXIII and XXVI appertain to the Calcutta Longitudinal Series of the South-East Quadrilateral.

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Asimuth at B	Series No.
	-		0 ' "	0 ' "	0 / //		0 ' "	
	IV	Náru	24 29 38 28	80 59 57.90	190 57 50.88	4.9266980,1	10 59 3.45	VI
49	v	Burwa	24 33 14.48	81 31 17.03	166 41 28.35	5.0923326,3	346 39 19.04	VIII
	VI	Kotar Kaimári	24 43 19.82	81 2 52.16	223 4 51.81	4.9448882,2	43 9 26.03	VII ·
	,,	,,	,,	,,	189 25 13.35	4.9152055,7	9 26 14.79	IX
	VII	Donri	24 53 56.77	81 13 45.65	274 10 23.50	4.8357661,7	94 15 35.88	VIII
	,,	23	,,	,,	109 53 2.48	4.6957877,1	289 49 28.76	IX
1	,,	,,	,,	,,	210 48 46.24	4.6800900,2	30 50 38.73	X
50	VIII	Sirmaul	24 53 6.86	81 26 7.78	136 32 52.19	4.8034300,7	316 29 31.61	X
,,	"	,,	,,	,,	209 29 56.09	5.1657351,7	29 35 28.82	XII
	IX	Kachár	24 56 43.77	81 5 18.46	251 8 36.60	4.8762714,5	71 14 3.36	X
	,,	,,	,,	,,	189 6 54.12	5.0308803,1	9 8 12.68	ΧI
	X	Mau	25 0 44.01	81 18 12 26	146 33 . 0.84	4.9913511,6	326 28 50.95	XI
	,,	,,	,,	,,	234 52 56.28	5.1508909,0	55 1 51.70	XII
	,,	,,	· ,,	,,	188 31 7.75	5.0999923,9	8 32 34.27	XIII
	XI	Lálapur	25 14 13.95	81 8 23.73	239 29 27:09	4.9258368,6	59 35 5.45	XIII
	,,	,,	"	,,	188 59 20.26	5.0897028,2	9 0 50.26	XIV
51	XII	Bagála	25 14 9.15	81 39 13.31	114 3 58.92	5.0263430,7	293 56 26.97	XIII
,,	,,	,,	,,	,,	184 50 50.27	5.1041030,9	4 51 40.60	ΧV
	XIII	Pabhosa	25 21 17.32	81 21 35.58	145 54 14.00	4.9780165,9	325 50 3.75	XIV
	"	,,	"	,,	232 10 2.43	5.1341806,5	52 18 27.73	XV
	,,	,,,	,,	,,	187 38 7:11	5.1011697,8	7 39 26.14	
	XIV	Nagdílpur	25 34 16.82	81 11 23.23		1	56 30 45.90	XVI
	"	,,,	,,	,,	186 36 30.01	4.8253621,1	1	XVII
52	XV	Singraur	1	l	114 44 29.10		1	XVI
53	XVI	Karra	25 41 56.64	81 24 38 96	107 51 46.21	4.8157810,1	287 46 50.49	XVII
"	"	"	,,	,,	180 28 53.49		1	xvIII
	XVII	Majilgaon	25 45 15.01	81 13 17.73		1	64 58 56.67	XVIII
	"	,,	,,	,,	199 36 43.49		1	XIX
54	XVIII	Pariáon	25 50 5.26	81 24 43.49	128 15 46.37		1	XIX
"	,,	"	,,	,,	201 14 22:17	4.8790332,5	21 16 33.64	XX
	XIX	Horesa	25 55 23 20	81 17 17.41			60 36 52.72	XX
	"	"	,,	,,		ł.	12 46 18.61	XXI
	,,	,,	"	,,			343 7 22.08	XXII
55	XX	Salon	26 1 43.97	81 29 44.13		l .	276 48 21 21	XXI
"	"	,,	"	,,	146 47 21.93	4.8198655,7	326 44 27.18	IIIXX
					<u> </u>			

		Station A				Side AB		Station B
Circuit No.	Series No.	Name	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
	XXI	Tánghan	0	0 / "	0 / "	4.6470074.0	0 , ,,	<b>V</b> VII
			,		131 28 25·14 204 4 1·86			XXII
1	XXII	,, Khá <b>ra</b>	26 7 39·62	81 12 10:25	250 22 44.56			XXIII
	,,	,,	,,	»	188 50 27.94			XXIV
56	XXIII	Munai		•			310 50 40.63	
,,	,,	"		,,	183 54 52.18	4.8348710.8	3 55 14.90	xxv
	XXIV	Sora	,, 26 17 18·83	1			59 47 1.79	XXV
	,,	99	,, ,	,,	182 39 59.99			XXVI
57	XXV	Janai		1	• • • • • •		303 46 8.39	
"	"	<b>"</b>	"	,,	185 6 48.04	1	5 7 16.22	XXVII
	XXVI	Tauli	26 27 18.42	81 15 21 . 22	238 7 34.62	4.7926802.1	58 11 53.48	XXVII
	<b>)</b> ;	,,	,, 13	,,			356 34 7.06	XXVIII
58	XXVII	Tikiri	26 32 42.59	1			299 48 6.00	
,,	"	,,	,,	,,			359 37 10.54	XXIX
	XXVIII	Parewa	26 38 4.00	81 14 38.32	239 43 49 74			XXIX
	,,	<b>,</b> ,	"	,,	180 42 21.81	4.8130083,8	0 42 25.79	xxx
59	XXIX	Basantpur	26 43 27 75	81 24 56.79	120 21 57.04	4.8062389,2	300 17 22.53	XXX
"	"	"	,,	,,	181 49 0.38	4.8376114,7	1 49 11.16	XXXI
1	XXX	Pesar	26 48 47 87	81 14 47 16	237 32 19.82	4.8323946,6	57 37 6.12	XXXI
	"	,,	"	,,	179 47 22.29	4.8297601,2	359 47 21.05	XXXII
60	XXXI	Turkani	26 54 48 85	81 25 20.89	118 25 43.33	4.8159681,5	298 20 54.88	XXXII
"	"	,,	,,	,,		1	352 47 26.64	
	IIXXX	Utiámau	26 59 57.08	81 14 44 42	234 47 11.25	4.7797748,5	54 51 18.76	XXXIII
	,,	,,	,,	,,	176 26 28.43	4.7905574,3	356 26 9.11	XXXIV
61	XXXIII	Amoli	27 5 40.72	81 23 48 91	116 57 23.44	4.7742597,1	296 52 55.87	XXXIV
,,	"	,,	,,	,,	177 2 17.65	4.8643191,5	357 1 58.50	xxxv
	XXXIV	Samnadio			226 47 37.49	1		XXXV
	"	,,	,,	"	8	1	338 56 27.79	XXXVI
62	XXXV	Ragaupur	ľ	i	ł .	1	277 39 10.79	
"	"	<b>"</b>	"	"	153 22 58.61	4.8588927,3	333 20 13.27	XXXVII
	XXXVI	Imlia.	27 19 18.90	81 10 4.55	214 40 41 27	4.8257794,7	34 43 55 ^{.8} 3	XXXVII
	"	,,	"	,,			332 27 0.67	XXXVIII
63	XXXVII	Thána (Thánagaon)	27 28 24.00	81 17 7.53	95 13 19.90	4.8472529,7	275 7 20.96	XXXVIII
"	"	>>	"	"	156 7 13.38	4.8470310,2	336 4 46.98	XXXIV*
"	"	"	"	"	216 59 0.55	4.8809710,4	37 2 55.85	<b>XXXV</b> *

NOTE.—Stations XXXIV* and XXXV* appertain to the North-East Longitudinal Series.



## PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

47____

		Station A				· Side AB		Station B
Circuit No.	Series No.	Name	Latitude	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Series No.
64	XXXVIII XXXIV* XXXV*	Ashrafpur Khánpur Mási	27 39 0.60		0 / " 215 35 46·83 272 42 26·86			XXXIV* XXXV*

Note.—Stations XXXIV* and XXXV* appertain to the North-East Longitudinal Series.

October 1878.

J. B. N. HENNESSEY,

In charge of Computing Office.

#### PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument, &c., in pairs of horizontal lines, the first line of which gives the data for the 1st or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction, and the height of the 2nd station above or below the 1st, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results". The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit leveling operations, whenever a junction between the two has been effected. The spirit leveled determinations are always accepted as final, and the trigonometrical heights of stations lying between those fixed by the leveling operations are adjusted—usually by simple proportion—to accord with the latter. In the table the spirit leveled values are printed thus, 382'80, &c., to distinguish them from the adjusted trigonometrical values. The column in which the mean trigonometrical heights are given is barred across where necessary, as after deduction of Stn. XVI from Stn. XV, page 51—

M. to indicate that one set of adjustment ends and another begins. The trigonometrical heights always refer to the upper mark-stone, or to the upper surface of the pillar on which the theodolite stood; when a spirit leveled height does not refer to either of these surfaces, it is given in combination with a correction, thus \( \frac{382'80}{+27} \) and the sum of these two quantities, in this case 409'8, represents the value wi

When the pillar of the station is perforated, the height given in the last column, is that between the upper surface of pillar and ground level mark-stone in floor of passage; otherwise it is the approximate height of the structure, above the ground at the base of the station.

The heights of the initial stations are taken from the Calcutta Longitudinal Series of the South-East Quadrilateral, page 179—B., Vol. VI, and are as follows:—

XXIII ... 1966.2XXVI ... 1776.3 feet above Mean Sea Level at Karáchi.

Astron	omical	Date			ations	Height	in feet			estrial action	Station		n feet of 2n		Tower
		Mean of	Station	Observed	observa		nt	ned Arc	eg eg	of Are	ht of	above	Mean Sea	Level	Pillar or 7
1843	l	Times of obser-		Vertical Angle	ber of	Signal	Instrument	Contained	In seconds	Decimals Contained	Height Station—1s in feet	Trigono Res	metrical ults	Final	<b>\</b>
ļ 		vation			Number		Д		д	ĞÃ	2 pug	By each deduction	Mean	Result	Height
Jan. Feb.	<b>3</b> 0	h. m. 3 9 3 3	XXIII I	0 / " E 0 6 23 0 D 0 18 21 6	4 4	4.10	4.80	818	51	.062	+ 298.1	2264.3			feet
Jan. Feb.	24 9	2 53 3 6	XXVI I	Do 8 8.6 Do 23 14.9		4.10	4.40	2166	141	•065	+ 482.0	2258.3	2262.3	2263	6

Astro	onomical	Date				ations	Height	in feet	p		estrial action	Station		n feet of 2nd Mean Sea		r Tower
18	149	Mean Time	8 B	Station	Observed Vertical Angle	r of observations	Signal	Instrument	Contained Arc	In seconds	mals of ned Arc	Height of 2nd Station — 1st Station in feet	Trigono	metrical	<u> </u>	Height of Pillar or Tower
		of obs vatio				Number	ig	Instr	တိ	In &	Decimals Contained A	2nd Ste	By each deduction	Mean	Final Result	Height
Feb.	21 9	h. 13 13	m. 1	II I	Do 3 6.0	4	4·10 4·20	4·80	877	54	*o62	+ 86.1	2264.3			feet
Jan. Feb.	30 21		10	XXIII II	D o 14 44.6	4	4.10	4·80	1157	73	•063	+ 214.3	2180.2			
Jan. Feb.	24 21	2 5 3	56 7	XXVI II	Do 3 17.2	4 4	4·60	4·70 4·80	1608	101	•063	+ 399.6	2175.9	2177.2	2178	+
"	9 21	3 1	0	II	Do 3 6.0	4	4.10	4.40	877	54	.062	- 86.1	2175.3			
,, 9, Apr.	Mar.30 4		35 34	III	D o 42 59.7 E o 25 55.5	8	4.10	4.40 4.40	1160	68	.029	-1177.2	1082.1	1085.4	1088	+
Feb. Apr.	21 4		31	III	D 0 42 55.1	4 4	4.10	4.80 4.80	1054	61	.028	-1001.0	1086.3			
Feb. Apr.	9 11,13	2 5 4	3	I IV	D o 17 17.0	4 4	4.10 3.60	5.00 4.40	996	57	.057	- 290.3	1972.0	1972.0	1974	+
"	4 11,13		37 55	IV	E o 26 47 · 1	4 4	3.60 4.60	5.90 5.90	901	57	•063	+ 886.3	1972.0			
Feb. Mar.	21 25	3 3 5	2 56	II V	D o 48 10.9	4 2	3.40	4·80 5·20	695	40	.057	- 879.6	1297.6	1298.0	1300	+
Apr. Mar.	4 25	3 2	12	v v	E o o 58.5	4 2	3·70 4·60	4.30 2.30	921	50	.022	+ 212.8	1298.2			
Apr.	4 22	3 3		AI III	D o 31 10.4	4 4	3·20 4·60	4°90 4°90	777	37	·047	+ 350.8	1436.2	1437.1	1440	+
"	11,13 22	3 5		IV VI	D o 28 3.1	4 4	3.60	5.60 4.50	834	45	.024	- 534.3	1437 7			
" May	4 1	3 4	11	VII	D o 18 20.3	4	4.60 4.60	4.80	1062	59	.026	+ 327.1	1412.8	1411'7	1415	1
Apr. May	22 1	3 2	13	VI VII	Do 231.1	4	3.20	4.80	870	46	.023	- 26.2	1410.0			
Apr. Mar.	4 16	3 2	- 1	VIII	Do 8 28.9	4	3.60 3.60	4.00 2.50	1186	43	.036	+ 25.3	1110.0			
"	25 16		55 8	V VIII	D o 14 18.2	4	3.40	5°20	1222	64	.023	- 185.1	1115.0	1111.8	1115	2
May Mar.	1 16	4 4 1	9	VII	D o 20 8.4	4	3.60	4·80 5·20	677	37	.024	- 300.0	1111.4			

[†] Not forthcoming.

Astrono	mical	Date			observations	Height	in feet	ဥ	Terre Refre	estrial action	Itation		n feet of 2n Mean Sea		Tower
		Mean of Times	Station	Observed Vertical Angle	of observ	ه ا	nent	Contained Arc	seconds	ils of d Aro	Height of 2nd Station — 1st Station in feet		ometrical	TIGAGI	Height of Pillar or Tower
1843		of obser- vation		_	Number o	Signal	Instrument	Cont	In вес	Decimals Contained	H. Static	Res	ults	Final	of J
		vation			- Num				I	C ₀ D	Snd	By each deduction	Mean	Result	Heigh
<b>A</b> pr.	22	h. m.	VI	0 / " Do 5 2.1				"							fee
May	8,9	3 17 4 6	IX ·	Do 5 2 1 Do 7 15 8	4	3.30 2.10	4°20	813	39	.048	+ 25.3	1462.3			
"	1 8,9	4 18 4 4	VII IX	Do 013.9	4	3.00 2.10	4·80 5·20	490	11	.023	+ 52.6	1464.3	1463.3	1467	1
"	1 26	4 7 2 57	VII X	Do 6 4.8	4	4°10	4·80 5·20	473	19	.041	- 33.6	1378.1			
Mar. May	16 26	4 16 2 56	VIII X	E o 9 28.5 D o 19 2.4	4	3.90 4.10	5°20	628	32	.050	+ 263.2	1375.3	1377.0	1381	4
,"	8,9 26	4 2 3 I	IX X	Do 142.8	4 4	4.10	5°20	743	35	•048	- 85.7	1377.6			
" 1844 Feb. 1843	8,9 <b>2</b> 9	4 2 I 3 23	XI	D 0 30 6.2	4	4.00	5.50	1061	62	.059	- 695.3	768.0	769.7	773	
May 1844 Feb. 1843	26 29	3 3 3 22	X	D o 28 24.9	4	4.00	5.30	968	56	.028	- 605.7	771.3	1-9 1	,,,,	
Mar. 1844 " 1843	16 16	4 3 2 58	VIII XII	D ο 22 13·2	4	4.20	5°20	1447	92	.063	- 497'4	Q14.4	613.0	617	
May 1844 Mar. 1843	26 16	3 0	X XII	D o 28 43.5 E o 8 26.4	4	4.00 4.00	5.30	1398	92	.066	- 765.5	611.2		-	
May 1844 Apr.	26	2 50 4 20	X XIII	E o 13 19.1	4	4.00	5.50	1244	74	•060	- 821.6	555*4			
Feb. Apr.	29 1	3 21 4 24	XII XIII	D o 14 56.3	4	4.00	5.50	833	53	.064	- 216.7	553.0	554.9	565	
(1) 1844 "	1 <b>,27</b>	3 28 3 49	XIII	Do 5 50.2	8	4.00	5.50	1050	67	.064	- 56.2	556.4			
1845 " 1844	25	3 20	XIV	D 0 18 27 5 E 0 1 40 3	4	4.20	5.30	1215	105	.087	<b>—</b> 360·2	409.2	400.3	404	3
Apr. Feb. 1845 Oct.	1,27 25 21	4 6 3 16	XIV	Do 12 54.5	8	4.20	5.20	939	52	•056	- 163.9	391.0			
1844 Dec.	6 27	3 55 2 28	XV	Do 15 24.3	4	4.00	5.30	1256	76	.001	- 233.5	379°4	369.2	379	3
Apr. Dec.	6	2 33	xv	Do 2 26.6	4	4.00	5.30	1346	52	.039	- 195.4	359.2			
Apr. Dec.	27 12	2 59 2 36	XIII XVI	D o 13 50.7	4	4.20	2.30 2.30	1247	<b>5</b> 5	.044	- 160.0	394.9			

[†] Not forthcoming. (1) The mean of observations taken on 16th March 1844 and 21st October 1845.

Astronon	nical	Date			tions	Height	in feet			estrial action	ation		feet of 21		Tower
		Mean of	Station	Observed Vertical Angle	f observations	-	ent	ined Arc	spu	s of l Arc	Height of 2nd Station — lat Station in feet		Mean Sea	Level	5
1845		Times of obser-	·	Volument Mingro	Number of	Signal	Instrument	Contained	In seconds	Decimals Contained	Hei Station ir		metrical ults	Final	Height of Pillar
		vation			Num		4		<b>A</b>	ĞÄ	2nd	By each deduction	Mean	Result	Heigh
Feb. 1844 Dec.	25 12	h. m. 3 15 2 39	XIV XVI	Do 6 10.7 Do 6 48.1	4 4	4.20	5.50	" 830 .	27	.033	+ 7.6	407.8	399'7	{ 382.80	feet 27
" " 1845	6 12	2 37 2 33	XV XVI	D o 6 38.7 D o 8 20.4	4	4.20	5°20	987	41	.041	+ 26.9	396.4			
Feb. Mar.	25 11	3 I4 4 O	XIV XVII	Do 5 26.6 Do 4 50.1	4	4.00	5,50 2,50	661	25	.038	- 5.7	394.2	•		
"	16 11	4 57 3 57	XVI XVII	Do 5 9.5 Do 4 16.7	4 6	4.20	5.20	646	42	.065	- 8.4	391.3	392.9	395.23	25
" Apr.	16 1	4 58 4 18	XVI	Do 5 5'3 Do 223'4	4	4.00	5°20	487	23	.048	- 19.1	390.4	390.4	389	25
Mar.	19 24	10 19 9 53	XVII XVIII	E o o 33.6 D o 3 2.6	8	4.00	5°20	683	270	*395	+ 36.2	‡432.0			
" Apr.	11 24	3 55 3 55	XVII XIX	Do 514.5	6	4.20	5°20	644	11	.017	+ 0.3	395.8		( 367'84	
"	1 24	4 20 3 57	XVIII XIX	Do 3 37.6 Do 4 45.8	4	4.20	5.30	512	8	.016	+ 8.3	399.0	397.4	{ 367.84 { + 25.8	25.8
"	1 30	4 22 5 33	XVIII XX	Do 5 2.3	4	4.00	5°20	748	21	.029	+ 19.6	410.3			
"	24 80	5 15 5 51	XIX XX	D o 6 29 1	4	4.00	5°20	773	32	.041	+ 15.4	412.8	411.5	410'15	25
" May	24 8	4 O 5 O	XIX XXI	D o 2 31.0	4	4·50 7·50	5°20	460	11	.024	+ 16.0	409.6			
Apr. May	<b>8</b> 0	5 42 5 6	XX XXI	D o 4 37.8 D o 4 21.7	4	4.20	5°20	575	21	.037	<b>–</b> 2·5	407.7	408.6	409	25
Apr. May	26 5	5 22 5 2	XIX	Do 4 54.4 Do 6 8.7	4	10.20	5°20	767	38	.020	+ 14.0	407.6			
"	8 4	5 2 4 58	XXI XXII	Do 3 44.5 Do 3 50.8	4 4	4.20	5°20	432	22	.020	- 5.7	402.0	404.9	405	25
"	11 4	4 33 4 56	XXIII	Do 3 52.3 Do 4 49.2	4 4	4°50	5.30	570	27	.047	+ 8.0	404.5			
"	2 10	5 3 4 20	XX XXIII	Do 5 45.8 Do 4 31.6	4 4	4°50 4°50	5.20	652	20	.030	- 11.0	398.3			
" - "	8 10	5 4 4 21	XXI XXIII	Do 3 8.6		4.20	5.30	523	19	.037	- 14.4	394.5	396.6	397'56	25.2

[‡] Rejected.

1845		Date			Number of observations	Height in feet		Arc	Terrestrial Refraction		of t Station		Height in feet of 2nd Station above Mean Sea Level			r or Tower
		Mean of Times of obser-	es ser-	Observed Vertical Angle		Signal	Instrument	Contained	In seconds	Decimals of Contained Arc	Height of 2nd Station — 1st Station in feet		Trigonometrical Results		Final	Height of Pillar
		vation										2nd 6	By each deduction	Mean	Result	Heigh
May	4. 11	h. m. 4 56 4 33	XXII XXIII	Do 449.5	4 4	4.20	5.50	570	27	·047	-	8.0	397.3			feet
"	4 12	4 55 3 51	XXII XXIV	D 0 4 10 2 D 0 4 27 0	4 4	4°50	5°20	585	<b>3</b> 6	.062	+	2.4	407.4	408.8	409	24
"	11,19 12	<b>4</b> 4 3 43	XXIII	D o 4 o 3	8	4.20	5.30	591	14	.024	+	12.6	410.5	•		
"	19 17	4 35 4 35	XXIII XXV	Do 6 22.3	4 4	4·50 4·50	5°20	675	19	.028	+	20.4	418.0	415.2	417	24
,, Apr. 28	2,12 , May 17	4 6 4 28	XXIV XXV	D o 4 36.8	4 4	5.41 2.38	5°39 5°39	570	22	.039	+	4.3	413.1	, ,	12/	
May Apr.	2 26	5 9 5 17	XXIV XXVI	Do 4 10.0	4 4	4.52	5.28 2.28	599	49	·082	+	1.3	410.1	411.1	<b>∮ 406.88</b>	3 30
"	28 26	5 O 4 57	XXV XXVI	Do 3 50.0	4 4	4·33 6·∞	5.28 2.28	559	35	.062	_	<b>3</b> .2	412.0		+6	١
"	26 21	4 38 4 37	XXVI XXVIII	D o 4 50 o	4	6.08	5·58 5·58	645	32	.049	_	0.3	412.4	412.7	405'62	30
"	21 10	5 54 5 54	XXVIII XXX	Do 3 38.2	4	5°00 7°42	5.28 2.28	642	116	.181	_	3.7	409.0	409.0	{ 382'36 { +25	25
"	11 9	7 3° 7 7	XXX XXXI	Do 1 56.4	4 4	5.28	5·58 5·58	671	255	.380	+	16.9	425.9	425.9	{ 390 22 { + 24	2 24
"	28 24	5 14 5 20	XXV XXVII	Do 411.6	4 4	6.08	5·58 5·58	637	63	.099	-	0.4	416.3			
"	26 24	5 3 5 7	XXVI XXVII	Do 4 40.0	4 4	6·42 7·33	5·58 5·58	613	41	.066	_	5.4	407.5			
"	· 21 25	4 44 4 58	XXVIII XXVII	D o 4 53.1	4	10.42	5.28 2.28	644	23	.032	_	3.3	402'4	407.6	408	30
"	14 25	4 3º 4 43	XXIX	Do 4 18.2 Do 5 27.7	4	6.20	5.28	643	26	'041	+	. 11.1	404.3			
"	25 14	4 43 4 30	XXVII XXIX	Do 4 18.5	4	6.12	5°58	643	26	.041	_	11.1	397.6			
"	20 14	5 I 5 2	XXVIII XXIX	Do 212.0	4	6.75	5.28 2.28	641	59	.092	_	19.0	386.6	204:2	204	
"	10 14	5 40 5 38	XXX XXIX	Do 4 20.4 Do 3 25.5	4	5°75 5°08	2.28 2.28	632	84	.132	_	8.8	399.1	394.3	394	24

Astronomical		Date			tions	Height in feet			Terrestrial Refraction		tation	Height in feet of 2nd Station			or Tower
		Mean of Times of obser- vation	Station	Observed Vertical Angle	Number of observations	Signal	Instrument	Contained Arc	In seconds	Decimals of Contained Arc	Height of Station — 1st Station in feet	above Mean Sea Level Trigonometrical			Height of Pillar or
1845				, or or or a							He ii	Results		Final	th of
				,							2nd	By each deduction	Mean	Result	Heig
Apr.	9 14	h. m. 5 15 5 10	XXXI XXIX	Do 3 45.0	4 4	5·50 6·08	5·58	" 680	52	*077	- 20'4	393.8			feet
"	12 8	5 15 5 23	XXX XXXII	Do 258.4 Do 519.0	4	10.42	5·58 5·58	667	69	104	+ 23.0	430.0	429.4	{ 404.66	24
>> >>	9 8	4 41 4 38	XXXI XXXII	Do 424.9	4 4	5°00 5°75	5·58 5·58	647	17	•026	+ 13.7	427.9	7-9 1	\	24
"	9 5	5 6 5 10	XXXI XXXIII	D o 4 30.2	4 4	2.28 2.83	5.28 2.28	655	35	•053	+ 7.0	421.3	420.0	420	30
7 <b>7</b>	8 5	4 58 5 4	XXXII	D o 3 35.2	4	5.83 5.42	5.28 2.28	595	49	.082	- 9.9	418.8			
» »	8 <b>4</b>	4 29 4 25	XXXII	Do 2 10.5	4	5°33 7°25	2.28 2.28	610	- 2	.003	+ 2.8	431.2	431.1	431	24
"	5 4	4 27 4 I2	XXXIII	Do 4 20.6	6 4	5°33	2.28 2.28	587	- 3	•∞6	+ 10.4	430.4			
,, Mar,	5 28	4 3 ² 3 55	XXXIII	Do 7 4.3	12	5·67 6·08	5.83 2.28	723	37	.053	- 35.7	384.3	389.0	389	30
Apr.	28 28	5 34 5 10 4 6	XXXIV XXXV XXXIV	Do 149.1	4 4	7.83	5.83	666	104	.126	- 37.4	393.7	•		
Apr. Mar.	16 21	4 0 4 10 4 0	XXXVI	Do 2 16.2	4	3°17 2°50 3°17		589	28	·048	+ 18.2	449.6	450.3	451	24
"	16 26	4 0 3 30	XXXVI	Do 8 4.0	4 4 6	6.83	5.82 2.83	703	. 44	*062	+ 61.8	450.8			
>> >>	8	3 3° 3 45	XXXVII	Do 20.1	4	4.00	5.28	714	93	.130	+ 28.5	417.2	420.6	421	24†
"	8 16	3 0 3 37	XXXVII	Do 3 45.2	4 6	2.12	5.28	661	33	*050	<b>— 26.</b> 5	423.7			
Feb. Mar.	<b>2</b> 0 8	3 30	XXXVIII XXXVII	Do 3 34.5	4	1.63	5·58 5·60	684	42	.061	- 1.0	448.3	449.7	450	24
Feb. Mar.	<b>2</b> 0 8	3 45 3 45	XXXVIII XXXVII	Do 6 34.4	4	3.92	5.28 2.60	695	55	•080	+ 30.2	451.1			
Feb.	24 20	3 3° 4 °	xxxiv• xxxviii	Do 6 16.6	4	1.42	5·60 5·60	695	46	.066	- 11.2 + 31.9	443.3	440.3	439	12
"	24	3 30	XXXIV*	Do 435.3	4	2.52	5.35	704	53	.075	<b>—</b> 11.2	438.2			

^{(1).} Not forthcoming, but it would appear from the evidence at hand to have been taken about 4 o'clock. † Above the bastion of the fort on which the station is built.

NOTE.—Station XXXIV* appertains to the North-East Longitudinal Series.



Astronomical	Date			ations	Height	in feet		Terre Refra	estrial ection	ation		feet of 2n		Tower
1845	Mean of Times of obser-	Station	Observed Vertical Angle	of observ	Signal	Instrument	Contained Arc	seconds	Decimals of Contained Aro	Height of Station—1st Sta in feet	above Trigonor Res	metrical	Level Final	of Pillar or
	vation			Number		In		In	Con	2nd 8	By each deduction	Mean	Result	Height
	h. m.		0 1 4											feet
March 8 , 4 1850		XXXVII XXXV*	Do 2 18.4	4	1 .	2.90 2.28	751	65	•o86	+ 0.1	420.7	423.6	405:00	
Jan. 20,21 1849 Dec. 26,27,28,30	3 3 3 21	XXXIV* XXXV*	Do 6 16.3	8 16	5.30 2.60	5.04 5.08	734	28	•037	- 13.7	426.2	4-3	425'89	24

NOTE.—Stations XXXIV* and XXXV* appertain to the North-East Longitudinal Series.

#### Descriptions of Spirit-leveled Points.

The spirit-leveled heights given on pages  $51_{-M}$  to  $54_{-M}$ , were determined by the operations either of the G. T. Survey or the Revenue Survey; these connections are hereafter indicated in the former case by the letters (G. T. S.), and in the latter by (R. S.) immediately following the name of each station; the surface on which the leveling staff stood is also described.

XVI	or	Karra Tower Station,	( <i>G</i> .	T. S.	);	On the mark-stone let into the upper surface of the basement on which the tower has been built.
XVII	,,	Majilgaon Tower Station,		,,	<b>- ;</b> ·	On the mark-stone let into the upper surface of the pillar.
XIX	**	Horesa Tower Station,	(R	. S.)	;	On the mark-stone let into the upper surface of the basement on which the tower has been built.
XX	. 23	Salon Tower Station,	٠.	. 23	;	On the mark-stone let into the upper surface of the pillar.
XXIII	,,	Munai Tower Station,		,,	;	On the upper surface of the pillar.
XXVI	,,	Tauli Tower Station,		"	<b>;</b> ·	On the mark-stone at 24 feet above the ground, i. e. at 6 feet below the one at the original upper surface of the pillar.
XXVIII	"	Parewa Tower Station,		,,	;	On the mark-stone let into the upper surface of the pillar.
XXX	<b>&gt;&gt;</b>	Pesar Tower Station,	( <i>G</i> .	T. S.	); )	
XXXI	,,	Turkani Tower Station,	•	,,	; {	On the mark-stone let into the base of the tower.
XXXII	"	Utiámau Tower Station,		,,	;)	·
XXXV	"	Mási Tower Station, (Of the North-East Longitudinal Series).	(R.	S.)	<b>;</b> .	On the upper surface of the pillar.

For further particulars of these Stations, see pages 6_M. to 10_M.

October 1878.

J. B. N. HENNESSEY,

In charge of Computing Office.

### KARARA MERIDIONAL SERIES.

### PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

# At XIII (Pabhosa)

Lat. N. 25° 21′ 17″·32; Long. E. 81° 21′ 35″·58 = 5 25 26·4; Height above Mean Sea Level, 565 feet. June and July 1845; observed by Mr. J. W. Armstrong with Harris and Barrow's 15-inch Theodolite.

Star observed
Mean Right Ascension 1845.0
Mean North Polar Distance 1845.0
Local Mean Time of Elongation, June 12

a Ursæ Minoris (East).

1h 3m 35
1° 31' 1"•41

Eastern 13h 43m

ate o		re of rk)	7.	ACE LEFT	7	ACE EIGHT
Astronomical Date	Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation  Reduced Observation Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation  Ref. Mark—Star at Elongation
June 12	E.	0 2 & 180 2	0 , " m 8 + 0 15 55 46 13 8 15 50 30 10 58 16 2 53 15 51 16 8 76 18 1	- 0 9'91 + 0 15 45'55 0 6'91 + 0 15 45'55 43'39 0 14'46 48'07 50'07	0 ' "	- 0 0.50 + 0.15 21.24 0 0.03 23.57 0 2.10 22.73 25.55
,, 18	E.	10 2 & 190 1	+ 0 16 1 53 17 10 15 57 73 14 58 15 51 60 13 3 14 52	- 0 16.96 0 12.44.83 0 9.80 0 12.73 + 0 15 44.57 41.80 41.14	+ 0 15 37 27 8 47 15 39 57 6 35 15 36 13 4 2 15 36 40 6 36	0 0.03 32.50
" 16	E.	20 2 & 200 2	+ 0 15 58.77 18 23 15 54.40 16 25 15 49.03 11 30 15 56.13 13 58	- 0 19.44 0 15.23 0 7.61 0 11.42 44.30	+ 0 15 39 50 8 10 15 39 57 6 1 15 33 67 1 25 15 38 20 4 15	0 2.09 33,25
" 18	E.	30 3 & 210 3	+ 0 16 2.43 18 27 15 58.24 16 33 15 49.17 7 35 15 50.80 10 9	- 0 19·55 + 0 15 42·88 42·51 0 5·93 45·86 14·87	+ 0 15 32 97 9 31 15 36 76 6 51 15 30 80 0 59 15 34 20 2 57	0 0.00 30.74
" 28	E.	40 4 & 220 3	+ 0 16 1 67 18 51 16 8 16 56 66 37 58 39 38	- 0 20.43 + 0 15 41.24 0 14.95 40.21 1 23.01 33.65 36.88	+ 0 15 45 67 7 24 15 42 80 5 33 15 40 17 0 2 16 33 60 29 44	o 1.12 41.03

Date			is of		PACE LEFT			FACE RIGHT	
Astronomical 1	Astronomical Relation Bell Mark – Str. Observed Horizontal Aug Observed Horizontal Aug Mark – Str.		Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	u u u u u u u u u u u u u u u u u u u	Reduced Observation Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Star at Elongation	
July	5	E.	0 / 50 3 & 230 3	0 / " + 0 16 0 90 16 0 26 15 37 73 15 40 00 15 50 10 15 57 17	m     8     ,       20     47     -     0     24.81       18     50     0     20.38       6     32     0     2.45       9     4     0.4.73       16     24     0     15.48       17     51     0     18.35	39.88 35.28 35.27 34.62	+ 0 15 50 80 15 51 40 15 45 20 15 46 17 16 12 13	m 8 , 7  12 47 — 0 9 39 10 28 0 6 29 2 38 0 0 40 0 19 0 0 01 23 27 0 31 67 24 37 0 34 89	46.16 40.19 40.40
"	6	E.	20 2 & 200 2	+ 0 15 58·10 15 51·36 15 54·90	16 35 — 0 15 80 14 6 0 11 42 11 54 0 8 15 14 18	40.94	+ 0 15 44 67 15 43 50 15 40 03 15 42 77	7 46 - 0 3.47 4 13 0 1.02 3 1 0 0.52 5 40 0 1.84	+ 0 15 41 · 20 42 · 48 39 · 51 40 · 93

## Abstract of Astronomical Azimuth observed at XIII (Pabhosa) 1845.

By Eastern Elongation of a Ursæ Minoris.

Face	L	${f R}$	L	${f R}$	${f L}$	${f R}$	${f L}$	R	${f L}$	${f R}$	${f L}$	${f R}$
Zero	0°	180°	10°	190°	20°	200°	30°	210°	<b>4</b> 0°	<b>220°</b>	50°	<b>2</b> 30°
Date	Jun	e 12	Jun	e 13	Ju	ne 16	Jur	ne 18	June	28	Jı	ıly 5
	*	"	*	*	*	# - 11.66	<i>#</i>	"	*	*	•	,
	45 55 43 39	21.24	44 · 57 44 · 83	32·82 37·07	39°33 38°87	35°66 37°48	42.88 42.81	27.75 34.05	41.54 40.51	42°52 41°03	39.88 36.00	41°41 45°11
Observed difference	48.07	22.23	41.80	35:20	41 ' 42	33.55	45.86	30.44	33.65	40.17	35.58	44.80
of Circle-Readings, Ref. M.—Star	50.07	25.22	41.14	33.89	44 · 90 *41 · 97	37°16 *40°87	44.87	33.70	36.88	42.66	35°27	46.1 <b>6</b>
reduced to Elongation					<b>*</b> 40.01	*42.12					38.82	40.58
· ·					*42 · 88 *42 · 80	*39°18						
Means	46.77	23.52	43.09	34.75	41.60	38.33	44.03	31.26	38.00	41.60	36.66	43.04
						,		,				
Means of both faces + o	15 35	7 '02	28°	92	39 ·			, 80	40°	80	39	.8<
Az. of Star fr. S., by W. 181	40 50	·86		.03	51		51	· 14		.19	50	81
Az. of Ref. M. , 181	56 25	88	29	·84	31	·05	28	<b>.</b> 94	30	'99	30	66

Astronomical Azimuth of Referring Mark by Eastern Elongation	181 56 29.56
Angle Referring Mark and XVI (Karra) see following page	+ 5 41 34.58
Astronomical Azimuth of Karra by observation	187 38 3.84
Geodetical Azimuth of ,, by calculation from that adopted (Vol. II, page 141) at	
Kaliánpur, see page 45 ante	187 38 7.11
Astronomical—Geodetical Azimuth at XIII (Pabhosa)	— 3.27

Note.—Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date—the most convenient—by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.

At XIII

June 1845; observed by Mr. J. W. Armstrong with Harris and Barrow's 15-inch Theodolite.

Angle			1	Means of	Circle-re	adings, 1	elescope	being set	t on R. M	Ι.			
between	. <b>0°1′</b>	180° 1′	10° 2′	190° 2′	20° 2′	200° 2′	30° 4′	210° 8′	40° 4′	<b>22</b> 0° 3′	50°1′	<b>23</b> 0° 1′	General Mean
R. M. & XVI	33.00	36:03	33:22	31.98	36:30	32.63	36.12	37°70	33°75	33°95	32°58	34,05	5° 41′ 34″ • 28

### At XXIV (Sora)

Lat. N. 26° 17′ 18″ 83; Long. E. 81° 14′ 50″ 30 = 5 24 59.4; Height above Mean Sea Level, 409 feet. October 1845; observed by Captain A. S. Waugh with Syud Meer Mohsin's 18-inch Theodolite.

Star observed Mean Right Ascension 1845:0 Mean North Polar Distance 1845:0 Local Mean Times of Elongation, Oct. 3 a Ursæ Minoris (East and West).

1h 3m 35s
1° 31′ 1″ 41

{Eastern 6h 20m
Western 18 12

ş			s of		PACE LEFT	•	r	ACE RIGHT
Astronomical Date		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Star at Elougation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation  Reduced Observation  Ref. Mark—Star at Elongation
Oct.	8	E.	o 8 & 180 8	0	m 8	+ 1 4 56°30 54°62 61°41 60°33	0 1 11 m 8 + 1 5 12 10 2 44 5 9 90 5 10 5 21 13 13 54 5 24 70 16 46	- 0 0'43 + 1 5 11'67 8'36 9'96 8'46
,	3	W.	0 8 & 180 8	+ 4 26 37·20 26 46·50	32 12 + 0 59·88 0 47·33	+ 4 27 37 08 33 83	+ 4 27 35 87 3 53 27 31 50 10 0	+ 0 0.87 + 4 27 36.74
"	4	E.	10 10 &	+ 1 5 14.67 5 8.97 5 5.76 5 4.10	11 52 - 0 8·13 7 55 0 3·61 1 1 0 0·06 4 45 0 1·30	+ 1 5 6.54 5.36 5.70 2.80	+ 1 5 49 24 26 45 5 36 77 23 17 5 16 17 13 48 5 20 97 17 0	0 31, 54 2, 29
99	4	w.	10 9 & 190 10	+ 4 27 18 90 27 22 84 27 34 53 27 30 03	16 35 + 0 15.89 13 20 0 10.26 4 11 0 1.01 7 15 0 3.04	+ 4 27 34 79 33 10 35 54 33 07	+ 4 26 49 03 29 15 26 59 70 26 14	+ 0 49.42 0 39.79 + 4 27 38.45 39.49
,,	5	<b>E</b> .	20 11 & 200 10	+ I 5 50.36 5 40.83 5 26.56	27 0	+ 1 5 8.36 7.47 12.56 10.92	+ 1 5 23 40 15 13 5 17 40 5 10 17 2 15 5 6 70 0 47	0 0.50 0.88

ş			s of (x)		FA	CE LEFT			FACE BIGHT	
Artronomical Date		Elongation	Zeros (Circle Readings of Beferring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Interval in Time from Elongation	Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark—Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time Elongation	of Ref. Mark-Star
Oct.	5	w.	20 IO & 200 IO	0 1 " + 4 27 27 33 27 31 50 27 35 27 27 28 56	m s 9 13 6 24 6 37 9 56	, , , , , , , , , , , , , , , , , , ,	+ 4 27 32 · 23 33 · 87 37 · 79 34 · 26	+ 4 27 6.53 27 15.36 27 7.83	m s , v , v , 21 50 + 0.27 5 18 27 0 19 6	35.03
"	6	E.	30 5 & 210 5	+ 1 5 7.23 5 3.13 5 8.50 5 9.70	4 44 1 37 7 51 10 42	- 0 1.50 0 0.12 0 0.62	+ 1 5 5.94 2.98 4.94 3.08	+ 1 5 36.63 5 18.03 5 38.23 5 47.46	21 19 - 0 26.2 14 10 0 11.5 22 31 0 29.3 0 36.7	8 6·45 8·92
"	6	w.	30 5 dt 210 5	+ 4 27 12 04 27 18 00 27 23 63 27 21 10	18 16 14 44 9 19 12 19	+ 0 19.29 0 12.24 0 8.75	+ 4 27 31 33 30 54 28 63 29 85	+ 4 27 31·46 27 33·80	5 58 + 0 2.0	
"	7	B.	40 II & 220 II	+ 1 5 41.37 5 26.53 5 25.40 5 32.46	23 O 19 4 17 2O 19 57	- 0 30.21 0 12.32 0 14.32	+ 1 5 10·86 5·57 8·03 9·47	+ 1 5 9.70 5 6.27 5 6.83 5 7.53	8 12 - 0 3.8 5 14 0 1.3 4 35 0 1.3 7 39 0 3.3	5.62
"	7	W.	40 II & 220 II	+ 4 27 33 50 27 35 33 27 31 66 27 29 93	6 47 2 6 7 36 10 10	+ o 2.66 o 0.25 o 3.33 o 5.97	+ 4 27 36 · 16 35 · 58 34 · 99 35 · 90	+ 4 27 9.07 27 15.40 27 8.40 27 0.57	18 22 + 0 19 2 15 24 0 13 3 19 18 0 21 2 0 31 0	29.12
"	8	E.	50 7 & 7	+ 1 5 34 30 5 23 33 5 28 93 5 28 90	21 56 18 47 19 12 21 30	- 0 27.75 0 20.34 0 21.32 0 26.71	+ 1 2 6.22 5.60 7.61 5.62	+ 1 5 11 °03 5 8 °47 5 5 °17 5 8 °70	8 13 - 9 3 9 9 1 7 6 31 8 59 9 4 6	6.76 5 2.72
"	8	w.	50 7 & 230 7	+ 4 27 29 70 27 26 70 27 23 44 27 20 00	1 2 1 41 9 16 11 41	+ 0 0.06 0 0.16 0 4.95 0 7.88	+ 4 27 29 76 26 86 28 39 27 88	+ 4 27 12 20 27 17 14 27 1 83 26 48 20	14 56 + 0 12 8 11 29 0 7 6 21 39 0 27 6 24 56 0 35 8	24.77 28.87
"	9	E.	o 8 & 180 8	+ 1 4 59.83 5 4.30 5 21.03 5 27.10	0 10 3 33 15 15 18 27	- o o o o o o o o o o o o o o o o o o o	+ 1 4 59.83 63.57 67.60 67.42	+ 1 5 26 94 5 19 33 6 4 07 6 14 87	16 31 - 0 15.7 13 13 0 10.0 30 49 0 54.8 1 2.6	9.24
n	9	w.	o 8 & 180 8	+ 4 27 29 70 27 29 60 27 23 24 27 21 40	4 50 I 40 8 22 II 3	+ 0 1.35 0 0.16 0 4.04 0 7.05	+ 4 27 31 05 29 76 27 28 28 45	+ 4 27 10°90 27 22°63 27 6°40 26 54°20	18 29 + 0 19 7 14 19 0 11 8 21 55 0 27 7 0 38 7	34.46
"	10	E.	10 9 . &	+ 1 5 37 40 5 25 03 5 43 14 5 52 20	20 22 16 38 23 29 26 40	- 0 23.91 0 15.97 0 31.88 0 41.07	+ 1 5 13.49 9.06 11.13	+ 1 5 13.90 5 10.63 5 14.96	6 33 - 0 2.4 9 29 0 5.2 0 8.6	9.86
n	10	w.	10 9 & 190 9	+ 4 27 31 40 27 34 54 27 30 86 27 25 37	4 5 1 18 7 5 10 8	+ o o.99 o o.10 + o o.10	+ 4 27 32 36 34 64 33 75 31 30	+ 4 27 16.86 27 20.87 26 56.27 26 46.36	17 14 + 0 17 1 13 54 0 11 1 25 7 0 36 2 27 51 0 44 6	32.04 32.64

Date			s of		PACE LEFT		:	ACE RIGHT		
Astronomical		Elongation	Zeros (Circle Readings of Referring Mark)	Observed Horizontal Angle: Diff. of Readings Ref. Mark—Star	Reduction in Arc to Time of Elongation	Reduction in Arc to Time of Elongation at Elongation		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark – Star at Elongation	
Oct.	11	E.	0 / 20 10 & 200 10	0 , # + 1 5 29 87 5 19 10 5 58 34 6 5 54	m 8 , 20 37 — 0 24.52 0 16.44 27 44 0 44.46 0 55.10	+ 1 5 5.35 2.66 13.88 10.44	0 1 7 m 8 + 1 5 7 70 2 30 5 7 87 1 1 5 20 10 13 1 5 30 60 18 1	0 0.00	0 , " + I 5 7.34 7.78 9.97 II.42	
"	11	w.	20 10 & 200 10	+ 4 27 17 47 27 23 46 26 55 23 26 47 97	16 34 + 0 15.87 13 40 0 10.79 26 21 0 39.99 29 24 0 49.78	+ 4 27 33 34 34 25 35 22 37 75	+ 4 27 29 10 2 44 27 29 37 0 3 27 20 47 11 3 27 15 20 14 3	0 0.02	+ 4 27 29 51 29 39 28 12 27 36	
"	12	E.	30 4 & 210 4	+ 1 5 29 80 5 23 56 5 18 27 5 22 43	20 53 - 0 25 14 16 51 0 16 39 17 23 0 17 48 19 45 0 22 54	+ 1 4 64.66 67.17 60.79 59.89	+ 1 5 18 50 6 1 5 18 67 3 2 5 12 40 5 1 5 14 50 7 5	0 0.66	+ 1 5 16.27 18.01 10.84 10.83	
"	12	w.	30 4 & 210 4	+ 4 27 28.60 27 29.80 27 25.16 27 18.46	3 40 + 0 0.48 0 39 0 0.02 9 19 0 5.00 0 9.21	+ 4 27 29 38 29 82 30 16 27 67	+ 4 27 15 74 17 2 27 20 03 13 5 27 1 40 23 1 26 47 63 28	0 11.39	31·32 32·54	

# Abstract of Astronomical Azimuth observed at XXIV (Sora) 1845.

# 1. By Eastern Elongation of a Ursæ Minoris.

Face	L	R	L	R	L	R	L	R	L	R	L	R
Żero	0°	180°	10°	190°	20°	200°	80°	210°	40°	<b>220°</b>	50°	230°
Date	Octo	ber 9	Octob	er 10	Octol	oer 11	Octol	oer 12	Octo	ber 7	Octo	ber 8
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	*58.87 *57.19 *63.98 *62.90 59.83 63.57 67.60 67.42	*74.24 *70.93 *72.53 *71.03 71.21 69.24 69.22 72.26	*69.11 *67.93 *68.27 *65.37 73.49 69.06 71.26 71.13	*70.57 *68.10 *67.73 *66.85 71.42 69.86 69.76 71.43	*70.87 *69.98 *75.07 *73.43 65.35 62.66 73.88 70.44	*72.54 *70.62 *72.39 *69.18 67.34 67.78 69.97 71.42	*68.45 *65.49 *67.45 *65.59 64.66 67.17 60.79 59.89	*72.94 *68.96 *71.43 *73.20 76.27 78.01 70.84 70.83	" 70.86 65.57 68.03 69.47	" 65.82 64.69 65.62 64.15	" 66.55 62.19 67.61 62.19	" 67.13 66.76 62.72 64.04
Means	62.67	71.33	69.45	69:47	70.31	70.16	64.94	72.81	68.48	65.07	64.84	65.16
Means of both faces + Az. of Star fr. S., by W. Az. of Ref. M. "	181 4i 1	7°00 0°68 7°68	1	" 9°46 9°69	ġ	" 0.18 0.84 0.05	9	" 3·88 9·45 3·33	66	" ' 78 ' 57 ' 35	11	. 13 . 13 . 13

Note.—Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date—the most convenient—by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.

### Abstract of Astronomical Azimuth observed at XXIV (Sora) 1845—(Continued).

### 2. By Western Elongation of a Ursæ Minoris.

Face	L	R	L	R	L	R	L	R	L	R	L	R
Zero	0°	180°	10°	190°	20°	200°	30°	210°	40°	220°	50°	230°
Date	Octo	ber 9	Octob	er 10	Octo	ber 11	Octol	per 12	Octo	ber 7	Octo	ber 8
	n	"	"	"	"	"	"	"	"	"	*	*
Observed difference of Circle-Readings, Ref. M.—Star reduced to Elongation	*34.52 *31.27 *31.05 29.76 27.28 28.45	*34.18 *34.72 30.65 34.46 34.11 32.90	*32 · 22 *30 · 53 *32 · 97 *30 · 50 32 · 36 34 · 64 33 · 75 31 · 30	*35.88 *36.92 34.01 32.04 32.64 31.02	*29.78 *31.42 *35.34 *31.81 33.34 34.25 35.22 37.75	*31.65 *32.58 *36.48 29.51 29.39 28.12 27.36	*28.76 *27.97 *26.06 *27.28 29.38 29.82 30.16 27.67	*30°94 *31°84 33°14 31°32 32°54 33°07	36·16 35·58 34·99 35·90	28.56 29.12 29.89 31.63	29.76 26.86 28.39 27.88	25.08 24.77 28.87 24.02
Means	30.39	33.20	32.58	33.75	33.61	30.73	28.39	32.14	35.66	29.80	28.33	25.69
	0 1	n .		"		11		"	1	"		*
Means of both faces	+ 4 27	31.95		3.03		. 17	_	27	33	7.73		95
Az. of Star fr. S., by W. Az. of Ref. M. "	178 18 182 46	49°54 21°49		3.01 5.00		32 49		0.44 1.04		3.65 1.38		. 02

							0 /	"		
		ern Elongation	ı	•••	•••	•••	182 46	18.37		
Astronomical Azimuth of Referring Mark	by West	tern "	•••	•••	•••	•••	•	20.91		
•	(	$\mathbf{Mean}$	•••	•••	•••	•••	>>	19.64		
Angle Referring Mark and XXV (Janai)	see below	•••	•••	•••	•••	•••	+ 56 56	43.63		
Astronomical Azimuth of Janai by observat	ion	•••	•••	•••	•••	•••	+239 42	63.27		
Geodetical Azimuth of ,, by calculation from that adopted (Vol. II, page 141) at										
Kaliánpur, see page 46 ante	•••	•••	•••	•••	•••	•••	239 42	58.77		
Astronomical—Geodetical Azimuth at XXI		•••	•••	•••	•••	•••	+	4.20		

Note.—Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date—the most convenient—by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.

At XXIV

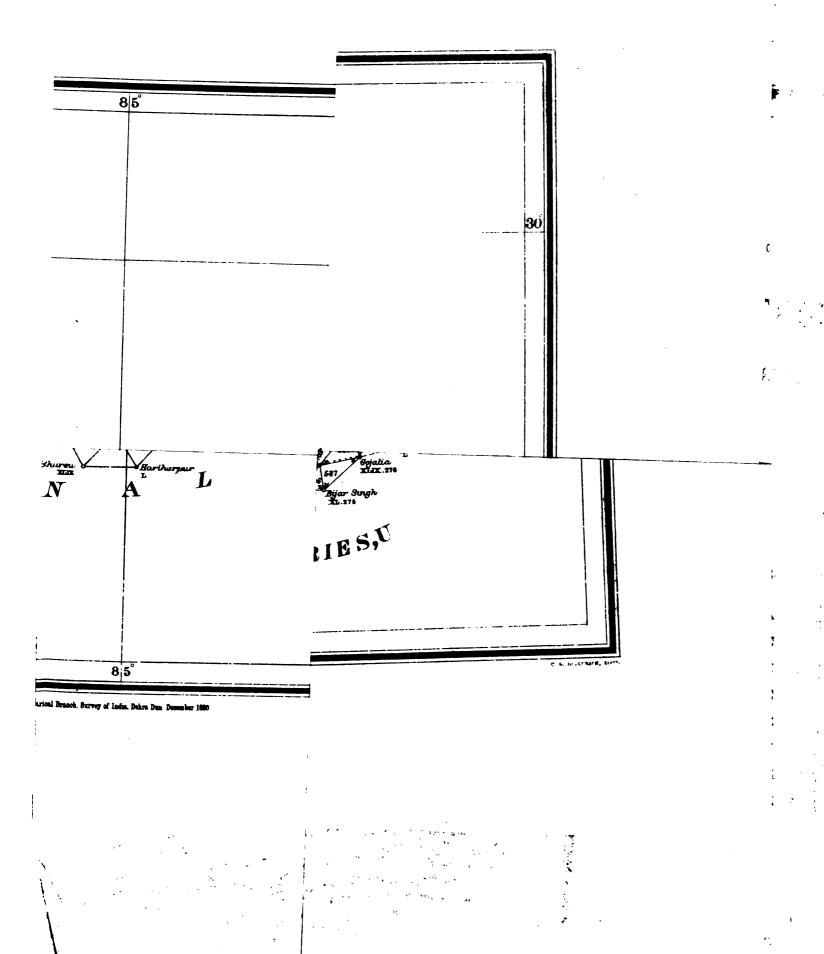
October 1845; observed by Captain A. S. Waugh with Syud Meer Mohsin's 18-inch Theodolste.

Angle	Means of Circle-readings, telescope being set on R. M.													
between	0°8′	180° 8′	10° 10′	190° 10′	20° 10′	<b>2</b> 00° 10′	80° 5′	210° 5′	40° 11′	220° 11′	50°7′	230° 7′	General Mean	
R. M. &	" 51.24	39°20	" 44:49	" 39°40	43°13	" 41.59	51.48 4	43.96	" 42.00	35 <u>*</u> 75	" 45 ² 5	46°07	56° 56′ 43″ · 63	

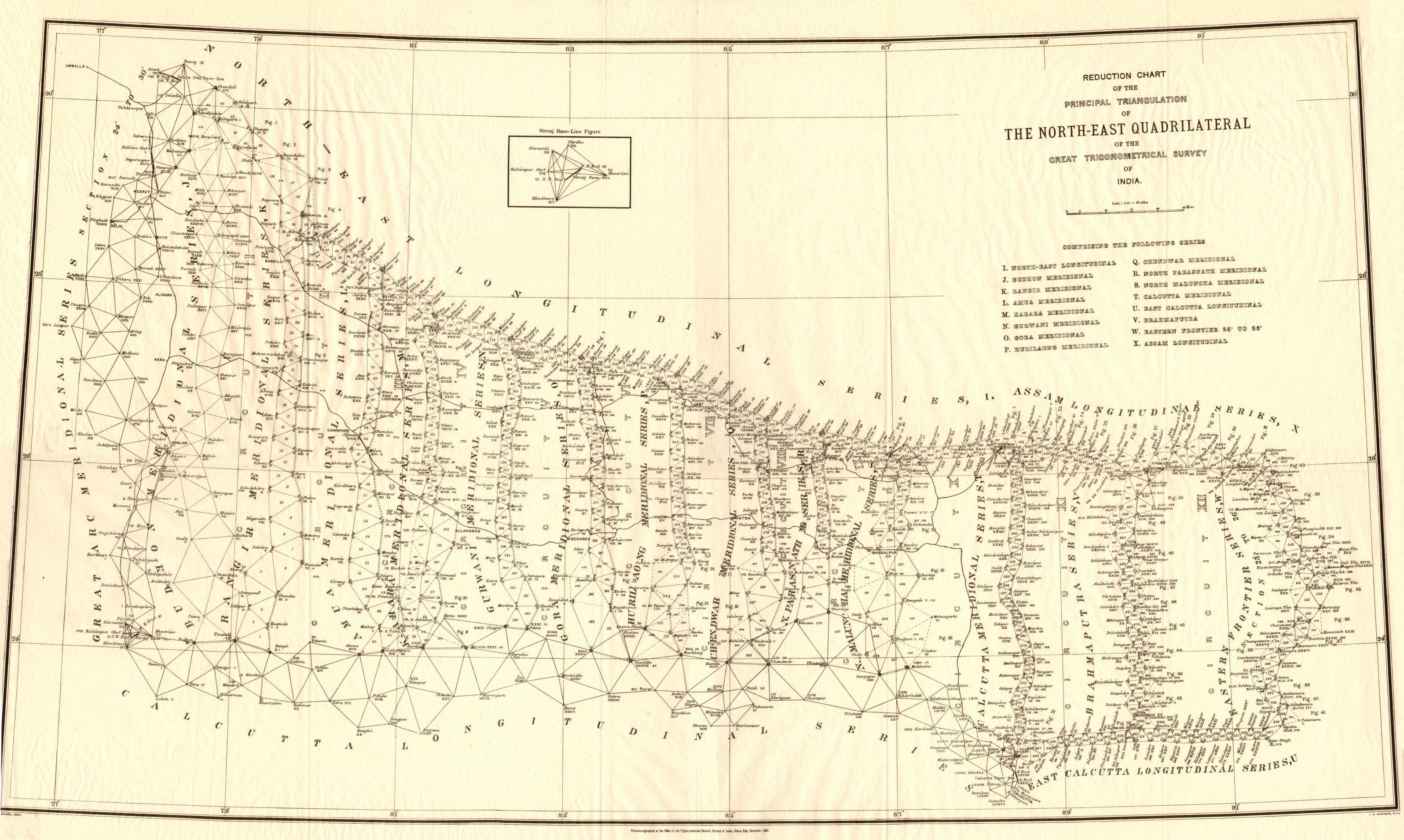
October 1878.

J. B. N. HENNESSEY,
In charge of Computing Office.




PRINCIPAL TRIANGULATION-KARARA MERIDIONAL SERIES

XVI XIV of XIII 52 43 35 XII XI & П Fig. No. 9 X 40 031 IX (17) VII 28 X ³/vm ≈ XXVI XXIIIX  $F_{ig.}\ N_{o.}\ 10$ VI K XXIII ·III XXII XXI IV (20 **XX** & Fig. No. 11


Scale 1 Inch = 12 Miles or 760320

Pholosincographed at the Office of the Superintendent Great Trigonometrical Survey, Dehra Dim, June 1878.

C. G. OLLENBACH.



Digitized by Google



# List of Published Works of the Great Trigonometrical Survey of India.

- An Account of the Measurement of an Arc of the meridian between the parallels of 18° 3′ and 24° 7′, being a continuation of the Grand Meridianal Arc of India as detailed by the late Lieutenant-Colonel Lambton in the Volumes of the Asiatic Society of Calcutta. By Captain George Everest, of the Bengal Artillery, F.R.S., &c. London, 1830.
- An Account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels of 18° 3′ 5″; 24° 7′ 11″; and 29° 30′ 18″. By Lieutenant-Colonel Everest, F.R.S., &c., late Surveyor General of India, and his Assistants. London, 1847.

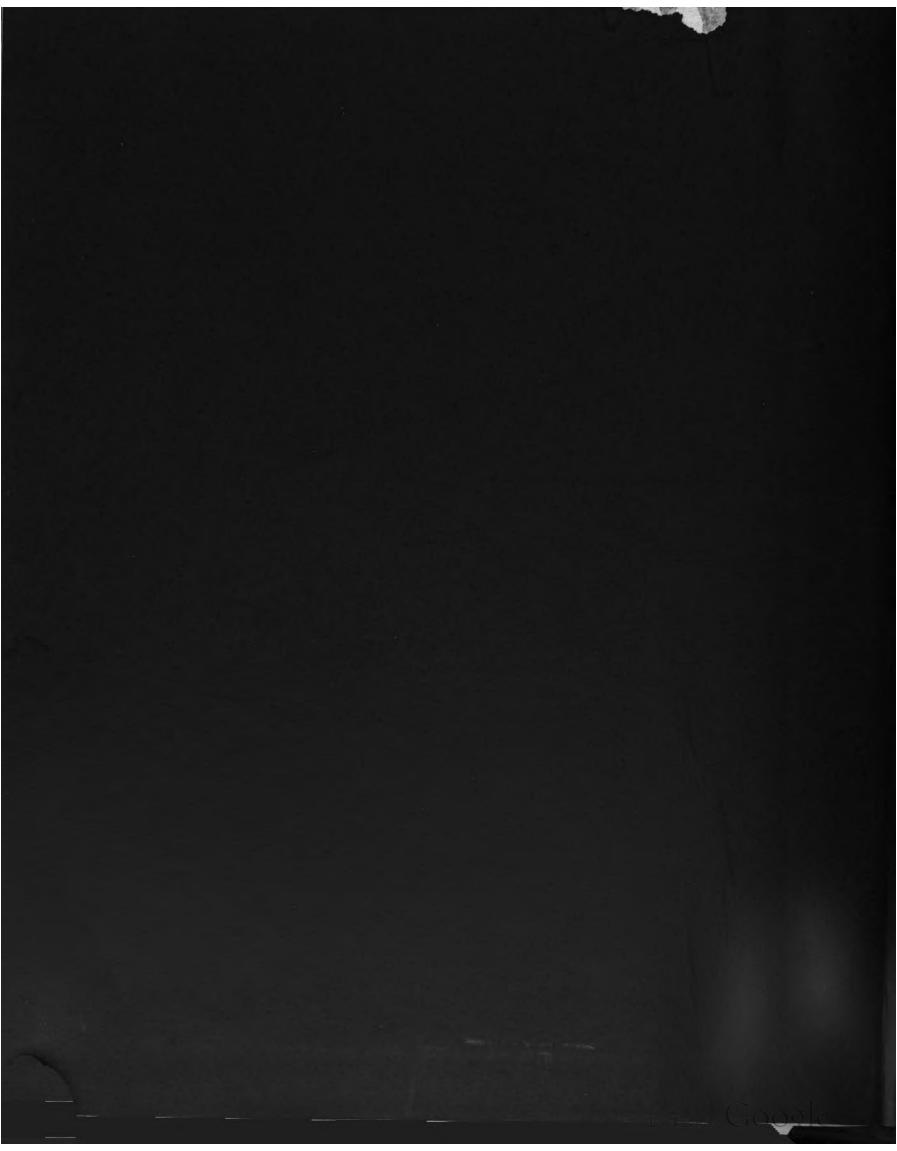
### Account of the Operations of the Great Trigonometrical Survey of India.

- Volume I. The Standards of Measure and the Base-Lines, also an Introductory Account of the early Operations of the Survey, during the period of 1800-1830. By Colonel J. T. Walker, R.E., F.R.S., &c., &c., Superintendent of the Survey. Dehra Dún, 1870.
  - Do. II. History and General Description of the Principal Triangulation and of its Reduction. By Colonel J. T. Walker, C.B., R.E., F.R.S., &c., &c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
  - Do. III. The Principal Triangulation, the Base-Line Figures, the Karáchi Longitudinal, N.W. Himalaya, and Great Indus Series of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., &c., &c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
  - Do. IV. The Principal Triangulation, the Great Arc (Section 24°-30°), Rahún, Gurhágarh and Jogí-Tíla Meridional Series, and the Sutlej Series of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., &c., &c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
  - Do. V. Details of the Pendulum Operations by Captains J. P. Basevi, R.E., and W. J. Heaviside, R.E., and of their Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., &c., &c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún and Calcutta, 1879.
  - Do. VI. The Principal Triangulation of the South-East Quadrilateral including the Great Arc—Section 18° to 24°, the East Coast Series, the Calcutta and the Bider Longitudinal Series, the Jabalpur and the Biláspur Meridional Series, and the details of their Simultaneous Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., &c., &c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1880.

#### List of Published Works of the Great Trigonometrical Survey of India—(Continued).

Synopses of the Results of the Great Trigonometrical Survey of India, comprising Descriptions, Co-ordinates, &c., of the Principal and Secondary Stations and other Fixed Points, of the Several Series of Triangles, as follows;—

- Volume I. The Great Indus Series, or Series D of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., &c., &c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
  - Do. II. The Great Arc—Section 24° to 30°, or Series A of the North-West Quadrilateral.


    By Colonel J. T. Walker, R.E., F.R.S., &c., &c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
  - Do. III. The Karáchi Longitudinal Series, or Series B of the North-West Quadrilateral.

    By Colonel J. T. Walker, R.E., F.R.S., &c., &c., Superintendent of the Survey, and his

    Assistants. Dehra Dún, 1874.
  - Do. IV. The Gurhágarh Meridional Series, or Series F of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., &c., &c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
  - Do. V. The Rahún Meridional Series, or Series E of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., &c., &c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
  - Do. VI. The Jogí-Tíla Meridional Series, or Series G, and the Sutlej Series, or Series H of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., &c., &c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
  - Do. VII. The North-West Himalaya Series, or Series C of the North-West Quadrilateral, and the Triangulation of the Kashmir Survey. By Major-General J. T. Walker, C.B., R.E., F.R.S., &c., &c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
  - Do. VIII. The Great Arc—Section 18° to 24°, or Series A of the South-East Quadrilateral. By Colonel J. T. Walker, C.B., R.E., F.R.S., &c., &c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1878.
  - Do. IX. The Jabalpur Meridional Series, or Series E of the South-East Quadrilateral. By Colonel J. T. Walker, C.B., R.E., F.R.S., &c., &c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1878.
  - Do. X. The Bider Longitudinal Series, or Series D of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., &c., &c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
  - Do. XI. The Biláspur Meridional Series, or Series F of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., &c., &c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
  - Do. XII. The Calcutta Longitudinal Series, or Series B of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., &c., &c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
  - Do. XIII. The East Coast Series, or Series C of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., &c., &c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.

August, 1882.







